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ABSTRACT

Progress in hardware and algorithms for artificial intelligence (AI) has ushered in large machine learning models and various applications
impacting our everyday lives. However, today’s AI, mainly artificial neural networks, still cannot compete with human brains because of two
major issues: the high energy consumption of the hardware running AI models and the lack of ability to generalize knowledge and self-adapt
to changes. Neuromorphic systems built upon emerging devices, for instance, memristors, provide a promising path to address these issues.
Although innovative memristor devices and circuit designs have been proposed for neuromorphic computing and applied to different proof-
of-concept applications, there is still a long way to go to build large-scale low-power memristor-based neuromorphic systems that can bridge
the gap between Al and biological brains. This Perspective summarizes the progress and challenges from memristor devices to neuromorphic
systems and proposes possible directions for neuromorphic system implementation based on memristive devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133044

INTRODUCTION

Advances in machine learning algorithms and hardware have
enabled impressive performance in various artificial intelligence (AI)
applications, such as computer vision, language processing, game play-
ing, etc." However, training these models requires tremendous compu-
tational resources and energy. As reported in a survey paper, the
estimated CO, emissions from training a big transformer are five times
that of an average U.S. car in its lifetime.” Also, most AT models only
carry out specific tasks in specific contexts, far from natural intelligent
systems, which can generalize knowledge according to different goals
in various circumstances.” Thus, energy-efficient hardware with gener-
ality, adaptability, and flexibility has been prioritized in developing
next-generation intelligent systems. Neuromorphic systems modeling
biological brains in very-large-scale integration (VLSI) circuits are
promising candidates for future Al regarding energy efficiency and
learning ability." Digital neuromorphic chips implementing spiking
neural networks (SNNs) with high energy efficiency, including
TrueNorth,” Loihi,”” and Tianjic,&q have been fabricated and applied
to real-time object detection, multimodal tracking, robotics, etc.
However, they are all based on digital computing and store data in dig-
ital memories, which are different from biological brains with spike-
encoded and event-driven representations. Moreover, thousands of
transistors are required to model the functionality of merely one bio-
logical neuron in digital chips,” limiting the intelligent systems area

and energy efficiencies. As possible solutions for these problems,
memristors whose resistance can be dynamically reconfigured not
only enabled the analog in-memory computing to improve power con-
sumption, latency, and area of neuromorphic chips but also modeled
biological synapses and neurons in a single device for spike-encoded
neural networks. Both nonvolatile memristors, whose conductance
retains after removing electrical bias, and volatile memristors, whose
conductance relaxes back to OFF states upon removing the bias after
ON switching, have been demonstrated in the hardware implementa-
tions of artificial neural networks (ANNs) and SNNs. Nonvolatile
memristors are mostly used as in-memory computing components in
crossbar arrays to accelerate the vector-matrix multiplications
(VMMs) in ANNSs, while volatile memristors are mainly used to emu-
late the dynamic behaviors of synapses and neurons in SNNs, which
mimic the physics of the human brain and neural system. The break-
throughs in memristor devices laid a solid foundation for neuromor-
phic systems in analog in-memory computing and brain dynamics
modeling.'’ However, the development of peripheral circuits, architec-
tures, models, etc., to provide a route from memristor devices to neu-
romorphic systems is still in its infancy.

In this Perspective, we briefly summarize recent progress
achieved from memristive devices to experimental neuromorphic
hardware, evaluate the challenges from data conversions to learning
and communications, and propose research opportunities from circuit
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innovations to architecture designs to ultimately build a neuromorphic
system with comparable energy efficiency and learning ability to bio-
logical brains.

PROGRESS: FROM MEMRISTIVE DEVICES
TO NEUROMORPHIC HARDWARE

Inspired by biological brains where synapses and neurons work
as both processing and memory units for analog signals, analog in-
memory computing has been implemented using memristors for tra-
ditional ANNs. To conduct VMM in parallel, the most common and
computationally expensive operation in ANNs, memristor devices are
integrated into crossbar arrays. Memristor crossbar arrays use physical
laws, Ohm’s law for multiplications and Kirchhoff’s current law for
summations, to perform VMM within one step, resulting in orders of
magnitude higher computing throughput. Also, analog data from sen-
sors can be directly processed,'' ' and synaptic weights are stored in
memristors where VMM performs, significantly improving the power
consumption and speed compared to frequent and inefficient data
movement as in traditional von Neumann architectures.

The fundamental research is on memristor devices and crossbar
arrays for VMM with lower power consumption and higher through-
put. Various memristive devices have been developed for crossbar
arrays with desirable properties for representation capability, switching
speed and energy, reliability, and device density."" However, from
memristive devices to crossbar arrays, sneak path current is the first
issue to be addressed. Active memristor arrays with one transistor and
one memristor (IT1R) structure in each cross point have dominated
because the transistors can be used as selectors to limit sneak path cur-
rents and control the currents through memristors when program-
ming,'” Two-terminal selectors could potentially increase the packing
density, but research and development in this direction are left behind,
mainly because of the demanding requirements on the device proper-
ties. While some research engineered memristors to achieve high uni-
formity and linearity to build passive crossbar arrays with only one
memristor in each crosspoint,’” the scalability of passive memristor
arrays remains a challenge for system-level designs because of the leak-
age current and IR drop in large arrays. The largest passive memristor
array reported is 64 x 64 with discrete peripherals,” which is not com-
parable to the 1024 x 512 1T1R arrays used in an integrated chip.'®
For further area and throughput improvement of memristor crossbar
arrays and reconfigurable and hierarchical neuromorphic systems,
structure innovations arise in three-dimensional (3D) arrays. 3D
crossbar arrays were fabricated with self-rectifying memristors,"”
which are CMOS-compatible. Moreover, 3D arrays were designed
compactly to support complex ANNs, such as convolutional neural
networks (CNN)'¥ and capsule networks."”

Advances in memristor crossbar arrays highly improved the area,
throughput, and energy efficiency of VMM. However, the main bar-
riers to energy-efficient memristor array-based ANN hardware sys-
tems are other resource-hungry operations other than VMMs, such as
analog/digital conversions performed in analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs). These peripheral
circuits are needed at the current stage when digital processors are still
required. As shown in Fig. 1, most memristor-based ANN systems
require additional digital computing units to complete the pre- and
post-processing, and input and output peripheral circuitry to complete
signal conversions other than the analog VMM cores realized by 2D
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or 3D memristor crossbar arrays. As reported in a CNN system based
on memristor arrays, the area and power consumption of the periph-
eral circuits account for 98.3% and 93.9% of those of the whole chip,
respectively.”” The numbers do not even include the area and power
consumption of digital processors computing the activation functions,
weight gradients, and conductance update values. Different
approaches have been proposed to address the area and power issues
caused by digital peripherals. The first is a different conversion
scheme, like encoding input information in the time domain to com-
plete the VMM in the charge domain.”" This method can reduce the
number of DACs required for each input of memristor arrays and
simplify the analog to digital conversions after VMM. In the mean-
time, energy-efficient DAC and ADC designs were also proposed to
accommodate the VMM in the charge domain.”” ** The second way is
to implement calculations or communications in the analog domain,
eliminating analog/digital conversions and reducing off-chip commu-
nications. Previous work realized transfer and subtraction functions
using analog amplifiers in the analog domain for hidden neurons of
memristor arrays for a small neural network application.”” Recent
research developed analog-based hidden neurons to implement
Rectified Linear Unit (ReLU) activation functions, taking the analog
output currents from the previous layer and outputting voltages for
the next layer in multilayer networks.”” These methods removed the
need for analog-to-digital conversions and vice versa between subse-
quent layers with acceptable signal degradations. Another work used
analog communications in a reservoir computing system, in which
information was moved from the reservoir layer to the readout layer
as analog voltages.”® Also, recent work demonstrated to use analog
light communication in optoelectronic device arrays to facilitate chip-
to-chip communications of memristor arrays for highly parallel data
processing.’

Based on the memristor array and peripheral innovations, there
have been system designs to implement different types of ANNS, like
multilayer perceptron,””* CNN,” long short-term memory
(LSTM),”” and reinforcement learning.”’ However, besides generaliz-
ing ANN algorithms, system designs are supposed to facilitate fully
hardware ANNs and compensate for the accuracy degradation caused
by hardware nonidealities. Most early works only implemented for-
ward propagation for inference of neural networks since they only
focused on validating the device performance. Recent research starts
to merge the backward propagation in the same memristor array by
adding neuron circuits to both rows and columns of the memristor
arrays ™ or sharing neuron circuits of subarrays.”* For the learning of
ANNS, which corresponds to synaptic weight changes and memristor
programming, the synaptic weights were trained in software and pro-
grammed to memristor arrays in most existing ANN-based systems.”’
However, some system progress proposed self-adaptive in situ training
to reduce latency and power consumption.’'** Calibration algorithms
for in situ training were also proposed and implemented in hardware
to improve the training accuracy.”” With system designs realizing
more functions of ANNs in the analog domain, the performance
degradation caused by inevitable nonidealities of memristor devices
and peripheral circuits is boosted. To compensate for these circuit
nonidealities in memristor-based systems, various hardware-algorithm
co-optimization methods were proposed to achieve comparable accu-
racy to software implementations. These system optimization
approaches include training the networks with noise from
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FIG. 1. The general implementation of traditional ANN accelerators based on memristor crossbar arrays.
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measurement data,” calibrating peripheral circuits with different
models,” fine-tuning the trained weights with actual outputs from
hardware systems,35 etc.

While the bottom-to-top progress from memristor arrays to system
designs has led to more efficient and flexible compute-in-memory accel-
erators compared to traditional von Neumann architectures,”** > the
energy efficiency and learning ability of these chips are still limited
because traditional ANNs only model a neuron as a weighted sum of all
its synapses with a nonlinear function.”” The next generation of neuro-
morphic systems attempt to model biological brains, where neural infor-
mation is encoded in spike trains and active patterns in memristor-based
hardware to achieve similar performances of brains in terms of energy
efficiency, speed, and learning ability. The brain-inspired approach has
the potential to harness the randomness and dynamics of memristor
devices to realize robust and efficient learning in spike-based networks."’
Also, the training of most brain-inspired neural networks does not
become dependent on gradient-based algorithms that need high-
precision computing, saving a huge amount of computing resource.
Based on the internal dynamics of memristor devices and memristor
arrays, brain-inspired systems have modeled the neural dynamics and
network topology of biological brains at multiple levels.” *°

Different from device requirements (non-volatility, linearity, sta-
ble switching, etc.) for synaptic weights in traditional ANNs, the key
requirements for memristor devices modeling biological synapses are
similar dynamical behaviors for spike-related plasticity, which is
important in communication and learning of brains. Memristors with
diffusive dynamics were first developed to model the short-term and
long-term  spike-timing-dependent plasticity (STDP) of synapses,’’
and second-order memristors were proposed to model the triplet-
STDP in the following work.”® Moreover, memristor devices were
used to mimic heterosynaptic plasticity”””’ as well as homosynaptic
plasticity,” "> providing synaptic connections at different levels. In
addition to synaptic plasticity, memristor devices have also been used

to emulate the rich dynamics of neurons composed of soma, axon,
and dendrites."” One popular research focus is the hardware imple-
mentation of mathematic neuron models based on memristors, such
as the Hodgkin-Huxley>” and leaky integrate and fire neuron cir-
cuits* 7t widely used in SNNs. Also, more neuronal sub-structures
like dendrites and soma are modeled in memristor-based circuits to
fully emulate the biological neurons and benefit the spatial-temporal
data processing.”’ ** Another rising research direction is the modeling
of emerging neuron models like hierarchical temporal memory
and afferent nerves that convert analog signals from sensors into
spikes for neuronal processing.”*””

Since the development of volatile memristor devices has provided
various options for basic components of brain-inspired systems, the
primary focus from device innovations to neuromorphic systems is on
incorporating the plasticity mechanisms and neuronal dynamics mod-
eled by memristors in the learning of brain-inspired hardware systems
for multimodal data processing,** One example is the fully memristive
neural networks integrating neurons based on diffusive memristors
emulating STDP and synapses based on nonvolatile memristors to
realize unsupervised CNNs.”’ Another utilization of memristor
dynamics is reservoir computing, which maps input signals into higher
dimensional computational spaces. In memristor-based reservoir com-
puting, the internal dynamics of diffusive memristors is applied to the
reservoir layer, and the programmable resistance of drift memristors is
used in the trainable readout layer. The reservoir computing hardware
based on memristors has exhibited high performance in temporal data
processing like classification tasks,” second-order nonlinear tasks,”'
and spoken-digit recognitions.”” However, hardware implementation
of brain-inspired networks based on dynamic memristors is still in the
proof-of-concept phase. Most existing system-level works mainly use
simulations based on measurement data from memristor devices to
validate the efficiency of the emulated biological dynamics in temporal
applications. Examples shown in Fig. 2 are diffusive and drift
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FIG. 2. Examples of emulations of biological synapses and neurons in memristor devices and simulations of brain-inspired systems. (a) Experimental input spike signals (left),
biological and memristor-based synapses and neurons (middle), and their responses to spike signals*’ (right). (b) The system simulations of the hierarchy of event-based time
surfaces (HOTS) using diffusive memristors® (left) and hierarchical temporal memory (HTM) using drift memristors®” (right). [Reproduced with permission from Z. Wang, et al.,
Nat. Mater. 16, 101 (2017). Copyright 2017 Springer Nature Limited and F. Ye, et al., Advanced Materials 2204778 (2022). Copyright 2022 John Wiley & Sons, Inc. All rights
reserved., and X. Liu, et al.,, IEEE Trans. Syst. Man Cybern. Syst. 52, 1901 (2022). Copyright 2022 IEEE - All rights reserved.]

memristors fabricated and experimentally tested for synaptic circuits’’
and then used in system simulations based on their dynamics for hier-
archical algorithms of event-based time-surfaces** and temporal mem-
ory network.”” Moreover, triplet-STDP was tested in memristive
devices and simulated to implement the spike-rate-dependent learning
rule in orientation pattern selection.”’ Long-term and short-term
memory with tunable dynamics and homeostatic plasticity were real-
ized in phase-change memtransistive devices and simulated in net-
works processing sequential image recognition and solving
combinatorial optimization problems.”’ Neuronal and synaptic plas-
ticity were integrated into one memristive cell and simulated for feed-
back learning like the retraining process in biological systems.””

CHALLENGES: FROM DATA CONVERSIONS
TO LEARNING AND COMMUNICATIONS

With the progress in both volatile and nonvolatile memristor
devices, there are numerous circuit designs for neuromorphic systems

and proof-of-concept system simulations for various applications.”®

However, there is still a huge gap between memristor-based circuits
and a neuromorphic system that can be used in real-scenario applica-
tions with comparable efficiency and learning ability of biological
brains.

The first challenge is the efficiency of analog-digital conversions.
As shown in Fig. 1, memristor-based hardware for traditional ANNs
are mainly inference-only accelerators, in which only VMM is com-
pleted in memristor arrays with high throughput and energy efficiency
in the inference phase. Other critical operations, including activation
functions, error backward propagation, and gradient calculations, are
conducted in peripheral circuits and digital computing platforms.
Even in the latest work implementing the backpropagation of ANNS,
the network training and circuit calibrations are assisted by a digital
processor and a field-programmable gate array (FPGA).”* Therefore,
analog-digital conversions and additional memory to store the inter-
mediate data are still required in most mixed-signal systems for
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traditional ANNs. Eliminating the analog-digital conversions between
the intermediate layers of ANNS for both inference and training phases
will be a significant improvement in future system designs.
Furthermore, neuromorphic systems based on brain-inspired networks
can also reduce data conversions because the inputs and outputs of these
networks are encoded in analog signals. Since digital computing per-
forms better in specific tasks like high-precision computing and data
storage,”” and many existing learning models are designed for digital
processing units, a mixed-signal system with both digital and analog
components is essential to neuromorphic systems. Implementations of
more neural network functions in the analog domain and designs of
next-generation conversion circuits for inevitable analog-digital conver-
sions will be critical to improve energy and area efficiency.

The second challenge is using memristor dynamics to emulate
brain dynamics to boost the learning ability of future neuromorphic
systems. Since most memristor-based ANNs are hardware implemen-
tations of algorithms used to run in high-precision digital platforms,
their learning aims to update the synaptic weights or conductance of
memristor devices using stochastic gradient descent and error back-
propagation algorithms. The precision required by the training algo-
rithms to achieve high performance contradicts the relatively small
number of memristor states and the nonidealities of memristor-based
circuits, which are inevitable in analog hardware. Brain-inspired sys-
tems have the potential to use the internal stochasticity and dynamics
of memristor devices in their training process. However, most synaptic
and neuronal dynamics were emulated only in memristor devices and
tested in certain conditions. As shown in Fig. 2, the test signals are
usually generated from input signal generators and applied to memris-
tor devices, while the responses are recorded and analyzed by output
signal collectors. The signal generators and collectors are either semi-
conductor device analyzers or traditional digital computing units like
processors or FPGAs. Experimental data from these tests are used to
create memristor models and further used in network-level simula-
tions to verify the efficiency of memristor dynamics in the learning of
SNN. Therefore, research on peripheral circuits and learning models
that can unleash the full benefits of memristor dynamics in brain-
inspired learning of hardware systems is required.

The third challenge lies in the architectures and interfaces sup-
porting data movement and communications inside and outside hier-
archical neuromorphic systems. For ANNs based on memristor
arrays, especially extensive 3D arrays, the parallel inputs and outputs
result in tremendous data from sensors or to the post-processing
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modules. Also, multiple memristor arrays distributed across the chip
were designed for large ANN models as computing cores.”””*
However, the interfaces for data movement and communications in
different cores are still traditional digital-based methods, which hinder
the efficiency of parallel analog computing in memristor arrays. On
the other hand, with the development of brain-inspired hardware
based on memristors, future neuromorphic systems will integrate dif-
ferent network structures for spatial and temporal data processing.
Implementing versatile neural networks in one neuromorphic system
requires efficient analog data modulation and transmission, for exam-
ple, the spike-encoded analog signals for SNNs to voltage-encoded sig-
nals for ANNSs and vice versa. As shown in Fig. 3, the advancements in
memristor-based neuromorphic research are either from the device
and circuit level or neural network algorithms and applications. There
are a few works on system-level implementations in architectures,
interfaces, and corresponding models to incorporate the hardware and
software breakthroughs to build a neuromorphic hardware system tar-
geting various real-scenario applications.

OPPORTUNITIES: FROM CIRCUIT INNOVATIONS
TO ARCHITECTURE DESIGNS

Different from conventional designs for pure-digital intelligent
systems, neuromorphic systems are highly dependent on interdisci-
plinary knowledge from devices to algorithms. To address the dis-
cussed issues and bridge the gap shown in Fig. 3, we propose three
underexplored directions and multidisciplinary opportunities that can
help achieve the envisioned energy efficiency and general intelligence
of neuromorphic systems. Moreover, a possible architecture for future
neuromorphic systems is proposed in Fig. 4.

The first opportunity is mixed-signal in-memory and analog
computing designs based on memristors. The focus of traditional
mixed-signal designs is mainly on the performance of ADCs and
DACs. However, with the memristor-based neuromorphic systems
processing analog information encoded in voltages, currents, and opti-
cal signals, various conversion schemes are required to accommodate
the mixed-signal circuits based on memristors working as both com-
puting and memory components. For the digital-to-analog conversion,
since the memristor-based circuits can directly process analog signals,
more research efforts should be put into the modulation and merging
of signals from different sensors for the processing cores. Several works
include converting analog inputs into spikes for SNNs***” and multi-
modal signal integration.”” "’ However, they are only designed for

Neuromorphic systems

Devices Architectures

—AL) \ 52N 1

Interfaces

Algorithms

| e
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Materials Circuits
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FIG. 3. Three research directions proposed to bridge the memristor-based hardware and brain-inspired models toward energy-efficient and intelligent neuromorphic systems.
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specific networks and applications, and system-level implementation
is still lacking. For the analog-to-digital conversion, the basic research
should be directed to analog-friendly hardware to eliminate the con-
versions in the neuromorphic systems and further reduce memory
and communications in the digital domain. For required conversions
to interact with digital computing systems, besides the high precision
and high-speed traditional ADCs target, future conversion schemes
should be able to convert various analog signals other than voltages
and accommodate the functions of the brain-inspired models. Existing
works start to explore memristor-based ADCs with high perfor-
mance’””” and ADCs integrated with the computing circuits.”**
However, none are designed for brain-inspired and spike-encoded sys-
tems, which will be the central parts of future neuromorphic systems.

The second direction is the learning model and hardware to har-
ness the internal dynamics of memristors to simplify the training pro-
cess and boost learning abilities. Since biological brains do not
precisely calculate loss functions, and gradients for learning and high-
precision computing in the analog domain are difficult, the learning of
future neuromorphic systems will not only rely on gradient-based
algorithms, which have dominated the ANNs and have even been
modified for SNNs. Many learning mechanisms in biological brains,
such as homosynaptic and heterosynaptic plasticity, local and global
inhibitions, spatial and temporal information integration, and hierar-
chical structures and communications, have not been fully explored to
facilitate the learning of neuromorphic hardware. Learning models
inspired by the memory and learning systems of biological brains are
expected to be designed to integrate rich learning mechanisms into the
training of neuromorphic systems based on memristors. Hardware at
different levels should also be developed to facilitate these learning
models in the hierarchical architecture of future neuromorphic
systems.

The third outlook is on the interfaces and architectures for mem-
ory and communications in hierarchical and distributed neuromor-
phic systems. In recent system works,””**** analog data were still
converted to digital values inside each computing core and transmitted
with traditional interfaces. Unlike traditional digital signal transmis-
sion, information will be encoded and stored in various formats in

future neuromorphic systems, for example, information is encoded in
voltage amplitude,”” pulse width,”* and spikes,”* weights are stored as
temporary and long-term conductance,” chip-to-chip analog signals
are transmitted as light,'”” etc. Interfaces and architectures are
required to coordinate the data movement within local networks for
specific tasks and global networks for various applications.
Exploration of spike-based and event-driven communications inspired
by biological brains is one valuable direction for signal transmissions.
Moreover, the structural and functional connectivity for different
regions of brain networks may provide some insights into the hard-
ware designs for communications and models for data management.
At the system architecture level, research efforts should also be
directed to hierarchical architectures inspired by brain topology to
integrate various neural networks specialized in different tasks to com-
plete the implementation of neuromorphic systems.

Based on the proposed directions, a potential architecture of
future neuromorphic systems taking advantage of both brain-inspired
computing and parallel ANNs is shown in Fig. 4. With breakthroughs
in dynamical volatile memristors, neural circuits are expected to bene-
fit from brain-inspired learning and communications with reconfigur-
ability and dynamical connections. Based on high performance
nonvolatile memristors, parallel in-memory computing units are
expected to achieve high accuracy in analog inference and training
assisted by the training and communication circuitry. At the system
level, hierarchical brain-inspired networks with local and global activa-
tion and inhibition will be built from the neural circuits for event-
driven applications. Distributed processing cores with configurable
resources will be built from the in-memory computing units for
computing-intensive applications. For the system integration, multi-
modal data encoding modules are critical components to fuse multi-
modal sensory data, while future analog interfaces and learning
models are required to complete the spatiotemporal integration for
information from both subsystems and generate processed results or
final decisions. For applications requiring digital peripherals, efficient
analog-to-digital (AD) and digital-to-analog (DA) schemas will be
designed to integrate the analog neuromorphic hardware with essen-
tial digital systems.
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In summary, advances in recent memristor-related research from
nanomaterials to spatiotemporal applications have demonstrated the
efficiency and learning ability of intelligent hardware based on mem-
ristor devices. We summarized progress from memristor devices to
preliminary system designs for ANN-based accelerators and brain-
inspired neuromorphic systems. We also discussed three major
challenges and proposed possible directions to embrace existing
achievements to build efficient and intelligent neuromorphic systems
based on memristors.
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