
INCA: Input-stationary Dataflow at Outside-the-box
Thinking about Deep Learning Accelerators

Bokyung Kim, Shiyu Li, and Hai Li
Duke University, Durham, NC, USA

{bokyung.kim828, shiyu.li, hai.li}@duke.edu

Abstract—This paper first presents an input-stationary (IS)
implemented crossbar accelerator (INCA), supporting inference
and training for deep neural networks (DNNs). Processing-
in-memory (PIM) accelerators for DNNs have been actively
researched, specifically, with resistive random-access memory
(RRAM), due to RRAM’s computing and memorizing capabilities
and device merits. To the best of our knowledge, all previous PIM
accelerators have saved weights into RRAMs and inputs (acti-
vations) into conventional memories—it naturally forms weight-
stationary (WS) dataflow. WS has generally been considered the
most optimized choice for high parallelism and data reuse. How-
ever, WS-based PIM accelerators show fundamental limitations:
first, remaining high dependency on DRAM and buffers for
fetching and saving inputs (activations); second, a remarkable
number of extra RRAMs for transposed weights and additional
computational intermediates in training; third, coarse-grained
arrays demanding high-bit analog-to-digital converters (ADCs)
and introducing poor utilization in depthwise and pointwise
convolution; last, degraded accuracy due to its sensitivity to
weights which are affected by RRAM’s nonideality. On the
other hand, we observe that IS dataflow, where RRAMs retain
inputs (activations), can effectively address the limitations of
WS, because of low dependency by only loading weights, no
need for extra RRAMs, feasibility of fine-grained accelerator
design, and less impact of input (activation) variance on accuracy.
But IS dataflow is hardly achievable by the existing crossbar
structure because it is difficult to implement kernel sliding and
preserve the high parallelism. To support kernel movement, we
constitute a cell structure with two-transistor-one-RRAM (2T1R).
Based on the 2T1R cell, we design a novel three-dimensional
(3D) architecture for high parallelism in batch training. Our
experiment results prove the potential of INCA. Compared to the
WS accelerator, INCA achieves up to 20.6× and 260× energy
efficiency improvement in inference and training, respectively;
4.8× (inference) and 18.6× (training) speedup as well. While
accuracy in WS drops to 15% in our high-noise simulation, INCA
presents an even more robust result as 86% accuracy.

I. INTRODUCTION

Deep learning has become widely popular across various
applications. Advanced algorithms with endless layers, huge
parameters, and complicated computations evoke the need for
a new paradigm in hardware for two reasons. First, researchers
have reached a consensus that it is hard to expect further
development of conventional hardware to match the advance-
ment of algorithms because conventional CMOS technology
is approaching the end of Moore’s Law [19]. Secondly, the
fundamental structure of existing hardware is not appropriate
for the learning algorithms. Whereas the hardware structure
separates the computing unit and the memory, learning process
requires intensively frequent movement between two units.

Fig. 1. (a) Interaction between conventional memories and PIM accelerators,
limited by bus-width (or bandwidth). While WS needs fetching and storing
data, IS requires only fetching of data. (b) Limitation in increasing bandwidth
of DRAM: different latency increase rate.

The data movement between the two units creates a bottleneck
phenomenon, called the von Neumann bottleneck, limiting
the maximum throughput of the overall system. Currently,
researchers turn to processing- or computing-in-memory (PIM,
CIM) designs by performing the in situ computation to alle-
viate the high expense caused by data movement.

Specifically, PIM hardware with resistive random-access
memory (RRAM, ReRAM, a.k.a. memristor) has been ex-
plored to build accelerators for deep learning models in
numerous works [6], [10], [20], [42], [48]. These works
exploit advantages of RRAM devices (i.e. low energy, fast
switching, and small area [1], [31]) to improve throughput and
energy efficiency of accelerator designs. RRAM-based PIM
accelerators utilize the crossbar structure for its excellence in
matrix-vector operations and high parallelism. Prior designs
with the RRAM crossbar typically store weights on RRAMs
while fetching input and intermediate values from external
memories or buffers. Because the weight values stay in the
PIM array, it naturally forms weight-stationary (WS) dataflow.
The WS-based PIM removes the dependency of weight values
on conventional memories; that is, DRAM and buffers only
need to treat input and intermediate values. PIM hardware has
mitigated the bottleneck, expediting learning process.

Deep learning accelerators based on WS PIM require load-
ing inputs from and saving generated outputs to memories
for a layer, as shown in Figure 1a. Those two movements
in on-chip or off-chip memories are still the most costly
in terms of latency and energy. Particularly, off-chip design
accelerators cannot be the most optimized design because of
a bandwidth limitation in DRAM. According to [34], [49],
latency increases exponentially in the region beyond 80% of
the maximum sustained bandwidth, as shown in Figure 1b.
Therefore, a majority of PIM accelerators have relied on

978-1-6654-7652-2/23/$31.00 ©2023 IEEE 29

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

on-chip designs using buffers, such as eDRAM or SRAM.
However, we notice that WS accelerators still experience high
impacts of buffers; in other words, the reading/writing energy
of buffers could dominate the overall consumption of WS.
Following our observation, WS designs fundamentally demand
frequent access to buffers, because generated outputs with
sliding kernels should be saved in a timely manner for high
performance and should be recalled in the next layer shortly
afterward. The limited bus-width aggravates the efficiency in
the use of buffers.

Taking a step backward from WS, we observe that input-
stationary (IS) dataflow—inputs stay in the PIM unit—brings
advantages given the inefficient use of buffers. Unlike WS,
IS demands only loading weight values from buffer memo-
ries during the feedforward process. Once the corresponding
weights in a layer are loaded, intermediate values (activations)
are directly propagated across RRAM arrays in PIM macros
(Figure 1a). Hence, IS can improve the feedforward efficiency
since the required number of writes to buffers can be reduced
by eliminating the redundant access. In backpropagation,
weight values still need to be rewritten into buffers or even
DRAM; yet writing to buffers is even more occasional than
the counterpart of WS accelerators. We notice that realization
of IS in PIM design is highly likely to be advantageous for
the training process of DNN models.

Seeing this opportunity, in this paper, we propose an IS
implemented accelerator design for inference and training,
named INCA: Input-stationary crossbar accelerator. To the
best of our knowledge, INCA is the first-of-its-kind IS PIM
architecture for DNNs. Prior PIM-based designs [9], [10], [42],
[48] have been built upon the WS dataflow, especially by
unrolling the weight values. The WS with unrolling approach
occurs for two reasons: a seemingly impossible implementa-
tion of sliding kernel windows to the entangled 2D crossbar
and the use of high parallelism of the crossbar array. In
INCA, two-transistor-one-RRAM (2T1R) is used for array
cells to implement sliding windows on input (activation) arrays
without unrolling data. We design a novel 3D RRAM crossbar
architecture, which can support high parallelism and batch
training by operating multiple planes at once. Our end-to-end
experiment results show that INCA achieves over one or two
order(s) of magnitude better energy improvement and speedup
with the ImageNet dataset, compared with a two-dimensional
(2D) WS baseline architecture.

IS addresses further limitations missing or overlooked in
the previous WS PIM designs. Previous WS accelerators have
been optimized for only the feedforward process because of
the complexity of the backward computation. As a result, few
RRAM-based PIMs can support the in situ training process
[20], [48]. But even in the papers, tremendous extra RRAMs
dedicated to training parameters have been overlooked, i.e.,
transposed weights, errors, and gradients. Also, coarse-grained
RRAM arrays in WS accelerators lead to the employment
of high-precision analog-to-digital converters (ADCs) in gen-
eral and the low utilization in light models. Although both
points immeasurably harm hardware efficiency, previous works

haven’t proposed appropriate designs to resolve them simul-
taneously; some works could address only either one be-
tween them. In addition, in situ training accuracy is highly
affected by RRAM nonideal properties because accuracy is
more susceptible to noise in weights. On the other hand, IS
uses even fewer RRAMs and its feasible overwriting scheme
does not require additional RRAM arrays for training. INCA
enables the natural implementation of fine-grained RRAM
arrays, resolving the large ADCs and light models’ utilization
issues. In IS dataflow, accuracy is also less affected by RRAM
nonideality by saving inputs (activations) to RRAM.

We summarize the major contributions at a glance:

• We identify the fundamental limitations of WS and
analyze their impact on PIM designs—1) the remaining
excessive memory access; 2) the enormous use of extra
RRAMs; 3) the coarse-grained RRAM arrays causing
large ADCs and poor utilization; 4) the RRAM nonide-
ality’s impact on accuracy.

• We present the first implementation of IS dataflow in
PIM design. This paper explores and discusses specific
advantages, challenges, and methods to implement IS
dataflow for the first time. Also, we provide quantified
data to support our analysis.

• We propose a new PIM architecture with horizontally-
stacking technology of 3D RRAM and a 2T1R cell struc-
ture. We recognize a few challenges of IS implementation
in the current hardware design. By addressing the chal-
lenges, INCA: INput-stationary Crossbar Accelerator
was successfully implemented and demonstrated in terms
of its higher efficiency than prior designs.

II. BACKGROUND

A. 3D RRAM

As the design technology node scales below 10 nm, verti-
cally integrated structure (VIS) has been considered the most
feasible solution to reduce the cost per bit. A success of bit
cost scalable (BiCS) architecture ignites the idea to apply
the 3D stacking technology to RRAM structure [41], [54].
Specifically, two representative types have been proposed: ver-
tically (VRRAM) and horizontally stacked RRAM (HRRAM),
which are illustrated in Figure 2a and 2b, respectively. In
general, pillars penetrate stacked word planes, and RRAMs
are sandwiched between a shared pillar and stacked planes.

Fig. 2. Two representative 3D RRAM structures: (a) VRRAM with vertically
stacked horizontal planes and (b) HRRAM with horizontally stacked vertical
planes.

30

Fig. 3. (a) Feedforward process composed of convolution, pooling, activation
and fully-connected layers. The inserted table summarizes parameter notation
in a convolution layer. Layer’s composition or size is varied according to the
network architecture. (b) Depthwise and pointwise convolution.

Following the analysis in [41], VRRAM is more advan-
tageous in 1R-based design than HRRAM to address one of
the representative 1R-design issues, called sneak path current–
unintended current flows through unselected cells. Since then,
different 3D 1R VRRAMs have been fabricated for efficient
in-memory logic and multiply-accumulate operation [33], [35]
and analyzed [51], [68]. As such, it has been proved that
3D RRAM improves area and latency efficiency of PIM
accelerators by simultaneously operating multiple word planes
by one voltage supply [26], [27], [52], [66].

But the fabrication technology limits the number of verti-
cally stacked layers in VRRAM but the plane size in HRRAM.
INCA demands a design with highly stacked 3D RRAM but
not a large size plane. Therefore, we chose HRRAM as a
foundation of INCA architecture. It is noteworthy that our
design releases the concern of sneak path current by employing
transistors, which could play the role of a switch. Detailed
processes of fabrication for ours or advanced 3D structures
are explained in [3], [8], [12], [30], [35], [56], [62]–[64],
[72]. A demonstration of 3D integration for a different 2T1R
structure can be found in [50]. Specifically, our design has
been developed with the encapsulation layer technique [64]
and the transistor-stacking technique [45], [56]. The vertical-
plane horizontal-stacking process can be built based on [8],
[64].

B. DNN Training

Before an accelerator system is dedicated to a specific ap-
plication, weight values should be initialized so that the values
can be computed with given inputs and generate a result. The
training has three phases: feedforward, backpropagation, and
weight update. First, the feedforward is performed to get a
classification result. Then, an error is calculated by comparing
it with the ground truth, and the error is backpropagated
based on the chain rule. Weights are updated based on the
gradients calculated from the error. The accelerator can work
its task through the testing (inference) composed of only the
feedforward process.

1) Feedforward: Typical layers of neural networks are con-
volution, pooling, activation, and fully-connected (FC) layers,
as displayed in Figure 3a. In a convolution layer, given input

Fig. 4. Backpropagation and weight update processes. Based on the chain rule,
a gradient is calculated by multiplying a coming gradient and a local gradient
of the node. In the case of multiplication, operands are the local gradient of
each other. Therefore, the corresponding weight (or input) value is multiplied
as a local gradient of a node. Then, the final result of one error (or gradient)
is computed as the sum of corresponding multiplications to the node, which
means the convolution operation, as shown in the left-side subfigures.

data, x, is convolved with sliding weight filters, w. Outputs of
the convolution layer, a, are calculated by

al+1(oh, ow, n) = Wl ∗Xl =

ΣCl−1
cl=0 Σ

Kw−1
kw=0 Σ

Kh−1
kh=0 wl(kh, kw, cl, n) · xl(ih + kh, iw + kw, cl),

(1)

where ∗ denotes the convolution operation. Cl, Kw, Kh are
attributes of the kernel like the number of channels, kernel
width, and kernel height, respectively. Recently, due to a huge
number of kernel parameters, light models with depthwise or
pointwise (a.k.a. 1×1) convolution have been proposed (Figure
3b). Depthwise convolution does not accumulate across input
channels and is effective to reduce the input size, while
pointwise convolution has 1 × 1 size of kernels to adjust the
number of channels.

A maximum element or an average value under a window
passes through the pooling layer. An activation function (f)
is chosen from nonlinear functions such as sigmoid, rectified
linear unit (ReLU), or hyperbolic tangent (tanh). In a FC
layer, the dot product, symbolized as ·, is performed between
unrolled input vectors and corresponding weight vectors:

Al+1 = WT
l ·Xl + bl, (2)

where Wl is weight and bl is bias of layer l. The feedforward
process runs in a layer-by-layer manner and predicts the
probability of the output classes concerning the input.

2) Backpropagation: The backpropagation proceeds to find
more optimal weight values to reduce the error. Specifically, in
the backward process, errors in each layer are computed from
the last layer to the first layer. A loss function (J), defined by
L1, L2, or cross-entropy loss, is used to quantitatively evaluate
the last layer’s error in the first place. The last layer’s error, δL,
is calculated by the gradient of the loss function. Then, based
on the chain rule, errors in a layer, δl, are obtained by its next

31

Fig. 5. Dataflow of (a) the von Neumann system, (b) weight-stationary and (c) input-stationary accelerators.

layers’ errors (δl+1) and the local gradient. δl+1 is convolved
with the local gradient of convolution or FC layers, i.e., the
transposed (rotated) weight matrix, and multiplied with the
local gradient of the activation (g′(al)), as shown in Figure 4.
In the max-pooling layer, the shrunken matrix dimension in
the forward path is restored, and the maximum value goes to
its original position while other elements are dead as 0. Eq. 3
shows the calculation of errors at a glance; with the L2 loss
function, δL is measured through the difference between the
target (ytarget) and predicted (ypred) outputs.

δl =

{
ytarget − ypred, l = L

δl+1 ∗WT
l ◦ g′(al), otherwise

}
. (3)

The type of pooling, activation and loss functions are varied
according to the network design for high accuracy and fast
convergence. For the simplicity of the explanation, we will
describe INCA based on the max-pooling, ReLU activation,
and L2 loss function.

3) Weight update: Weight update is to adjust weight values
for accuracy. We assume the vanilla gradient descent opti-
mizer, which is more hardware-friendly than other optimizers.
Given gradients from the next layer, errors in layer l (δl),
are convolved with inputs of the layer (xl), local gradients
of weights, because operands in multiplication are the local
gradients for each other. In the example of Figure 4, xl of 3×3
size are convolved with δl of 2 × 2; the first convolution is
colored in red. The obtained difference is subtracted from the
original weight. The step size parameter, η, is also combined
into the amount of updated weights to control the learning
rate. To sum up, the weight update is computed by

W
(t+1)
l = W

(t)
l − η · δl ∗Xl. (4)

III. DATAFLOW

A. DNN Accelerators Trapped in WS

Explosion of DNN accelerators. As DNN algorithms have
been highly developed, the limitation of the conventional
hardware is looming large. The compute speed becomes
much faster, while bandwidth limits the data transfer between
computing and storage units. Data supply in hardware for
DNNs couldn’t catch up with the computing speed, there-
fore, lengthening the overall latency. This phenomenon has
been indicated as the von Neumann bottleneck, as shown in
Figure 5a. Consequently, a new hardware mechanism, PIM
or CIM, has emerged and tremendously studied in numerous
DNN accelerators: [2], [5]–[7], [9], [10], [13], [15], [17], [20],

[22]–[24], [28], [36], [37], [42], [46]–[48], [55], [57], [59],
[60], [67]. Due to the complexity of training, most of the prior
PIM-based accelerators only focused on the inference phase. In
inference, weights have static values but activation values are
dynamic along the network layers. Over the past years, it has
been taken for granted that weights are remaining in RRAM
arrays and that inputs are moving, as shown in Figure 5b.
To the best of our knowledge, all the previous PIM-based
accelerator designs have adhered to the WS dataflow. However,
there are limitations under the settled frame of WS as follows.

Limitation 1: Remaining Excessive Memory Access. We
observed that the current WS-based PIM architecture does
not fully resolve excessive memory accesses. The feedforward
process still requires fetching and saving data for the current
and subsequent layer, respectively. Although the amount of
data in pure memory is reduced by using PIM for weights,
the fundamental data movement between buffers and PIM
has the same fashion as in the von Neumann architecture
(Figure 5a and 5b). Figure 6 shows that DRAM and buffers
dominate the energy consumption when executing commonly
used networks, VGG16 and ResNet18 [18], [44].

Limitation 2: Redundant RRAMs in Training. We no-
ticed that the WS principle causes a redundant usage of
RRAMs in training from two perspectives. The first comes
from the need for transposed weight matrices. Because of the
different disposition of elements, previous crossbar designs
should separately hold transposed weight matrices in addition
to the original weight [20], [48]. The number of parameters
is not negligible, when it comes to the increasing number of
kernel parameters. Whereas weights of an early model (LeNet5
[32]) occupy 240KB, 553MB are necessary for VGG16 in a
32-bit system. Secondly, computed errors and gradients in the
backward step should be kept along with the weight values
(or in DRAM/buffers, but we assumed in RRAMs due to
the cost and the design in [48]). Because the number of
errors (gradients) equals that of layer’s weights (inputs), the
total number of errors and gradients becomes remarkable in
accordance with the batch size and the model size [16].

Fig. 6. Energy breakdown in execution of VGG16 and ResNet18 in WS
dataflow with CIFAR10: DRAM and buffers occupy the largest portion of
overall energy consumption.

32

TABLE I
ACCURACY DROP ACCORDING TO VARYING WEIGHT AND ACTIVATION BIT

DEPTHS, COMPARED TO GPU WITH FLOATING-POINT ARITHMETIC [21].

8-bit Weight 8-bit Activation
Act. 7 Act. 6 Act. 5 Act. 4 Wt. 7 Wt. 6 Wt. 5 Wt. 4
-0.3% -0.4% -1.3% -3.5 -1.3% -1.1% -3.1% -11.4%

Limitation 3: Coarse-grained Arrays. Because DNNs
boast an impressive data size of weights, fine-grained com-
putation with small arrays shall entail more peripheral circuits
and post-processing. For this reason, large arrays are prevalent
with a size of 128 × 128 or above in WS accelerators. But
coarse-grained accelerators get involved in two issues: high-
bit-precision ADCs and utilization. It is well-known that ADCs
exponentially undermine performance and energy efficiency
[67], [71]. For example, four 4-bit ADC at 2.1GHz can replace
one 8-bit at 1.2GHz. On the other hand, light models, which
employ depthwise and pointwise convolution, have appeared to
reduce weight parameters and computational complexity. Light
models in coarse-grained architectures face worse hardware ef-
ficiency because of poor utilization as well as the large ADCs.
Although some works have proposed optimized designs, they
are effective in only either issue and involve drawbacks.
Fine-grained WS accelerators demand extra processing but
do not resolve light models’ utilization [67], [71]. Likewise,
optimized designs for depthwise convolution are not generally
applicable [70].

Limitation 4: RRAM Nonideality’s Impact on Accuracy.
Table I shows a more severe accuracy drop in the loss of
weight information than the case of activation [21], [4]. As
such, neural networks are more susceptible to weight variance.
When utilizing RRAMs for storing weight values like WS
accelerators, therefore, the RRAM’s nonideal characteristics,
such as nonlinearity and asymmetry, are highly likely to cause
severe accuracy degradation. According to [66], a WS system
with TaOx/HfOx RRAM shows an 11% accuracy drop in
VGG8 on CIFAR10 when compared to GPU with floating-
point arithmetic.

B. Input-stationary Dataflow

Breaking with the newly shaped convention in PIM designs,
we first propose input-stationary (IS) dataflow for PIM ac-
celerator. As shown in Figure 5c, input (activation) data is
stocked in RRAM crossbars, which serve the PIM function,
and weights are fetched from buffers (when exceeding buffers’
capacity, DRAM as well). Following our observation, IS
implementation can address the four limitations.

Fig. 7. (a) The number of memory accesses in WS and IS dataflow according
to the network types. (b) Comparison between unrolling and direct convolution
cases with IS dataflow in terms of the number of parameters in RRAM arrays.

Key Insight. The main difference of IS from WS is that
generated outputs are propagated to their designated RRAM
arrays, not buffers or DRAM, during feedforward. We formu-
late the number of memory accesses for fetching and saving
to quantify the difference between WS and IS. The memory
accesses are categorized into the fetching inputs/weights and
the saving of outputs.

In both dataflow cases, input or weight elements in the
size of one weight channel are necessary to obtain one output
element. Therefore, the estimated number of memory accesses
for fetching data per one output element is calculated by

ceil(KH ×KW × C × bit precision/bus width). (5)

On one hand, WS repeats the fetch per an output element
as many times as the number of output elements, and conse-
quently, the number of output elements should be multiplied
to eq. 5. On the other hand, IS needs the fetches as many
times as the number of output channels because it reuses the
obtained filter information to get a whole output channel.

In addition to fetching, WS requires more accesses to save
the outputs. Following ISAAC [42], which is a representative
PIM design, every output should be immediately redirected
to eDRAM due to the pipelining. The access for saving data
would happen as many as

ceil(N × bit precision/bus width)×OH ×OW . (6)

The total number of accesses is compared in Figure 7a, based
on an assumption that data has 16-bit precision and bus-width
is 256-bit. It is easily noticed that WS requires from two
(ResNets) to three times (VGGs) more accesses.

Next, IS accelerator design does not require a huge increase
of RRAMs for training, constantly maintaining a small ca-
pacity of RRAM. IS design saves weights in the conventional
memory and can load them in a different order; in other words,
IS can hold the same memory space, not wasting additional
memory capacity for transposed matrices. As we shall show
in the following section, an IS accelerator does not need to
hold activations and errors simultaneously in RRAM arrays;
during the backpropagation, calculated errors can overwrite
unnecessary activations because previous calculations have
completed the use of the activations. Also, smaller arrays,
which match well with small ADCs and light models, are
feasible in IS because the number of inputs is generally less
than that of weights and is similarly maintained across layers
due to the increasing channels but the decreasing input size.
Lastly, IS naturally mitigates the accuracy drop by storing
weights on more reliable conventional memories.

Challenges. Unlike the mathematical convolution in the 2D
shape, called direct convolution, previous PIM accelerators
have chosen the GEMM-based convolution, which demands
a process to unroll incoming data to match with the array’s
architectural characteristic and ensure high parallelism. In
the case of IS dataflow, we observe unrolling process brings
about a steep increase in the number of RRAMs because the
unrolled input data have repeated elements according to the
kernel sliding. Figure 7b shows a large difference between the

33

Fig. 8. (a) Overview of INCA architecture. (b) The used 2T1R cell. (c) Writing scheme to save input (activation) data. (d) Reading scheme for direct
convolution: the cells under the activated 2 × 2 kernel window receive weight information as its shape; other cells’ one or two transistors are off not to be
accumulated in the convolution result. (e) The 3D array architecture, stacking vertical planes horizontally to implement multiple images in a batch, which can
be built by the encapsulation layer [64] and transistor-stacking techniques [45], [56]. The vertical-plane horizontal-stacking process is based on [8], [64].

cases with and without unrolling in inputs: 4.4×, 5.0×, 8.0×,
and 2.1× with VGG16, VGG19, ResNet18, and ResNet50.
Therefore, we decided to implement direct convolution without
unrolling process. However, the current crossbar design is not
appropriate for direct convolution. Kernels should be supplied
across both sides of the crossbar, but the current design only
provides column-wise accumulation. We designed a base cell
structure by adding one more transistor to control the row-wise
direction as well.

Moreover, naı̈ve IS implementation with direct convolution
couldn’t achieve high parallelism, unlike WS. Specifically,
WS implements weight values of all channels in crossbars
after unrolling, following the order of kernel sliding. Thus,
supplying one input data vector can generate an output element
per channel. In contrast, IS with direct convolution holds
inputs in the crossbar; therefore, only one channel’s output can
be obtained by giving corresponding weights. Rather than in-
creasing and saving the same input data to calculate an output
across channels, we employ 3D RRAM for high parallelism. It
is worth noting that WS can hardly take advantage of 3D. Each
kernel across channels requires a different input. However, 3D
planes (kernels in WS) share pillars (inputs), which means
receiving the same inputs regardless of planes. On the contrary,
3D RRAM can be fully employed in IS, since different images
in one batch need the same weight data, which is given to
the shared pillars. We implement each input feature map in
one batch to each plane of 3D RRAM to process input feature
maps in one batch at once, instead of channel-wise parallelism.
The 3D design also enables batch training by holding all input
(activation) data for the backward process.

IV. INCA: INPUT-STATIONARY CROSSBAR
ARCHITECTURE

In this section, we provide details of the INCA architecture
with the IS dataflow. Figure 8a presents an overview of the
hierarchical architecture of INCA: tiles composed of adders,
nonlinear units, buffers, and macros. Macro is the basic unit for

computation, which is constituted by adders, ADCs, registers,
and arrays. First, we will describe the array design and its
operations at the cell and array level, as colored by dark
grey in Figure 8a. The main design characteristic of INCA is
that 2T1R cells for direct convolution are integrated into our
novel 3D RRAM. Then, we will present mapping schemes and
hardware dataflow in each training step, which corresponds to
the region colored by light grey in Figure 8a.

A. 2T1R-based Array: Vertical Plane

The sneak path current is inevitable in 1R-based arrays
because RRAM is like a variable resistor [41]. For this reason,
1T1R has become a standard in RRAM crossbar design to
avoid the sneak path current issue by using the transistor’s
switch function. Unlike the general approach, here we propose
a 2T1R structure to implement direct convolution in crossbar
design. To the best of our knowledge, the application of the
2T1R cell to the DNN accelerator is the first of its kind for
the purpose. Figure 8b shows our 2T1R cell. Two transistors
are controlled in two perpendicular directions in an array.

We note two main characteristics of design at the array
level as follows. Voltages are independently supplied to
all RRAM cells simultaneously for one-time voltage supply
in direct convolution. Furthermore, all columns are tied
together at the bottom of crossbar for one-shot accumu-
lation in a convolution operation. Figure 8c and 8d describe
writing data and reading a convolution result under a window,
respectively. As described in Figure 8c, the write voltage to
4×4 cells should exceed the threshold of RRAM to change the
memristance. The bottom line tying all columns (i.e., all cells)
is grounded so that the voltage difference applied to RRAMs
is nearing the write voltage. Two transistors of 4× 4 cells are
on. Memristance of all cells is adjusted according to the input
data voltage at the same cycle.

Figure 8d displays that a read voltage under the threshold
is applied to the top electrode of RRAM, and the end of the
cell is floated. The cells only under the 2× 2 kernel window

34

receive voltages by activating the first and second vertical and
horizontal lines. Other cells’ one or two transistors are off
not to be accumulated in the convolution result. Once one
convolution is finished, by turning off the first column and
on the third column, the next convolution can be computed.
In other words, INCA produces results in direct convolution
by keeping the original shape of inputs and weights, thanks
to the two transistors. Multiplied output between the voltage
and memristance can be measured as a current based on
Kirchhoff’s law. To sum up, input/activation data is written in
arrays at the writing step first, and then a voltage set of kernel
information is given to the crossbar. All written inputs and
applied weights are given as their original shape. The voltages
are multiplied with the adjusted memristance, and the currents
from each cell are accumulated at the bottom of the crossbar
at once. The convolution can be computed without any harm
to the original shape of input and kernel data in one cycle.
Each array plane is vertically erected in the INCA design.

B. Novel 3D RRAM Architecture

To achieve high parallelism in batch processing, we propose
a new 3D RRAM design based on our 2T1R-based vertical
plane. As shown in Figure 8e, our architecture design is based
on HRRAM. Vertical array planes are stacked horizontally,
and images in a batch are mapped to each vertical plane,
respectively. Multiple pillars, which decide the array size,
penetrate all the planes and receive inputs. Because the images
need the same weight matrices, we can process multiply-and-
accumulate (MAC) operations for all the planes at once, by
giving voltages to the pillars shared by planes.

An input interface covers the front of the architecture to
provide separate voltage sources to all pillars (Figure 8e).
Since the input feature map size becomes smaller in deeper
layers, the plane size should be optimized to be relatively
smaller than the widely used size. Assuming that the crossbar
size is 16 × 16, the number of interconnect lines for input
pillars will be 256, which is feasible in the current technology.
The crossbar size validity will be discussed in Section V.

RRAM is sandwiched between a pillar and the first transis-
tor, and the transistor is also connected to the other one. 2T1R
cells are embedded in a plane colored in blue in Figure 8e.
The second transistor follows the first transistor, and its end
is connected to the blue plane for the one-shot accumulation
with other cells. Stacked planes individually interact with
other planes through output and control interfaces embedded
in the bottom, as described in Figure 8e. In writing, input
voltages are supplied to the corresponding pillars (input lines)
to input images, two transistors are turned on by controlling
two perpendicular lines, and the blue planes are grounded. For
the reading operation, kernel information is given to the pillars
(input lines), two transistors of the cells in the window are
on, and the blue planes are floated. The total currents passing
through cells are accumulated in the blue plane and detected
in the output interface. All the planes of one 3D independently
work and are not affected by other planes.

Fig. 9. (a) Activation mapping. (b) Computation process of one partition. We
do not illustrate the vertical dimension of the RRAM array for readability.

C. Mapping Schemes in INCA

Intra-layer Mapping. In INCA, we spatially map input
feature maps of each layer onto RRAM arrays to reduce the
memory access cost. The RRAM array is the basic block
for mapping in our design. Each RRAM stores one bit of
input values. Thus, if we assume the input is 8-bit, we need 8
separate RRAMs for the value. We adopt the bit-serial design
in INCA to reduce the overhead of peripheral circuits. The
weight is fed into each array bit-by-bit, while the output is
accumulated through a shift-accumulator. Since, for each array,
we only need to accumulate the multiplication result of up to
9 binary values (for 3×3 kernel), a 4-bit ADC is sufficient
for the conversion. For readability, we only present one of
the arrays for all bits when discussing the mapping scheme.
Figure 9 shows our mapping scheme. We partition the input
feature maps according to the size of the array and map each
partition of all channel-wise samples in the batch to each
RRAM array (Figure 9a). Each plane produces one output per
computation cycle, and all outputs of the 3D array are collected
and written to the target array for the computation of the
subsequent layers. We then assign the partitions to the RRAM
array sequentially in the input channel order, i.e., the same
convolution window of different input channels is assigned
to one PIM macro. Thus, using the adders at each level, this
mapping naturally forms an adder tree to accumulate the result
from different input channels. For those positions at the edge
of each partition (a.k.a. ‘halo’), we calculate a partial sum
within each partition and rely on the adder to gather these
results. For other operations like pointwise convolution and
FC layer, we fold the dimension which requires accumulation
(e.g., the input channel in the pointwise convolution) to the
2D plane, slide the window with the stride that is same as the
kernel size, and use different weight for each window.

Inter-layer Mapping. We align each layer to a PIM macro,
i.e., start each layer from a new PIM macro. The layers are
also sequentially mapped to the accelerator. Having processed
by pooling and activation units, the output of each layer
will be written into the location for the next layer as the
activation. This mapping scheme makes it possible to overlap
the activation write with the computation without the bus
contention issue. The activations will remain in the array to
be used in the backpropagation, until overwritten by errors.

35

Fig. 10. Backward process according to network layers. The red box shows
the mapping scheme during backpropagation in detail.

Backward. Figure 10 explains the overall backpropagation
process. Error calculation and storage processes are illustrated
in the red box with more details. To compute activation’s errors
of convolution or fully-connected layers (l), weight values of
transposed matrices are fetched from memory and convolved
with the previously calculated errors (δl+1). For the activation
layer, AND can produce the same results as the multiplication
with the gradient of ReLU. Thus, we use AND gates for the
convolution between inputs of the activation layer (al) and
the convolved values (δl+1 ∗ WT

l). The generated values are
errors of the layer δl. INCA can reuse RRAMs, which were
used for input values in l, for the calculated errors in l, since
the overwritten input values will no longer be necessary for
later computations. The written δl is also propagated in the
same way. For the sake of simplicity of the figure, we omit the
pooling layer; the pooling layer is processed by a lookup table
(LUT) to find the original position of the maximum value,
while other values’ following nodes will be dead.

Finally, the weight update process for ll−1 is launched with
δl–produced through the process in the red box in Figure 10.
We note that ll’s weight update has already been completed
with δl+1. The calculated errors are convolved with input
values of the convolution layer (xl−1). Weights in ll−1 have
been loaded, while the convolution between inputs and errors.
Therefore, the convolution results will be subtracted from the
original weight value of ll−1, not affecting the subsequent error
calculations. Also, the update process is executed in parallel
with the process in l − 1, that is, δl ∗ wT

l−1.

V. EVALUATION

This section elaborates on end-to-end simulation results and
analysis. Note that results of light models (MobileNetV2 and
MNasNet) are separately discussed from the other networks
because the two light models show a different trend due to
the depthwise and pointwise convolution.

TABLE II
ARCHITECTURE CONFIGURATION SUMMARY WITH CIRCUIT SIMULATION

SETUP AND RESULTS.
Models

Weight & Activation Prec. 8-bit Batch size 64
INCA Accelerator

Subarray Size 16×16 # of Stacked Layers 64
Macro Size 8 Tile Size 12

Cell Prec. 1-bit ADC Prec. 4-bit
Subarrays Per ADC 16 Technology 22nm

Buffer Size 64KB Buffer Bitwidth 256-bit
DRAM 8GB HBM2

Baseline Accelerator
Subarray Size 128×128 Macro size 8

Tile Size 12 Cell Prec. 1-bit
ADC Prec. 8-bit Technology 22nm
Buffer Size 64KB Buffer Bitwidth 256-bit

DRAM 8GB HBM2
Circuit

On Resistance 240KΩ Off Resistance 24MΩ
Technology 65nm Scale factor 0.34

Read Voltage 0.5V Write Voltage 1.1V
Read Pulse Width 10ns Write Pulse Width 50ns

Off-cell Power 10.42nW On-cell Power 1.03uW
INCA Cell Width 600nm INCA Cell Length 700nm

Baseline Cell Width 540nm Baseline Cell Length 485nm
GPU - Titan RTX

Memory Bandwidth 672GB/s Graphic Memory 24GB GDDR6
CUDA Cores 4608 Power Consumption 280W

Area 754mm2 Peak Performance 16.3TFLOPs

A. Experiment Setup

To evaluate the performance of INCA, we selected six repre-
sentative CNN models on ImageNet [11], including VGG16,
VGG19 [44], ResNet18, ResNet50 [18], MobileNetV2 [40],
and MNasNet [53]. These models span different computation
regimes and contain a rich set of layer variations. We com-
pared INCA to a baseline 2D WS architecture and a GPU.
For the baseline, we referred to a representative 2D acceler-
ator design, ISAAC [42]. However, ISAAC only can support
the feedforward phase for inference. Thus, we reflected the
PipeLayer [48] in the baseline design for training.

For the evaluation, a customized simulator was implemented
based on our circuit simulation results and NeuroSim+ [38],
[39]. NeuroSim+ is an end-to-end simulation framework and
has been used for the performance and energy evaluation
of accelerators [14], [29], [57], [61]. Even though its recent
version supports inference and training for 2D, we customized
the simulator in our way because the framework has different
dataflow and provides only inference in case of 3D. Specifi-
cally, we simulated our 2T1R circuit and obtained its layout
in a vertical plane by Cadence Virtuoso with the TSMC 65nm
technology library. Then the circuit simulation results were
scaled down according to the rules of scaling to match the
technology node selected in the accelerator simulation. We
then integrated the key circuit-level parameters of the 2T1R
cell into the simulator, replacing the original cell data. We also
modified the dataflow and mapping in NeuroSim+ to reflect
INCA and baseline designs. We adopted 32pJ per 8-bit as an
approximated estimation of the HBM2 access cost, as provided
in the framework. Table II summarizes the key parameters
for INCA, the baseline, and the used GPU. For the sake of
fair comparison, the simulation of INCA and the baseline
employed the same peripheral components of NeuroSim+.

36

Fig. 11. Energy efficiency comparison of INCA to the baseline architecture
according to different network models: (a) inference and (b) training.

TABLE III
THE ESTIMATED NUMBER OF ACCESSES TO BUFFERS IN BASELINE AND

INCA DURING INFERENCE.
of accesses Baseline INCA

Eqs. Eq. (5) ×OH ×OW + Eq. (6) Eq. (5) ×N
VGG16 1,544,496 460,000
VGG19 1,952,176 625,888

ResNet18 632,880 349,024
ResNet50 711,022 508,950

MobileNetV2 258,024 66,832
MNasNet 244,656 92,333

B. Results and Analysis

1) Energy: Figure 11 exhibits comparison results of energy
efficiency between the baseline and INCA during inference
and training. During inference, INCA shows 20.6×, 15.9×,
8.7×, and 8.0× improvement in VGG16, VGG19, ResNet18,
and ResNet50 than the results of the baseline. In training,
the batch parallelism of INCA boosts energy efficiency. INCA
presents the energy efficiency for two orders of magnitude of
improvement over the baseline: 260×, 202×, 103×, and 152×
when executing each of the four models.

As summarized in Table III, we estimated the number of
accesses to buffers according to the different networks during
inference. We only take into consideration of the pipelined
design in ISAAC because a non-pipelined design needs an
even higher capacity of buffers and longer latency. Therefore,
access to load and save is necessary at each convolution to
execute the proposed pipelining smoothly. The number of
accesses is calculated based on the equations in Table III.
As discussed in Section III, the estimation implies that INCA
would reduce the number of accesses to buffers and that VGGs
would experience higher improvement than ResNets, which
are well-matched with the results in Figure 11. Note that the
training process may double the accesses in INCA to fetch
transposed weight matrices. However, most networks still take
advantage of the IS dataflow during training as well.

We then plotted the layerwise energy of the baseline and
INCA in Figure 12 with VGG16, in linear and log scales for
a thorough analysis. In Figure 12a, the baseline features a
tremendous gap between some early layers and the others in
terms of energy consumption. The gap comes from the fact
that the early layers carry out most of the convolutions in
WS and inputs (activations) are loaded and saved during the
remarkable convolution operations. On the contrary, INCA
consumes a constant level of energy due to the similar size
and reuse of kernels across layers. Figure 12b in log scale
reveals that the trend in layerwise energy consumption also
shows a good match with the estimation in Table III. Although

Fig. 12. Layerwise energy consumption by DRAM and buffer energy in the
WS baseline and INCA when executing VGG16 with ImageNet, plotted in
(a) linear and (b) log scales.

the output size keeps shrinking as approaching the last layer,
the increasing number of channels and kernels (C and N)
continuously produces frequent access to buffers in WS. In
contrast, INCA only needs kernel information, thereby not
affected by the input size. The fetched weights are reused
for different sliding windows; thus, the feedforward shows a
trend of increasing energy consumption under the increase of
C and N . Accordingly, INCA consumes more energy than the
baseline in a few later layers but it negligibly impacts on the
overall consumption due to the small number of computations
in those layers. In training, as aforementioned with Table III,
while the baseline uses similar energy as during inference,
the number of accesses of INCA becomes twice than during
inference due to transposed matrices.

Moreover, INCA is effective in diminishing the energy
consumption by ADCs, thanks to the elimination of high-
bit-precision ADCs. While 128× 128 baseline arrays demand
high-bit-precision ADCs to support coarse-grained computa-
tions, small ADCs can cover INCA due to small arrays. As
mentioned early, one 8-bit ADCs consumes energy as much
as four 4-bit ADCs, not two [67]. Therefore, ADCs of INCA
spend 5× less energy in total than ADCs of the baseline, as
depicted in Figure 13a. Lastly, we also plotted a pie chart of
the overall energy breakdown to compare with the WS case
of Figure 6. The smaller DRAM and buffer segment in Figure
13b indicates reduced access to buffers of INCA. All the given
evidence supports the improved energy efficiency of INCA.

2) Latency: Figure 14 describes the latency comparison
results between the baseline and INCA. INCA shortens the
inference and training time, compared to the baseline. But it
is noteworthy that the magnitude of improvement is less than
that of energy efficiency because of the pipelined execution of
the baseline. During inference, INCA attains 4.6× and 3.7×
speedup in VGG16 and VGG19; 1.9× and 4.8× speedup
in ResNet18 and ResNet50. The training process of INCA
presents a higher speedup than the inference result: 18.6×,

Fig. 13. (a) Comparison of energy consumption reduction by ADCs between
baseline and INCA with VGG16. (b) Energy breakdown for an apple-to-apple
comparison with WS-based accelerator in Figure 6.

37

Fig. 14. Speedup comparison of INCA to the baseline architecture according
to different network models: (a) inference and (b) training.

14.2×, 7.2×, and 6.8 in VGG16, VGG19, ResNet18, and
ResNet50, respectively. The batch parallelism in INCA largely
contributes to the improvement in training. While the WS
baseline needs repeated operations for each image in the same
batch, INCA can compute all images in parallel.

Generally, writing to RRAM necessitates a longer latency
than reading. Here we clarify the speedup of INCA despite
its repeated RRAM writing operations. In INCA, a pipeline-
fashioned execution partly hides the RRAM write latency by
the read latency. To be specific, while a convolution result is
written to its corresponding RRAM cell, the next convolution
is launched to read. Yet the write latency still increases the
overall time for one convolution since writing spends about 2×
longer than reading in INCA. The read latency in the baseline,
however, is about 2× than the write latency of INCA as a
result of the large size arrays and the high-bit-precision ADCs.
Therefore, INCA could achieve a latency-saving effect.

3) Comparison with GPU: We also compare INCA with
GPU to confirm the effectiveness of INCA over a non-RRAM-
based accelerator. Figure 15a shows normalized energy effi-
ciency, while Figure 15b displays normalized throughput per
area improvement for an iso-area comparison. The comparison
results present that INCA outperforms GPU in both and is
particularly conducive to energy saving across network models
and to throughput in light models.

4) Light models: INCA accomplishes outstanding hardware
efficiency, especially in MobileNetV2 and MNasNet with
one or two order(s) of magnitude higher energy improve-
ment/speedup than the results of VGGs and ResNets. Inference
of MobileNetV2 and MNasNet results in 80× and 83× better
energy efficiency in INCA than in the baseline (Figure 11a);
201× and 85× speedup as well (Figure 14b). Training brings
about even phenomenal improvement: 3873× and 2790× in
energy (Figure 11b) and 1187× and 363× speedup (Figure
14b) in MobileNetV2 and MNasNet, respectively.

The efficiency result from the light models can be explained
by utilization. We illustrated Figure 16 to compare utilization

Fig. 15. (a) Energy efficiency comparison and (b) an iso-area throughput
comparison between INCA and GPU in training, according to different
network models.

Fig. 16. (a) Dropped utilization of INCA as the array size is increasing. (b)
Utilization comparison between INCA and the baseline in different network
models; while ours maintain the utilization constant, the WS accelerator
undergoes a drastic drop in the light models.

TABLE IV
REQUIRED MEMORY FOOTPRINT (RRAM ARRAYS AND BUFFERS) OF THE

BASELINE AND INCA FOR BOTH INFERENCE AND TRAINING.
Memory footprint Baseline INCA

[MB] RRAM Buffers RRAM Buffers
VGG16 272.57 8.69 8.69 131.94
VGG19 283.94 9.94 9.94 137.00

ResNet18 24.36 2.08 2.08 11.14
ResNet50 58.79 10.15 10.15 24.32

MobileNetv2 13.05 6.45 6.45 3.31
MNasNet 13.57 5.29 5.29 4.14

of convolution layers in IS and WS. It is confirmed that
16 × 16 is the optimized size for INCA because it achieves
competitive utilization (Figure 16a). Also, INCA maintains
utilization across different networks because the usage of
RRAMs is not affected by kernel variance. However, the
WS baseline utilization dramatically reclines in MobileNetV2
and MNasNet, unlike the utilization in VGGs and ResNets.
The two light networks include depthwise and pointwise
convolution, whose accumulation scope is much smaller than
regular convolution due to smaller kernels. For instance, 3×3
kernels in depthwise convolution only use nine of 128 cells in a
column since each output pixel only needs the accumulation of
nine products between inputs and weights. The low utilization
terribly aggravates WS hardware efficiency. In training, the
batch parallelism effect in INCA causes the dramatic efficiency
gap between the baseline and INCA.

5) Memory footprint: In Table IV, we estimate the require-
ment of memory footprint to support both inference and train-
ing phases. As indicated in Limitation 2 of the WS dataflow,
WS accelerators should separately save additional parame-
ters for training into RRAMs, along with original weights.
Transposed weights and errors occupy the same capacity as
original weights and inputs (activations) in WS. Gradients in
WS are obtained by AND and used for error calculation in
an instant. Consequently, the minimum footprint of RRAM
arrays is the sum of the number of inputs (activations) and the
doubled amount of weights, while buffer size is as much as
the capacity of inputs (activations). On the other hand, INCA
only needs to save weights in buffers because it can fetch
transposed weights from the original weight buffer according
to the different element dispositions. In case of RRAMs, all
the inputs (activations) are necessary for the backward process
to update the errors. Therefore, the number of activation
values and the bit precision determine the minimum capacity
of buffers. It is worth noting that INCA does not demand

38

TABLE V
AREA BREAKDOWN OF BASELINE AND INCA.

Baseline INCA
Spec Area [mm2] Spec Area [mm2]

Buffer 64KB
168 13.944 64KB

168 13.944

Array 128× 128
168, 12, 8 7.927 16× 16× 64

168, 12, 8 0.793

ADC 8-bit
168, 12, 8 30.298 4-bit

168, 12, 8 4.5864

DAC 1-bit
168, 12, 8× 128

0.343 1-bit
168, 12, 8× 256

0.686

Post-processing
ReLU

Max-pooling
168

3.656
ReLU

Max-pooling
168

3.656

Others - 27.920 - 24.249
Total 84.088 47.914

additional RRAMs except for inputs (activations) because
INCA aggressively recycles the activation cells already used
for the error calculation.

6) Area: INCA is a new 3D architecture proposed in this
paper, therefore, we defined the INCA area by its projected
2D area. As illustrated in Figure 8e, the lengths on the x-
axis (along output and control interface) and the y-axis (input
interface) determine width (W) and length (L) of INCA. W
of one plane is estimated as a doubled thickness of a transistor
to ensure sufficient space to other planes [69]. We obtained L
and the baseline cell area by our circuit layout of the 2T1R
and 1T1R cells, respectively. Note that INCA vertically stacks
16 cells on one cell and that its high stackability offsets the
sacrificed area by 2T1R—even brings area advantage, thanks
to the 3D high stackability with a minimum impact on area
[41], [58]. Hence, 16 cells of INCA occupy only 0.048µm2,
while the baseline one-cell area is 0.030µm2 (after scaling).
The summary in Table V verifies area-saving effect of INCA.
For a fair iso-capacity comparison, we built INCA to possess
the same capacity of RRAM as the baseline. The number of
RRAMs in one 3D architecture (16 × 16 × 64) equals that
of one crossbar in the baseline (128 × 128). Therefore, we
organized the same number of crossbars and macros in a tile
as the baseline design. While one crossbar of the baseline
needs 491.52µm2, one 3D architecture of INCA demands
49.152µm2. Buffer and ADC/DAC were estimated based on
[42], [67] and the others were measured by NeuroSim+. Due
to the advantage of 3D design and small ADCs, INCA could
effectively save area.

7) Accuracy: We also examine the impact of the RRAM’s
nonideality on accuracy. We chose the zero-centered normal
distribution to model the noise caused by nonideal properties
like variation, nonlinearity, and asymmetry, following [65].
The noise strength (σ) was adjusted from 0.5% to 5%, since
the range between 2% and 5% is practically adopted for mod-
eling. We used a pretrained ResNet18 model of the torchvision
library and trained the network for ten epochs in every case.
The noise was directly added to activations or weights during
the training process. Table VI summarizes evaluation results.
While accuracy dramatically declines in the case of noisy
weight, the result of noisy activation shows a meager drop in
accuracy. Therefore, the result proves that RRAM’s nonideal
properties more negatively affect the accuracy of the WS
accelerator than the INCA accuracy.

TABLE VI
TRAINING ACCURACY IN ACCORDANCE WITH DIFFERENT NOISE

STRENGTH (σ) APPLIED TO WEIGHTS AND ACTIVATIONS.
σ 0.005 0.01 0.02 0.03 0.05
Wt. 82.13 77.03 58.36 48.57 15.17
Act. 89.21 89.02 88.50 87.54 85.59

VI. FUTURE WORK FOR ENDURANCE

RRAM devices were found in relatively recent years under
the name of memristor. Due to device immaturity, RRAM-
based hardware has struggled with unstable reliability and
robustness. INCA is also unable to avoid the endurance issue
of RRAMs like other trainable accelerators. The previously
proposed accelerators have assumed that an accelerator can
hold all required weight parameters for networks. But accel-
erators need to rewrite RRAMs frequently as large networks
have begun to be implemented in accelerators [16]. RRAM-
based digital PIMs [20] have also evoked an extreme con-
cern regarding endurance. However, researchers in the field
are continuously addressing reliability, and fortunately, fast
development of device technologies promises robust RRAM-
based hardware [25], [43]. Meanwhile, IS dataflow is widely
applicable to PIM designs beyond RRAM, therefore, we leave
IS implementation into other designs as our future work to
exploit more stable properties of other hardware candidates.

VII. CONCLUSION

This paper proposes an input-stationary PIM accelerator for
the first time, named INCA: input-stationary (IS) implemented
crossbar accelerator, supporting inference and training. We
observed and identified limitations of previous PIM designs
from the weight-stationary (WS) dataflow: 1) the remaining
excessive memory access; 2) the enormous use of extra
RRAMs; 3) the need for large ADCs and the poor array
utilization in light models; 4) the RRAM nonideality’s impact
on accuracy. IS dataflow can naturally resolve the limitations;
however, the current crossbar design impedes the IS imple-
mentation, presenting two main challenges: kernel sliding and
parallelism. For kernel sliding, this work implements 2T1R
cells with direct convolution. We then attain high parallelism
and batch training implementation by a novel 3D RRAM
architecture to take the structural advantage of 3D. Our exper-
iment with ImageNet demonstrates that INCA shows higher
hardware efficiency over one or two order(s) of magnitude, or
even more in light models. The reduced memory accesses,
low-bit ADCs, and sufficient utilization contribute to the
improvement results of INCA. Furthermore, INCA is expected
to release the redundant usage of RRAMs and generate more
reliable in situ classification results. Across various hardware
designs and applications, IS dataflow could be a compelling
candidate for PIM accelerator designs.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
(NSF) under grant 2023752 and 2233808. The opinions and/or
findings contained in this paper are those of the authors and
should not be interpreted as representing the official views of
the NSF.

39

REFERENCES

[1] G. C. Adam, B. Chrakrabarti, H. Nili, B. Hoskins, M. A. Lastras-
Montaño, A. Madhavan, M. Payvand, A. Ghofrani, K.-T. Cheng,
L. Theogarajan et al., “3d reram arrays and crossbars: Fabrication, char-
acterization and applications,” in IEEE 17th International Conference on
Nanotechnology (IEEE-NANO), 2017, pp. 844–849.

[2] O. M. Awad, M. Mahmoud, I. Edo, A. H. Zadeh, C. Bannon, A. Jayara-
jan, G. Pekhimenko, and A. Moshovos, “Fpraker: A processing element
for accelerating neural network training,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
857–869.

[3] Y. Bai, H. Wu, K. Wang, R. Wu, L. Song, T. Li, J. Wang, Z. Yu, and
H. Qian, “Stacked 3d rram array with graphene/cnt as edge electrodes,”
Scientific reports, vol. 5, no. 1, pp. 1–9, 2015.

[4] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization
of convolutional networks for rapid-deployment,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[5] F. Chen and H. Li, “Emat: an efficient multi-task architecture for transfer
learning using reram,” in Proceedings of the International Conference
on Computer-Aided Design, 2018, pp. 1–6.

[6] F. Chen, L. Song, and Y. Chen, “Regan: A pipelined reram-based
accelerator for generative adversarial networks,” in 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2018,
pp. 178–183.

[7] F. Chen, L. Song, H. H. Li, and Y. Chen, “Zara: A novel zero-free
dataflow accelerator for generative adversarial networks in 3d reram,”
in Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[8] H.-Y. Chen, S. Brivio, C.-C. Chang, J. Frascaroli, T.-H. Hou, B. Hudec,
M. Liu, H. Lv, G. Molas, J. Sohn et al., “Resistive random access mem-
ory (rram) technology: From material, device, selector, 3d integration to
bottom-up fabrication,” Journal of Electroceramics, vol. 39, no. 1, pp.
21–38, 2017.

[9] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 44, no. 3, pp. 367–379,
2016.

[10] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[12] P. Dimitrakis, Charge-trapping non-volatile memories. Springer, 2015.
[13] M. Drumond, L. Coulon, A. Pourhabibi, A. C. Yüzügüler, B. Falsafi, and

M. Jaggi, “Equinox: Training (for free) on a custom inference acceler-
ator,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 421–433.

[14] Z. Fan, Z. Li, B. Li, Y. Chen, and H. Li, “Red: A reram-based de-
convolution accelerator,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 1763–1768.

[15] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 751–764.

[16] S. Hall, R. Schreiber, and S. Lie, “Training giant neural
networks using weight streaming on cerebras wafer-scale
systems,” Cerebras Systems, Inc, 1237 E ARQUES AVE,
SUNNYVALE, CA 94085 USA, Tech. Rep., 2021. [Online].
Available: https://www.cerebras.net/blog/scaling-up-and-out-training-
massive-models-on-cerebras-systems-using-weight-streaming/

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[20] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory
acceleration of deep neural network training with high precision,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2019, pp. 802–815.

[21] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[22] H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, “Recom: An efficient
resistive accelerator for compressed deep neural networks,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 237–240.

[23] L. Jiang, M. Kim, W. Wen, and D. Wang, “Xnor-pop: A processing-in-
memory architecture for binary convolutional neural networks in wide-
io2 drams,” in 2017 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). IEEE, 2017, pp. 1–6.

[24] H. Kal, S. Lee, G. Ko, and W. W. Ro, “Space: locality-aware processing
in heterogeneous memory for personalized recommendations,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2021, pp. 679–691.

[25] T. Kempen, R. Waser, and V. Rana, “50x endurance improvement in
taox rram by extrinsic doping,” in 2021 IEEE International Memory
Workshop (IMW). IEEE, 2021, pp. 1–4.

[26] B. Kim, E. Hanson, and H. Li, “An efficient 3d reram convolution
processor design for binarized weight networks,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1600–1604,
2021.

[27] B. Kim and H. Li, “Leveraging 3d vertical rram to developing neuro-
morphic architecture for pattern classification,” in 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020, pp. 258–
263.

[28] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 3, pp. 380–392, 2016.

[29] H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “Nand-net: Minimizing
computational complexity of in-memory processing for binary neural
networks,” in 2019 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 2019, pp. 661–673.

[30] C. Kügeler, M. Meier, R. Rosezin, S. Gilles, and R. Waser, “High density
3d memory architecture based on the resistive switching effect,” Solid-
state electronics, vol. 53, no. 12, pp. 1287–1292, 2009.

[31] D. Kuzum, S. Yu, and H. P. Wong, “Synaptic electronics: materials,
devices and applications,” Nanotechnology, vol. 24, no. 38, p. 382001,
2013.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[33] H. Li, K.-S. Li, C.-H. Lin, J.-L. Hsu, W.-C. Chiu, M.-C. Chen, T.-T. Wu,
J. Sohn, S. B. Eryilmaz, J.-M. Shieh et al., “Four-layer 3d vertical rram
integrated with finfet as a versatile computing unit for brain-inspired
cognitive information processing,” in 2016 IEEE Symposium on VLSI
Technology. IEEE, 2016, pp. 1–2.

[34] S. Li, D. Reddy, and B. Jacob, “A performance & power comparison of
modern high-speed dram architectures,” in Proceedings of the Interna-
tional Symposium on Memory Systems, 2018, pp. 341–353.

[35] P. Lin, C. Li, Z. Wang, Y. Li, H. Jiang, W. Song, M. Rao, Y. Zhuo, N. K.
Upadhyay, M. Barnell et al., “Three-dimensional memristor circuits as
complex neural networks,” Nature Electronics, vol. 3, no. 4, pp. 225–
232, 2020.

[36] M. Mahmoud, I. Edo, A. H. Zadeh, O. M. Awad, G. Pekhimenko,
J. Albericio, and A. Moshovos, “Tensordash: Exploiting sparsity to ac-
celerate deep neural network training,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 781–795.

[37] H. Mao, M. Song, T. Li, Y. Dai, and J. Shu, “Lergan: A zero-free, low
data movement and pim-based gan architecture,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 669–681.

[38] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “Dnn+ neurosim
v2. 0: An end-to-end benchmarking framework for compute-in-memory
accelerators for on-chip training,” IEEE Transactions on Computer-

40

Aided Design of Integrated Circuits and Systems, vol. 40, no. 11, pp.
2306–2319, 2020.

[39] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “Dnn+ neurosim: An end-
to-end benchmarking framework for compute-in-memory accelerators
with versatile device technologies,” in 2019 IEEE international electron
devices meeting (IEDM). IEEE, 2019, pp. 32–5.

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[41] J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. E. Kwon,
H. Lim, G. H. Kim, D. S. Jeong, and C. S. Hwang, “A review of
three-dimensional resistive switching cross-bar array memories from the
integration and materials property points of view,” Advanced Functional
Materials, vol. 24, no. 34, pp. 5316–5339, 2014.

[42] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[43] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, G. De Micheli, and
R. Drechsler, “Endurance management for resistive logic-in-memory
computing architectures,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. Ieee, 2017, pp. 1092–1097.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[45] M. Sivan, Y. Li, H. Veluri, Y. Zhao, B. Tang, X. Wang, E. Zamburg,
J. F. Leong, J. X. Niu, U. Chand et al., “All wse2 1t1r resistive ram
cell for future monolithic 3d embedded memory integration,” Nature
communications, vol. 10, no. 1, pp. 1–12, 2019.

[46] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Accpar: Tensor
partitioning for heterogeneous deep learning accelerators,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 342–355.

[47] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar: Towards
hybrid parallelism for deep learning accelerator array,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 56–68.

[48] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE international sym-
posium on high performance computer architecture (HPCA). IEEE,
2017, pp. 541–552.

[49] S. Srinivasan, “Prefetching vs the memory system: Optimizations for
multi-core server platforms,” Ph.D. dissertation, 2007.

[50] C. Su, M. Huang, K. Lee, V. Hu, Y. Huang, B. Zheng, C. Yao, N. Lin,
K. Kao, T. Hong et al., “3d integration of vertical-stacking of mos 2
and si cmos featuring embedded 2t1r configuration demonstrated on full
wafers,” in 2020 IEEE International Electron Devices Meeting (IEDM).
IEEE, 2020, pp. 12–2.

[51] P. Sun, N. Lu, L. Li, Y. Li, H. Wang, H. Lv, Q. Liu, S. Long, S. Liu,
and M. Liu, “Thermal crosstalk in 3-dimensional rram crossbar array,”
Scientific reports, vol. 5, no. 1, pp. 1–9, 2015.

[52] W. Sun, S. Choi, B. Kim, and J. Park, “Three-dimensional (3d) vertical
resistive random-access memory (vrram) synapses for neural network
systems,” Materials, vol. 12, no. 20, p. 3451, 2019.

[53] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828.

[54] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito,
Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka et al., “Bit cost scalable
technology with punch and plug process for ultra high density flash
memory,” in 2007 IEEE Symposium on VLSI Technology. IEEE, 2007,
pp. 14–15.

[55] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal,
M. Kar, S. Jain, A. Mannari, H. Tran et al., “Rapid: Ai accelerator
for ultra-low precision training and inference,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 153–166.

[56] C.-H. Wang, C. McClellan, Y. Shi, X. Zheng, V. Chen, M. Lanza, E. Pop,
and H.-S. P. Wong, “3d monolithic stacked 1t1r cells using monolayer
mos 2 fet and hbn rram fabricated at low (150° c) temperature,” in 2018
IEEE International Electron Devices Meeting (IEDM). IEEE, 2018,
pp. 22–5.

[57] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, “Snrram: an
efficient sparse neural network computation architecture based on re-
sistive random-access memory,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[58] B. Yan, B. Li, X. Qiao, C.-X. Xue, M.-F. Chang, Y. Chen, and H. Li,
“Resistive memory-based in-memory computing: From device and large-
scale integration system perspectives,” Advanced Intelligent Systems,
vol. 1, no. 7, p. 1900068, 2019.

[59] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis,
“Procrustes: a dataflow and accelerator for sparse deep neural network
training,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 711–724.

[60] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse reram engine: Joint exploration of activa-
tion and weight sparsity in compressed neural networks,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 236–249.

[61] X. Yang, B. Yan, H. Li, and Y. Chen, “Retransformer: Reram-based
processing-in-memory architecture for transformer acceleration,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[62] D. Yoo, Y. Song, J. Jang, W.-T. Hwang, S.-H. Jung, S. Hong, J.-K. Lee,
and T. Lee, “Vertically stacked microscale organic nonvolatile memory
devices toward three-dimensional high integration,” Organic Electronics,
vol. 21, pp. 198–202, 2015.

[63] M. Yu, Y. Cai, Z. Wang, Y. Fang, Y. Liu, Z. Yu, Y. Pan, Z. Zhang,
J. Tan, X. Yang et al., “Novel vertical 3d structure of taox-based rram
with self-localized switching region by sidewall electrode oxidation,”
Scientific reports, vol. 6, no. 1, pp. 1–10, 2016.

[64] M. Yu, Y. Fang, Z. Wang, G. Chen, Y. Pan, X. Yang, M. Yin, Y. Yang,
M. Li, Y. Cai et al., “Encapsulation layer design and scalability in
encapsulated vertical 3d rram,” Nanotechnology, vol. 27, no. 20, p.
205202, 2016.

[65] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[66] S. Yu, W. Shim, X. Peng, and Y. Luo, “Rram for compute-in-memory:
From inference to training,” IEEE Transactions on Circuits and Systems
I: Regular Papers, 2021.

[67] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu,
X. Qian, M. N. Bojnordi, Y. Wang et al., “Forms: fine-grained polarized
reram-based in-situ computation for mixed-signal dnn accelerator,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 265–278.

[68] L. Zhang, S. Cosemans, D. J. Wouters, B. Govoreanu, G. Groeseneken,
and M. Jurczak, “Analysis of vertical cross-point resistive memory
(vrram) for 3d rram design,” in 2013 5th IEEE International Memory
Workshop. IEEE, 2013, pp. 155–158.

[69] Y. Zhang, H. Li, H. Wang, H. Xie, R. Liu, S.-L. Zhang, and Z.-J. Qiu,
“Thickness considerations of two-dimensional layered semiconductors
for transistor applications,” Scientific reports, vol. 6, no. 1, pp. 1–7,
2016.

[70] Q. Zheng, X. Li, Z. Wang, G. Sun, Y. Cai, R. Huang, Y. Chen, and H. Li,
“Mobilattice: A depth-wise dcnn accelerator with hybrid digital/analog
nonvolatile processing-in-memory block,” in 2020 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD). IEEE, 2020,
pp. 1–9.

[71] Z. Zhu, J. Lin, M. Cheng, L. Xia, H. Sun, X. Chen, Y. Wang, and
H. Yang, “Mixed size crossbar based rram cnn accelerator with over-
lapped mapping method,” in 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[72] , “A simulation study of self-organization in neural network by spike-
timing dependent plasticity,” Ph.D. dissertation, , 2015.

41

