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automated vehicles (CAVs), shared mobility, and elec-

tric vehicles, mark a paradigm shift in which myriad
opportunities exist for users to better monitor transpor-
tation network conditions and make optimal operating
decisions to improve safety and reduce pollution, energy
consumption, and travel delays [1]. As we move to increas-
ingly complex emerging mobility systems, new control ap-
proaches are needed to optimize the impact on the system
behavior [2] of the interplay among vehicles in different
traffic scenarios [3]. Several studies have shown the ben-
efits of CAVs to reduce energy consumption and alleviate
traffic congestion in specific transportation scenarios [4],
[5], [6]. There have been two major approaches to utilizing
CAVs, namely, platooning and traffic smoothing. A platoon
is defined as a group of closely coupled vehicles traveling
to reduce their aerodynamic drag, especially at high cruis-
ing speeds. The concept of platoon formation is a popular
system-level approach to address traffic congestion, which
gained momentum in the 1980s and 1990s [7], [8], [9]. There
has been a rich body of research exploring various meth-
ods of forming and/or utilizing platoons to improve trans-
portation efficiency [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22].

Traffic smoothing is another approach that has been
explored to mitigate the speed variation of individual vehi-
cles throughout the transportation network, which may be
introduced by unnecessary braking and the topology of the
road network. One of the very early efforts in this direc-
tion was proposed by Athans [23] for the safe and efficient
coordination of merging maneuvers, with the intention of
avoiding congestion. Assuming a given merging sequence,
Levine and Athans formulated the merging problem as a
linear optimal regulator [24] to control a single string of
vehicles, with the aim of minimizing the speed errors that
will affect the desired headway between each consecu-
tive pair of vehicles. Since then, several studies have been
reported in the literature that investigate traffic smoothing
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to eliminate stop-and-go driving in traffic scenarios such
as single intersections [25], [26], [27], [28], [29], [30], [31], [32],
(331, [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [451],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], multiple
adjacent intersections [53], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], merging roadways [67], [68], [69], [70], [71],
[72], [73], [74], [75], roundabouts [5], [76], [77], [78], [79], [80],
[81], [82], speed reduction zones and lane drops [83], [84],
[85], [86], [87], [88], [89], [90], [91], and transportation cor-
ridors [92], [93], [94], [95], [96], [97], [98]. Two recent survey
articles [99], [100] provide a comprehensive review of the
state-of-the-art methods and challenges in this area.

Commercial simulation platforms are currently avail-
able for testing and validating control algorithms for CAVs
in a safe and cost-efficient setting. Simulation can help us
gather key information about how the system performs in
an idealized environment. However, evaluating the per-
formance of CAVs in a simulation environment imposes
limitations since modeling the exact vehicle dynamics and
driving behavior is not feasible. Capturing the complexi-
ties arising from data loss and transmission latency associ-
ated with connectivity and communication networks can
be also challenging. As Grim et al. [101] stated, “the problem
with simulations is that they are doomed to succeed.” Although
there have been several studies reporting on the impact of
the coordination of CAVs in traffic scenarios, for example,
intersections, merging at roadways, and roundabouts, the
effectiveness of these approaches has been mostly shown
in simulation. Therefore, validating control approaches for
CAVs in a physical testbed is of great importance.

Scaled testbeds for CAVs have attracted considerable
attention over the past few years. Such testbeds can be used
to conduct quick and repeatable experiments in an effort to
go one step beyond simulation. Gulliver [102] and Moped
[103] have been the outcome of early efforts on develop-
ing scaled testbeds for robotic vehicles. Gulliver’s focus is
mainly on communication among vehicles, while Moped is
focused on the low-level control of a single scaled vehicle.
The Massachusetts Institute of Technology’s (MIT’s) Ducki-
etown [104] employs differential drive robots, and Go-chart
[105] uses four-wheel skid-steer vehicles. Both testbeds
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focus primarily on local perception and autonomy. Cam-
bridge Minicars [106] constitute another testbed for emu-
lating cooperative driving in highway traffic conditions.
A general-purpose robotic testbed, called Robotarium,
has been developed [107], which features differential drive
robots. The Cyber-Physical Mobility Lab [108] has imple-
mented another scaled testbed on decision-making policies
and trajectory planning. For a relatively recent review of
such robotics testbeds, see [109].

In 2017, we established the Information and Decision Sci-
ence Lab Scaled Smart City (IDS’C) to develop and validate
control algorithms for emerging mobility systems. IDS?C
occupies a 20 x 20-ft area. It includes 50 robotic cars and
10 aerial vehicles and can replicate real-world traffic sce-
narios in a small and controlled environment. This testbed
can help us prove concepts beyond the simulation level and
understand the implications of errors/delays in vehicle-to-
vehicle and vehicle-to-infrastructure communication as
well as their impact on energy usage. IDS’C can help us
implement control algorithms for coordinating CAVs in
different traffic scenarios, such as intersections, merging
roadways, speed reduction zones, roundabouts, and trans-
portation corridors. IDS®C also includes driver emulation
stations interfaced directly with the cars, which allow for
exploring human driving behavior. The robotic cars share
many features with full-scale cars, such as a built-in sus-
pension and an Ackermann steering mechanism.

There are several features that distinguish IDS®C from
other testbeds. First, unlike MIT’s Duckietown [104] and
Go-chart [105], the CAVs in IDS’C resemble full-scale
vehicles by using four wheels, a built-in suspension, and
an Ackermann steering mechanism. Second, in contrast to
the scaled testbeds reported in [104], [106], [107], and [108],
IDS*Cis equipped with driver emulation stations that inter-
face directly with the robotic cars. These stations enable the
exploration and study of human driving behavior and their
interactions with CAVs. Being able to study how CAVs can
safely interact and coexist with human-driven vehicles is of
great importance since different penetration rates of CAVs
can significantly alter transportation efficiency and safety.
Third, rather than focusing on specific scenarios in a trans-
portation network [102], [106] or a single individual vehicle
[103], IDS®C can accommodate almost every possible traf-
fic scenario, including crossing three- and four-way inter-
sections, merging at roadways and roundabouts, cruising
in congested traffic, passing through speed reduction
zones, and lane-merging and passing maneuvers. These
features make IDS’C a unique scaled robotic testbed to
study problems in emerging mobility systems, such as the
coordination of CAVs, shared mobility, eco-routing, and
first/last-mile delivery. Finally, only a few testbeds [104],
[108] are equipped with a “digital twin.” The digital twin
of IDS’C, called IDS Scaled Smart Digital City (3D City),
is a Unity-based virtual simulation environment that can
operate alongside the physical IDS®C and interface with

the existing control framework. IDS 3D City provides the
framework to develop and implement control algorithms
for emerging mobility systems in simulation before mov-
ing to the physical IDSC for validation. More details about
IDS 3D City can be found in [110].

In what follows (see “Summary”), we start our exposi-
tion by providing a brief description of the hardware and
software architecture of IDS’C. Then, we present an over-
view of a real-time coordination framework for CAVs that
has been implemented and validated in IDS?C and field
testing [98], [111]. Next, we present a tutorial of this frame-
work in an application to a multilane roundabout in IDS°C,
using nine CAVs. Finally, we provide a demonstration
study in IDS®C by using a fleet of 15 CAVs and show how
we can improve traffic throughput along a transportation

Summary
Emerging mobility systems, for example, connected and
automated vehicles (CAVs), shared mobility, and elec-
tric vehicles, provide the most intriguing opportunity for en-
abling users to better monitor transportation network condi-
tions and make better decisions for improving safety and
transportation efficiency. However, before connectivity and
automation are deployed en masse, a thorough evaluation
of CAVs is required, ranging from numerical simulation to re-
al-world public roads. The assessment of the performance
of CAVs in scaled testbeds has recently gained momentum
due to the flexibility they offer to conduct quick repeatable
experiments that could go one step beyond simulation. This
article introduces the Information and Decision Science Lab
Scaled Smart City (IDS®C), a 1:25 research and educational
scaled robotic testbed that is capable of replicating different
real-world urban traffic scenarios. IDS®C was designed to
investigate the effect of emerging mobility systems on safe-
ty and transportation efficiency. On the educational front,
IDS3C can be used for 1) training and educating graduate
students by exposing them to a balanced mix of theory and
practice, 2) integrating research outcomes into existing
courses, 3) involving undergraduate students in research, 4)
creating interactive educational demos, and 5) reaching out
to high-school students. IDS®C has become a research and
educational catalyst for motivating interest in undergraduate
and high-school students in science, technology, engineer-
ing, and mathematics. In our exposition, we also present a
real-time control framework that can be used to coordinate
CAVs in traffic scenarios such as crossing signal-free in-
tersections, merging at roadways and roundabouts, cruis-
ing in congested traffic, passing through speed reduction
zones, and lane-merging and passing maneuvers. Finally,
we provide a tutorial for applying our framework in coordi-
nating robotic CAVs in a multilane roundabout scenario and
a transportation corridor in IDS®C.
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Several studies have shown
the henefits of CAVs to reduce
energy consumption and alleviate
traffic congestion in specific
transportation scenarios.

corridor, which consists of a roundabout, an intersection,
and a merging roadway:.

INFORMATION AND DECISION SCIENCE

LAB SCALED SMART CITY

IDS?C (see Figure 1) is a 1:25 scaled robotic testbed span-
ning more than 400 ft?, and it is capable of replicating
real-world traffic scenarios in a small and controlled envi-
ronment by using 50 ground and 10 aerial vehicles. IDS*C
provides an opportunity to prove concepts beyond simula-
tion and understand the implications of errors and delays
in vehicle-to-vehicle and vehicle-to-infrastructure commu-
nication as well as their impact on energy usage. IDS’C can
also be used to understand the implications of emerging
mobility systems (consisting of CAVs, shared mobility, and
electric vehicles) on safety and transportation efficiency.
Another facet of research that can be explored using IDS’C
is complex missions that include the cooperation of aerial
and ground vehicles for logistic problems, such as last-mile
delivery. IDS®C includes driver emulation stations [112]
interfaced directly with the robotic cars for the exploration
of human driving behavior.

! 1 <
FIGURE 1 A view of the Information and Decision Science Lab

Scaled Smart City, with connected and automated vehicles coor-
dinating at an intersection.
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IDS’C is equipped with a Vicon motion capture sys-
tem and uses eight cameras to track the position of each
vehicle, with submillimeter accuracy. The testbed con-
tains a dozen traffic scenarios, including merging road-
ways, multilane roundabouts, adjacent intersections,
multilane intersections, lane drops, and speed reduction
zones. A central mainframe computer (processor: Intel
Core i7-6950X CPU at 3 GHz x 20; memory: 128 GB) stores
a map of IDS’C as a database of line and arc segments
that make up the road network. The coordination of the
CAVs within IDS’C is achieved using a multilevel con-
trol framework spanning the mainframe computer and
the individual CAVs in an experiment. Each CAV is given
its own thread on the central mainframe computer. The
latter communicates the vehicle’s position through Vicon
and generates its trajectory. Lane and reference trajectory
tracking are accomplished onboard each CAV in a purely
distributed manner.

We developed IDS’C with the capacity to experimen-
tally validate a wide variety of urban mobility scenarios.
This includes eco-routing, mixed traffic [5], [113], last-mile
delivery [114], and air-ground coordination [115]. In sev-
eral recent efforts, we have used IDS’C to implement and
validate control algorithms for coordinating CAVs in traffic
scenarios such as merging roadways [71], roundabouts [79],
intersections [42], adjacent intersections [60], [61], [62], and
corridors [116]. We have also used IDS’C to transfer policies
from neural networks [81], [82] and handle the stochasticity
that arises in physical systems [117]. IDS®C is in a position
to provide a means for user interaction through a mobile
application, which enables submitting origin—destination
travel requests for dynamic routing in shared mobility and
last-mile delivery scenarios.

More recently, we introduced a Unity-based virtual sim-
ulation environment for emerging mobility systems, called
IDS 3D City, intended to operate alongside its physical peer,
IDS®C, and interface with the existing control framework.
For a brief summary of IDS 3D City, see “Information and
Decision Science Lab Scaled Smart Digital City.” For further
technical details, see [110]. We have used IDS®C to develop a
control framework for the real-time coordination of CAVs
in different traffic scenarios, such as crossing signal-free
intersections, merging at roadways and roundabouts, cruis-
ing in congested traffic, passing through speed reduction
zones, and lane-merging and passing maneuvers. Next,
we outline the main features of this framework.

CONTROL FRAMEWORK FOR COORDINATION OF
CONNECTED AND AUTOMATED VEHICLES

IDS’C has been extensively used for the development and
implementation of control algorithms aimed at coordinat-
ing CAVs in different traffic scenarios. By coordinating
CAVs in traffic scenarios, the vehicles do not have to come
to a full stop, thereby conserving momentum and fuel
while also improving travel time. In this context, safety
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is explicitly guaranteed by imposing constraints on each
vehicle, including rear-end safety, a maximum speed limit,
and lateral collision avoidance.

Several research efforts have considered a two-level
optimization framework for coordinating CAVs, con-
sisting of a travel time minimization (upper level) and
an energy minimization problem (lower level). For each
CAV with a given origin—destination, the solution of the
upper-level problem yields the travel time for the CAV
to exit a “control zone,” inside of which CAVs can com-
municate with one another. The solution of the low-level
problem yields, for each CAV, the control input (accelera-
tion/deceleration) to achieve the solution of the upper-
level problem while minimizing energy consumption,
subject to the state, control, and safety constraints. The
details of the low-level problem can be found in [34], [47],
and [118]. Solving a constrained optimal control problem
leads to a system of nonlinear equations that are often
infeasible to solve in real time. For more details on the
constrained optimal control and the associated technical

challenges, see “The Challenge With Constrained Opti-
mal Control.” To avoid the challenges associated with
constrained optimal control, we have proposed an alter-
native control framework consisting of a single-level opti-
mization aimed at both minimizing energy consumption
and improving traffic throughput [47]. Next, we highlight
the features of this framework.

Problem Formulation

Although the control framework outlined here can be
applied to any traffic scenario, we use an intersection as a
reference to provide the fundamental ideas. This is because
an intersection has unique features that make it technically
more challenging compared to other traffic scenarios. How-
ever, our analysis can be applied to other traffic scenarios.
We consider CAVs at a 100% penetration rate that are cross-
ing a signal-free intersection (see Figure 2). The region at
the center of the intersection, called the merging zone, is the
area of potential lateral collision of the CAVs. The intersec-
tion has a control zone, inside of which the CAVs plan their

Information and Decision Science Lab Scaled Smart Digital City

he Information and Decision Science Lab (IDS) Scaled
Smart Digital City (3D City) is a digital replica of the IDS
Scaled Smart City (IDS®C) that uses AirSim and Unity. We
have designed IDS 3D City to integrate the control frame-
work used in IDS®C to simulate virtual vehicles. IDS 3D City
enables users to rapidly iterate their control algorithms and

experiment parameters before deploying them to IDS3C. A
schematic of how IDS 3D City interacts with IDS®C is avail-
able in Figure S1. The end result is a transition between
physical and virtual environments, with minimal changes
to input files as well as the capability to mix physical and
virtual vehicles.

Mainframe

- Sh

Generates Reference State

DA

[E(periment Manager |

| Vehicle Manager
—EE

| . .
‘ Observes State of the System | Dlgltal Vehicles

(b)

FIGURE $1 The (a) physical and (b) virtual city environments. The mainframe computer can switch between physical and virtual experiments.
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The Challenge With Constrained Optimal Control

The standard methodology to solve a continuous-time con-
strained optimal control problem is to employ Hamiltonian
analysis with interior point state and/or control constraints [S1].
Namely, we first start with the unconstrained arc and derive
the solution of the optimal control problem without consider-
ing any of the state or control constraints. If the unconstrained
solution violates any of the state and control constraints, then
the unconstrained arc is pieced together with the arc corre-
sponding to the violated constraint. The two arcs yield a set of
algebraic equations that are solved simultaneously using the
boundary conditions and optimality conditions between the
arcs. If the resulting solution, which includes the determina-
tion of the optimal switching time from one arc to the next one,
violates another constraint, then the last two arcs are pieced
together with the arc corresponding to the new violated con-
straint, and we solve again the problem with the three arcs
pieced together. The three arcs will yield a new set of alge-
braic equations that need to be solved, and this process is re-
peated until the solution does not violate any constraints. This
iterative process can be computationally intensive for several
reasons. First, the Euler—Lagrange equations are numerically
unstable for nonconservative systems, leading to significant
numerical challenges [S2]. Second, the number of active con-
straints is not known a priori, and it may require a significant

time trajectories (a time trajectory yields the time that a
CAV is at a given position inside the control zone) by com-
municating with one another and with a coordinator, that
is, a roadside unit that stores the planned time trajecto-

North
Entry Exit

Merging
Zone

Exit Entry
East

Exit Entry
South

FIGURE 2 A signal-free intersection, with connected and automat-
ed vehicles.
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number of iterations to compute. Third, the boundary condi-
tions and recursive equations may be implicit functions that do
not have a closed-form analytical solution.

Excluding cases with terminal speed and safety constraints,
in recent work [118], [S3], we have introduced a condition-based
solution framework for the optimal coordination of connected
and automated vehicles, which leads to a closed-form analytical
solution without this iterative procedure. In this framework, we
mathematically characterize the activation cases of different
state and control constraint combinations and provide a set of a
priori conditions under which different constraint combinations
can become active. Although this approach alleviates the com-
putational complexity of the constrained optimal control in the
coordination problem to some extent, the aforementioned itera-
tive procedure is still required for cases when safety and termi-
nal speed constraints are included.
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ries of each CAV as it passes through the control zone. The
distance from the entry of the control zone to the entry of
the merging zone is S.. Although it is not restrictive, we
consider S, to be the same for all entry points of the control
zone. We also consider the merging zone to be a square of
side S, (see Figure 2). Note that S, could be on the order of
hundreds of meters, depending on the CAVs’ communica-
tion range capability, while S, is the length of a typical
intersection. The CAVs crossing the intersection can also
make a right turn of radius R, and a left turn of radius R,
(see Figure 2).

The aforementioned values of the intersection’s geom-
etry are not restrictive in our modeling framework, and
they are used only to determine the total distance trav-
eled by each CAV inside the control zone. In our problem
formulation, we assume that each CAV can communicate
with other CAVs and the coordinator without any errors
and delays. It is relatively straightforward to relax this
assumption as long as the noise in the communication,
measurements, and/or delays is bounded. We also assume
that upon entering the control zone, the initial state of each
CAV is feasible; that is, none of the speed and safety con-
straints are violated. This is a reasonable assumption since
the CAVs are automated; therefore, there is no compelling
reason for them to violate any of the constraints by the time
they enter the control zone.
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We denote the set of CAVs in the control zone by the
set N(t)=1{1,...,N(t)}, where N(t)eN is the total number
of CAVs at time t € R>o. In our framework, for each CAV
i€ N(t), we seek to jointly minimize energy consumption
and travel time. Upon entering the control zone, CAV i com-
municates with the coordinator and receives the time tra-
jectory of all CAVs j e N(t)\{i}. Next, CAV i computes the
time t,»f that it must exit the control zone while guarantee-
ing that its corresponding energy optimal time trajectory
does not activate any of the state, control, and safety con-
straints. This trajectory is communicated back to the coor-
dinator for subsequent CAVs to plan their trajectories with
the same sequence as they enter the control zone. If two
or more CAVs enter the control zone simultaneously, then
the coordinator arbitrarily determines the sequence in
which they receive information to plan their trajectories.
Addressing the problem sequentially makes coordination
among the CAVs tractable at the possible cost of select-
ing a suboptimal planning sequence. Finding the optimal
sequence of decision making is a combinatorial problem,
which is NP-hard [119]. In a recent paper, we reported how
vehicles can dynamically change their decision-making
sequence and replan to improve the throughput at an
intersection [120] by relaxing the first-come, first-served
decision making.

By enforcing the unconstrained energy optimal time trajec-
tory that guarantees that none of the state, control, and safety
constraints becomes active, we avoid the challenges associated
with the real-time implementation of the constrained optimal
control solution. In our analysis, we consider that each CAV
i € N(t) is governed by the following dynamics:

pit)=vi(), vi(t)=wui(t), 5i(t)=vi(t)—vi(t), t[£, ] Q)

where t) and t,f correspond to the times that CAV i enters
and exits the control zone, respectively; pi(t) € #: is the
position of each CAV i from the entry to the exit of the con-
trol zone; vi(t) € Vi and u;(f) € U; are the speed and acceler-
ation/deceleration (control input), respectively, of each CAV
i inside the control zone; si(t) € Si denotes the distance of
CAV i from CAV k, which is physically located ahead of
i; and vk (t) is the speed of CAV k. The sets #;,V;, Ui, and
Si, i € N(t) are complete and totally bounded subsets of R.

In our framework, we impose the following constraints
to ensure that the CAVs’ control input and state remain
within an admissible range:

Ui,min < ul(t) < Ui,max, 0< Umin < vi(t) < Umax (2)

for all te [t?,t{( ], where i min, Uimax are the minimum and
maximum control inputs and Umin, Umax are the minimum
and maximum speed limit, respectively. To ensure that no
rear-end collisions occur between two CAVs traveling in
the same lane, we impose the rear-end safety constraint

si(t) = pr(t) — A —pi(t) = 8i(t) = v + pivi(t) (©)

where A, is the length of CAV k, 7 is the standstill distance,
and p; is the minimum time headway that CAV i wishes to
maintain with preceding CAV k.

Finally, let j € N(t)\{i} correspond to another CAV that
has already entered the control zone and may have a lateral
collision with CAV i. For example, suppose CAV i travels
north—south and that CAV j travels east-west (see Figure 2).
Then there is a conflict point where the paths of i and j inter-
sect, and hence, a potential lateral collision might occur. We
include all such conflict points in a finite set O C N, which is
entirely determined by the geometry of the roads. Let pi' and
pj be the position of the conflict point 7 € O along the paths
of CAV i and j, respectively. CAV i can cross this conflict point
either after or before CAV j. In the first case, we have

pl—pi(t) = 8:(t), forall tel[t]t]] @

where f is the known time that CAV j reaches at conflict
point n, that is, position pj. In the second case, we have

pl—pi(t)=6;(t), forall te[t)t!] 5)

where t{ is determined by the trajectory planned by
CAV i.

Since 0 <vmin <vi(t), the position pi(t) is a strictly
increasing function. Thus, the inverse ti(-)=p;"(-) exists,
and it is called the time trajectory of CAV i; hence, we have
t! =pi*(p!). The closed-form solution of the inverse func-
tion is derived in [47]. To guarantee lateral safety between
CAV i and CAV j at a conflict point n, either (4) or (5) must
be satisfied. Therefore, we impose the following lateral
safety constraint on CAV i:

min {trr[lg[x,,]{sf(o +pilt) = pi), max (8,(6) +pi(t) - p?}} <0.(6)
L i

When CAV ie N(t) enters the control zone, it must
determine the exit time t,»f such that the resulting time tra-
jectory does not activate any of (1)—(3) and (6). The uncon-
strained solution for CAV i is

ui(t) = 6ait +2bi, vi(t)=23a:t* +2bit +c;,
pi(t)ZIth3+bit2+Cit+di (7)

where a;,b;, ci, and d; are constants of integration. CAV imust
also satisfy the boundary conditions (pi(t),vi(t)) = (0,0})
and (pi(t{),ui(t{)) =(5,0), where S; is the known length of
CAV i’s path in the control zone. For details on deriving the
unconstrained solution, see “Unconstrained Optimal Con-
trol and Boundary Conditions.”

There are five unknown variables that determine the
optimal time trajectory of CAV i, four constants of inte-
gration from (7), and the unknown exit time t,f . Without
a loss of generality, letting =0 implies that pith=di=0
and v;(t)) = c; =0}, while ui(t{) =0 yields a; = —b,'/3t,f, and
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pi(t,»f)=Si gives b1=3(Si—v?t,f)/2(t{)2. Furthermore, t/
takes a value from a compact set, [tif ,fif ]. See “Derivation
of Bounds for Feasible Exit Time” for more details on the
derivation t/_(,. and f,f based on the speed and control con-
straints and boundary conditions.
This leads to the optimization problem
min t,[ ®)

et i
subject to: rear-end safety (3); lateral safety (6); dynamics (7);

_ —bi

_2(Si— 0Pt
3t/ '

di=0, ¢i=v), ai= i=
2(t)?

The value of t{ guarantees that an unconstrained trajec-
tory satisfies all the state, control, and safety constraints
as well as the boundary conditions [47]. In practice, for
each CAV j e N(t), the coordinator stores the optimal exit
time t{ and the corresponding coefficients aj, b, c;, and d;.
It has been shown [47] that there is no duality gap
in (8). Therefore, the optimal solution can be derived in
real time.

Each time a CAV i enters the control zone, it commu-
nicates with the coordinator and gets access to the time
trajectories of all CAVs that are inside the control zone to
derive its optimal exit time t,»f from (8). Then, CAV i trans-
mits its four coefficients and t,-f back to the coordinator. In

the following section, we present a brief tutorial on apply-
ing our control framework to a multilane roundabout sce-
nario, and we discuss several important insights that come
from running scaled experiments.

TUTORIAL: ROUNDABOUT CASE STUDY

To illustrate the implementation of our framework, we
performed experiments in one of the two multilane
roundabouts of IDS?C (see Figure 3), using three CAVs
per path. Figure 3 shows three paths with three con-
flict points that have a potential for lateral collisions,
which we denote as lateral nodes. The length of the
control zone for each path is 5.3, 5.8, and 3.8 m (132.5,
145, and 95 m scaled), respectively. The CAVs initially
operate with an intelligent driver model controller
[121] and switch to our control framework when enter-
ing the control zone. Each CAV then determines its
time trajectory by solving (8) numerically. The CAVs
follow this trajectory through the control zone. Upon
exiting the control zone, they revert to the intelligent
driver model and loop back around toward the control
zone entrance.

For the experiments, we used the following parame-
ters: Umax = 0.5 m/s (28 mi/h at full scale), Umin =0.15 m/s
(8.4 mi/h at full scale), tmsx =0.45 m/s? (11 m/s? at full
scale), and umin =— timax. To ensure safety, we selected

Unconstrained Optimal Control and Boundary Conditions

Let t! be the specified exit time of connected and automated
vehicle (CAV) i from the control zone. To minimize the energy
consumption of / inside the control zone, we minimize transient
engine operation through the L? norm of the control input u;(t)
over the interval [t?, tf], which is known to have a direct benefit
in fuel consumption and emissions in conventional vehicles [S4],
[S5]. Namely, CAV i minimizes the following cost function:
Jilui). )=+ [t?)”ui(r)Zdr. (S)
For each CAV i in the control zone, the unconstrained Ham-
iltonian is

Hi(t,pi(t),vi(t),ui(t)) = %ui(t‘)2 + A vi(t) + A ui(f) (S2)

where A7 and A/ are costates corresponding to the position
and speed of the CAV, respectively. The Euler—Lagrange opti-
mality equations are

Ap=-i_o, jr=—2Hi__jp

op; - 53)

oH,
Ui

=ui+A'=0 (S4)

Since the speed of CAV i is not specified at the terminal time
t!, then [S1]
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At =0. (S5)
Applying the Euler—Lagrange optimality conditions (S3)
and (S4) to the Hamiltonian (S2) yields ui(t)=—A/" = ajit + bj,
where a; and bj are constants of integration. By integrating
the control input, we can find the optimal position and
speed trajectories as pi(f)=1/6ait’+ 1/2bit*+cit + di and
vi(t)=1/2ajt® + bit+ ci, where aj,bj,ci,and d; are constants
of integration, which are found by substituting the boundary
conditions. The boundary conditions for any CAV j are
pi(t?) =p?, vi(t)) =v?, pi(t) = pl, and u;(t))=0, where p; is
known at t° and t/ by the geometry of the road and v{ is the
speed at which the CAV enters the control zone. The final
boundary condition, u;(t}) = 0, arises from substituting (S5) into
(S4) at t/; that is, ui(t)) + AY (t)) = 0, which implies u;(t})=0.
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Derivation of Bounds for Feasible Exit Time

The unconstrained optimal trajectory of connected and auto-
mated vehicle (CAV) i € N(t) takes the form

ui(t)=6ait + 2b; (S6)
vi(t)=3a;t? + 2b;t + ¢ (S7)
pi(t)=ait® + b;t? +cit +d; (S8)

where a;,b;,c;,andd; are constants of integration, which
are found by using the boundary conditions. We derive the
upper and lower bounds on the exit time of the control zone
for a CAV i e N(t), using the speed and control constraints
by exploiting two properties of the optimal trajectory. Since
the optimal control input is linear and satisfies u;(t)=0, it
must be zero, strictly decreasing, or strictly increasing. In
all three cases, u;(t) achieves its extreme at t’. Therefore,
satisfying Umn <Ui(t’) <umax is @ necessary and sufficient
condition to guarantee constraint satisfaction. Likewise,
the speed of CAV i starts at v;(t) = v{ & [Vimin, Vmax] and must
be constant, strictly increasing, or strictly decreasing in-
side the control zone. In all three cases, vi(t) takes its ex-
treme value at t/, and thus, satisfying Vmin < Vi(t) <Vmax is a
necessary and sufficient condition to guarantee constraint
satisfaction.

Next, without a loss of generality, let t?=0 and p{=0
This implies pi(t?)=di=0 and v;(t")=ci=Vv’, while u;(t})=0
implies

_ —bi

a=7 (S9)
and pi(t})=S; yields
3(Si—v?Pt)
= 1
o 2(th? S

To compute the lower bound on the exit time of the control zone
for CAV i, t';, there are two cases to consider.

CASE L1
CAV i achieves its maximum control input at the entry of the con-
trol zone; that is, ui(t’)=umax. In this case, evaluating (S6) at
9=0 yields
ui(t) = 2b; = Umax. (S11)
Substituting (S10) into (S11) and solving for ¢/ yields the qua-

dratic equation umat! +3v2t] —3S;=0, which has two real
roots with opposite signs since t}1tf>=—3Si/umax <0. Thus,

tI(,Umax >0is t;.Umax = 9ViDz +12S;Umax — SVio/zumax-

CASE L2
CAV i achieves its maximum speed at the end of the control
zone; that is, vi(t!) = vmax. For this case, by (S7),

vi(th = 3ait!” + 2bit] + v° = Vinax. (S12)
Substituting (S9) and (S10) into (S12) yields
vi(t) =3( —ng )i+ 2bit 4 v?
=it +vp =20 (s;r‘/?t—'{) + V7 = Vinax o

which simplifies to ... = 3Si/VY+2Vma. Thus, our lower
bound on ] is given by t*; = Min{t] ... thv... The upper bound
for t/ can be derived following similar steps for the lower bound
and can be broken into two cases.

CASE U1

CAV i achieves its minimum control input at the entry of the control
zone; that is, Ui(t’) = Umin. This implies umnt! + 3vPt — 3S; = 0,
which has two positive roots, as tft}, = % > 0, from which
we select the smaller one,

_ W QV,Qz +12SiUmin — 3V,0

t i =
(i 2U min

(S14)

since the speed of the vehicle should be always greater than
zero. Note that when 9v® + 128;Umin < 0, there is no real value
of tf that satisfies all the boundary conditions simultaneously,
and therefore, the constraint u(t}) = umn can never become
active if (S14) is complex. In that case, the upper bound must
be given by Case U2.

CASE U2
CAV | achieves its minimum speed at the entry of the con-
trol zone; that is, vi(t}) = vmn. Evaluating (S7) at t/ yields
vi(th) = 3ait!” +2b;t! + v? = vimin, in Which substituting (S9) and
(S10) yields
b

Vit = 3(=oN) 2 + 2bitl + v? = bt + VP =

— 3(Si— V,pt,f)
at!

2[{ + V/Q = Vmin

(S15)

which simplifies to t},., = 3Si/v? +2vmn. Thus, the upper
bound on the exit time for CAV i is

- if VY + 128U min <0,
" max{t{,ummt{,v;m}y otherwise

where t! ... = 381 /V? + 2Vminand thy.. = YV + 12SiUmin — 3v?/
2Umin .

f
ti,mel

(S16)
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a time gap of 1 s and a minimum standstill distance of
0.07 m (approximately one car length). Our framework
yields an average computation time of 2.14 ms, with a
maximum of 3.4 ms when a CAV plans its trajectory. To
quantify the effect of noise and disturbances acting on
the system, we repeated the experiment five times. Fur-
thermore, we precisely timed the release of the CAVs into
the roundabout such that lateral collisions would occur
without intervention. Videos of the roundabout experi-
ment can be found at https://sites.google.com/view/
ud-ids-lab/csm.

Minimum and average speed and travel time results
for the five experiments are summarized in Table 1. Note
that the minimum speed of all CAVs is 0.12 m/s (7 mi/h
at full scale) across all experiments using our control
framework, which demonstrates that stop-and-go driving
has been completely eliminated. Additionally, the aver-
age speed of the CAVs is 0.42 m/s (24 mi/h at full scale),
which implies that most CAVs travel near vm.x =0.5 m/s.
The error between the desired and actual exit time varies

Control
Zone
Entrance

mmm Path 1
Path 2
s Path 3

‘ Lateral Node

Control Zone
Entrance

FIGURE 3 The roundabout scenario. The highlighted control zone
continues upstream from the roundabout at both entrances.

e A
TABLE 1 The minimum and average speed and travel time
results for the five experiments. The root-mean-square
error (RMSE) of the actual exit time compared to the
desired exit time from the control zone averaged over all
connected and automated vehicles in each experiment
is provided.
N

N
Experiment  Vemin (M/S) Vavg (M/S) Travel Time RMSE
1 0.16 0.41 2.71%
2 0.27 0.45 1.54%
8 0.18 0.41 4.03%
4 0.12 0.43 1.92%
5 0.21 0.42 1.38%
. J
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between 2% and 4%, which stems from the tracking error in
the CAVs’ low-level controller.

The exit time values for each CAV are visualized in Fig-
ure 4, showing the variation between the simulated and
actual behavior of each CAV. The gray bars represent the
feasible space of tif , the wide black bars correspond to the
planned value of tif , and the thin red bars show the actual
value of ti/ achieved by each CAV. This effect of the track-
ing error is visible in Table 1, where the minimum achieved
speed is slightly lower than the minimum speed imposed
on the reference trajectory. Figure 4 also demonstrates how
some scenarios can lead to a very small feasible space, that
is, an exit time near the maximum. This can be seen in
vehicles 17, 18, and 27. This motivates the introduction of
a regularization zone upstream, which could influence the
initial state of each CAV in the control zone to enlarge its
feasible space.

Finally, the average, maximum, and minimum speeds
for each CAV across all experiments are given in Figure 5.
The subfigures correspond to a single path (see Figure 3)
and consider 15 CAVs (three CAVs per path over five experi-
ments). The CAVs’ positions are taken directly from Vicon
and numerically derived using a first-order method. From
Figure 5, the average speed for the CAVs on each path is
very close to constant. Path 1 shows the most variance,
which is due to the distance between collision nodes 2 and
3 on path 1 (see Figure 3). For a CAV i € N(t) that is travel-
ing along path 1 to reduce its arrival time at node 2, it must
make a proportionally larger reduction in the value of t,-f .
This is a side effect of enforcing the unconstrained trajec-
tory on each CAV over the entire control zone.

The entrance to the control zone along path 3 follows
a sharp right turn. This results in relatively lower average
speed in Figure 5(c), as the dynamics of the CAVs reduce

T L "N
20 | H HIHH THHIHH A H H
w i I =L
(0]
g H
E L L A
= =_- = = o | | ml= =_ B = ==-
wolLLHT K= i N i I NI
= - U i el = T - -
( |— t,fDesired — t,fAchieved
5 I I I I I

0 5 10 15 20 25 30
Vehicle Index

35 40 45

FIGURE 4 The planned and achieved exit time for each vehicle over
all experiments. The gray bars show the range of admissible t/
from the state and control constraints. Every nine vehicles corre-
spond to a single experiment; they are sorted in ascending order
by their departure time from the control zone.
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FIGURE 5 The speed range and average for all connected and au-
tomated vehicles on (a) path 1, (b) path 2, and (c) path 3 across all
experiments in the multilane roundabout.

their speed while turning, causing them to enter the control
zone at a lower initial speed. Finally, there are instances in
Figure 5(b) where the maximum vehicle speed surpasses
the speed limit. This is a result of stochasticity in the vehi-
cle dynamics and sensing equipment as well as environ-
mental disturbances on the deterministic controller. This
analysis has motivated the development of an enhanced
framework for CAV trajectory generation that accounts for
noise, disturbances [120], communication delay [122], and
low-level tracking errors [62], [117]. Next, we present a high-
level overview and application of our control framework in
a full transportation corridor in IDS*C.

TRANSPORTATION CORRIDOR

In this section, we apply our control framework in a
transportation corridor in IDS’C, using 15 CAVs. The
corridor is presented in Figure 6, where three ego CAVs
are released along the red path (starting in the northeast
of IDS?*C) and travel through a roundabout, an intersec-
tion, and a merging roadway. In each traffic scenario,
we release three additional CAVs per path (as indicated
in Figure 6) to create congestion. The traffic scenarios
were specifically selected so that upon entering the con-
trol zone, each CAV would have approximately 3 m (75 m
scaled) to adjust its speed before reaching a conflict point.
This also allowed us to consider each coordinator and
control zone independently, as the control zone length
was sufficiently long to neglect the influence of another
upstream control zone.

FIGURE 6 The corridor experiment, where the ego connected and
automated vehicles (the red path) must navigate a roundabout,
intersection, and merging roadway. The paths are colored only
where they pass through a control zone, and the segments be-
longing to the same path have a shared color.
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In the baseline case, we replaced the roundabout and
merging zone coordinators with yield signs. In both sce-
narios, the merging vehicles yield to any vehicle within 0.4 m
of the merging zone (10 m scaled; approximately four car
lengths). To manage the intersection in the baseline case,
we implemented a four-way stop with a first-in, first-out
queue. Namely, whenever a vehicle enters a line segment
leading up to the intersection, it is added to the queue.
When the merging zone contains no vehicles, if the front
vehicle has come to a complete stop, it is removed from the
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FIGURE 7 The speed-versus-position graph for the front ego ve-
hicles in the optimal control and baseline cases. Blue-highlighted
areas are within each of the control zones in the optimal case, and
the vertical dashed lines correspond to the location of stop and
yield signs in the baseline case.
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FIGURE 8 The time-versus-position graph for the ego connected
and automated vehicles (CAVSs) in the optimal control case. Solid
lines correspond to the CAV trajectories, dashed lines correspond
to CAVs that merge onto the ego path, and orange boxes corre-
spond to time intervals when a lateral conflict point is occupied by
another CAV.
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queue and allowed to pass through the merging zone. We
have taken this approach to the intersection to avoid any
bias that may be introduced into our results by the timing
of a traffic light.

Finally, to ensure a fair comparison, we set the speed
limit for the entire city to 0.5 m/s (approximately 30 mi/h
scaled) in both tests. In our framework, we impose a max-
imum speed of 0.3 m/s (approximately 15 mi/h scaled)
outside of the control zone. This ensures that the vehicles
enter the control zone at a speed lower than vmax and gives
them the opportunity to accelerate through the control
zone. Figure 7 shows that despite the apparent advantage
of the baseline case’s higher speed limit, the ego CAVs
maintain a higher average speed in the optimal control
case, and stop-and-go driving has been completely elimi-
nated. Furthermore, Figure 8 demonstrates that the ego
CAVs do not activate any safety constraints throughout
the experiment. Additional videos and figures of the
experiment can be found at https://sites.google.com/
view/ud-ids-lab/csm.

CONCLUDING REMARKS

In this article, we introduced the IDS’C, a research and
educational robotic scaled (1:25) testbed capable of safely
validating control approaches beyond simulation in
applications related to emerging mobility systems. This
testbed can help us prove new emerging mobility con-
cepts and understand the implications of errors/delays
in vehicle-to-vehicle and vehicle-to-infrastructure com-
munication. IDS’C can help us develop and implement
control algorithms for coordinating CAVs in different
traffic scenarios, such as intersections, merging road-
ways, speed reduction zones, roundabouts, and transpor-
tation corridors.

On the educational and outreach fronts, IDS’C has
been used to 1) train and educate graduate students by
exposing them to a balanced mix of theory and practice,
2) integrate research outcomes into existing courses, 3)
involve undergraduate students in research, 4) create
interactive educational demos, and 5) reach out to high-
school students. IDS?C has been a research and educa-
tional catalyst for motivating interest in undergraduate
and high-school students in science, technology, engi-
neering, and mathematics.

We also provided an overview of a control framework
for coordinating CAVs. We demonstrated its effectiveness
in IDS’C in a multilane roundabout, using nine CAVs, and
in a corridor consisting of a roundabout, an intersection,
and a merging roadway, using 15 CAVs. Ongoing research
considers enhancing the framework by incorporating
uncertainty originated from the vehicle surroundings
[62], [117] and the effects of errors and delays in vehicle-
to-vehicle and vehicle-to-infrastructure communication
[122]. Another direction of current research considers
how to operate the CAVs in a way to indirectly control
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human-driven vehicles and force them to form platoons led
by CAVs [20], [123].
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