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ABSTRACT The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation.
In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable with or even smaller than
their own. Although the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane
viscoelasticity has been largely overlooked. In this work, we present a computational study based on the boundary integral
method and thin-shell mechanics to examine how membrane viscoelasticity influences the dynamics of RBCs flowing through
straight and constricted microcapillaries. Our results reveal that the cell with a viscoelastic membrane undergoes substantially
different motion and deformation compared with results based on a purely elastic membrane model. Comparisons with exper-
imental data also suggest the importance of accounting for membrane viscoelasticity to properly capture the transient dynamics
of an RBC flowing through a microcapillary. Taken together, these findings demonstrate the significant effects of membrane
viscoelasticity on RBC dynamics in different microcapillary environments. The computational framework also lays the ground-
work for more accurate quantitative modeling of the mechanical response of RBCs in their mechanotransduction process in
subsequent investigations.
SIGNIFICANCE There has been substantial interest in the critical roles the dynamics of red blood cells (RBCs) play in
microcirculation and mechanotransduction. However, the effect of membrane viscoelasticity has been largely overlooked
in previous studies. In this work, we present a computational framework to probe the significance of membrane
viscoelasticity on the dynamics of RBCs in microcapillaries. Through two physiologically relevant flow setups, our results
demonstrate how membrane viscoelasticity can significantly influence the motion and deformation of RBCs traveling
through different microcapillary environments. These findings help establish the importance of accounting for membrane
viscoelasticity in quantitative modeling of RBC dynamics, laying the foundation for more accurate biophysical models to
understand the mechanotransduction of RBCs in future studies.
INTRODUCTION

Blood is a complex fluid and its composition consists of
plasma fluid and cellular elements such as platelets, white
blood cells, and red blood cells (RBCs). The high concentra-
tion of RBCs governs the rheological and transport proper-
ties of blood in the microcirculation (1,2). The RBC
membrane is a thin viscoelastic envelope, and its biconcave
geometric shape allows it to deform and squeeze through the
microcapillaries (3). It is mainly composed of a lipid
bilayer, cytoskeleton, and transmembrane proteins. The
cytoskeleton binds to the cytoplasm side of the lipid bilayer
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and supports its structural shape. It is made mainly of trian-
gular spectrin proteins, and it is postulated that these
spectrin tetramers are responsible for the viscoelastic prop-
erties of the RBC membrane (4–7).

Although experimental studies have observed the visco-
elastic behavior of the RBC membrane (8–12), only
recently, in numerical studies, has there been increased
emphasis on the significant effects of the membrane visco-
elasticity on the motion and deformation of the RBCs. For
example, it has been demonstrated that the magnitude and
rate of RBC deformation reduce with increasing membrane
viscosity. However, these studies are limited to the dy-
namics of spherical capsules and biconcave RBC under
shear flow or pull and relaxation type investigations in an
unbounded domain (13–19). Previous studies have shed
light on the dynamics of capsules, vesicles, and RBCs in
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Effects of membrane viscoelasticity on the RBC dynamics in a microcapillary
straight (20–23) and constricted (6,24) microcapillaries.
However, few studies have assessed the significance of
membrane viscoelasticity on the long- and short-time-scale
transient deformation of an RBC in these configurations.

Previous numerical studies on RBC motion and deforma-
tion at the cellular level in a confined domain have only
considered the effects of the purely elastic components of
membrane mechanics, which consist of dilatational, shear,
and bending forces (25–28). Some of these studies have
attempted to capture the viscoelastic behavior of the RBC
in unbounded and confined domains by considering a purely
elastic membrane model with an exceedingly high intracel-
lular fluid viscosity compared with the dynamic viscosity of
the extracellular fluid (16,29,30). The ratio of the viscosities
of the intracellular fluid to the extracellular fluid is called the
viscosity ratio. In the unbounded domain, it has been shown
that the assumption of a high viscosity ratio qualitatively
captures the effects of membrane viscoelasticity but yields
quantitatively different results (16,17,31). However, what
is not yet understood is the degree to which the viscosity
ratio captures the behavior of the membrane viscosity in a
microcapillary under the influence of pressure-driven flows.

In this study, we aim to fill these gaps in the literature by
investigating the significance of membrane viscoelasticity
on the mode, magnitude, and rate of motion and deformation
of anRBCflowing in straight and constrictedmicrocapillaries
under pressure-driven flows. In addition, we assess to what
extent the purely elastic membrane model with high viscosity
ratio captures the effects of the membrane viscoelasticity on
RBC dynamics in a straight microcapillary and examine
whether the high-viscosity-ratio assumptionmisses the impor-
tant physics of the shape transition of the RBC deformation.

We used the boundary integral representation of Stokes
flow to describe the hydrodynamics of the intracellular
and extracellular fluids of an RBC inside a rigid microcapil-
lary. The advantage of this representation is that the features
of fluid-structure interaction problem are built into the
boundary integral formulation. The effects of the hydrody-
namical stresses of the intra- and extracellular fluids on
the cell membrane are balanced by the membrane internal
forces. We use thin-shell theory with Kirchhoff-Love kine-
matics to compute the membrane internal forces due to
the deformation caused by the fluid stresses. The elastic
component of in-plane stresses is described by Skalak’s
constitutive equation, and the viscous component of the
in-plane stresses is described by Maxwell’s dynamic consti-
tutive equation. The combination of these in-plane stresses
yields what is called the standard linear solid model.
The linear isotropic form of the Helfrich model is used to
compute the bending forces.

We study the impact of the membrane viscosity and the
viscosity ratio on the long-time-scale deformation of the
RBC in a rigid cylindrical straight microcapillary under
the influence of pressure-gradient fluid flow. We analyze
the shape transition, magnitude, and rate of the RBC mem-
brane deformation up to a steady-state parachute shape with
increasing membrane viscosity (from 0 to 1 mN.m/s) and
viscosity ratio (from 5 to 50) of a purely elastic membrane
model. We also study the effects of the membrane viscosity
on the short-time-scale deformation and motion of an
RBC while flowing through a constriction under the pres-
sure-driven flow field with increasing membrane viscosity
(from 0 to 1 mN.m/s).

The novelty of this study is that it provides important
results that demonstrate the effects of the membrane visco-
elasticity on the long- and short-timescale deformation of
the RBC while flowing inside a straight and constricted
microcapillary, respectively. In addition, this study offers
insight into the physical mechanisms underlying the similar
effects of the membrane viscosity and viscosity ratio on the
deformation of the RBC in a straight microcapillary.
METHODS

Intra- and extracellular flows

We assume that Stokes flow describes the hydrodynamics of the intra-

and extracellular fluids of an RBC inside a rigid microcapillary. In this

study, Stokes flow is represented in the form of boundary integral equa-

tions (BIEs) that make use of the fundamental solution of velocity

Gðx0; xÞ and traction Kðx0; xÞ of the Stokes equation (32,33) in the

following form:

Gðx0; xÞ ¼ 1

krk ðI þ brbruÞ; Kðx0; xÞ ¼ 6

krk2 ðbrunÞbrbru;
(1)

where r ¼ rðx0;xÞ ¼ x0 � x, the corresponding unit vector br ¼ r=krk,
x denotes the field point, and x0 denotes the target point. This approach is
widely used in the literature to formulate the motion and deformation

of RBC, capsules, and droplets in unbounded and confined domains

(34–38). The system of BIEs is provided to describe unknown variables;

the membrane velocity field ðuCÞ on the cell membrane ðGCÞ and the veloc-
ity ðuEÞ and traction ðtEÞ fields on the microcapillary boundary ðGEÞ by the
following two weakly singular BIEs:

uCðx0Þ þ l� 1

8p

R
GC
Kðx0; xÞðuCðxÞ � uCðx0Þ ÞdGðxÞ

�uEðxtÞ þ 1

8p

Z
GE

Kðx0; xÞ
�
uEðxÞ � uEðxtÞ

�
dGðxÞ

¼ � 1

8pm

Z
GC

Gðx0; xÞfCðxÞdGðxÞ

þ 1

8pm

Z
GE

Gðx0; xÞtEðxÞdGðxÞ; x0 ˛GC;

(2)

l� 1R C C
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Kðx0; xÞðu ðxÞ � u ðxtÞ ÞdGðxÞ

þ 1

8p

Z
GE

Kðx0; xÞ
�
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�
dGðxÞ

¼ � 1

8pm

Z
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Gðx0; xÞtEðxÞdGðxÞ; x0 ˛GE;

(3)
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where xt is the closest point to the target point onGE in Eq. 2 when x0 ˛ GC

and the closest point to the target point onGC in Eq. 3 when x0 ˛ GE. The pro-

posed BIEs not only consider the interacting surfaces of the cell membrane

with the microcapillary sidewalls but also account for the nearly singular na-

ture of the integral equations, using the singularity subtraction technique

(5,39–41),where the cellmembrane is in close proximity to themicrocapillary

boundary. This reduction of the strongly and nearly singular form of integrals

to a weakly singular form is a major advantage of the formulation. The Galer-

kin spectral boundary integralmethod is used for the solution ofmembraneve-

locity using spherical harmonic basis functions (27,42,43), and the boundary

element method is used for the solution of traction and velocity fields on a

discretizedmicrocapillary (44–46). The coupled system of BIEs is solved iter-

atively and an adaptive time-stepping scheme is used for time integration to

compute the new position of the RBC after solving for the membrane velocity

uC. A summary of the numerical algorithm is provided in section S1 in the

supporting material. We also direct the interested reader to (47) for a detailed

description of the BIE formulation for the dynamics of RBC in bounded and

unbounded domains and its numerical solution schemes. Themembrane force

field fC enters the BIEs (Eqs. 2 and 3) through its balance with the hydrody-

namic stresses of the fluid across the cell membrane (35,38,48) as

fCðxÞ ¼ ½TEXTðxÞ � TINTðxÞ�nINTðxÞ; (4)

building the fluid-structure interaction into the boundary integral formula-

tion. Here, stresses due to extracellular and intracellular fluid are denoted as
TEXT and TINT on the cell membrane, and nINTðxÞ denotes the unit normal

vector that points outward from the intracellular fluid domain UINT as

shown in Fig. 1.
Membrane mechanics

The RBC membrane is a thin shell-like envelope that separates intracellular

fluid from extracellular fluid. It comprises a lipid bilayer and a cytoskeleton
FIGURE 1 An RBC flow in a microcapillary. RBC motion is confined by

the microcapillary boundary ðGEÞ where the traction field ðtEÞ acts on and

the unit normal vector ðnEÞ points outward from the extracellular fluid

domain ðUEXTÞ. Note that this UEXT fluid domain is not only bounded by

the GE but also by the cell membrane ðGCÞ, which contains the extracellular
fluid of viscosity m. The intracellular fluid of viscosity lm is enclosed by the

GC in the fluid domain UINT. The traction fields (tINT ¼ TINTnINT and

tEXT ¼ TEXTnEXT) are defined by the stresses due to the intra and extracel-

lular fluid (TINT and TEXT) on the GC where the unit normal vectors (nINT
and nEXT) point outward from fluid domains (UINT and UEXT), respectively.
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network that is made up of spectrin proteins that underlie the bilayer.

Transmembrane proteins are embedded in this envelope as a gateway to

regulate ion and water flows (49–51). This composite membrane structure

allows the cell to resist hydrodynamic forces by developing internal

bending and in-plane viscoelastic stresses without changing the surface

area. The large surface area to volume ratio of the biconcave shape allows

the RBC to deform and squeeze through a constriction without changing the

surface area (52–54). There are computational models that account for lipid

bilayer and cytoskeletal interactions in an RBC (7,51,55,56). A recent

model has also examined the coupled in-plane viscous flow of lipids, trans-

membrane protein diffusion, and elastic deformation of lipid bilayer mem-

brane (57).

Although the effects of the cytoskeletal network and transmembrane

proteins are assumed to be embedded in some measured values of elastic

and viscoelastic properties of the RBC membrane, we do not model

these effects explicitly in this work. We describe membrane forces fC in

the framework of thin-shell theory with Kirchhoff-Love kinematics

(36,37,58–62). Our membrane mechanics take into account the viscoelas-

ticity of the in-plane membrane stresses using the standard linear solid

model, which is central to the objectives of this study. This approach

was chosen to account for creep and relaxation behaviors. The elastic

component of in-plane stress is described by Skalak’s constitutive equa-

tion, and the viscous component by the Maxwell model. Bending stresses

are computed using the Helfrich model in linear isotropic form. The

detailed mathematical formulation for the RBC membrane mechanics is

provided in (47). We provide a brief summary in the following

subsections.

Constitutive equations

In-plane stresses. In recent years, there has been increased emphasis on

the effects of membrane viscoelasticity on the dynamics of RBCs

(14–16,63–65). In-plane membrane stresses consist of the elastic stress

component sE and the viscoelastic stress component sV such as s ¼
sE þ sV.

Skalak model. The Skalak strain energy function tailored for the RBC

membrane has the following form (36,66,67):

W ¼ ES

4

�
1

2
I21 þ I1 � I2

�
þ ED

8
I22; (5)

where ES and ED denote, respectively, the shear and dilatation modulus, and

the first and second strain invariants are given as I1 ¼ 2trε and I2 ¼

2tr εþ 4 det ε, respectively. The surface strain tensor ε is defined as the

change in the metric tensor due to surface deformation ε ¼ 1
2
A� 1ða �

AÞ, where the metric tensor is defined using the surface gradient of position

vectors in the undeformed ðXÞ and deformed ðxÞ configuration as

A ¼ VXuVX and a ¼ VxuVx, respectively. Elastic in-plane membrane

stresses can be written as

sE ¼ ED

2
I2ðI þ 2eÞ þ ES

2
ðI1I � 2eÞ; (6)

where e ¼ ε
�u det ε.

Viscoelastic model. The Maxwell model is an ordinary differential
equation for viscoelastic stresses of the membrane sV with constant coeffi-

cients given as (68,69)

_sV þsV

2t
¼ k0 _ε; (7)

where t ¼ mm=k
0 denotes the relaxation time of the Maxwell element, with

mm being the membrane viscosity and k0 being the artificial spring modulus.
The term k0 _ε is the forcing function and an overdot denotes differentiation

with respect to time.

An approach based on the finite difference method is provided (70,71) for

viscoelastic membrane stresses. Using this approach by applying the central

finite difference approximation, from t � Dt to t, to the time rate terms



FIGURE 2 A conceptual representation of the standard linear solid

model (13,16,68,70) for modeling the viscoelastic in-plane stresses.
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in Eq. 7 and taking the average of the term sV in
�
t � Dt

2

�
leads to the

following form of a constitutive equation for the computation of the visco-

elastic in-plane stresses sV:

sVðtiÞ ¼ 4t � Dt

4t þ Dt
sVðti� 1Þ þ 4mm

4t þ Dt
½εðtiÞ � εðti� 1Þ�u:

(8)

Fig. 2 illustrates a conceptual representation of the membrane mechanics

in the standard linear solid model (13,16,68,70): the dashpot element mm

and the artificial spring k0 in series combine to form the Maxwell visco-

elastic element (Eq. 7), which integrates with the elastic element given

by Skalak’s model in parallel (Eq. 6) to form the standard linear solid model

for the in-plane stresses.

Helfrich model. The bending stresses in the cell membrane are computed

using the Helfrich constitutive equation in linear isotropic form (72,73) as

follows:

m ¼ EBk
u; (9)

where EB denotes the bending modulus. The change in the curvature

tensor field is k ¼ A� 1ðb �BÞ and the curvature tensors are defined
using the gradient of the unit normal vector in the reference and

deformed configurations (N and n) respectively as B ¼ VNuVX and

b ¼ VnuVx.

Membrane force field

We consider the variation of the strain energy functional P½x� under small

deformations dx to derive the membrane force field fC in the deformed

configuration. These infinitesimal deformations have to satisfy the

Kirchhoff-Love kinematics in the sense that the straight lines normal to

the undeformed configuration remain straight and normal in the deformed

configuration (74). The strain energy functional can be obtained by inte-

grating the strain energy density functionJðε; kÞ (per unit area of the refer-
ence configuration) over the cell configuration in the spherical coordinate

system,

P½x� ¼
Z 2p

0

Z p

0

Jðε; kÞJXdqd4; (10)

where the Jacobian determinant of the mapping from the parent geometry to

the undeformed and deformed configurations are, respectively, denoted by
JX ¼ kVqX�V4Xk and Jx ¼ kVqx � V4xk. The unit sphere is taken as

the parent geometry for the representation of the cell membrane and param-

eterized by the spherical coordinate system ðq;4Þ with q˛ ½0;p� being the

latitudinal coordinates and 4˛ ½0; 2pÞ being the longitudinal coordinates.

Note that the in-plane stresses s and bending stresses m are defined as

s ¼ vJ=vε and m ¼ vJ=vk with the density function.

The first variation of the strain energy functional can be expressed as

DP½x� $ dx ¼
Z 2p

0

Z p

0

ðs $ dεþm $ dkÞJXdqd4; (11)
with a final form given by (47)

DP½x�$dx ¼
Z 2p

0

Z p

0

fCðxÞ$dxJxdqd4: (12)

In equilibrium, the integrand of Eq. 12 is equal to zero, and we obtain the

membrane forces per unit area of the deformed configuration as the surface

divergence of the membrane stresses in the form of

fCðxÞ ¼ � 1

Jx

�
v

vq

�
Tq sin q

�þ v

v4
ðT4Þ

�
; (13)

where the intrinsic components of the membrane stresses are given by
Tq ¼ sqJX þmqJX þ sq; T4 ¼ s4JX þm4JX þ s4:

(14)

Here, the contribution of the elastic and viscoelastic in-plane stress"
sqq sq4

#

s ¼ sE þ sV ¼

s
4
q s44

to the components of the membrane stress

is given by

sq ¼ VxA�1

"
sq
q

s
4
q

#
; s4 ¼ VxA�1

"
sq
4

s4
4

#
; (15)

where the elastic stress sE is defined in Eq. 6 and the viscoelastic stress sV"
mq

q mq
4

#

is defined in Eq. 8. The contribution of bending stressm ¼

m4
q m4

4

to

the components of the membrane stress is given by

mq ¼ VnA�1

"
mq

q

m4
q

#
; m4 ¼ VnA�1

"
mq

4

m4
4

#
; (16)

where the bending stress m is given in Eq. 9. The contributions of the out-

of-plane shear stress sq and s4 to the components of the membrane stress is
given by

sq ¼ 1

Jx
ðV4x � PzÞ; s4 ¼ 1

Jx
ðPz � VqxÞ; (17)

where P ¼ I � nnu is the projection operator and� �

z ¼ � 1

sin q

v

vq

�
qq sin q

�þ v

v4
q4 (18)

is the surface divergence involving the terms" #u " #u
qq ¼ Vx
mq

q

m4
q

A�1; q4 ¼ Vx
mq

4

m4
4

A�1: (19)

RESULTS AND DISCUSSION

The aims of this study are to examine and demonstrate the
significance of membrane viscosity on RBC dynamics in a
microcapillary. We used boundary integral methods to
analyze the magnitude, rate, and mode of RBC deforma-
tion under pressure-driven flow in a straight and con-
stricted microcapillary. Membrane mechanics in the
framework of thin-shell theory has been developed to
demonstrate the influence of membrane viscosity on
RBC deformation.
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TABLE 1 The material properties of the cell membrane

(15,34,76,77)

Elastic membrane properties

ES 5.3 mN/m

ED 265 mN/m

EB 0.2 nN$nm

Viscoelastic membrane properties

mm 0–1 mN$s/m

k0 ¼ 33.3 ES 176.7 mN/m

G€urb€uz et al.
We examine the impact of membrane viscosity on RBC
deformation in a rigid cylindrical straight microcapillary.
To compare the difference of the impact on the membrane
deformation between membrane viscosity and intracellular
fluid viscosity, we further analyze the purely elastic mem-
brane model with increasing intracellular fluid viscosity.
Next, we investigate the effects of membrane viscosity on
the motion and deformation of RBC in a constricted
microcapillary.
Straight microcapillary

Effects of the membrane viscosity

We consider an RBC flowing through a straight cylindrical
rigid microcapillary with a 10 mm diameter filled with extra-
cellular fluid of dynamic viscosity m. The RBC contains an
intracellular fluid with a dynamic viscosity lm with l being
the ratio of fluid viscosities of the intra and extracellular
fluid. Here, we follow previous studies by assuming l ¼
5 for a healthy RBC (27,48,75); we examine the impact of
this assumption in the next subsection. The center line of
the cylindrical microcapillary is aligned with the X-axis,
and the origin of the coordinate system is set at the centroid
of the microcapillary. The initial position of the RBC is at
the origin of the coordinate system. Fig. 3 shows the setup
of the problem and the initial position and orientation of
the RBC.

Deformation of the RBC membrane depends on the key
physical and geometric properties of the membrane and
the external hydrodynamic system. The physical properties
of the red cell membrane are given in Table 1 (15,34,76,77).
The viscosity of the membrane mm is varied from 0 to
1 mN.m/s to study its effects on the deformation of the red
cell membrane while keeping other physical properties con-
FIGURE 3 An RBC flow inside a straight cylindrical microcapillary with

a 10 mm diameter under the influence of the pressure gradient of

4 mmHg/mm; the corresponding applied inlet pressure is 16.75 Pa (the mi-

crocapillary length equals the circumference) and the outlet is traction-free

surface. No-slip boundary condition is applied to sidewalls. To see this

figure in color, go online.
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stant. The limit of zero membrane viscosity reduces to the
purely elastic membrane model. We assume that the initial
biconcave shape with a large diameter of 7.8 mm is the un-
stressed (reference) shape for membrane force calcula-
tions (78).

Fluid flow inside the microcapillary is generated by
imposing a constant pressure gradient of 4 mmHg/mm along
the length of the microcapillary. Without loss of generality,
we apply the inlet pressure of 16.75 Pa to the inlet surface
and let the outlet be a traction-free surface. We assume a
no-slip velocity condition on the sidewalls. The resulting
fluid flow has a parabolic profile in the plane of the YZ
axis in the absence of the RBC.

In this problem, the flow must be simulated over a consid-
erable length of time to obtain the steady-state shape of the
RBC. An approach is adopted to avoid the excessive compu-
tational effort associated with meshing the boundary of a
long microcapillary. The RBC is placed in the middle of a
relatively short microcapillary, whose length is chosen so
that the boundary effects at the inlet and outlet are negligible
near the middle. This approach consists of subtracting the
rigid-body motion of the RBC in the X-direction from the
total displacement of the RBC after each time increment.
This is similar to observing the motion of the RBC from a
reference point that moves along the microcapillary with
the RBC.

Fig. 4 presents snapshots of the deformation of an RBC
flowing in a straight microcapillary with increasing mem-
brane viscosity. Experimental measurements of the RBC
shape evolution during start-up flow (79) at the same time
steps are provided to compare with the numerical results.
What stands out in Fig. 4 is that the general deformation
patterns of the RBC with the membrane viscoelasticity
model resemble the experimental results. On the other
hand, it can be seen that the purely elastic membrane model
reaches the steady-state parachute shape very quickly. The
change in the deformation of the purely elastic membrane
model is insignificant after 0.05 s.

A closer inspection of Fig. 4 reveals that the pressure-
driven parabolic flow field pushes the rear portion of the
rim inward, creating an infolding bending. Consequently,
this deformation redistributes the intracellular fluid toward
the front side of the rim, creating a bulging-out bending.
Initially, the biconcavity of the dimple portion of the red
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FIGURE 4 The snapshots of an RBC flow inside of a microcapillary with a 10 mm diameter (a) with purely elastic membrane, (b) with membrane viscosity

of mm ¼ 0.318 mN$s/m, (c) with membrane viscosity of mm ¼ 0.55 mN$s/m, (d) with membrane viscosity of mm ¼ 1 mN$s/m. Experimental images in (e) and

(f) are taken and reprinted with permission from (79). Copyright 2011, Elsevier. To see this figure in color, go online.
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cell persists in its inward concavity, but slowly yields to
intracellular fluid stresses. As the intracellular fluid is redis-
tributed, it slowly flattens the inward concavity of the
dimple portion and, with an increasing rate, pushes it out-
ward in a snapping-like bending. This transition of the
dimple portion from inward concavity to a flattened shape
takes a longer time with a larger membrane viscosity. As
the flattened dimple shape creates more room for intracel-
lular fluid, the rear portion of the rim further bends inward,
taking the shape of the parabolic flow field, and the front
side of the rim further bulges out. This shape transition
through membrane deformation and intracellular fluid flow
leads to a parachute-like steady-state shape.

Next, we quantitatively analyze the magnitude and rate
of RBC deformation. We use the extension parameter to
describe the RBC shape evolution (79,80). The expression
for the extension parameter (EX) has the form of EX ¼
log2½1 =baðtÞ2� with baðtÞ ¼ aðtÞ=a0 and aðtÞ is the minimum
of the eigenvalues of the ellipsoidal shape that has the same
moment of inertia as the deformed RBC shape at time t and
a0 is its initial value for the biconcave shape (15,81–83). In a
sense, the extension parameter describes how much the
cross-sectional area of the RBC biconcave shape changes
over time from the initial circular shape, which has the value
of EX ¼ 0. Fig. 5 compares the extension of an RBC as a
function of time with increasing membrane viscosity, and
the inset compares the numerical results with the experi-
mental results (79) for initial timescale. The pressure
gradient along the cylindrical microcapillary is
4.2 mmHg/mm in this case. The rate of deformation is
higher in the purely elastic membrane model than in the
model that includes viscoelasticity, and it decreases with
increasing membrane viscosity. However, all models
approach the same extension value over a long time span
when the red cell reaches the steady-state parachute shape.
The time required to reach the steady-state parachute shape
increases with the membrane viscosity. As can be seen in the
inset of Fig. 5, the numerical results with the membrane
viscoelasticity model are in line with the microfluidic exper-
imental results. The discrepancy in the initial value of the
extension parameter is likely due to the fact that the initial
shape of the RBC in the experiment is more similar to an el-
lipse than to a circle (79). Due to differences between the
simulation and experimental setups as well as uncontrolled
Biophysical Journal 122, 2230–2241, June 6, 2023 2235



FIGURE 5 The extension parameter as a function of time for different

values of membrane viscosity mm for an RBC flow in a straight microcapil-

lary. The experimental results are taken from (79). To see this figure in co-

lor, go online.

FIGURE 6 The extension parameter as function of time for different

values of viscosity ratios l for an RBC flow in a straight microcapillary.

The experimental results are taken from (79). To see this figure in color,

go online.
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factors in the experiments and image analysis, the compar-
isons between simulation and experimental results should
not be considered as direct comparisons. We also remark
that, in addition to including membrane viscosity, variations
in some elastic properties of the membrane could also lead
to closer agreements with the experimental results (see sec-
tion S2 in the supporting material for details). Overall, the
results here therefore only highlight membrane viscosity
as a largely unexplored effect that could significantly impact
the dynamics of an RBC flowing in a microcapillary, among
other membrane properties.

Effects of viscosity ratio

Prior studies (16,29–31) that have noted the importance of
the transient timescale of RBC dynamics have taken the
approach of using higher intracellular fluid viscosity as a
proxy for the effects of membrane viscoelasticity. The
reason for using this approach, rather than modeling mem-
brane viscoelasticity, is because of the ease of obtaining
the solution using BIEs without the need to modify
the mathematical formulation of membrane mechanics as
shown in this paper. This approach only involves the use
of higher values of l; the viscosity ratio of intracellular fluid
to extracellular fluid in Eqs. 2 and 3. From now on, we shall
refer to this parameter l as a viscosity ratio. Several reports
have shown that the use of the higher viscosity ratio to
describe the effects of membrane viscoelasticity captures
the dynamics of RBC under shear flow in an unbounded
domain qualitatively but not quantitatively (17,31). The
rate of RBC deformation decreases with increasing viscos-
ity ratio; however, the magnitude and rate of deformation
differ using the membrane viscoelasticity model in an
unbounded domain under a simple shear flow.
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We investigated the effects of the high viscosity ratio on
RBC deformation in a confined domain using the straight
cylindrical microcapillary geometry shown in Fig. 3. We
vary the viscosity ratio l from 5 to 50, using the purely
elastic membrane model with a pressure gradient of
4.2 mmHg/mm along the length of the microcapillary. Simi-
larly to Fig. 5, Fig. 6 compares the extension of an RBC as a
function of time with an increasing viscosity ratio, and the
inset compares the numerical results with the experimental
results for the initial timescale. The rate of deformation de-
creases with increasing viscosity ratio. However, all models
approach the same extension value in a long time span and
reach the steady-state parachute shape. The time required to
reach the steady-state parachute shape is longer with
increasing viscosity ratio. As can be seen in the inset, the nu-
merical results with the higher viscosity ratio are in line with
the experimental results, as opposed to the case with l ¼ 5.

Overall, these results illustrate similar effects of the
viscosity ratio on RBC deformation to the membrane visco-
elasticity in a confined domain. This finding broadly
supports the work of previous numerical studies on the ef-
fects of membrane viscoelasticity on RBC dynamics in an
unbounded domain under shear flow (17,31). However, the
difference between the results in Figs. 5 and 6 is the quan-
titative effects such as the rate and magnitude of RBC defor-
mation. In addition, there are significant differences in the
mode of RBC deformation with the purely elastic membrane
model with a higher viscosity ratio compared with the mem-
brane viscoelasticity model. For example, snapping-like
bending in the dimple region of the RBC is a characteristic
feature of the RBC dynamics with the membrane viscoelas-
ticity model, but this shape transition from the inward
concavity to the flattened membrane of the dimple region



FIGURE 7 The problem statement of an RBC flow inside a cylindrical

constricted microcapillary with a 10 mm inlet and outlet diameter and 6

mm constriction diameter under the influence of the pressure gradient of

8 mmHg/mm; the corresponding applied inlet pressure is 67 Pa (the micro-

capillary length equals twice the inlet circumference) and the outlet is a

traction-free surface. No-slip boundary condition is applied to sidewalls.

To see this figure in color, go online.
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FIGURE 8 The snapshots of the motion and deformation of an RBC

squeezing through a constriction with a 6 mm diameter (a) with purely

elastic membrane, (b) with membrane viscosity of mm ¼ 0.318 mN$s/m,

(c) with membrane viscosity of mm ¼ 0.55 mN$s/m, and (d) with membrane

viscosity of mm ¼ 1 mN$s/m. Membrane profiles are taken at times t ¼ 0, 4,

8, 12, 16, and 20 ms. To see this figure in color, go online.

Effects of membrane viscoelasticity on the RBC dynamics in a microcapillary
occurs smoothly in the case with a purely elastic membrane
with higher viscosity ratio. In case of a higher intracellular
fluid viscosity, the viscous dissipation effects are the main
physical reason behind the lower deformation rate (16,84).
Dissipation of the energy associated with the external para-
bolic flow field increases with higher intracellular fluid vis-
cosity, which decreases the rate of deformation of the RBC
membrane, even though the membrane does not do extra
work in response to the external flow field, as in the case
with the membrane viscoelasticity model. In a sense, the
work associated with the redistribution of intracellular fluid
within the cell membrane is the physics behind the decrease
in the deformation rate. Thus, the results of the purely
elastic membrane model with a high viscosity ratio need
to be interpreted with caution, because it is possible that
these results may underestimate the role of the membrane
forces due to external hydrodynamical stresses. We
conclude that the membrane viscoelasticity needs to
be properly modeled to describe the complex shape transi-
tion of the RBC membrane and to have a better understand-
ing of the transient RBC dynamics in a microcapillary,
instead of mimicking its effects on the RBC deformation
using the higher viscosity ratio.

Constricted microcapillary

RBCs often encounter variations in their geometrical
confinement; for example, when entering or leaving small
blood passages in the body (85,86). In particular, the cells
need to deform significantly to squeeze through micro-
meter-sized slits in the spleen (87,88). The dynamics of
RBCs through these constrictions has been linked to the
removal of aging and diseased cells (89), ATP release
(86,90–92), and volume regulation (93,94). For its physio-
logical relevance, the dynamics of RBCs squeezing through
constricted microcapillaries has received considerable
attention (6,11,27,56,93,95,96). However, the effect of
membrane viscoelasticity has been largely overlooked in
previous studies. In this section, we examine how membrane
viscoelasticity influences the motion and deformation
of RBCs flowing through a microcapillary with a small
constriction.

Similar to the case with a straight microcapillary, we
consider the dynamics of an RBC flowing through a cylin-
drical, rigid, constricted microcapillary with a diameter of
10 mm at the inlet and outlet and a constriction diameter
of 6 mm. An RBC with a 7.8 mm diameter is placed near
the inlet surface. Fig. 7 shows the setup of the problem
and the initial position and orientation of the RBC. The
viscosity ratio is taken as l ¼ 5 in this section.

To study the effects of membrane viscosity on the defor-
mation and motion of an RBC while flowing through a
constriction, we varied the membrane viscosity from 0 to
1 mN.m/s. Fluid flow inside the microcapillary is generated
by imposing a constant pressure gradient of 8 mmHg/mm
along the length of the microcapillary. Without loss of
generality, we apply the inlet pressure of 67 Pa to the inlet
surface and let the outlet be a traction-free surface. The re-
sulting fluid flow has a parabolic profile in the cross section
of the flow direction with increasing fluid velocity in the
restricted region and consequently increased fluid shear
stresses.

Fig. 8 presents snapshots at times t ¼ 0; 4; 8; 12;
16; and 20 ms of the motion and deformation of an RBC
while squeezing through the constriction. The four panels
in Fig. 8 correspond to increasing membrane viscosity
values. There is a significant difference between the purely
elastic membrane model and the viscoelastic membrane
models. However, no significant differences are evident
between the membrane viscosity values at this very short
timescale. It is apparent that the RBC with a purely elastic
membrane model squeezes through the constriction and
travels faster. Furthermore, as shown in Fig. 9, the
Biophysical Journal 122, 2230–2241, June 6, 2023 2237



FIGURE 9 The extension parameter as a function of time for different

values of membrane viscosity mm for an RBC flow in a constricted micro-

capillary. To see this figure in color, go online.
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deformation is highest in the purely elastic membrane while
squeezing through constriction compared with the mem-
brane viscoelasticity models, where the membrane experi-
ences the highest external fluid stresses.

The above findings point to the importance of accounting
for membrane viscoelasticity in capturing the short-time-
scale dynamics of the RBC when squeezing through a
constricted microcapillary. The result is particularly perti-
nent to the studies of mechanotransduction of RBCs, where
the increased cell deformation and membrane tension in
constricted environments have been posited to trigger the
opening of mechanosensitive ion channels on the RBC
membrane (55,92,93,97). To this end, the isotropic mem-
brane tension is calculated using the average of the principal
components of the in-plane membrane stress s (98,99).
Snapshots of the spatial distribution of the isotropic mem-
brane tension of an RBC when squeezing through a
constriction with various membrane viscosities are shown
in Fig. 10. Similar to the conclusions on cell deformation,
there are significant differences in the magnitude and distri-
bution of isotropic membrane tension between the purely
elastic membrane model and the viscoelastic membrane
models; however, the results are not sensitive to specific
values of the membrane viscosity.

Taken together, our work has illustrated how neglecting
membrane viscoelasticity can lead to substantially
different deformation and membrane tension distribution
of an RBC when squeezing through a constriction. Since
possible activation sites of ion channels in the cell mem-
brane are correlated with high-tension regions (100–103),
these findings suggest the important roles of membrane
viscoelasticity in constructing accurate biophysical
models for mechanotransduction of RBCs in subsequent
works.
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CONCLUSIONS

We set out to assess the significance of membrane viscosity
on RBC dynamics under pressure-driven flow in microcapil-
laries. We studied the impact of the membrane viscosity on
the long-time-scale deformation of the RBC in a rigid cylin-
drical straight microcapillary and on the short-time-scale
motion and deformation of the RBC in a constricted micro-
capillary. We summarize our key findings as follows.

First, for the long-timescale behavior in a straight capil-
lary, the steady-state parachute shape attained by the RBC
is the same whether the membrane is modeled as elastic
or viscoelastic. However, the membrane viscosity signifi-
cantly increases the time it takes to attain this parachute
shape. In particular, our viscoelastic membrane model
suggests that a closer agreement with experimental
measurements (79) of the RBC shape and the extension
parameter in time can be obtained with a physiologically
consistent value for membrane viscosity, compared with a
purely elastic membrane model with the same elastic mem-
brane properties.

Second, most current studies in the literature model the
intracellular fluid with increased viscosity as a proxy for
modeling membrane viscoelasticity, since this can be
done without modifying the mathematical formulation.
This proxy approach can be calibrated to track averaged
quantities such as the membrane extension parameter with
experimental measurements, but there are notable differ-
ences in the actual mechanics response, which are especially
important for mechanotransduction. In particular, the mem-
brane undergoes smooth deformation in the proxy approach
versus a snapback-type response with modeling of the mem-
brane viscosity.

Third, for short-timescale behavior in a constricted capil-
lary, the deformation as the RBC squeezes through the
constriction is significantly larger when the membrane is
modeled as purely elastic. However, the transit time through
the constriction depends substantially less on the membrane
viscosity. We expect that differences in membrane stresses
during transit play a significant role when considering mem-
brane viscosity, which has implications for mechanotrans-
duction (93).

In the current study, comparison with experimental mea-
surements is limited by the small number of relevant micro-
fluidic measurements. A recently developed technique (29)
that tracks RBCs in a comoving frame in time-dependent
flows promises to be valuable for comparing our computa-
tional findings more extensively with the experimental
measurements. Notwithstanding the relatively limited
experimental results to compare, this work offers valuable
results that add to the growing body of research that indi-
cated the impact of the membrane viscoelasticity of an
RBC in an unbounded domain. Moreover, this work contrib-
utes additional evidence that suggests significant effects of
membrane viscosity on the RBC dynamics under the
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FIGURE 10 The snapshots of the isotropic membrane tension of an RBC

squeezing through a constriction with a 6 mm diameter (a) with purely

elastic membrane, (b) with membrane viscosity of mm ¼ 0.318 mN$ s/m,

(c) with membrane viscosity of mm ¼ 0.55 mN$s/m, and (d) with membrane

viscosity of mm ¼ 1 mN$s/m. Membrane profiles are taken at times t ¼ 0, 4,

8, 12, 16, and 20 ms. To see this figure in color, go online.
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influence of pressure-driven flows in straight and constricted
microcapillaries. It should be remarked that our findings
here only suggest membrane viscoelasticity as a largely
unexplored effect that could significantly impact the dy-
namics of RBC among other membrane properties. A
more extensive parametric study is needed to examine the
complex dependence of the RBC dynamics on different
membrane properties, including, but not limited to, mem-
brane viscosity.

Although the effects of the viscosity ratio on the RBC
deformation are similar to the membrane viscoelasticity in
a confined domain, one of the insights emerging from this
study is that the physics behind the reduction of the rate
and magnitude of RBC deformation with increasing viscos-
ity ratio is due to the increasing amount of work associated
with the redistribution of intracellular fluid within the cell
membrane. However, the reduction in RBC deformation
with increasing membrane viscosity is due to the visco-
elastic membrane forces resisting the external flow field.
An implication of this is the possibility that the results of
the purely elastic membrane model with a high viscosity ra-
tio may underestimate the role of the membrane forces.
Thus, these findings have raised an important question
that has a bearing on the activation mechanisms of mecha-
nosensitive ion channels: How does the membrane viscosity
affect membrane tension? More research is required to
develop a deeper understanding of the role that membrane
viscoelasticity plays in the development of membrane ten-
sion while flowing and squeezing through microcapillaries.
This is important to study because the spatial distribution of
the membrane tension depends on the rate of membrane
deformation, the activation mechanisms of the mechanosen-
sitive ion channels depend on the membrane tension, and,
consequently, the feedback loop mechanisms that affect
the RBC function and regulate its volume depend on the
activation of the ion channels.
Furthermore, another natural progression of this work is
to investigate the effects of membrane viscosity on recovery
shape and time upon sudden arrest of the flow field after ob-
taining the steady-state parachute shape in a straight micro-
capillary (65,104) and upon egress from the constriction
(11) to investigate the characteristic relaxation time of an
RBC. Finally, the method developed in this study to investi-
gate the RBC dynamics by incorporating the membrane
viscoelasticity will be a valuable tool for the investigation
of other interface problems, such as capsules, droplets,
and swimmers in unbounded and confined domains.
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45. Gaul, L., M. Kögl, and M. Wagner. 2013. Boundary Element Methods
for Engineers and Scientists: An Introductory Course with Advanced
Topics. Springer Science & Business Media.

46. Pozrikidis, C. 2002. A Practical Guide to Boundary Element Methods
with the Software Library BEMLIB. CRC Press.

47. G€urb€uz, A. 2021. Simulations of Red Blood Cell Flow by Boundary
Integral Methods. State University of New York at Buffalo, Ph.D.
thesis.

48. Pozrikidis, C. 2003. Numerical simulation of the flow-induced defor-
mation of red blood cells. Ann. Biomed. Eng. 31:1194–1205.

49. Vlahovska, P. M., T. Podgorski, and C. Misbah. 2009. Vesicles and red
blood cells in flow: from individual dynamics to rheology. C. R. Phys.
10:775–789.

50. Li, H., and G. Lykotrafitis. 2014. Erythrocyte membrane model with
explicit description of the lipid bilayer and the spectrin network.
Biophys. J. 107:642–653.

51. Peng, Z., X. Li,., S. Suresh. 2013. Lipid bilayer and cytoskeletal in-
teractions in a red blood cell. Proc. Natl. Acad. Sci. USA. 110:13356–
13361.

52. Namvar, A., A. J. Blanch,., L. Tilley. 2020. Surface area-to-volume
ratio, not cellular rigidity, determines red blood cell traversal through
small capillaries. Preprint at bioRxiv. https://doi.org/10.1101/2020.
07.11.191494.

53. Brody, J. P., Y. Han, ., M. Bitensky. 1995. Deformation and flow of
red blood cells in a synthetic lattice: evidence for an active cytoskel-
eton. Biophys. J. 68:2224–2232.

54. Jay, A. W. 1975. Geometry of the human erythrocyte. I. Effect of al-
bumin on cell geometry. Biophys. J. 15:205–222.

55. Peng, Z., O. S. Pak, ., Y.-N. Young. 2016. On the gating of mecha-
nosensitive channels by fluid shear stress. Acta Mech. Sin.
32:1012–1022.

56. Li, J., G. Lykotrafitis, ., S. Suresh. 2007. Cytoskeletal dynamics of
human erythrocyte. Proc. Natl. Acad. Sci. USA. 104:4937–4942.

57. Mahapatra, A., D. Saintillan, and P. Rangamani. 2020. Transport phe-
nomena in fluid films with curvature elasticity. J. Fluid Mech. 905:A8.

58. Steigmann, D. J. 2017. The Role of Mechanics in the Study of Lipid
Bilayers Volume 577. Springer.

59. Sauer, R. A., and T. X. Duong. 2017. On the theoretical foundations of
thin solid and liquid shells. Math. Mech. Solids. 22:343–371.

http://refhub.elsevier.com/S0006-3495(23)00026-7/sref9
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref9
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref9
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref10
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref10
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref10
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref11
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref11
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref12
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref12
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref13
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref13
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref13
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref14
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref14
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref15
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref15
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref15
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref16
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref16
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref17
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref17
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref17
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref18
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref18
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref19
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref19
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref20
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref20
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref21
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref21
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref21
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref22
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref22
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref23
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref23
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref24
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref24
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref24
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref25
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref25
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref26
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref26
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref27
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref27
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref27
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref28
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref28
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref29
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref29
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref29
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref30
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref30
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref30
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref31
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref31
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref31
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref32
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref32
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref33
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref33
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref34
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref34
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref35
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref35
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref36
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref36
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref37
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref37
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref38
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref38
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref39
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref39
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref39
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref40
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref40
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref40
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref41
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref41
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref41
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref42
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref42
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref42
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref43
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref43
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref43
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref44
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref44
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref45
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref45
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref45
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref46
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref46
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref47
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref47
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref47
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref47
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref47
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref48
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref48
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref49
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref49
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref49
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref50
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref50
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref50
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref51
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref51
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref51
https://doi.org/10.1101/2020.07.11.191494
https://doi.org/10.1101/2020.07.11.191494
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref53
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref53
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref53
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref54
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref54
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref55
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref55
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref55
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref56
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref56
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref57
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref57
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref58
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref58
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref59
http://refhub.elsevier.com/S0006-3495(23)00026-7/sref59


Effects of membrane viscoelasticity on the RBC dynamics in a microcapillary
60. Zarda, P. R., S. Chien, and R. Skalak. 1977. Elastic deformations of
red blood cells. J. Biomech. 10:211–221.

61. Naghdi, P. M. 1973. The Theory of Shells and Plates. Springer, pp.
425–640.

62. Jenkins, J. T. 1977. The equations of mechanical equilibrium of a
model membrane. SIAM J. Appl. Math. 32:755–764.
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