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ABSTRACT

The use of machine learning techniques in the development of microscopic swimmers has drawn considerable attention in recent years. In
particular, reinforcement learning has been shown useful in enabling swimmers to learn effective propulsion strategies through its
interactions with the surroundings. In this work, we apply a reinforcement learning approach to identify swimming gaits of a multi-link
model swimmer. The swimmer consists of multiple rigid links connected serially with hinges, which can rotate freely to change the relative
angles between neighboring links. Purcell [“Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977)] demonstrated how the particular case
of a three-link swimmer (now known as Purcell’s swimmer) can perform a prescribed sequence of hinge rotation to generate self-propulsion
in the absence of inertia. Here, without relying on any prior knowledge of low-Reynolds-number locomotion, we first demonstrate the use of
reinforcement learning in identifying the classical swimming gaits of Purcell’s swimmer for case of three links. We next examine the new
swimming gaits acquired by the learning process as the number of links increases. We also consider the scenarios when only a single hinge is
allowed to rotate at a time and when simultaneous rotation of multiple hinges is allowed. We contrast the difference in the locomotory gaits
learned by the swimmers in these scenarios and discuss their propulsion performance. Taken together, our results demonstrate how a simple
reinforcement learning technique can be applied to identify both classical and new swimming gaits at low Reynolds numbers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0140662

I. INTRODUCTION

The hydrodynamics of swimming microorganisms has attracted
considerable attention in the past decades.' ~ Microorganisms typi-
cally swim at low Reynolds numbers, where the viscous forces domi-
nate the inertial forces. In such viscosity-dominated flows, common
swimming strategies at high Reynolds numbers can become largely
ineffective."*” In particular, reciprocal swimming gaits, such as the
opening and closing of the shell of a scallop, would produce no net
locomotion in the absence of inertia, which is now known as Purcell’s
scallop theorem.” Nature has evolved different strategies for microor-
ganisms to swim effectively at low Reynolds numbers: A swimming
spermatozoon undulates its flagellum that propagates a bending
wave;” some bacterial cells gain thrust by rotating a bundle of flagella
that resemble a helical wave;’ some euglenids swim by continuous
body deformations.'’

There has been a growing interest in developing artificial micro-
swimmers that can self-propel like microorganisms for biomedical

applications.'” " The design of locomotory gaits has been a funda-
mental challenge due to the stringent constraints imposed by the phys-
ics of swimming at the microscale. Purcell pioneered the design of
microswimmers by his three-link swimmer,” which consists of three
rigid links connected by two hinges. The swimmer is free to rotate its
hinges to adjust the angles made between two neighboring links.
Purcell demonstrated how the swimmer can undergo a sequence of
configurational changes to escape from constraints due to kinematic
reversibility and generate self-propulsion in the absence of inertia.
Since then, the model has been commonly used to explore fundamen-
tal aspects of self-propulsion at low Reynolds numbers'” including
optimality and controllability'®""” and the generalization to multi-link
models.”” ** More recently a similar three-link swimmer has also been
employed as a model for fish swimming in a potential flow
environment.”*

The design of microswimmers typically relies on both ingenuity
and understanding of the physics of locomotion. Recent works have
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proposed reinforcement learning as an alternative path toward the
design of microswimmers.'***~*° Without relying on any prior knowl-
edge of locomotion, a swimmer learns how to self-propel through its
interactions with the surrounding environment. This new approach
has not only successfully recovered previously known locomotion
strategies, such as the Golestanian-Najafi swimmer””"” and Purcell’s
“rotator,””"”* but also identified new locomotion strategies for more
complex systems. Recent experiments have also begun to develop arti-
ficial microswimmers with control systems integrated reinforcement
learning algorithms.™””*’

In this work, we apply the reinforcement learning approach to a
multi-link model system similar to Purcell’s swimmer.” Without pre-
scribing any locomotory gaits, we allow the model to identify effective
swimming gaits based on its experience interacting with a viscous fluid
via reinforcement learning. We note that the classical Purcell’s swim-
mer is limited to three links and only one hinge is allowed to be actu-
ated in each swimming step. Here, we will consider more complex
scenarios when the number of links increases and when multiple
hinges are allowed to be actuated simultaneously. We will examine the
swimming gaits acquired by the learning process and compare with
previously known strategies.

The paper is organized as follows: In Sec. II, we introduce the
multi-link swimmer model, the governing equations of its dynamics,
and the reinforcement learning algorithm (Q-learning) employed in
this work. In Sec. 111, we first focus on the special case of a three-link
model (Sec. IITA) before extending the analysis to a N-link model
(Sec. TI1 B). We report the swimming gaits identified by reinforcement
learning for the case of single hinge rotation, where only one hinge of
the swimmer is allowed to rotate at a time. In Sec. 111 C, we relax the
restriction and allow simultaneous rotation of multiple hinges. We
contrast the resulting swimming gaits with the case of single hinge
rotation and discuss their difference in propulsion performance. We
conclude the investigation with some remarks in Sec. IV.

Il. PROBLEM FORMULATION
A. Multi-link swimmer model

We consider the motion of a multi-link swimmer, which consists
of N identical rigid links, in the x—y plane (Fig. 1). Each link has a
radius a and length ¢ = L/N, where L is the total length of the swim-
mer. The N links are connected serially by N — 1 hinges. The configu-
ration of the ith link is characterized by its angle 0; relative to the x-
axis and the coordinates x; = x;e, + y;e, of one of its ends, such that
an arbitrary point along the link is parameterized by s € [0, /] as
Xi(s,t) = x; + st;, where t; = cos 0;e, + sin 0;e, is the tangent vector
along the link. Similar to Purcell’s three-link swimmer, the multi-link
model is allowed to rotate its hinges, namely, varying the angles made
between every two neighboring links (®; = 0, — 0;). The rotational
rate of the hinges ®; can take one of the values in a discrete group
[—w, 0, ], where o is a characteristic constant rotational rate. That is,
each angle is allowed to either increase at a constant rate of magnitude
o with an amplitude (i>, decrease at the rate » with amplitude &), or
remain unchanged, when the swimmer performs an action.

We consider the multi-link swimmer to be slender (a < L) and
apply the resistive force theory'"* to relate the hydrodynamic force
per unit length f; on the ith link to its local velocity X; as

fi=—[Gtt+ & (T-tt)] - X, oy
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FIG. 1. A multi-link swimmer consisting of N rigid links of the same length con-
nected by N — 1 hinges, which can rotate to change the relative angles @;
= 0;11 — 0; between two neighboring links (i = 1,2, ..., N — 1). Through rotation
of the hinges, the multi-link swimmer deforms and undergoes planar (x-y) motion.

where &) =2nn/[In(L/a) —1/2] and ¢, = 4nn/[In(L/a)+ 1/2]
are the resistive force coefficients and # is the dynamic viscosity of the
fluid. As a leading order approximation of the slender body theory, the
resistive force theory is a local drag model that assumes negligible
non-local hydrodynamic interactions between different parts of the
swimmer. As L/a — oo, the drag anisotropy ratio &, /& — 2. In this
work, we consider a very slender swimmer and adopt a drag anisot-
ropy ratio of ¢, /& = 2. The hydrodynamic force on the ith link is

given by F; = J}f f; ds, and the hydrodynamic torque on the ith link
about the end point x; is given by T;; = f(f (X; — xj) x f; ds. For free
swimming in the absence of inertia, the total hydrodynamic force and
torque on the swimmer should be zero,"*"* namely, >-Y | F; = 0 and

N
2o Tip = 0.

B. Reinforcement learning

In this work, we identify effective swimming gaits of the multi-
link swimmer via reinforcement learning. In particular, we use Q-
learning algorithm for its simplicity and expressiveness.”* For a given
configuration of the swimmer (the state, s,,) in the nth learning step,
the swimmer can rotate any of its hinges (the action, a,) to advance
the current state to the next state. We define a reward r, = —e, - Ac,
to measure the immediate success of an action in self-propelling
the swimmer in the negative x direction; here, Ac, = ¢,4+1 — ¢, is
the change of the swimmer’s centroid, which is given by
¢ =SV x;(n)/(N +1) in the nth step. The adaptive decision-
making intelligence is encoded in the action-value function (also
known as the Q matrix), Q(s,, a, ), which is updated after each learn-
ing step as

Q(sns an) < Q(su,an)
+oa|r, + 7 max Q(5n+17 an+1) - Q(Sm an) . (2)

An+1

Here, 0 < o <1 is the learning rate at which new information over-
rides old information. The discount factor 0 <y < 1 weighs the
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relative importance of the immediate reward 7, and the maximum
future reward in the next state max, ., Q(sy+1,d,+1). For a small
(large) value of y, the swimmer is shortsighted (farsighted) and tends
to focus more on the immediate (future) reward. We also incorporated
an ¢-greedy selection scheme™” to allow a small probability & to take a
random action against the advice by the Q matrix, allowing the swim-
mer to explore new solutions without being trapped in locally optimal
solutions.

In Sec. I1I, we report the propulsion strategies of the multi-link
swimmer identified by Q-learning. In this work, we non-
dimensionalize lengths by L, time by 1/w, and forces by L*¢, .
Hereafter, we will only refer to dimensionless variables unless other-
wise stated. In the implementation of Q-learning, we set o = 1 to max-
imize the learning speed in a deterministic system, y = 0.95, to
emphasize the future rewards, and ¢ = 0.05 for exploration.

I1l. RESULTS AND DISCUSSION
A. Three-link swimmer

We first consider the simplest setup, a three-link swimmer
(N = 3), which has the minimal degrees of freedom for self-
propulsion at a vanishing Reynolds number. Similar to Purcell’s swim-
mer,” we allow only one of the hinges to rotate (ie., increasing or
decreasing one of the angles ®;) in each action step. For a three-link
swimmer, the amplitude of each hinge rotation is set to be ® = /3.
However, unlike Purcell’s swimmer, we do not prescribe any sequence
of actuation. Instead, the three-link model progressively learns how to
swim based on its interaction with the surrounding viscous fluid envi-
ronment via reinforcement learning. Figure 2(b) displays a typical
learning process: The swimmer initially struggles to find effective
swimming gaits as illustrated in Fig. 2(c). Nevertheless, after gaining
sufficient experience interacting with the environment, the swimmer
learns an effective swimming policy and consistently performs the
same sequence of action shown in Fig. 2(d) to generate a net transla-
tion. It is noteworthy that without any prior knowledge of low-
Reynolds-number locomotion, the policy identified by the swimmer
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via reinforcement learning recovers the classical gaits of a Purcell’s
. . 8
three-link swimmer.

B. N-link swimmer

Next, we extend the studies by applying the same reinforcement
learning approach to identify swimming gaits for swimmers with an
increased number of links (N > 3). To keep the total length of the
swimmer constant, the length of each link is given by L/N. In order
for swimmers with different N to have comparable geometric configu-
rations (see first row of Fig. 3), the amplitude of hinge rotation is also
adjusted accordingly as ® = 27/[3(N — 1)].

As the number of links increases, the swimmers display more
complex dynamics due to the increased degrees of freedom. While a
three-link swimmer can only generate net displacements horizontally,
swimmers with more links translate both vertically and horizontally in
the learning process, although the reward is only based on the hori-
zontal displacement. This feature of the system introduces variability
into the learning process when the number of links is greater than
three (N > 3). Unlike the case of a three-link swimmer, where only
one effective swimming policy is possible, multiple swimming policies
emerge when N > 3. For each value of N, we performed 100 trials and
display in Fig. 3 the swimming policies most frequently identified by
reinforcement learning. It is noteworthy that these swimming gaits
share a common feature: They all propagate a traveling wave of hinge
actuation in a direction opposite to the net translation. This feature is
illustrated by the red dots in Fig. 3, which indicates the particular hinge
that has been rotated relative to the previous action step. We can see
in Fig. 3 that for each value of N, the red dot first travels from the left
to the right, undergoing a sequential hinge rotation with a reduction in
the relative angles ®@;, followed by another sequential hinge rotation
but with an increase in the relative angles ®@; (see also integral multi-
media of Fig. 3 for animations).

To summarize, the strategies identified by reinforcement leaning
here generalize the special case of N = 3 (Purcell’s swimmer®) to a
class of swimming gaits that propagate a traveling wave of actuation

@ Reinforcement learning ®of (c) (d) |
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FIG. 2. (a) Reinforcement learning of a multi-link swimmer at low Reynolds numbers. With a goal of self-propulsion, a multi-link swimmer performs an action to rotate one or
more than one of its hinges to deform, which leads to the change of its centroid. A reward defined based on the change of the swimmer's centroid measures the immediate
success of the action, which serves as an input to the reinforcement learning algorithm to advise the next action. (b) The cumulative displacement of a three-link swimmer’s
centroid D as a function of learning steps n. (c) In the initial phase of the learning process, the swimmer gains experience by performing different actions to interact with the vis-
cous fluid medium. (d) Through reinforcement leamning, the swimmer eventually repeats a sequence of cyclic motions that results in a net translation in the negative x-direction.
The swimming gaits identified via reinforcement learning recover those of the classical Purcell's swimmer.”
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FIG. 3. Swimming gaits identified by reinforcement learning of an N-link swimmer
with single hinge rotation, where only one hinge is allowed to rotate in each action
step. The red dot indicates the particular hinge that has been rotated relative to the
previous action step. For all values of N studied here, the red dot moves from
the left to the right, propagating a traveling wave of actuation (hinge rotation) along
the multi-link swimmer. Multimedia view: https://doi.org/10.1063/5.0140662.1

(hinge rotation) for self-propulsion. The direction of wave propagation
is opposite to that of the resulting net translation.

C. Multiple hinge rotation

For results in Secs. 111 A and 111 B, only a single hinge is allowed to
rotate in each action step. In this section, we remove this restriction to
allow multiple hinge rotation in each action step and examine the swim-
ming policies identified by reinforcement learning in these scenarios.
Similar to Sec. III B, we consider the cases 3 < N < 6 and display the
swimming policies most frequently identified by reinforcement learning
in Fig. 4(a). For a three-link swimmer (N = 3), even allowing multiple
hinge rotation, the same swimming gait of Purcell’s swimmer is identi-
fied, involving only a single hinge rotation at an action step. This behav-
ior of the three-link swimmer results from the incapability of breaking
the constraints due to geometrical symmetries and kinematic reversibil-
ity with such a highly limited number of degrees of freedom. However,
as the number of links increases, new swimming gaits different from
those displayed in Fig. 3 emerge when multiple hinge rotation is
allowed.

We discuss several features of these new swimming gaits. First,
the swimmer might rotate a different number of hinges at an action
step. For instance, for N = 4, the swimmer first rotates two hinges
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FIG. 4. (a) Swimming gaits identified by reinforcement learning of a N-link swimmer
with multiple hinge rotation, where simultaneous rotation of multiple hinges is
allowed in each action step. The red dots indicate the particular hinge that has
been rotated relative to the previous action step. The swimmer rotates its hinges in
a manner akin to the propagation of a transverse flagellar wave along the swimmer,
where the peak and trough of the waveform travel from the left to the right. (b) To
aid the visualization of the waveform propagation, the angles 0; along a six-link
swimmer are color-coded and displayed at different action steps n. A color pattern
is observed to travel in the direction of increasing n. Multimedia view: hitps:/
doi.org/10.1063/5.0140662.2

simultaneously, followed by a single hinge rotation, before rotating
two hinges simultaneously again. In contrast, for N = 5, the swimmer
always actuates two hinges simultaneously at each step. Finally, for
N = 6, the swimming gait involves the simultaneous rotation of three
hinges and two hinges in different action steps. Second, we observe
that the multi-link swimmer rotates their hinges in a manner that
resembles the propagation of a transverse flagellar wave; this observa-
tion is visually more apparent for the case of N = 6, where the propa-
gation of the peak and trough of the waveform is illustrated in Fig.
4(a). See also integral multimedia of Fig. 4 for animations. To help
visualize the waveform propagation, we also display in Fig. 4(b) a col-
ormap of the angles 0; along the swimmer at different action steps #.
The observed shifting of the color pattern indicates the propagation of
a waveform along the swimmer. Third, for swimming gaits identified
in Fig. 3, the swimmer takes increasingly more action steps to com-
plete a cycle as N increases. In contrast, the swimmer exploits multiple
hinge rotation in each action step to reduce the number of action steps
required to complete a cycle. Indeed, the swimming gaits identified for
3 < N < 6 all share the same number of action steps. The reduced
number of action steps effectively contributes to the enhancement of
propulsion speed.

To better characterize the performance of the new swimming
gaits identified with multiple hinge rotation, we define an average pro-
pulsion velocity V = |Ax|/T, where Ax is the net displacement of the
swimmer in one period of T. Figure 5 shows the average propulsion
velocity of the multi-link swimmer, which increases with its number of
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FIG. 5. Average swimming velocity V of a multi-link swimmer vs its number of links
N when it is allowed to execute single (circles) and multiple (triangles) hinge rota-
tion. Except for the special case of N = 3, where the swimming gaits of both single
and multiple hinge rotation are identical (Purcell's swimmer), swimmers with multi-
ple hinge rotation consistently outperform those with single hinge rotation.
Multimedia view: https://doi.org/10.1063/5.0140662.3

links (blue triangles). For comparison, we display also the corresponding
average propulsion velocity for the swimmer adopting single hinge actu-
ation (black circles). Except for the N = 3 case, where both multiple
hinge actuation and single hinge actuation reproduce the gaits of a
Purcell’s swimmer and hence the same performance, swimmers with
multiple hinge rotation substantially outperform their counterparts
rotating a single hinge. See also integral multimedia of Fig. 5 for anima-
tions of the comparison for the N = 6 case. The enhanced performance
is attributed to both the emergence of new waveforms and the reduction
in the cycle period (due to reduced action steps) of the swimming gaits
in the case of multiple hinge rotation.

IV. CONCLUDING REMARKS

The design of locomotory gaits at low Reynolds numbers has
been a fundamental challenge that requires both ingenuity and knowl-
edge of the physics of locomotion. Purcell first demonstrated the ele-
gant example of how a simple three-link swimmer can perform a
sequence of hinge rotation to escape the constraints of scallop theorem
and generate self-propulsion. However, the consideration of more
complex swimmer configurations may become intractable as the
swimmer complexity increases. In this work, we employ reinforcement
learning to identify effective swimming gaits of a multi-link swimmer.
Without relying on prior knowledge of low-Reynolds-number loco-
motion, a swimmer progressively learns effective swimming strategies
based on its interaction with the surrounding,

In this work, we demonstrated the use of this reinforcement
learning approach on a multi-link swimmer. We first considered the
case of single hinge rotation, where the multi-link swimmer is allowed
to only rotate a single hinge in each action step. In this case, a class of
swimming gaits corresponding to the sequential rotation of the hinges
along the swimmer is identified, generalizing the classical gaits of
Purcell’s three-link swimmer. As a remark, the swimming strategy
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based on the propagation of a traveling wave of actuation observed
here has been also consistently found in multi-sphere systems that
generate self-propulsion”” and net rotation,” suggesting some general-
ity of the locomotion strategy. We next relaxed the restriction of single
hinge rotation and allow multiple hinges to rotate simultaneously in
one action step. In this case, the reinforcement learning algorithm has
identified a new class of swimming gaits that resembles the propaga-
tion of a transverse flagellar waveform along the swimmer. Moreover,
the swimming gaits with multiple hinge rotation display substantially
enhanced propulsion performance compared with those using only
single hinge rotation.

Taken together, our results demonstrate the use of a simple rein-
forcement learning technique in identifying swimming gaits at low
Reynolds numbers. The approach is not tied to a specific swimmer
design but applies to different reconfigurable swimmer models. We
remark that we use only a simple reinforcement learning algorithm,
Q-learning, in this work for its simplicity. The use of this value-based
method nevertheless imposes constraints on the scalability and capa-
bilities of the approach to handle systems with increased degrees of
freedom and complex maneuvers, such as continuous and time-
dependent actions. Moreover, the variability in the learning process
due to the emergence of vertical motion for swimmers with more than
three links remains an issue to be addressed in subsequent studies,
potentially with more complex rewards functions that penalize vertical
swimmer displacements. Due to these constraints, here we limit our
investigation to swimmers up to six links, specified and equal ampli-
tudes of rotation for all hinges, as well as a constant rate for the hinge
rotations. More advanced reinforcement learning approaches such as
the combination of reinforcement learning with artificial neural net-
work™® "’ may be pursued in the future work to remove these limita-
tions and handle systems with increased complexity. In addition, it
would be an interesting direction for future works to consider different
reward functions to examine different swimming gaits harvested by
reinforcement learning. In particular, power dissipation is another
important indicator for locomotion performance and a reward based
on minimizing power dissipation could lead to energetically efficient
swimming gaits different from those identified here. We also foresee
the use of these reinforcement learning approaches in identifying loco-
motory gaits in complex fluids, where general design guidelines and
principles of microswimmers remain elusive.
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