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Abstract—The rapid advances in federated learning (FL) in
the past few years have recently inspired a great deal of
research on this emerging topic. Existing work on FL often
assume that clients participate in the learning process with
some particular pattern (such as balanced participation), and/or
in a synchronous manner, and/or with the same number of
local iterations, while these assumptions can be hard to hold
in practice. In this paper, we propose AFLC, an Anarchic
Federated Learning algorithm for Convex learning problems,
which gives maximum freedom to clients. In particular, AFLC
allows clients to 1) participate in arbitrary rounds; 2) participate
asynchronously; 3) participate with arbitrary numbers of local
iterations. The proposed AFLC algorithm enables clients to
participate in FL efficiently and flexibly according to their needs,
e.g., based on their heterogeneous and time-varying computation
and communication capabilities. We characterize performance
bounds on the learning loss of AFLC as a function of clients’ local
model delays and local iteration numbers. Our results show that
the convergence error can be made arbitrarily small by choosing
appropriate learning rates, and the convergence rate matches that
of existing benchmarks. The results also characterize the impacts
of clients’ various parameters on the learning loss, which provide
useful insights. Numerical results demonstrate the efficiency of
the proposed algorithm.

I. INTRODUCTION

As an emerging paradigm of machine learning (ML), feder-
ated learning (FL) carries out model training in a distributed
manner [1]: Instead of collecting data from a possibly large
number of devices to a central server in the cloud for training,
FL trains a global ML model by aggregating local ML models
computed distributedly across edge devices based on their
local data. One significant advantage of FL is to preserve the
privacy of individual devices’ data. Moreover, since only local
ML models rather than local data are sent to the server, the
communication costs can be greatly reduced. Furthermore, FL
can exploit substantial computation capabilities of ubiquitous
smart devices.

In order to fully realize the potential of FL, several chal-
lenges need to be addressed due to salient features of FL.
First, FL implies heterogeneous local data across clients, so
that local models computed by clients from their local data can
be diverse. Therefore, it is difficult for clients’ local models
to achieve convergence. Second, in contrast to conventional
distributed ML where nodes typically communicate after every
local computation iteration, clients in FL can perform multiple
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local iterations of computation before communicating their
local models. While this feature can reduce communication
costs of FL, it may slow down the convergence of the global
model due to local model drifts (which is observed in many
prior works such as [2]-[4]).

Besides data heterogeneity and multiple local iterations,
FL also faces some challenges due to heterogeneous and
time-varying computation and communication capabilities of
clients’ devices. First of all, clients may not be able to
participate in every round of the entire learning process.
This is particularly the case for cross-device FL. where many
clients only have resource-constrained mobile devices which
are sometimes not available to perform local computations
and/or communications with the FL server. Moreover, due to
heterogeneity in computation and communication capabilities,
even a client is able to participate in learning, it may be
impossible or inefficient for all clients to complete their local
computations and also communications of their local models in
every round of the learning process in a synchronous manner.
As a result, clients may need to compute and communicate
their local models asynchronously. Furthermore, even clients
can participate in FL synchronously in a round, they may
perform different numbers of local iterations of computa-
tion, based on their computation capabilities. Such heteroge-
neous computation configuration can improve the efficiency of
clients in FL, especially when there are stragglers. However,
existing work on FL only considered some of the issues
discussed above, but not all the issues at the same time.

In this paper, we explore Anarchic Federated Learning
(AFL) which addresses all the challenges of FL as discussed
above, by imposing minimum control on how clients partici-
pate in FL. In particular, AFL allows clients to 1) participate in
arbitrary rounds; 2) participate asynchronously; 3) participate
with arbitrary numbers of local iterations. By giving maximum
freedom to clients, AFLC enables clients to participate in FL
efficiently and flexibly according to their needs, e.g., based
on their heterogeneous and time-varying computation and
communication capabilities. We focus on AFL for convex
learning problems (i.e., the objective function is convex),
which has not been studied before for AFL. The convex setting
of FL is of great importance: Although cutting-edge learning
problems (such as deep learning) are typically non-convex in
general, they are often convex locally and thus can be well
approximated by convex problems. Although AFL for non-
convex learning problems has been studied very recently in [5],
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there are some non-trivial differences for the convex setting
that need to be addressed. In particular, the learning accuracy
in the convex setting is quantified by the normed distance
between the model found by the algorithm and the optimal
model, which is quite different from that in the non-convex
setting (which is the normed gradient). As a result, the major
techniques used in the convergence analysis for the convex
setting are significantly different from those in [5], e.g., the
convexity of the learning problem needs to be utilized.

The main contributions of this paper are summarized as
follows:

e We propose AFLC, an Anarchic Federated Learning
algorithm for Convex learning problems, which allows
clients to 1) participate in arbitrary rounds; 2) participate
asynchronously; 3) participate with arbitrary numbers of
local iterations. The proposed AFLC algorithm enables
clients to participate in FL efficiently and flexibly ac-
cording to their needs, e.g., based on their heterogeneous
and time-varying computation and communication capa-
bilities. One key idea in the algorithm design of AFLC
is to use the most recent local model of a client to
update the global model in a round, if the client does not
participate or have not completed its local computation
and/or communication in that round.

« We conduct convergence analysis for the AFLC algorithm
by characterizing performance bounds on the learning
loss as a function of clients’ local model delays, and local
iteration numbers. Our results show that the convergence
error can be made arbitrarily small by choosing appropri-
ate learning rates, and the convergence rate matches that
of existing benchmarks. The results also characterize the
impacts of clients’ parameters on the learning loss, which
provide useful insights.

o We evaluate the performance of the proposed AFLC
algorithms by conducting numerical experiments for FL.
benchmarks. The experimental results demonstrate the
efficiency of the proposed algorithms.

The remainder of this paper is organized as follows. Section

II reviews related work. In Section III, we propose a anarchic
federated learning algorithm for convex learning problems.
In Section IV, we analyze the convergence of the proposed
AFLC algorithm. Numerical results based on experiments are
provided in Section VI.

II. RELATED WORK

FL has emerged as a disruptive computing paradigm for
ML by democratizing the learning process to potentially many
individual users using their end devices [1], [6]-[9]. The
past few years have seen tremendous research on FL. In the
following, we discuss recent work on FL from three different
aspects that are mostly related to this paper.

Federated Learning with Partial Client Participation.
One major challenge for FL is that clients may not always
participate throughout the entire learning process. This is
especially true for cross-device FL. where many clients have
resource-constrained mobile devices which are sometimes not

possible or too costly to perform local computations and/or
communicate local/global models with the server. Many recent
works [5], [8]-[10] studied FL. where only some of all clients
participate in learning in a round. Most of these studies [8],
[10] assumed that clients’ participation is balanced (e.g., the
set of participating clients are randomly selected from all
clients), such that each client has the same probability of
participation. Under this assumption, it has been shown that
FL algorithms can achieve a vanishing convergence error.
However, in the general case where clients’ participation can
be arbitrary, there is a non-vanishing convergence error due
to the worst-case client participation. This paper not only
considers arbitrary client participation, but also asynchronous
participation and heterogeneous local iteration numbers of
clients.

Asynchronous Federated Learning. Many existing work [8]—
[10] on FL studied synchronous algorithms where participat-
ing clients perform local computations and exchange local
models in the same round (note that synchronous FL can
also have partial client participation). However, synchronous
algorithms can be inefficient as some clients may have to
wait for other clients to complete their computations and/or
communications, especially when there are stragglers due to
heterogeneous computation and communication capabilities of
clients. In this case, asynchronous algorithms [5], [11] are
more efficient where a client can start its local computations
in one round while completing the communication of its local
model in another round. In this paper, besides asynchronous
learning, we also consider arbitrary client participation and
heterogeneous local iteration numbers.

Federated Learning with Heterogeneous Computations.
One salient feature of FL is that clients can have heterogeneous
computation capabilities. As a result, it is more efficient and
flexible to allow clients to use different computation configu-
rations. Some existing work on FL [5], [12] considered clients
who use different mini-batch sizes, different local iteration
numbers, and/or different learning model structures, etc. This
paper considers clients with different local iteration numbers
as well as arbitrary client participation and asynchronous
algorithms.

III. ANARCHIC FEDERATED LEARNING FOR CONVEX
LEARNING PROBLEM

In this section, we first present the system setting and the
problem formulation of the FL system we consider. Then we
describe AFLC, an Anarchic Federated Learning algorithm for
Convex learning problems.

A. System Setting and Problem Formulation

Consider a FL system with an FL server and N clients in
set A/ who collaboratively train a ML model with distributed
local data in an asynchronous manner. The goal of the FL
system is to minimize the training loss, which is given by the
following optimization problem:

min F(w) £ Z peFi(w),
® keN
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Fig. 1. Schedule of AFLC: BC is global model broadcast, AG is local model
aggregation, each C block represents a local Computation iteration, each M
block represents a local model coMmunication.

where F'(w) is the global loss function, w is the model
parameter, Fj(w) is the local loss function determined by
client k’s local dataset, pj, is the coefficient of client k’s local
loss function, and » , - \-pr = 1.

Let 7F be the delay of the client k’s most recent local
model received at the server at the end of round t (i.e., the
difference between ¢ and the index of the round when client
k received the global model from the server to compute this
most recent local model). If client k receives the global model
w;_1 in round ¢, and then completes its local computations
and communication of its local model wf_; to the server in
round ¢, then Ttk =1 (e.g., the delay of client 1 in round ¢+ 1
in Fig 1 is 74,4 = (t + 1) — t = 1); otherwise, 77" > 1 (e.g.,
in Fig 1, the delays of clients 2 and 3 in round ¢ + 1 are both
TH =T =t +1) - (t-1)=2).

After receiving the global model from the server, each
client uses the global model to perform one or multiple local
iterations of computation, each of which is given by
wéc,h—&-l £ wtltc,h - nt,hVFk(wf,hvgzﬁh)v h = 0,1,..., HZC -1,
where h is the local iteration index, féf 5, 1s a sample uniformly
chosen from the client k’s local dataset. Let H) be the
maximum number of local iterations of computation for client
k based on the global model it received in round t.

We use I' = >, pr(F* — F}}) to quantify the non
independent and identically distributed (non-IID) degree of the
local data among all clients [8]. If I" = 0, then the local data
are IID, otherwise, they are non-1ID case. The larger I is, the
higher non-IID degree is. In addition, we do not allow a client
to never update her model to the server, which means there
exists a maximum delay constraint.

B. Algorithm Design of AFLC

We propose the AFLC algorithm as described in Algo-
rithm 1. The schedule of the proposed AFLC algorithm is
described in Fig 1. We consider two types of clients in each
round t: 1) updating clients N} who have completed their
local computations and also communications of their local
models to the server in round ¢, so that their local models
are used to update the global model in round ¢ (e.g., clients
1 and 2 for round ¢, and clients 1 and 3 for round ¢ + 1 in
Fig 1); 2) non-updating clients N} who do not participate (i.e.,
do not perform any local computation or any communication)
in round ¢ (e.g., client 2 for round ¢ 4+ 1 in Fig 1), or who

Algorithm 1 Anarchic Federated Learning for Convex Learn-

ing Problems (AFLC)

1: For each client k € \/:

2: If starting to participate, receive the latest global model
w,, broadcast by the server with timestamp (round index)
u, and set wl’io = w;

3: for h=01to H — 1 do
. k L ok ko ¢k Y.
4 w,u,h—&-l - w,u,h - nthFk(wp,h’ gu,h)’
5: end for
6: Sum local stochastic gradients as Gl’j =
Hk

h=0 ' VFk(wﬁ,h,a fﬁ,h)?

7: Send the local model G,’j to the server;

8: For the server, in each round i:

9: Broadcast the latest global model w;_; to all clients;

10: Receive the local model wf*n" from each updating client

ke N

11: Retrieve the most recent local model w!

., from the

server’s memory for each non-updating client ! e NP,
12: Update the global model as w, = w;_; —

Ne+1 <Zke/\[t1 kaf_Ttk + Zle./\/',f) plGi_th>;

participate but have not completed their local computations or
communications of their local models to the server in round
t (e.g., client 3 for round ¢ in Fig 1). Note that clients’
local computations and communications with the server are
allowed to be intermittent and spanning multiple rounds (such
as clients 1, 2, and 3 in Fig 1), which accommodates the
time-varying computation and communication capabilities of
clients.

The server is responsible for local model aggregation. In
each round, the server first broadcasts the latest global model
to all clients (only clients who start to participate in this
round receive this global model). Then the server receives
local models from updating clients, and retrieves the most
recent local models of non-updating clients from the server’s
memory. These most recent local models have been kept by
the server since they were last updated by the server, when
the non-updating clients in this round last communicated their
local models to the server. Finally, the server aggregates the
local models from both updating clients and non-updating
clients, to update the global model.

IV. CONVERGENCE ANALYSIS OF AFLC

In this section, we first make some assumptions on the
function Fy, F3, ..., Fny. Then we provide the theoretical
analysis of the proposed algorithm and some insights. Due
to space limitation, all the proofs of results in this paper are
provided in our online technical report [13].

Assumption 1: (L-Smoothness). Each local objective func-
tion is L-smooth, that is, V,y

F() ~ (@) < {97,y —2) + 5y —



IEEE INFOCOM WKSHPS: FOGML 2023: The Second International Workshop on Distributed Machine Learning and Fog Networks

Assumption 2: (u-Strongly Convex). Each local objective
function is p-strongly convex, that is, Vx,y

I
Fy) = fl@) 2 (Vi) y —a) + S lly - x|
Assumption 3: (Bounded Gradient Variance). The stochastic

gradient at each client is an unbiased estimator of the local
gradient: E[f;(wF, ¢F)] = VF;(x), and has bounded variance

B[ |[vF(wf, ¢) - vF(w))|*| < o?,

o >0, Zpkak <o VkeN.
keN
Assumption 4: (Bounded Gradient). The deviation between

local and global gradient satisfies:
2
Bl||vF(w}, &)]’] <6

Vke N, vte{l, 2, , .. T}

Assumption 5: (Bounded Delay). The period of two adjacent
global updates for any client is not greater than 7,4, i..
t—7F 4+ 1 < Thae, Yk € N, Vt € {1, 2, , .., T},
where 7F is the asynchronous model delay which represents
that client k uses the model at the round ¢ — 7} to compute
his local update and update to the server at the round ¢.

Assumption 1, 2 and 5 are standard and commonly used in
the literature on learning and optimization [3], [5], [14]. For
Assumption 3, the boundedness of local stochastic gradients’
variances is also a common assumption for prior work on FL
with non-IID datasets [15]-[17]. Assumption 4 is used in some
works [8].

To satisfy Assumption 5, each client should participate in
at least the first round of the learning process, so that the FL
server can have the most recent local model for each client in
each round. This condition is necessary since, otherwise, there
does not exist an FL algorithm that can always guarantee a
vanishing convergence error. To see this, when this condition
does not hold, we present a lower bound on the convergence
error, which is achieved in the worst-case scenario of client
participation.

Proposition 1: (Convergence error lower bound with arbi-
trary client participation) Let €),. characterize heterogeneity
of clients’ local data. Suppose client participation can be
arbitrary. There exist loss functions satisfying Assumptions 1-
3, and a particular client participation process, such that for
any convergent FL algorithm, its convergence error is lower
bounded by:

E[||F(w) - F'|’] > 0(@,),

Remark 1: Intuitively, in the worst-case scenario when some
client never participates in any round, then the global model
can only be driven towards the local optimal models of the
clients who participate, and there is no way to shift the global
model towards the global optimal model. The lower bound
above is achieved in such worst-case scenario (see our online
technical report [13] for details).

Next we analyze the convergence of the proposed AFLC
algorithm as below.

Theorem 1: (Convergence error of AFLC) Suppose Assump-
tions 1- 5 hold. If we set v = max{%, Hippaz} where Hppgo

is the maximum local iteration numbers among all users in all
rounds, and set the learning rate 7; = ﬁ, then the training
loss of AFLC given by Algorithm 1 is upper bounded by:

2 2L (B . 2)
— < | — —
E[Ilf(wt) Bl } < 61D +2L |lw, — w|?),

I

(D
where B = 6LT+02+ (24 un: ) G2 Y, cpr Kf’nk and Ktkde -
Z::t—rf pin (Hf — 1)%.

Remark 2: Theorem 1 shows that the proposed Algorithm 1
can converge to the optimal value (rather than an error neigh-
borhood) in the sense that the convergence error can be made
arbitrarily small if the number of rounds ¢ is large enough. It
has been shown in prior work [18] that FL with arbitrary client
participation results in a non-vanishing convergence error. This
is due to an objective function drift under the worst-case
scenario of client participation, regardless of the choices of
learning rates and local iteration numbers. In our proposed
AFLC algorithm, we use the most recent local model from a
client in a round if the server does not receive a local model
update from that client in that round. In this way, we show
that the objective function drift can be addressed, despite of
using the most recent local model rather than the actual local
model from the client if the server would receive a local model
update from that client in that round. In fact, the error between
the most recent local model and the actual local model can be
properly controlled by choosing an appropriate learning rate.

Remark 3: We observe that the convergence error bound
depends on agents’ local iteration numbers {H;}, and the
bound increases as {H;} increase. Intuitively, due to clients’
heterogeneous data, more local computation iterations drives
each client’s local model more towards its local optimal model
and possibly away from the global optimal model (also known
as “local drifts” in existing works on FL [7], [8]). As a result,
the convergence error bound increases as the local iteration
numbers go up. Note that the term involving B goes to 0
when clients’ local iteration numbers are all equal to 1 (i.e.,
H; =1,Vi).

We also observe that the error bound increases as agents’
local model delays {t;} increase. This is because, as the local
model delay increases, there is more error in the most recent
local model used in the AFLC algorithm compared to the
actual local model without any delay. Therefore, the error
increases when the delay is higher.

Remark 4: We note that existing works on FL predominantly
considered non-convex learning problems [5], [19], while only
a few of them studied the convex setting [8]. In particular,
a very recent work [5] proposed anarchic federated learning
algorithms for the non-convex setting. Although the algorithms
in [5] are similar to the AFLC algorithms proposed in this
paper, there are some non-trivial differences for the convex
setting in the convergence analysis of the algorithms. In par-
ticular, the learning accuracy in the convex setting is quantified
by the normed distance between the model found by the
algorithm and the optimal model, which is quite different from
that in the non-convex setting (which is the normed gradient
of the objective function). As a result, the major techniques
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used in the convergence analysis for the convex setting are
significantly different from those in [5]. In particular, the
convexity of the training loss functions of the learning problem
is utilized to establish an important bound in the convergence
analysis. Also, a properly designed diminishing stepsize needs
to be used here to achieve a vanishing convergence error. In
contrast, a constant stepsize is used in [5] for the non-convex
setting, which can achieve a vanishing convergence error.

Remark 5: 1t is also worth noting that, to deal with hetero-
geneous local iteration numbers of clients, a couple of recent
studies [5], [10] proposed to scale the aggregation weights of
clients’ local models according to their local iteration numbers,
so as to achieve a vanishing convergence error. However, the
AFLC algorithm in this paper can do so without using this
technique, which is due to the differences of the convex setting
here compared to the non-convex case studied in [5], [10].

Corollary 1: (Convergence Rate). With a decaying learning
rate 1; = %t), the convergence rate of AFLC is O(7).

Remark 6: It has been shown that an asynchnorous FL
algorithm under the non-convex setting can achieve a con-
vergence rate of O(%) (e.g., AsyncCommSGD [20], AFA-
CD [5]). A synchnoronous FL algorithm under the convex
setting usually achieve a convergence rate of O(%) (e.g.,
FedAvg-non-IID [8], Fedprox [21]). As our AFLC algorithm
which is asynchnorous and under the convex setting can
reach a convergence rate of O(%), it matches that of the
existing synchnoronous algorithms for convex learning and
outperforms the existing asynchnorous algorithms for non-
convex learning.

V. NUMERICAL EXPERIMENTS

In this section, we conduct simulations to verify the the-
oretical findings and evaluate the efficiency of the proposed
algorithm. We first describe the simulation setup, and then
present the results and analysis.

A. Simulation Setup

In this section, we run the image recognition program
on the minist database using the ASUS laptop to evaluate
the effectiveness of AFLC and verify our theoretical results.
The MNIST is a database of handwritten digits which is
used for training image processing programs. The database
is also widely used for training and testing in the field of
machine learning [22]. We first examine the convergence rate
of 4 algorithms. We perform the simulations in terms of 3
design variables, which are the number of clients updating
with the server per round (IV), the degree of non-IID (I'), the
maximum local iteration numbers (H;**"), and the maximum
local update delay (7,,42)- We study the relationship between
the convergence rate and these 3 variables, respectively.

B. Simulation Results

1) Convergence rate: As shown in Fig 2, we check the test
accuracy of 4 different algorithms, which are AFA-CD [5], the
proposed algorithm, FedAsync [23], and FedAvg [1]. The test
accuracy shows that our algorithm is efficient and accurate.
The accuracy of our algorithm is similar to the AFA-CD.

2) Impact of the number of clients updating with the server
per round: As shown in Fig 3, fast-k refers to the server
collecting the fast-k clients who finish their local computation
under the maximum delay constraint in the IID setting. It is
shown that more clients participating in a round can speed
up the training process because more participating clients can
make more clients compute with a smaller delays model. When
there are only a few clients can update their model in each
round, then there must exist a straggler with a higher delay,
which can decline in aggregation results.

3) Impact of the number of the degree of non-IID: 1t is
hard to get the exact value of I' in (1), so we use 'IID
dataset’, ’Non-IID Data with balanced samples and labels’,
’Non-IID Dataset with unbalanced label samples’, ’Non-1ID
Dataset with unbalanced samples’, where balanced samples
mean all clients’ number of each label is equal in their dataset,
and balanced labels mean all clients label types are same. It
is easy to find that the degree of non-IID in these 4 cases is
increasing. It is shown in Fig 4 that the degree of non-IID
affects the convergence rate, but it does not affect the final
results, which meet our analyses.

4) Impact of the maximum local iteration numbers: Fig 5
shows that increasing the maximum local iteration numbers
will decrease the convergence rate of the FL. However, in
asynchronous federated learning, simply increasing local iter-
ation numbers can sometimes make bad effects on the train-
ing loss, because some stragglers with larger local iteration
numbers can ruin the results of the global model. In addition,
increasing local iteration numbers cannot improve the final
training accuracy which meets our theoretical analyses.

5) Impact of the maximum local update delay: As shown
in Fig 6, the value of the global loss function increases with
increasing delay time. For a synchronous FL (¢,,4, = 0),
which obviously has the lowest global loss among all settings.
At the beginning of the FL training, the difference between the
4 different maximum local update delays is relatively small,
since we only constrain the maximum value of the local update
delay, resulting in a smaller difference in user choices at the
beginning of the training. When the training is nearly finished,
the difference becomes larger and larger due to the straggler
clients.

VI. CONCLUSION AND FUTURE WORK

FL is an emerging topic in ML/AI and networking that
has recently received tremendous interests. In this paper, we
propose AFLC, which allows clients to 1) participate in arbi-
trary rounds; 2) participate asynchronously; 3) participate with
arbitrary numbers of local iterations. The AFLC algorithm
enables clients to participate in FL efficiently and flexibly
according to their needs, e.g., based on their heterogeneous and
time-varying computation and communication capabilities. We
characterized performance bounds on the learning loss of
AFLC as a function of clients’ local model delays, and local
iteration numbers, which show that the learning loss can be
made arbitrarily small by choosing appropriate learning rates.
We demonstrated the efficiency of the AFLC via numerical
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results. For future work, we will explore AFL in other settings
of FL, such as for decentralized networks of clients. These
cases will be more challenging to study due to the complex
communication structure.
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