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Abstract 
Artificial Intelligence’s impact on society is increasingly 
pervasive. While innovative educational programs are being 
developed, there has been little understanding of how 
students, especially pre-college aged students, construct an 
understanding of and gain practice with core ideas about AI 
or what concepts are most appropriate for what age-levels. In 
this paper, we discuss a cognitive interview study with 
middle school and high school students to better understand 
how students learn AI concepts. We aim to shed light on 
questions including: what is the range of background 
knowledge and experiences students are able to apply in 
encountering AI concepts; what concepts are most readily 
accessible and which are more challenging; what 
misconceptions do students bring to bear on AI problems; 
and how to help students approach AI concepts by leveraging 
related concepts (such as mathematical and computational 
thinking). Results from the exploratory study have the 
potential to provide important insights into AI learning for 
pre-college youth. These initial findings can inform further 
investigations to ground the design of learning and 
assessment in evidence-based learning progressions and 
grade-level performance expectations.  

 Introduction   

Math and computational thinking are two important skills 
for the nation’s future workforce and are foundational to the 
field of artificial intelligence (AI). Mathematics is 
foundational to computer science, a field that combines 
mathematics, engineering, and science (Denning, 2009). 
Computational thinking (CT), encompassing a broad range 
of mental tools and concepts from computer science, helps 
people solve problems (e.g., diagnosing disease), design 
systems (e.g., self-driving cars), understand human behavior 
(e.g., speech recognition), and engage computers in 
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automating a wide range of intellectual processes (NRC, 
2010). Rapid advances in the design and implementation of 
AI systems to accomplish these kinds of automation have 
led to the ever-expanding role for AI in society (Makridakis, 
2017; Nadikattu, 2016). AI, it seems, is all around us.  

Accordingly, AI is redefining the future of work within 
the human-machine alliance (Guszcza, Lewis, & Evans-
Greenwood, 2017). Thus, proficiency in the language of AI 
is key to a data-capable workforce that will continue to 
innovate and support the AI-powered technology 
infrastructure. All of today’s students will go on to live a life 
heavily influenced by AI, and many will work in fields that 
involve or are influenced by AI. It is no longer sufficient to 
wait until students are in college to introduce AI concepts. 
Rather, they must begin to work with AI algorithmic 
problem solving and computational methods and tools in K-
12.  

At the same time, while AI’s impact on society is 
increasingly pervasive, and innovative educational 
opportunities are being rapidly developed, there has been 
preciously little research into how students, especially pre-
college aged students, construct an understanding of and 
gain practice with core ideas in the field. As a result, there 
is little possibility of grounding the design of learning 
experiences in evidence-based accounts of how youth learn 
AI concepts, how understanding progresses across concepts, 
or what concepts are most appropriate for what age-levels.  

In this paper, we discuss a cognitive interview study to 
better understand how students learn AI concepts. The study 
is part of a project that aims to develop game-based learning 
environments to help students build AI competency, apply 
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math knowledge and develop CT skills. We conducted 
surveys and cognitive interviews to answer questions 
including: what is the range of background knowledge and 
experiences students are able to apply in encountering AI 
concepts; what concepts are most readily accessible and 
which are more challenging; what related concepts (e.g., 
mathematical and computational thinking) do students 
engage with and or need to leverage in order to access AI 
concepts? While the initial work presented here is 
exploratory, the survey data and in-depth interviews with 
students have the potential to provide important insights into 
AI learning for pre-college youth. The preliminary results 
can inform future studies that systematically examine these 
initial findings and support the advancement of the field’s 
understanding of student knowledge construction of AI 
concepts and thereby better support the design of instruction 
and assessment aimed at pre-college youth. 

Related Works 

While AI has been the cornerstone of the computer science 
curriculum in higher education for decades, discussions on 
how to approach AI education for the K-12 population have 
only just begun in the US (Touretzky et al., 2019), Europe, 
and much of the rest of the world, with the exception of 
China (Xiong, Wang, & Huang, 2018; Chen & Tang, 2018), 
which has already developed a series of seven AI textbooks 
for elementary, middle, and high schools. Sweden has also 
developed AI courses to educate its citizens, including 
school-age youth, about AI (Heintz et al., 2015).  

Discussions on how to integrate AI into the existing K-12 
curriculum (e.g., computer science education) are heating up 
in the US (Gardner-McCune et al., 2019). To develop 
guidelines of what K-12 students should learn about AI, the 
AI4K12 Initiative has proposed the Five Big Ideas of AI, 
including Perception, Representation and Reasoning, 
Learning, Natural Interaction, and Social Impact (Touretzky 
et al., 2019). Most recently, ReadyAI, a group that organizes 
camps to help students learn about AI, has developed a 
curriculum to teach AI courses to K-12 students online at 
ReadyAI.org. Researchers at MIT have also developed a 
website to share a variety of online activities for K-12 
students to learn about AI, with a focus on how to design 
and use it responsibly.2 This includes a curriculum for 
teaching ethics of AI to middle school students.3 

On the technology front, there has been effort, 
particularly from industry, to build demonstrations and tools 
to help the public learn about AI, particularly machine 
learning (for review, see Gardner-McCune et al., 2019). 
Additionally, Carnegie Learning has developed a prototype 
to help middle school students learn AI by designing AI to 
play tic-tac-toe (Ritter et al., 2019).  
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The work presented here aims to uncover how K-12, 
particularly high school students, approach AI concepts, 
what obstacles they face, and how to guide them through the 
obstacles. The work builds upon previous investigations into 
linking AI to K-12 math curriculum to identify AI concepts 
suitable for high school students. (Wang & Johnson, 2019), 
as well as work investigating the learning of computational 
thinking (Lee, et al., 2011; Rich, et al., 2019) and seminal 
research into comprehension of mathematical 
representations (e.g., Curcio, 1987; Friel, Curcio & Bright, 
2001) and statistics (e.g., Batanero, Godino, Vallecillos, 
Green, & Holmes, 1994).  

Methodology 

We conducted a study using cognitive interviews with 
middle school and high school students using five AI 
problems to gain an understanding of what type of AI 
concepts and difficulty is suitable for the high-school 
population, what are the challenges they face, and what 
pedagogical approach can be applied to guide students in AI 
problem-solving.  

Sample 
We recruited 8 participants from a private school located in 
the United States.  The participants consisted of 4 high 
school students and 4 middle school students, ranging in age 
from 12 to 17 years old. The inclusion of the middle school 
students is based on suggestions from the teachers at the 
school, who believed the AI problems might be accessible 
to advanced middle school students after reviewing the AI 
problems used in the study and the math knowledge 
required. The sample was drawn from and reflected a 
student population that is racially and ethnically diverse and 
generally higher-resourced than that of the average public 
school. Especially given persistent inequities in computer 
science academic and career pathways, as well as broader 
questions of access and privilege across society, the sample 
presents limitations for generalizability that will be 
important to address in future studies. 

Measures 
As students began the cognitive interview, they were asked 
background information such as grade and age. Then, 
students were asked to rate their interest in AI, their 
understanding of AI, and their confidence in math class, 
each on a Likert scale of 1 to 5.   

The cognitive interview employed a semi-structured 
protocol, with a series of prompts to elicit student thinking 
as they a) initially encountered each problem (e.g., “Does 
anything about the problem seem familiar to you?”, “What 
do you think a ‘good answer’ might look like?”); b) 

3 www.media.mit.edu/projects/ai-ethics-for-middle-school/overview/ 



attempted to solve the problem (e.g., “I see that you [did X], 
tell me about your thinking; and, how did you decide to do 
X?”); and c) after they had settled on a solution (e.g., “Were 
there any moments when the problem became more clear for 
you or where you noticed that you had a better 
understanding of how to solve it?”). In-the-moment 
scaffolding was provided throughout each interview to: a) 
enable students to reveal thinking across each step of the 
solution; b) surface and test emerging ideas about why a 
student might be stuck; and c) disambiguate between 
superficial challenges, such as unfamiliar vocabulary and 
calculation errors, and more conceptual difficulties. 

AI Material 
To determine the AI concepts to teach, we reviewed the AI 
curriculum from the most popular AI textbook for higher 
education (Russell & Novig, 2016) and categorized the AI 
topics into four main fields (Search, Knowledge 
Representation and Planning, Probabilistic Reasoning, and 
Machine Learning). Based on the underlying math 
knowledge required, we then narrowed down the sets of AI 
concepts based on whether the relevant math knowledge is 
covered by the high school curriculum. Primarily, AI 
concepts in the field of Knowledge Representation and 
Planning were excluded due to the prerequisite of 
knowledge in logic (logic is not commonly part of the K-12 
math curriculum in the United States). In the end, we 
selected five AI concepts – Search, Bayesian Networks, 
Decision Trees, Clustering, and Linear Regression. Using 
the classic problems for the selected AI concepts as 
examples, we designed an AI problem for each of the AI 
concepts. Each problem consisted of a series of questions 
that help students develop the solution step by step. The 
problems were designed to be difficult to complete, with the 
difficulty increasing at each step toward the solution. 

For Classical Search, students were presented with an 8-
Puzzle Game (shown in Figure 1). In the game, the students 
were given a 3x3 board with initial configuration of 8 sliding 
pieces, numbered 1-8, and were asked to slide the pieces 
around to reach a target configuration of the board. Students 
were asked to complete the puzzle and estimate the size of 
the search tree.  

 
Fig. 1 

Representations of the 8-Puzzle Game in its initial and completed 
states. 

For Bayesian Networks, students were presented with a 
problem to estimate the likelihood that a patient has a cavity. 
Students were given a problem description with joint 
probability of events (e.g., “A dentist often says that 10.8% 
of patients have a cavity and a toothache, and the dental 
hook catches the tooth.”). They were asked to organize the 
probability in a joint-probability table (Figure 2), and 
answer questions about the likelihood of various events by 
reading the table. The students were then guided to organize 
the variables in a Bayesian Network. 

 

 
Fig. 2 

Tabular data as presented in the Cavity problem. 

For Decision Trees, students were presented with a 
problem where they had to help a friend decide whether or 
not they would wait to get a seat at a restaurant or not. A 
table containing data about past experiences detailing 
whether or not they would wait for a table at restaurants was 
included. The data table contained features such as the wait 
time, the type of restaurant, whether it’s raining etc. The 
students were asked to think of what questions they could 
ask their friend to help them come to a decision. 

For Clustering, students were given a common clustering 
problem of identifying flower species. Students were given 
a table of sample data on Iris flowers with features such as 
petal width, petal length, sepal width, sepal length, and 
flower species. Students were presented measurements of a 
new flower and asked to identify the species of the new 
flower.  



For Linear Regression, we designed a problem based on 
a tutorial on “Exploring bivariate numerical data” from 
Khan Academy.4 Students were presented with a table 
containing past data on time spent on the phone and the 
battery life remaining (Figure 3). Students were asked to use 
the data to predict the percentage of battery life left in a 
mobile phone after certain hours of use. 

 
Fig. 3 

Table of time spent on a phone and corresponding battery life 
remaining. 

Procedure 
The cognitive interviews were conducted by a member of 
the research team with expertise in the learning sciences and 
mathematics instruction. During the study, the interviewer 
first asked students about their background information 
using questions from the Measures section. Then the 
interviewer presented the AI problems printed on paper to 
the students. Students were given blank paper and pencils to 
work on the problems. Students were given blank paper and 
pencils to work on the problems. Students were encouraged 
to think aloud as they solved the problems. The interviewer 
asked questions and guided students through each problem. 
Every student was presented with all five problems and 
worked toward a solution (not necessarily completed) for 2-
3 problems during the interview. Problem selection included 
input from the students interviewed and was ultimately 
determined by the researcher conducting the interview to 
ensure a balance of data across each problem type. How 
much of each problem students completed depended on the 
time the students spent on the problem and whether the 
interviewer deemed suitable to continue, based primarily on 
student progress and indications of student frustration 
levels. Table 1 describes the number of students who 
engaged with each problem type. Each study session lasted 
about 1 hour. Top-down videos of the paper the student used 
to work on the AI problems were recorded. 

 
4 khanacademy.org/math/statistics-probability/describing-relationships-
quantitative-data/introduction-to-trend-lines/a/equations-of-trend-lines-
phone-data 

 
 

Problem Type Responses 
Search 5 
Bayesian Networks 4 
Decision Trees 5 
Clustering 4 
Linear Regression 4  

 
Table 1 

Distribution of problem responses across participants. 

Analysis 
Video files for each interview were uploaded to Dedoose 
(2018), a mixed methods data analysis tool. To analyze the 
interview data, we first created excerpts of each student's 
work on each problem, and applied codes directly to the 
video excerpts according to the problem type. We then 
completed two passes through the data. With the first pass 
we viewed each interview in sequence, generating and 
applying a set of broadly applicable codes (e.g., 
“challenges” to denote moments of student difficulty with a 
problem, and “prior knowledge” to denote evidence of 
students applying prior mathematical knowledge to a 
problem). Then, we compiled the excerpts by problem type 
and viewed the variety of student responses on each problem 
together. In this second pass through the data, we drew from 
the principles of grounded theory (Glaser & Strauss, 1967; 
Glaser, 1992), to iteratively introduce new codes as themes 
emerged (e.g., “problem identification,” and “central 
tendency”), which we then added to and revised through 
successive passes through the data, continually comparing 
the emergent codes against the data. These initial codes were 
revised for consistency and tractability, then applied 
systematically across the data. While we report on findings 
that have emerged from these initial passes through the data, 
additional analyses are ongoing.  

Initial Findings 

Analysis of the three Likert scale questions for the students 
interviewed (asked at the outset of the interview) provide 
useful context for interpreting findings. Likert items can be 
difficult to compare across respondents, owing to variation 
in student propensity to anchor responses at the high end or 
low end of the scale. However, comparisons within each 
student’s responses to the three questions offer a window 
into a student’s relative confidence and interest in AI and 
math. As revealed in the table below (Table 2), nearly all 



students expressed high levels of interest in AI, and rated 
their interest in AI higher than their confidence in 
understanding AI. At the same time students generally felt 
more confident with math than AI, although only slightly.  
 
 

Student Age Math  
Confidence 

AI  
Confidence 

AI  
Interest 

12 2 3 4 
13 3 3 5 
13 3 2 3 
13 4 2 4 
15 4 3 4 
17 4 1 2 
17 3 2 5 
17 2 2 3 

 
Table 2 

Student age, confidence in math and AI, and interest in AI. 

With this context about the student sample in mind, 
analysis of the student cognitive interview data has shed new 
light on how 12-17 year old students encounter and 
construct knowledge related to artificial intelligence 
concepts. We organize these early findings into five themes. 

 
Students needed support to leverage and apply 
mathematical concepts that underlie AI problems 
Even in cases where students demonstrated competency 
with the necessary mathematical skills, they often struggled 
to identify connections and/or make use of those skills until 
explicitly prompted. This was particularly evident for the 
application of statistics and probability (e.g., drawing on 
probability concepts in approaching Bayesian Networks and 
regression modeling for the linear regression algorithm). For 
example, when students were provided data about cell 
phone battery usage and asked to use the data to predict the 
percentage of battery life left in a mobile phone, each 
student initially scanned the values in the data and offered 
an estimate based on the final 1 or 2 data points provided 
(see Figure 3). Even after prompting, (such as, “can you 
think of a way to graph these data to get a more precise 
answer?”) students struggled to do so until the idea of a line 
of best fit was explicitly introduced by the researcher 
conducting the interview. Once introduced, however, 
students generally recognized the method and were able to 
apply it to the problem. This theme was also evident in the 
use of graphical or tabular data representations. For 
example, the data used for the cavity problem and for the 
restaurant decision tree problem were both presented in 
tabular displays. The nested nature of the data table for the 
cavity problem (see Figure 2), in which various 

combinations of conditions were represented together, was 
particularly challenging for students.  

For nearly all students, these data tables were initially 
difficult to interpret as computational artifacts, with students 
struggling to make meaning of the relationship between 
values within a row or to connect column headers to variable 
descriptions. This led to difficulty in making independent 
progress on the problems until students were supported to 
attend to the structural features of the data as represented in 
the tables. 

However, for most students, in-the-moment scaffolding 
was effective in enabling them to recognize and apply their 
mathematical knowledge for AI problems. Once the 
connection between the AI problem and the underlying math 
was made explicit, students were able to engage 
productively. For example, in the linear regression problem, 
all but one student was readily able to construct a graph and 
produce a reasonable line of best fit to the data after this 
connection to the math was explicitly introduced. Similarly, 
explicit scaffolding about the relationships among rows, 
columns, and cells within the data tables was largely 
successful in activating students’ mathematical and 
computational thinking to use the tables to solve the AI 
problem. This suggests that students will likely need support 
in identifying when and how the math concepts they may be 
familiar with in their mathematics classroom can be applied 
to AI systems. More promisingly, it also suggests that once 
this background knowledge is activated, students can 
leverage it to productively engage with AI problems. 

 
Students found difficulty with the abstract 
representations characteristic in AI problems 
Across all interviews, students needed explicit scaffolding 
in understanding how to interpret and construct a search tree 
(e.g., in order to interrogate the fitness of different search 
algorithms for different search problems). Thus, even after 
the interviewer scaffolding enabled students to construct a 
search tree from the slider puzzle, students struggled to 
make use of the search tree representation to consider the 
depth and breadth of a problem space (both for the search 
trees they constructed and for pre-constructed exemplars). 
As an illustration of this, with scaffolding, all students were 
able to build a tree from a node to branches to new nodes, 
yet only one student was able to recognize the salience of 
tree abstractions such as branching factor and tree depth 
(albeit using colloquial language) to estimate the relative 
complexity of a problem. While by no means definitive, 
there were some indications that student difficulty to use, 
modify, and create search tree or Bayesian Network 
representations interacted with students’ challenges 
applying concepts of probability to the AI problem space 
(i.e., in recognizing the universe of possibilities that 
systematically determine the construction of tree nodes). 
With ongoing analyses to better understand this relationship 
between difficulty with representations and difficulty with 
the concepts being represented in the case of search trees, 



initial findings suggest the importance of supporting 
students to understand the computational features of tree 
representations--in essence to learn how to “read” a tree.  
 
Students first draw on their own experiences with a 
problem’s context when approaching AI problems 
In a variation of the human-interpreter problem (Spohrer & 
Soloway, 1986) common to computer science, several 
students began their attempt at solving a problem by 
referring to prior experience with the problem space (e.g., 
cell phone batteries and restaurant dining) in an attempt to 
reason through to an answer. For example, in the decision-
tree problem, students were reluctant to systematically 
examine the data provided, and instead began by 
considering what they would do or what they did in the past 
(e.g., “if it’s an expensive dinner, i think they’d be more 
willing to wait.”). That is to say, rather than attending to how 
features of the data could be operated on to produce a 
decision, students first tried to figure out the motivations for 
the agents in the problem (i.e., the diners). Thus, students’ 
initial answers were less related to the available data, and 
more related to how the students imagined the diners would 
behave. We saw similar approaches in the linear regression 
problem, where students’ initial predictions were often 
anchored in their own experience with cell phone battery 
life, rather than the presented data.   
 
Students are unfamiliar with parsing the world in terms 
an AI system can operate on 
A challenge for all students interviewed, even those with 
advanced mathematical skills, was recognizing how a 
problem in the world could be made amenable to the 
computational power of AI. That is to say, students needed 
support in conceiving a problem space in a way that would 
enable an AI system to solve it. Thus while some students 
in the study volunteered ways a computer program might be 
able to implement an AI solution once identified, the initial 
step of reconceiving a problem as an AI problem was 
elusive: the broad strategies AI systems leverage to make 
predictions or to find a solution from an array of possibilities 
were unknown to students and thus unavailable resources in 
their mental models of the problem space.  For example, for 
most students the idea that a problem like an 8-puzzle could 
be reconceived as a search for a solution was difficult to 
make use of as the mechanics of AI “search” was largely a 
black box for which they had little in the way of working 
theories. Accordingly, there was little evidence that students 
conceived of search as a potentially systematic process, or 
that a search space had dimensions that could shed light on 
the computational difficulty of the search problem. We saw 
similar evidence in the way students encountered problems 
for which AI solutions depended on appreciating the relative 
value of information and the idea of entropy, particularly as 
represented in the decision tree problem.  
 

Clustering may serve as a productive on-ramp to 
learning AI concepts 
From the set of AI concepts under investigation, students 
most consistently demonstrated an intuitive grasp of 
clustering. Even for the middle-school aged students in the 
study, the concept of centroids and clustering were readily 
grasped and applied to AI classification problems. In 
contrast with other problems (as discussed above) in which 
students struggled to apply mathematical concepts in AI, 
students needed little scaffolding to apply notions of mean 
and central tendency to these problems. For example, after 
students were supported to understand the tabular data 
needed for classification, each was asked, “how might you 
go about identifying the unknown species?” In response, 
students began by looking across the values for different 
features (e.g., “petal width” and “petal length”) and 
indicated that the unknown species was closest to the 
measurements of one of the candidate flowers. When 
pressed about how they came to this conclusion, students 
typically reported that they estimated the average of the 
values for each feature, either using mathematical language 
(average or mean) or more colloquial expressions of central 
tendency (e.g. describing the range of values: “I saw that 
[the petal lengths for a known species] were between 1.9 and 
2.5”).  
 Also interesting was that these notions of central tendency 
were fluently leveraged by students to identify which 
features were the most useful in the classification effort. For 
example, when asked why a student ignored a feature for 
their flower identification, the student suggested that it was 
because of “how spread out it is” compared to the values for 
other features. This attention to the relative usefulness of a 
measurement meant that students typically transitioned 
easily to aspects of the problem involving an understanding 
of information value. This trend may represent possible 
counter-evidence to our finding (reported above) about 
students’ difficulties in parsing a problem: for this problem 
set, students were readily able to assess the relative value of 
different information about an unknown flower species 
(e.g., through the prompt, “if you could only get information 
about one feature of the flower, which would you want?”). 
While additional research is needed, we speculate that 
students’ greater familiarity with identifying unknown 
species (e.g., from biology class) may have positioned them 
to more easily recognize that some information is better than 
others for classification. There was also some indication 
within the interviews that this conceptual grasp of central 
tendency was able to bootstrap students’ developing 
understanding of the distance formula. While all but one 
student expressed unfamiliarity with the distance formula, 
few students showed difficulty applying it to clustering 
problems once introduced.  



Discussion 

In this paper, we discussed the initial findings of a cognitive 
interview study to uncover how high school students 
approach AI concepts. An overarching theme emerging 
from the interviews is that artificial intelligence represents a 
novel and mysterious problem space for high school aged 
students. Therefore, one cannot assume facile transfer from 
grade-level mathematics and computer science concepts to 
AI problems, even among students with mastery of the 
underlying concepts. Rather, it is likely that students will 
need explicit support to recognize and flexibly apply the 
background knowledge they may have in service of AI 
problems: there is little evidence from this study that AI can 
be successfully approached as a near-transfer task in which 
students can be expected to readily apply knowledge from 
one context to another. At the same time, we do have 
evidence that when provided explicit support to incorporate 
prior knowledge and skills into an AI learning experience, 
students are adept at leveraging this knowledge to solve AI 
problems. This suggests that AI may provide a powerful 
vehicle to deepen mathematical and computational thinking 
as students are compelled to expand beyond a school-bound 
understanding of mathematics as they apply it to solve 
compelling AI problems.  

Similarly, our findings about student difficulties with 
common AI representations like search trees are worth 
considering alongside findings about student difficulty with 
mathematical representations, such as tabular data. This 
challenge speaks to the role of computational thinking for 
successful engagement with AI problems, which we 
observed not only in students’ difficulties with the 
abstractions central to AI problem solving approaches, but 
also in their somewhat tenuous grasp of abstractions 
inherent in common mathematical representations such as 
tables and graphs. This finding dovetails with longstanding 
research about student difficulty understanding the 
mathematical relationships represented in graphs and 
tabular data (see, e.g., Curcio, 1987). While it is 
unsurprising that students 13-17 years old are unfamiliar 
with search tree representations or data frames, such 
abstractions are critical in understanding how information 
may be structured in ways that enable AI systems to solve 
problems yet may present stumbling blocks without explicit 
support. 

A related theme is that the students we interviewed, many 
of whom had extensive programming experience and high 
math competency, were unfamiliar with the strategies 
designers of AI systems use to represent the world and solve 
problems. While we were not expecting students to have a 
technical understanding of AI approaches, we were 
somewhat surprised at how much of a black box AI systems 
were to students, even as they recognized the myriad places 
such systems were employed. Interviews suggest a related 
need to support students toward a more generalized 
understanding of how AI systems can be applied to 

problems, and how problems can be reimagined to be 
solvable by AI systems. This finding adds weight to efforts 
aimed at promoting “explainable AI” (Gunning & Aha, 
2019) that makes the decision-making of AI algorithms 
transparent to users. Through its transparency, explainable 
AI can create opportunities to make AI concepts accessible, 
in part by supporting youth in developing working theories 
about how such systems function.  
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