N-Phthalimide as a Site-protecting and Stereodirecting Group in Rhodium-Catalyzed C-H Functionalization with Donor/Acceptor Carbenes.

Ziyi Chen, Qinyan Cai, Yannick T. Boni, Wenbin Liu, Jiantao Fu and Huw M. L. Davies*

AUTHOR ADDRESS Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, US Supporting Information Placeholder

ABSTRACT: The rhodium-catalyzed enantioselective C–H functionalization of unactivated C–H bonds by means of donor/acceptor carbene-induced C–H insertion was extended to substrates containing nitrogen functionality. The rhodium-stabilized donor/acceptor carbenes were generated by rhodium-catalyzed decomposition of aryldiazoacetates. The phthalimido group was the optimum nitrogen protecting group. C–H Functionalization at the most sterically accessible methylene site was achieved using $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst, whereas $Rh_2(S-2-Cl-5-BrTPCP)_4$ was the most effective catalyst for C–H functionalization at tertiary C–H bonds and for the desymmetrization of N-phthalimidocyclohexane.

The design of new approaches for catalyst-controlled C-H functionalization is a research area of intense current interest. One particularly useful approach is the C-H functionalization by means of metal carbene-induced C-H insertion.^{2, 3} For some time, we have been examining the rhodium-catalyzed enantioselective C-H functionalization chemistry of donor/acceptor carbenes (Scheme 1).⁴⁶ They are a privileged class of carbenes because the acceptor group makes the carbene very electrophilic and sufficiently reactive to functionalize unactivated C-H bonds, but the donor group modulates this reactivity so that the reaction outcome is highly susceptible to catalyst control. 5b Dirhodium tetracarboxylates are exceptional catalysts for the C-H functionalization chemistry of these donor/acceptor carbenes. Furthermore, when chiral ligands are suitably designed, they self-assemble during ligand exchange to form high symmetry dirhodium complexes (D2, C4 or C2) capable of inducing high levels of asymmetric induction in the carbene reactions.^{5a} We have now prepared a wide variety of structurally well-defined dirhodium catalysts that can dictate which C-H bond in a substrate will be functionalized.5a The original work focused on C-H functionalization of activated C-H bonds such as allylic or benzylic sites, or sites adjacent to oxygen or nitrogen. 5c Our more recent work has focused on reactions at unactivated C-H bonds, and catalysts have been designed to distinguish between functionalizing the most accessible, primary, secondary or tertiary C-H bonds.7

Scheme 1. Carbene-induced C-H functionalization

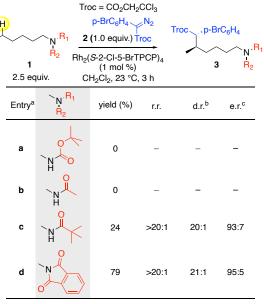
One of the most distinctive features of the rhodium-catalyzed C—H functionalization with donor/acceptor carbenes is that the reaction can be conducted in the presence of a variety of functional groups. ^{5a, c} This is especially so when the functionalization is conducted at activated C—H bonds but even when the reaction is occurring at unactivated C—H bonds, a variety of functionality, such as esters, siloxy, halide and *p*-substituted aryl can be accommodated into the substrate. Demonstration that the reaction on unactivated C—H bonds can be extended to nitrogen functionality would greatly increase the versatility of the chemistry (Scheme 2). However, amine functionality would offer a number of competing reaction pathways such as ylide formation, insertion into N—H bonds or into the activated C—H bonds adjacent to nitrogen. ⁸⁻¹⁰ Furthermore, the amine could poison the catalyst though competing coordination to the axial sites on the dirhodium. We have demonstrated that C—H

Scheme 2. C-H Functionalization in the presence of amino functionality

Previous work: C-H functionalization at activated sites

Current work: C-H functionalization at unactivated sites

$$\begin{array}{c} \text{NPhth} \\ \hline \text{Rh}_{2}\text{L}_{4} \\ \text{Troc} = \text{CO}_{2}\text{CH}_{2}\text{CCI}_{3} \end{array}$$


functionalization at the activated site α to nitrogen can be conducted in the presence of amino functionality suitably protected as the carbamate⁸, bis-silazide⁹ or N_1N -dialkylanilines¹⁰. In this manuscript, we describe a successful strategy for C–H functionalization of unactivated sites distal to N-phthalimido-protected primary amines.

The study was conducted with two of our more established C_4 symmetric catalysts, $Rh_2(S\text{-}2\text{-}Cl\text{-}5\text{-}BrTPCP})_4^{11}$ and $Rh_2(S\text{-}TPPTTL})_4^{7b}$ (Figure 1). $Rh_2(S\text{-}2\text{-}Cl\text{-}5\text{-}BrTPCP})_4$ is a sterically demanding catalyst that causes the C-H functionalization to occur at the most accessible methylene site. $^{11}Rh_2(S\text{-}TPPTTL})_4$ is not as sterically crowded and can cause C-H functionalization to occur at a tertiary site and can even differentiate between relatively similar secondary sites due to the bowl-shape of the catalyst. 7b

Figure 1. Chiral dirhodium catalysts used in this study

Initial studies began by determining which nitrogen protecting group would be most suitable, using N-protected 1-hexylamines 1 as test substrates (Scheme 3). Rh₂(S-2-Cl-5-BrTPCP)₄ was utilized for C-H functionalization of the unactivated C-H bonds with the pbromophenyldiazoacetate 2. The trichloroethyl derivative of 2 was used because it has been shown to give higher yields and levels of enantioselectivity that the methyl ester in functionalization of unactivated C-H bonds.⁷ Neither the Boc protect amine **1a** nor the acetamide 1b formed the desired C-H functionalization product. In the case of 1a, N-H insertion was observed, whereas in the case of 1b, a complex mixture was generated, suggesting that the amide functionality was not inert under these conditions. On the expectation that a more sterically crowded amide would be more compatible with this chemistry, the pivalamide 1c was examined and in this case the C-H functionalization product 3c was formed in 24% yield. The most effective system, however, was the phthalimido

Scheme 3. Influence of amine protecting group

a. Reaction condition: Diazo **2** (0.2 mmol, 1.0 equiv.), Substrate **1** (0.5 mmol, 2.5 equiv.), Rh₂(S-2-Cl-5-BrTPCP)₄ (1 mol %, 3.8 mg), CH₂Cl₂ (4 mL), 23 °C, 3 h slow addition via syringe pump.

b. d.r. were determined by crude $^1\mathrm{H}\ \mathrm{NMR}$

c. e.r. were determined by chiral HPLC or chiral SFC

group and the reaction of **1d** generated the desired C2 substituted product **3d** in 79% yield. Additionally, **3d** was formed with very high levels of site selectivity (>20:1 r.r.), diastereoselectivity (21:1 d.r.) and enantioselectivity (95:5 e.r.). No reaction occurs at the site adjacent to the nitrogen, presumably because of the steric size and the strong electron withdrawing character of the phthalimido group.

The phthalimido group would be expected to be inductively electron withdrawing and this inductive effect should protect C–H bonds relatively near to the phthalimido group. 5c In order to evaluate the extent of the inductive effect, shorter alkylamine derivatives were examined (Scheme 4). The reaction with pentylamine derivative $\mathbf{4a}$ was still effective, resulting in the formation of $\mathbf{5a}$ in 68% yield. Furthermore, the site selectivity remained high favoring the distal methylene site over the distal methyl site (>20:1 r.r.) In contrast the reaction with the butylamine derivative $\mathbf{4b}$ resulted in the formation of only traces of $\mathbf{5b}$ (<10% by NMR). These results indicate that the inductive effect of the phthalimido group still influences the C–H functionalization at sites three carbons away from the group. This effect could be useful in certain cases, because the phthalimido group could protect many relatively close C–H bonds from being prone to C–H functionalization.

Scheme 4. Inductive effect of NPhth group

Troc =
$$CO_2CH_2CCI_3$$

 $PBrC_8H_4$ N_2
 $PBrC_8$

5b (n=1): <10% yield

In order to illustrate the potential scope of these reactions, some examples illustrating C–H functionalization at 3° sites were examined. Rh₂(S-2-Cl-5-BrTPCP)₄ is too sterically demanding for carbene reactions at 3° C–H bonds, and so the less crowded catalyst, Rh₂(S-TPPTTL)₄ was used. The reaction with phthalimido

adamantane **6** went smoothly, generating the tertiary C–H functionalization product 7 in 56% yield and 95:5 e.r. (Scheme 5).

Scheme 5. Adamantane C-H functionalization

The reaction with the 4-methylcyclohexylamine derivative 8 illustrates the subtle control exhibited in this C-H functionalization chemistry (Scheme 6). The commercially available substrate consists of a mixture of trans and cis isomers, (8a and 8b). Even so, the reaction resulted in the formation of 9 as a single diastereomer, in which only the cis isomer 8b had reacted. The relative and absolute stereochemical configuration of 9 was determined by X-ray crystallography. Previously, it has been shown that donor/acceptor carbenes have a strong preference for reaction at equatorial C-H bonds in cyclohexanes (estimated as about 140: 1 in favor of equatorial versus axial).7b In the cis isomer **8b** the preferred conformer would have the C-4 hydrogen in an axial position but the trans isomer 8a would have a considerable amount of the drawn conformer with the large N-phthalimido group equatorially positioned and hence, would have a C-H bond axially positioned at C4. Consequently, the cis isomer **8b** would react in preference to the trans isomer **8a**. Further evidence to support this explanation was seen on measurement of the ratio of the residual trapping agent, which was now enriched in the trans isomer 8a.

Scheme 6. Selective equatorial C-H functionalization

All the reactions reported to date have been highly enantioselective. In order to further demonstrate the extent of the chiral influence of the catalyst, the reactions of **2** with the (*S*)-2-amino hexane derivative 10 were examined (Scheme 7). The Rh₂(S-2-Cl-5-BrTPCP)₄-catalyzed reaction with the aryldiazoacetate 2, gave a preference for one of the anti-diastereomers 11 (83:13:2:2 d.r.) of the distal methylene functionalized product (See the Supporting Information for the details on the stereochemical assignment). The Rh₂(R-2-Cl-5-BrTPCP)₄-catalyzed reaction also resulted in an efficient reaction but the asymmetric induction was less effective, favoring anti diastereomer 12 in a 73:21:3:2 d.r., with the other anti diastereomer 11 being the next most prevalent. The Rh₂(S-2-Cl-5-BrTPCP)₄-catalyzed reaction with **10** is the matched reaction and in this case, the asymmetric induction on formation of the two new stereogenic centers 11 is very high. In both reactions, the two new stereogenic centers in 11 and 12 are formed with high level of diastereocontrol in relationship to each other, favoring the anti-diastereomers.

Scheme 7. C-H Functionalization of a chiral amine derivative

One of the most impressive examples of site-selective C–H functionalization with donor/acceptor carbenes is the functionalization of alkylcyclohexanes at C3 under Rh₂(S-TPPTTL)₄ catalysis. Therefore, we decided to explore the reaction of the aminoncyclohexane derivative **13** (Scheme 8). The inductive effect of the *N*-phthalimido group should make the C3 site less favorable but the interference with the ligands of the bowl-shaped catalyst Rh₂(S-TPPTTL)₄ when attacking the C4 position is still the dominant influence. The reaction required increased temperature (39 °C) to achieve 63% yield, but it still went cleanly at C3 versus C4 to form **14** in 17:1 r.r.. Furthermore, the reaction is highly enantioselective (97:3 e.r.) and leads to effective desymmetrization (>20:1 d.r., selectivity for C3 over C5).

Scheme 8. Desymmetrization of cyclohexane 13

63% yield, 17:1 r.r., >20:1 d.r., 97:3 e.r.

All the studies to date have been carried out with p-bromophenyldiazoacetate as the carbene precursor. However, the chemistry is applicable to a range of aryl and heteroaryldiazoacetate derivatives **15** as illustrated in the Rh₂(S-2-Cl-5-BrTPCP)₄ reaction of the hexylamine derivative **1d** (Scheme 9). In all instances, C–H functionalization occurs at the distal methylene site to form the C–H functionalization products **16** with high diastereoselectivity (>20:1 d.r.) and with enantioselectivity ranging from 87:13 to 95:5 e.r.

Scheme 9. C-H functionalization with various aryl and heteroaryldiazoacetate derivatives

Troc =
$$CO_2CH_2CCI_3$$

Ar N_2

15 (1.0 equiv.) Troc

Rh₂(S-2-CI-5-BrTPCP)₄
(1 mol %)

CH₂Cl₂, 23 °C, 3 h

Entry^a Ar yield (%) r.r. d.r.^b e.r.^c

a CI

b F₃C

c Br

C Br

Ar N_2

69 >20:1 40:1 92:8

c Br

69 >20:1 20:1 97:3

c Br

At N_2

At N

a. Reaction condition: Diazo **15** (0.2 mmol, 1.0 equiv.), Substrate **1d**

(0.5 mmol, 2.5 equiv.), Rh₂(S-2-CI-5-BrTPCP)₄

(1 mol %, 3.8 mg), CH_2Cl_2 (4 mL), 23 °C, 3 h slow addition via syringe pump.

b. d.r. were determined by crude ¹H NMR

c. e.r. were determined by chiral HPLC or chiral SFC

In conclusion, The *N*-phthalimido group is effective for protecting primary amines during rhodium-catalyzed functionalization of unactivated C–H bonds with donor/acceptor carbenes. Due to the electron withdrawing nature of the phthalimido group, it can inductively protect C–H bonds that are close to it. Furthermore, the relatively large nature of the phthalimido group can also protect sites from C–H functionalization and lead to enhanced levels of stereoselectivity. These studies further underscore the functional group compatibility of donor/acceptor carbenes even when they are reacting with unactivated C–H bonds.

ASSOCIATED CONTENT

Accession Codes

The following crystal structure has been deposited in the Cambridge Crystallographic Data Centre: Compound **9** (CCDC 2247866). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 902 1223 336033.

Data Availability: The data underlying this study are available in the published article and its online supplementary material.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Complete experimental procedures and compound characterization are available in the Supporting Information (PDF).

AUTHOR INFORMATION

Corresponding Author

Huw M. L. Davies – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/0000-0001-6254-9398; Email: hmdavie@emory.edu

Authors

Ziyi Chen – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/0000-0002-8093-8466

Qinyan Cai – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/0000-0002-5908-2560

Yannick T. Boni – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/0000-0002-5040-3997

Wenbin Liu – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/0000-0001-8854-8174

Jiantao Fu – Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States; orcid.org/ 0000-0002-1067-6915

Notes

HMLD is a named inventor on a patent entitled, Dirhodium Catalyst Compositions and Synthetic Processes Related Thereto (US 8,974,428, issued March 10, 2015).

ACKNOWLEDGMENT

We thank Sam McKinnon, Emory University for preliminary studies conducted on this project and John Bacsa, Emory University for the X-ray crystallographic determination. This work was supported by the National Institute of Health (GM099142) and by the NSF under the Center for C–H Functionalization (CHE-1700982). Funds to purchase the NMR and X-ray spectrometers used in these studies were supported by NSF (CHE 1531620 and CHE 1626172).

REFERENCES

(1) (a) Sinha, S. K.; Guin, S.; Maiti, S.; Biswas, J. P.; Porey, S.; Maiti, D. Toolbox for distal C-H bond functionalizations in organic molecules. Chem. Rev. 2022, 122, 5682-5841. (b) Holmberg-Douglas, N.; Nicewicz, D. A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev. 2022, 122, 1925-2016. (c) Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. Chem. Rev. 2022, 122, 1875-1924. (d) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B. F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp³)-H bonds. Chem. Rev. 2021, 121, 14957-15074. (e) Lam, N. Y. S.; Wu, K.; Yu, J. Q. Advancing the logic of chemical synthesis: C-H activation as strategic and tactical disconnections for C-C bond construction. Angew. Chem. Int. Ed. 2021, 60, 15767-15790. (f) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Latestage C-H functionalization offers new opportunities in drug discovery. Nature Rev. Chem. 2021, 5, 522-545. (g) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S. Q.; Yu, J. Q. From Pd(OAc)₂ to chiral catalysts: The discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C-H functionalization reactions. Acc. Chem. Res. 2020, 53, 833-851. (h) White, M. C.; Zhao, J. P. Aliphatic C-H oxidations for late-stage functionalization. J. Am. Chem. Soc. 2018, 140, 13988-14009.

(2) (a) Doyle, M. P.; Liu, Y.; Ratnikov, M. Catalytic, asymmetric, intramolecular carbon-hydrogen insertion. *Org. Reacts.* **2013**, *80*, 1-131. (b) Davies, H. M.; Pelphrey, P. M. Intermolecular C–H insertions of carbenoids. *Org. Reacts.* **2011**, *75*, 75-212. (c) Cheng, S. Y.; Li, Q. Y.; Cheng, X. L.; Lin, Y. M.; Gong, L. Recent advances in asymmetric transformations of unactivated alkanes and cycloalkanes through direct C–H functionalization. *Chin. J. Chem.* **2022**, *40*, 2825-2837. (d) He, Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y. G.; Yu, Z. Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. *Chem. Soc. Rev.* **2022**, *51*, 2759-2852.

- (3) (a) Klimovica, K.; Heidlas, J. X.; Romero, I.; Le, T. V.; Daugulis, O. "Sandwich" diimine-copper catalysts for C-H functionalization by carbene insertion. Angew. Chem. Int. Ed. 2022, 61, e202200334. (b) Yang, Y.; Liu, S. P.; Li, S.; Liu, Z. H.; Liao, P. Q.; Sivaguru, P.; Lu, Y.; Gao, J. J.; Bi, X. H. Siteselective C-H allylation of alkanes: Facile access to allylic quaternary sp³carbon centers. Angew. Chem. Int. Ed. 2023, 62, e202214519. (c) Álvarez, M.; Molina, F.; Pérez, P. J. Carbene-controlled regioselective functionalization of linear alkanes under silver catalysis. J. Am. Chem. Soc. 2022, 144, 23275-23279. (d) Liu, Z.; Cao, S.; Yu, W.; Wu, J.; Yi, F.; Anderson, E. A.; Bi, X. Site-selective C-H benzylation of alkanes with N-triftosylhydrazones leading to alkyl aromatics. Chem. 2020, 6, 2110-2124. (e) Yamakawa, Y.; Ikuta, T.; Hayashi, H.; Hashimoto, K.; Fujii, R.; Kawashima, K.; Mori, S.; Uchida, T.; Katsuki, T. Iridium(III)-catalyzed asymmetric site-selective carbene C-H insertion during late-stage transformation. J. Org. Chem. 2022, 87, 6769-6780. (f) Liu, Z. N.; Huang, J.; Gu, Y.; Clark, D. S.; Mukhopadhyay, A.; Keasling, J. D.; Hartwig, J. F. Assembly and evolution of artificial metalloenzymes within E. Coli Nissle 1917 for enantioselective and site-selective functionalization of C-H and C=C bonds. J. Am. Chem. Soc. 2022, 144, 883-
- (4) Davies, H. M. L.; Hansen, T. Asymmetric intermolecular carbenoid C–H insertions catalyzed by rhodium(II) (S)-N-(p-dodecylphenyl)sulfonylprolinate. *J. Am. Chem. Soc.* **1997**, *119*, 9075-9076.
- (5) (a) Davies, H. M. L.; Liao, K. B. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. *Nature Rev. Chem.* **2019**, *3*, 347-360. (b) Davies, H. M. L. Finding opportunities from surprises and failures. Development of rhodium-stabilized donor/acceptor carbenes and their application to catalyst-controlled C–H functionalization. *J. Org. Chem.* **2019**, *84*, 12722-12745. (c) Davies, H. M. L.; Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. *Chem. Soc. Rev.* **2011**, *40*, 1857-1869.
- (6) (a) Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J. T.; Bacsa, J.; Davies, H. M. L. Design, synthesis, and evaluation of extended C₄-symmetric dirhodium tetracarboxylate catalysts. *ACS Catalysis* **2022**, *12*, 10841-10848. (b) Cammarota, R. C.; Liu, W. B.; Bacsa, J.; Davies, H. M. L.; Sigman, M. S. Mechanistically guided workflow for relating complex reactive site topologies to catalyst performance in C–H functionalization reactions. *J. Am. Chem. Soc.* **2022**, *144*, 1881-1898. (c) Boni, Y. T.; Cammarota, R. C.;

- Liao, K. B.; Sigman, M. S.; Davies, H. M. L. Leveraging regio- and stereose-lective $C(sp^3)H$ functionalization of silyl ethers to train a logistic regression classification model for predicting site-selectivity bias. *J. Am. Chem. Soc.* **2022**, *144*, 15549-15561.
- (7) (a) Liao, K. B.; Yang, Y. F.; Lie, Y. Z.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. *Nature Chem.* **2018**, *10*, 1048-1055. (b) Fu, J. T.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. *Nature* **2018**, *564*, 395-401. (c) Liao, K. B.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. *Nature* **2017**, *551*, 609-613. (d) Liao, K. B.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. *Nature* **2016**, *533*, 230-234.
- (8) (a) Davies, H. M. L.; Babl, T.; Liu, W.; Röther, A.; Reiser, O. Functionalization of piperidine derivatives for the site selective and stereoselective synthesis of positional analogs of methylphenidate. *Chem. Eur. J.* **2020**, 26, 4236 –4241. (b) Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A. Highly regio-, diastereo-, and enantioselective C–H insertions of methyl aryldiazoacetates into cyclic *N*-Boc-protected amines. Asymmetric synthesis of novel C-2-symmetric amines and threo-methylphenidate. *J. Am. Chem. Soc.* **1999**, *121*, 6509-6510.
- (9) Davies, H. M. L.; Venkataramani, C. Catalytic enantioselective synthesis of β^2 -amino acids. *Angew. Chem. Int. Ed.* **2002**, 41, 2197-2199.
- (10) (a) Davies, H. M. L.; Jin, Q. H. Double C–H activation strategy for the asymmetric synthesis of C-2-symmetric anilines. *Org. Lett.* **2004**, *6*, 1769-1772. (b) Korvorapun, K.; Boni, Y. T.; Maier, T.C.; Bauer, A.; Licher, T.; Macor, J. E.; Derdau, V. Site-selective C–H functionalization of N-aryl and N-heteroaryl piperidines, morpholines, and piperazines controlled by a chiral dirhodium tetracarboxylate catalyst. *ACS Catalysis* **2023**, *13*, 2359-2366.
- (11) Liu, W. B.; Ren, Z.; Bosse, A. T.; Liao, K. B.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L. Catalyst-controlled selective functionalization of unactivated C–H bonds in the presence of electronically activated C–H bonds. *J. Am. Chem. Soc.* **2018**, *140*, 12247-12255.