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Abstract

Artificial Intelligence’s impact on society is increasingly
pervasive. While innovative educational programs are being
developed, there has been little understanding of how
students, especially pre-college aged students, construct an
understanding of and gain practice with core ideas about Al
or what concepts are most appropriate for what age-levels. In
this paper, we discuss a cognitive interview study with
middle school and high school students to better understand
how students learn Al concepts. We aim to shed light on
questions including: what is the range of background
knowledge and experiences students are able to apply in
encountering Al concepts; what concepts are most readily
accessible and which are more challenging; what
misconceptions do students bring to bear on Al problems;
and how to help students approach Al concepts by leveraging
related concepts (such as mathematical and computational
thinking). Results from the exploratory study have the
potential to provide important insights into Al learning for
pre-college youth. These initial findings can inform further
mvestigations to ground the design of learning and
assessment in evidence-based learning progressions and
grade-level performance expectations.

Introduction

Math and computational thinking are two important skills
for the nation’s future workforce and are foundational to the
field of artificial intelligence (AI). Mathematics is
foundational to computer science, a field that combines
mathematics, engineering, and science (Denning, 2009).
Computational thinking (CT), encompassing a broad range
of mental tools and concepts from computer science, helps
people solve problems (e.g., diagnosing disease), design
systems (e.g., self-driving cars), understand human behavior
(e.g., speech recognition), and engage computers in
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automating a wide range of intellectual processes (NRC,
2010). Rapid advances in the design and implementation of
Al systems to accomplish these kinds of automation have
led to the ever-expanding role for Al in society (Makridakis,
2017; Nadikattu, 2016). Al, it seems, is all around us.

Accordingly, Al is redefining the future of work within
the human-machine alliance (Guszcza, Lewis, & Evans-
Greenwood, 2017). Thus, proficiency in the language of Al
is key to a data-capable workforce that will continue to
innovate and support the Al-powered technology
infrastructure. All of today’s students will go on to live a life
heavily influenced by Al, and many will work in fields that
involve or are influenced by Al It is no longer sufficient to
wait until students are in college to introduce Al concepts.
Rather, they must begin to work with Al algorithmic
problem solving and computational methods and tools in K-
12.

At the same time, while AI’s impact on society is
increasingly pervasive, and innovative educational
opportunities are being rapidly developed, there has been
preciously little research into how students, especially pre-
college aged students, construct an understanding of and
gain practice with core ideas in the field. As a result, there
is little possibility of grounding the design of learning
experiences in evidence-based accounts of how youth learn
Al concepts, how understanding progresses across concepts,
or what concepts are most appropriate for what age-levels.

In this paper, we discuss a cognitive interview study to
better understand how students learn Al concepts. The study
is part of a project that aims to develop game-based learning
environments to help students build Al competency, apply
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math knowledge and develop CT skills. We conducted
surveys and cognitive interviews to answer questions
including: what is the range of background knowledge and
experiences students are able to apply in encountering Al
concepts; what concepts are most readily accessible and
which are more challenging; what related concepts (e.g.,
mathematical and computational thinking) do students
engage with and or need to leverage in order to access Al
concepts? While the initial work presented here is
exploratory, the survey data and in-depth interviews with
students have the potential to provide important insights into
Al learning for pre-college youth. The preliminary results
can inform future studies that systematically examine these
initial findings and support the advancement of the field’s
understanding of student knowledge construction of Al
concepts and thereby better support the design of instruction
and assessment aimed at pre-college youth.

Related Works

While Al has been the cornerstone of the computer science
curriculum in higher education for decades, discussions on
how to approach Al education for the K-12 population have
only just begun in the US (Touretzky et al., 2019), Europe,
and much of the rest of the world, with the exception of
China (Xiong, Wang, & Huang, 2018; Chen & Tang, 2018),
which has already developed a series of seven Al textbooks
for elementary, middle, and high schools. Sweden has also
developed Al courses to educate its citizens, including
school-age youth, about Al (Heintz et al., 2015).

Discussions on how to integrate Al into the existing K-12
curriculum (e.g., computer science education) are heating up
in the US (Gardner-McCune et al., 2019). To develop
guidelines of what K-12 students should learn about Al the
AI4K12 Initiative has proposed the Five Big Ideas of Al,
including Perception, Representation and Reasoning,
Learning, Natural Interaction, and Social Impact (Touretzky
etal., 2019). Most recently, ReadyAl, a group that organizes
camps to help students learn about Al, has developed a
curriculum to teach Al courses to K-12 students online at
ReadyAl.org. Researchers at MIT have also developed a
website to share a variety of online activities for K-12
students to learn about Al, with a focus on how to design
and use it responsibly.? This includes a curriculum for
teaching ethics of Al to middle school students.?

On the technology front, there has been -effort,
particularly from industry, to build demonstrations and tools
to help the public learn about Al, particularly machine
learning (for review, see Gardner-McCune et al., 2019).
Additionally, Carnegie Learning has developed a prototype
to help middle school students learn Al by designing Al to
play tic-tac-toe (Ritter et al., 2019).
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The work presented here aims to uncover how K-12,
particularly high school students, approach AI concepts,
what obstacles they face, and how to guide them through the
obstacles. The work builds upon previous investigations into
linking Al to K-12 math curriculum to identify Al concepts
suitable for high school students. (Wang & Johnson, 2019),
as well as work investigating the learning of computational
thinking (Lee, et al., 2011; Rich, et al., 2019) and seminal
research  into  comprehension of  mathematical
representations (e.g., Curcio, 1987; Friel, Curcio & Bright,
2001) and statistics (e.g., Batanero, Godino, Vallecillos,
Green, & Holmes, 1994).

Methodology

We conducted a study using cognitive interviews with
middle school and high school students using five Al
problems to gain an understanding of what type of Al
concepts and difficulty is suitable for the high-school
population, what are the challenges they face, and what
pedagogical approach can be applied to guide students in AI
problem-solving.

Sample

We recruited 8 participants from a private school located in
the United States. The participants consisted of 4 high
school students and 4 middle school students, ranging in age
from 12 to 17 years old. The inclusion of the middle school
students is based on suggestions from the teachers at the
school, who believed the Al problems might be accessible
to advanced middle school students after reviewing the Al
problems used in the study and the math knowledge
required. The sample was drawn from and reflected a
student population that is racially and ethnically diverse and
generally higher-resourced than that of the average public
school. Especially given persistent inequities in computer
science academic and career pathways, as well as broader
questions of access and privilege across society, the sample
presents limitations for generalizability that will be
important to address in future studies.

Measures

As students began the cognitive interview, they were asked
background information such as grade and age. Then,
students were asked to rate their interest in Al, their
understanding of Al, and their confidence in math class,
each on a Likert scale of 1 to 5.

The cognitive interview employed a semi-structured
protocol, with a series of prompts to elicit student thinking
as they a) initially encountered each problem (e.g., “Does
anything about the problem seem familiar to you?”, “What
do you think a ‘good answer’ might look like?”); b)
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attempted to solve the problem (e.g., “I see that you [did X],
tell me about your thinking; and, how did you decide to do
X?”); and c) after they had settled on a solution (e.g., “Were
there any moments when the problem became more clear for
you or where you noticed that you had a better
understanding of how to solve it?”). In-the-moment
scaffolding was provided throughout each interview to: a)
enable students to reveal thinking across each step of the
solution; b) surface and test emerging ideas about why a
student might be stuck; and c) disambiguate between
superficial challenges, such as unfamiliar vocabulary and
calculation errors, and more conceptual difficulties.

AT Material

To determine the Al concepts to teach, we reviewed the Al
curriculum from the most popular Al textbook for higher
education (Russell & Novig, 2016) and categorized the Al
topics into four main fields (Search, Knowledge
Representation and Planning, Probabilistic Reasoning, and
Machine Learning). Based on the underlying math
knowledge required, we then narrowed down the sets of Al
concepts based on whether the relevant math knowledge is
covered by the high school curriculum. Primarily, Al
concepts in the field of Knowledge Representation and
Planning were excluded due to the prerequisite of
knowledge in logic (logic is not commonly part of the K-12
math curriculum in the United States). In the end, we
selected five AI concepts — Search, Bayesian Networks,
Decision Trees, Clustering, and Linear Regression. Using
the classic problems for the selected AI concepts as
examples, we designed an Al problem for each of the Al
concepts. Each problem consisted of a series of questions
that help students develop the solution step by step. The
problems were designed to be difficult to complete, with the
difficulty increasing at each step toward the solution.

For Classical Search, students were presented with an 8-
Puzzle Game (shown in Figure 1). In the game, the students
were given a 3x3 board with initial configuration of 8 sliding
pieces, numbered 1-8, and were asked to slide the pieces
around to reach a target configuration of the board. Students
were asked to complete the puzzle and estimate the size of
the search tree.
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Fig. 1

Representations of the 8-Puzzle Game in its initial and completed
states.

For Bayesian Networks, students were presented with a
problem to estimate the likelihood that a patient has a cavity.
Students were given a problem description with joint
probability of events (e.g., “A dentist often says that 10.8%
of patients have a cavity and a toothache, and the dental
hook catches the tooth.”). They were asked to organize the
probability in a joint-probability table (Figure 2), and
answer questions about the likelihood of various events by
reading the table. The students were then guided to organize
the variables in a Bayesian Network.

Toothache No Toothache
Catch Not Catch Catch Not Catch
Cavity 0.108 0.012 0.072 0.008
No Cavity 0.016 0.064 0.144 0.576
Fig. 2

Tabular data as presented in the Cavity problem.

For Decision Trees, students were presented with a
problem where they had to help a friend decide whether or
not they would wait to get a seat at a restaurant or not. A
table containing data about past experiences detailing
whether or not they would wait for a table at restaurants was
included. The data table contained features such as the wait
time, the type of restaurant, whether it’s raining etc. The
students were asked to think of what questions they could
ask their friend to help them come to a decision.

For Clustering, students were given a common clustering
problem of identifying flower species. Students were given
a table of sample data on Iris flowers with features such as
petal width, petal length, sepal width, sepal length, and
flower species. Students were presented measurements of a
new flower and asked to identify the species of the new
flower.



For Linear Regression, we designed a problem based on
a tutorial on “Exploring bivariate numerical data” from
Khan Academy.* Students were presented with a table
containing past data on time spent on the phone and the
battery life remaining (Figure 3). Students were asked to use
the data to predict the percentage of battery life left in a
mobile phone after certain hours of use.

Time spenton phone (hours) 1 2 3.5 4 6 7 8 9

Battery life remaining (hours) 8 7 7 5.5 5 3.5 25 25

Fig. 3

Table of time spent on a phone and corresponding battery life
remaining.

Procedure

The cognitive interviews were conducted by a member of
the research team with expertise in the learning sciences and
mathematics instruction. During the study, the interviewer
first asked students about their background information
using questions from the Measures section. Then the
interviewer presented the Al problems printed on paper to
the students. Students were given blank paper and pencils to
work on the problems. Students were given blank paper and
pencils to work on the problems. Students were encouraged
to think aloud as they solved the problems. The interviewer
asked questions and guided students through each problem.
Every student was presented with all five problems and
worked toward a solution (not necessarily completed) for 2-
3 problems during the interview. Problem selection included
input from the students interviewed and was ultimately
determined by the researcher conducting the interview to
ensure a balance of data across each problem type. How
much of each problem students completed depended on the
time the students spent on the problem and whether the
interviewer deemed suitable to continue, based primarily on
student progress and indications of student frustration
levels. Table 1 describes the number of students who
engaged with each problem type. Each study session lasted
about 1 hour. Top-down videos of the paper the student used
to work on the Al problems were recorded.

4 khanacademy.org/math/statistics-probability/describing-relationships-
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phone-data

Problem Type Responses
Search 5
Bayesian Networks | 4
Decision Trees 5
Clustering 4
Linear Regression | 4

Table 1

Distribution of problem responses across participants.

Analysis

Video files for each interview were uploaded to Dedoose
(2018), a mixed methods data analysis tool. To analyze the
interview data, we first created excerpts of each student's
work on each problem, and applied codes directly to the
video excerpts according to the problem type. We then
completed two passes through the data. With the first pass
we viewed each interview in sequence, generating and
applying a set of broadly applicable codes (e.g.,
“challenges” to denote moments of student difficulty with a
problem, and “prior knowledge” to denote evidence of
students applying prior mathematical knowledge to a
problem). Then, we compiled the excerpts by problem type
and viewed the variety of student responses on each problem
together. In this second pass through the data, we drew from
the principles of grounded theory (Glaser & Strauss, 1967;
Glaser, 1992), to iteratively introduce new codes as themes
emerged (e.g., “problem identification,” and “central
tendency”’), which we then added to and revised through
successive passes through the data, continually comparing
the emergent codes against the data. These initial codes were
revised for consistency and tractability, then applied
systematically across the data. While we report on findings
that have emerged from these initial passes through the data,
additional analyses are ongoing.

Initial Findings

Analysis of the three Likert scale questions for the students
interviewed (asked at the outset of the interview) provide
useful context for interpreting findings. Likert items can be
difficult to compare across respondents, owing to variation
in student propensity to anchor responses at the high end or
low end of the scale. However, comparisons within each
student’s responses to the three questions offer a window
into a student’s relative confidence and interest in Al and
math. As revealed in the table below (Table 2), nearly all



students expressed high levels of interest in Al, and rated
their interest in Al higher than their confidence in
understanding Al. At the same time students generally felt
more confident with math than Al, although only slightly.

Student Age | Math Al Al
Confidence | Confidence | Interest
12 2 3 4
13 3 3 5
13 3 2 3
13 4 2 4
15 4 3 4
17 4 1 2
17 3 2 5
17 2 2 3
Table 2

Student age, confidence in math and Al, and interest in Al.

With this context about the student sample in mind,
analysis of the student cognitive interview data has shed new
light on how 12-17 year old students encounter and
construct knowledge related to artificial intelligence
concepts. We organize these early findings into five themes.

Students needed support to leverage and apply
mathematical concepts that underlie AI problems

Even in cases where students demonstrated competency
with the necessary mathematical skills, they often struggled
to identify connections and/or make use of those skills until
explicitly prompted. This was particularly evident for the
application of statistics and probability (e.g., drawing on
probability concepts in approaching Bayesian Networks and
regression modeling for the linear regression algorithm). For
example, when students were provided data about cell
phone battery usage and asked to use the data to predict the
percentage of battery life left in a mobile phone, each
student initially scanned the values in the data and offered
an estimate based on the final 1 or 2 data points provided
(see Figure 3). Even after prompting, (such as, “can you
think of a way to graph these data to get a more precise
answer?”’) students struggled to do so until the idea of a line
of best fit was explicitly introduced by the researcher
conducting the interview. Once introduced, however,
students generally recognized the method and were able to
apply it to the problem. This theme was also evident in the
use of graphical or tabular data representations. For
example, the data used for the cavity problem and for the
restaurant decision tree problem were both presented in
tabular displays. The nested nature of the data table for the
cavity problem (see Figure 2), in which various

combinations of conditions were represented together, was
particularly challenging for students.

For nearly all students, these data tables were initially
difficult to interpret as computational artifacts, with students
struggling to make meaning of the relationship between
values within a row or to connect column headers to variable
descriptions. This led to difficulty in making independent
progress on the problems until students were supported to
attend to the structural features of the data as represented in
the tables.

However, for most students, in-the-moment scaffolding
was effective in enabling them to recognize and apply their
mathematical knowledge for AI problems. Once the
connection between the Al problem and the underlying math
was made explicit, students were able to engage
productively. For example, in the linear regression problem,
all but one student was readily able to construct a graph and
produce a reasonable line of best fit to the data after this
connection to the math was explicitly introduced. Similarly,
explicit scaffolding about the relationships among rows,
columns, and cells within the data tables was largely
successful in activating students’ mathematical and
computational thinking to use the tables to solve the Al
problem. This suggests that students will likely need support
in identifying when and how the math concepts they may be
familiar with in their mathematics classroom can be applied
to Al systems. More promisingly, it also suggests that once
this background knowledge is activated, students can
leverage it to productively engage with Al problems.

Students found difficulty with the

representations characteristic in AI problems
Across all interviews, students needed explicit scaffolding
in understanding how to interpret and construct a search tree
(e.g., in order to interrogate the fitness of different search
algorithms for different search problems). Thus, even after
the interviewer scaffolding enabled students to construct a
search tree from the slider puzzle, students struggled to
make use of the search tree representation to consider the
depth and breadth of a problem space (both for the search
trees they constructed and for pre-constructed exemplars).
As an illustration of this, with scaffolding, all students were
able to build a tree from a node to branches to new nodes,
yet only one student was able to recognize the salience of
tree abstractions such as branching factor and tree depth
(albeit using colloquial language) to estimate the relative
complexity of a problem. While by no means definitive,
there were some indications that student difficulty to use,
modify, and create search tree or Bayesian Network
representations interacted with students’ challenges
applying concepts of probability to the Al problem space
(i.e., in recognizing the universe of possibilities that
systematically determine the construction of tree nodes).
With ongoing analyses to better understand this relationship
between difficulty with representations and difficulty with
the concepts being represented in the case of search trees,
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initial findings suggest the importance of supporting
students to understand the computational features of tree
representations--in essence to learn how to “read” a tree.

Students first draw on their own experiences with a
problem’s context when approaching Al problems

In a variation of the human-interpreter problem (Spohrer &
Soloway, 1986) common to computer science, several
students began their attempt at solving a problem by
referring to prior experience with the problem space (e.g.,
cell phone batteries and restaurant dining) in an attempt to
reason through to an answer. For example, in the decision-
tree problem, students were reluctant to systematically
examine the data provided, and instead began by
considering what they would do or what they did in the past
(e.g., “if it’s an expensive dinner, i think they’d be more
willing to wait.”). That is to say, rather than attending to how
features of the data could be operated on to produce a
decision, students first tried to figure out the motivations for
the agents in the problem (i.e., the diners). Thus, students’
initial answers were less related to the available data, and
more related to how the students imagined the diners would
behave. We saw similar approaches in the linear regression
problem, where students’ initial predictions were often
anchored in their own experience with cell phone battery
life, rather than the presented data.

Students are unfamiliar with parsing the world in terms
an Al system can operate on

A challenge for all students interviewed, even those with
advanced mathematical skills, was recognizing how a
problem in the world could be made amenable to the
computational power of Al. That is to say, students needed
support in conceiving a problem space in a way that would
enable an Al system to solve it. Thus while some students
in the study volunteered ways a computer program might be
able to implement an Al solution once identified, the initial
step of reconceiving a problem as an Al problem was
elusive: the broad strategies Al systems leverage to make
predictions or to find a solution from an array of possibilities
were unknown to students and thus unavailable resources in
their mental models of the problem space. For example, for
most students the idea that a problem like an 8-puzzle could
be reconceived as a search for a solution was difficult to
make use of as the mechanics of Al “search” was largely a
black box for which they had little in the way of working
theories. Accordingly, there was little evidence that students
conceived of search as a potentially systematic process, or
that a search space had dimensions that could shed light on
the computational difficulty of the search problem. We saw
similar evidence in the way students encountered problems
for which Al solutions depended on appreciating the relative
value of information and the idea of entropy, particularly as
represented in the decision tree problem.

Clustering may serve as a productive on-ramp to
learning Al concepts

From the set of Al concepts under investigation, students
most consistently demonstrated an intuitive grasp of
clustering. Even for the middle-school aged students in the
study, the concept of centroids and clustering were readily
grasped and applied to Al classification problems. In
contrast with other problems (as discussed above) in which
students struggled to apply mathematical concepts in Al,
students needed little scaffolding to apply notions of mean
and central tendency to these problems. For example, after
students were supported to understand the tabular data
needed for classification, each was asked, “how might you
go about identifying the unknown species?” In response,
students began by looking across the values for different
features (e.g., “petal width” and “petal length”) and
indicated that the unknown species was closest to the
measurements of one of the candidate flowers. When
pressed about how they came to this conclusion, students
typically reported that they estimated the average of the
values for each feature, either using mathematical language
(average or mean) or more colloquial expressions of central
tendency (e.g. describing the range of values: “I saw that
[the petal lengths for a known species] were between 1.9 and
2.57).

Also interesting was that these notions of central tendency
were fluently leveraged by students to identify which
features were the most useful in the classification effort. For
example, when asked why a student ignored a feature for
their flower identification, the student suggested that it was
because of “how spread out it is” compared to the values for
other features. This attention to the relative usefulness of a
measurement meant that students typically transitioned
easily to aspects of the problem involving an understanding
of information value. This trend may represent possible
counter-evidence to our finding (reported above) about
students’ difficulties in parsing a problem: for this problem
set, students were readily able to assess the relative value of
different information about an unknown flower species
(e.g., through the prompt, “if you could only get information
about one feature of the flower, which would you want?”).
While additional research is needed, we speculate that
students’ greater familiarity with identifying unknown
species (e.g., from biology class) may have positioned them
to more easily recognize that some information is better than
others for classification. There was also some indication
within the interviews that this conceptual grasp of central
tendency was able to bootstrap students’ developing
understanding of the distance formula. While all but one
student expressed unfamiliarity with the distance formula,
few students showed difficulty applying it to clustering
problems once introduced.



Discussion

In this paper, we discussed the initial findings of a cognitive
interview study to uncover how high school students
approach Al concepts. An overarching theme emerging
from the interviews is that artificial intelligence represents a
novel and mysterious problem space for high school aged
students. Therefore, one cannot assume facile transfer from
grade-level mathematics and computer science concepts to
Al problems, even among students with mastery of the
underlying concepts. Rather, it is likely that students will
need explicit support to recognize and flexibly apply the
background knowledge they may have in service of Al
problems: there is little evidence from this study that Al can
be successfully approached as a near-transfer task in which
students can be expected to readily apply knowledge from
one context to another. At the same time, we do have
evidence that when provided explicit support to incorporate
prior knowledge and skills into an Al learning experience,
students are adept at leveraging this knowledge to solve Al
problems. This suggests that Al may provide a powerful
vehicle to deepen mathematical and computational thinking
as students are compelled to expand beyond a school-bound
understanding of mathematics as they apply it to solve
compelling Al problems.

Similarly, our findings about student difficulties with
common Al representations like search trees are worth
considering alongside findings about student difficulty with
mathematical representations, such as tabular data. This
challenge speaks to the role of computational thinking for
successful engagement with Al problems, which we
observed not only in students’ difficulties with the
abstractions central to Al problem solving approaches, but
also in their somewhat tenuous grasp of abstractions
inherent in common mathematical representations such as
tables and graphs. This finding dovetails with longstanding
research about student difficulty understanding the
mathematical relationships represented in graphs and
tabular data (see, e.g., Curcio, 1987). While it is
unsurprising that students 13-17 years old are unfamiliar
with search tree representations or data frames, such
abstractions are critical in understanding how information
may be structured in ways that enable Al systems to solve
problems yet may present stumbling blocks without explicit
support.

A related theme is that the students we interviewed, many
of whom had extensive programming experience and high
math competency, were unfamiliar with the strategies
designers of Al systems use to represent the world and solve
problems. While we were not expecting students to have a
technical understanding of Al approaches, we were
somewhat surprised at how much of a black box Al systems
were to students, even as they recognized the myriad places
such systems were employed. Interviews suggest a related
need to support students toward a more generalized
understanding of how Al systems can be applied to

problems, and how problems can be reimagined to be
solvable by Al systems. This finding adds weight to efforts
aimed at promoting “explainable AI” (Gunning & Abha,
2019) that makes the decision-making of Al algorithms
transparent to users. Through its transparency, explainable
Al can create opportunities to make Al concepts accessible,
in part by supporting youth in developing working theories
about how such systems function.
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