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A B S T R A C T   

Due to the adverse health effects of residential air contaminants, there have been increased efforts to monitor 
indoor particulate matter (PM) concentration using low-cost sensors. However, little information is available 
about the performance of low-cost sensors in monitoring indoor aerosols. We established a research framework 
to examine the performance of a widely used low-cost sensor in the U.S. (PurpleAir) along with two research- 
grade light scattering sensors (Grimm 11-A, Sidepak AM520) in a laboratory chamber and a full-scale residen
tial testbed. The results show that low-cost sensors can yield relatively high intra-model consistency for mass 
concentrations; however, the consistency is lower when measuring particles >1 μm than research-grade sensors. 
Regression analysis with research-grade sensors shows higher linearity for mass concentration than number 
concentration. These trends of mass and number concentrations are likely attributed to the size selectivity of 
Plantower PMS5003 sensor in PurpleAir that constrains the number fractions of specific particle size bins. The 
results also show that concentration discrepancy between the low-cost sensor and research-grade sensor in
creases as indoor mass concentration increases, suggesting that sensor quality assurance is needed for episodic 
indoor emission events that lead to elevated PM2.5 concentrations (>100 μg m−3).   

1. Introduction 

As people spend much more time indoors than outdoors [1,2], 
human exposure to indoor particles has been recognized as a major 
environmental health problem [3]. Human exposure to airborne parti
cles causes adverse health effects such as respiratory and cardiovascular 
disease [4,5]. Some studies reported that exposure to indoor-originated 
particles could be much higher than outdoor-originated particles [6,7]. 
Furthermore, the contribution of indoor-generated particles smaller 
than 2.5 μm (PM2.5) increased during and post-COVID-19 lockdown in 
the residential environment [8]. However, without monitoring particle 
concentrations, it is difficult for occupants to identify whether indoor 
particle concentrations are at a safe level. 

Gravimetric Federal Reference Method (FRM) provided by U.S. 
Environmental Protection Agency (EPA) is a standard method to mea
sure particulate matter (PM). However, FRM requires a longer sampling 
time than typical indoor particle emission activities. Federal Equivalent 
Method (FEM) enables higher time resolution (hourly or better), and it is 

used as a common standard for comparing the measurements with other 
instruments [9]. However, it requires expensive instruments, a large 
deployment area, and a longer sampling time, which makes it hard to be 
deployed in residential environments. In general, research-grade sensors 
can provide relatively high accuracy; however, they are still expensive 
and need labor and resources to set up, and some of them generate noises 
from sampling pumps. Hence, it may not be practical to deploy several 
research-grade sensors in occupied spaces and collect large amounts of 
detailed data in buildings. As an alternative to research-grade sensors, 
low-cost particle sensors have been broadly applied to outdoor and in
door aerosol monitoring [10–17]. However, researchers are still 
debating the performance and applicability of low-cost sensors for 
monitoring particles in different environments. Rai et al. [18] examined 
low-cost sensors under 500 US dollars and reported that a two-stage 
sensor calibration process is necessary to ensure data quality for 
measuring PM2.5 and PM10. Karagulian et al. [19] pointed out that 
low-cost sensors showed good agreement with research-grade sensors 
with a coefficient of determination R2 > 0.75, and the regression slope 
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close to 1.0 based on field and laboratory tests; however, calibration and 
inter-comparison process are recommended for monitoring PM1, PM2.5, 
and PM10. 

Several other studies examined the performance of low-cost sensors 
in various environments [20–31]. Among the variety of low-cost sen
sors, PurpleAir has been widely used because of its advantages that are 
able to perform real-time monitoring of both particle mass and number 
concentrations. In addition, it can save time-series particle concentra
tion data on the cloud, which makes the sensor data accessible to users. 
Due to this capability, previous studies employed PurpleAir for moni
toring particles in ambient air at the community and city scales [8, 
32–34] and evaluated the performance of PurpleAir sensor comparing 
with research-grade sensors under laboratory and field experiment 
conditions [16,32,33,35–39]. However, for indoor environment appli
cations, relatively few studies examined the performance of PurpleAir in 
monitoring indoor-generated particles [14,24,39]. There are still two 
major questions remained about the reliability of PurpleAir: 1) Can 
PurpleAir have good intra-model consistency when measuring 
indoor-generated particles so that one can compare multiple datasets 
collected from different buildings? and 2) Can we trust PurpleAir’s 
particle mass and number concentrations that vary with occupant ac
tivities in buildings? 

Based on this background, the objective of this study is to examine 
the intra-model consistency and the performance of PurpleAir sensor 
against research-grade sensors for monitoring three common household 
indoor particles: 1) incense stick burning, 2) bacon pan frying, 3) 

outdoor ambient particles derived through open windows. The results 
will reveal how the particle monitoring performance of PurpleAir varies 
with indoor source emission type and concentration type (mass vs. 
number). 

2. Methods and materials 

2.1. Experimental setup 

In this study, we carried out sensor collocation tests to examine the 
intra-model consistency of PurpleAir as well as evaluation of indoor 
particle monitoring performance compared to research-grade sensors. 
Collocation and sensor performance tests were conducted in a labora
tory chamber and an apartment testbed. The laboratory chamber has a 
dimension of 3.4 m × 6.0 m × 2.4 m (width × length × height). All 
sensors were placed in the middle of the chamber and 1.2 m above the 
floor (Fig. 1a). Before each test, all sensors were zero-calibrated, and the 
sample inlets and impactors were cleaned and greased. For the particle 
emission source, a burning incense stick was placed 1 m away from 
sensors on the same height and left to burn for 7 min. During the test, all 
doors of the chamber were closed. Since the volume of the chamber is 
relatively small (40.8 m3), air mixings were not used. 

The field sensor performance tests were conducted in an apartment 
testbed with a floor area of 84 m2 and a volume of 193 m3. During each 
test, a heat-recovery ventilator was operating, and all PM sensors were 
deployed in the living room and placed 1.2 m above the floor (Fig. 1b). 

Fig. 1. (a) Description of the collocation test in a laboratory chamber, (b) Description of the sensor performance test in an apartment testbed.  
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Since the volume of the testbed is relatively large and the particles were 
generated in the kitchen, there is the possibility that the particle con
centration distribution is not uniform, which can cause different particle 
concentration readings among sensors. To prevent this, four mixing fans 
were operated with an airspeed of 2 m s−1 to make the well-mixed 
condition, and all sensor inlets were placed right next to each other 
with a 2 cm distance. In addition, we sealed the duct joints and potential 
vertical air paths to minimize particle infiltration from the adjacent 
house units. 

The tests were performed with three common household particle 
sources: 1) incense stick burning, 2) bacon pan frying, and 3) outdoor 
ambient particles. For incense stick burning, an incense stick was burnt 
for 7 min in the kitchen and immediately distinguished with wet tissue. 
For bacon pan frying, 40 g of bacon was baked in a preheated pan on an 
electric stove with no oil. When the surface temperature of the pan 
reached 230 ◦C, bacon was cooked for initial 3-min and turned over for 
another 2-min. For outdoor ambient particles, living room windows 
were fully opened (total dimensions of the opening is about 1.8 m × 1 
m). Through the open windows, outdoor PM penetrated the apartment, 
resulting in the indoor PM concentration profile following the outdoor 
PM concentration profile in a delayed pattern. Each particle generation 
test was performed for 24 h after the generation except for outdoor 
ambient particles, for which the concentration was measured for 72 h. 

During the tests, the air temperature and relative humidity (RH) 
were monitored using MCH-383SD. And for the field test, air change 
rates were measured every 10 min using the tracer gas (SF6) concen
tration decay method. SF6 was released to each room with a rate of 15 L 
min−1 until the concentration reached 50 ppm. Based on the best-fit 
slope to a plot of the natural log of the ratio of SF6 concentration to 
the initial concentration vs. time, the air change rate of the testbed was 
estimated as 0.9 (±0.1) h−1. Table 1 shows the description of the tests 
and Table S1 summarizes the measured air temperature and RH during 
the tests. 

2.2. Descriptions of particle sensors 

The research-grade sensors employed to measure particle mass 
concentrations were Grimm dust decoder model 11-A (Grimm) and TSI 
Sidepak personal aerosol monitor AM520 (Sidepak). Grimm, Sidepak, 
and PurpleAir (PA-II-SD) differ in size and number of particle size bins, 
features, configurations, and measurement performances. For example, 
Grimm can monitor particles with the size range of 0.25 μm–32 μm with 
31 particle size bins, while PurpleAir measures particles in 6 size bins 
larger than 0.3 μm. These two sensors can report both number and mass 
concentrations; however, Sidepak, a photometer, can only report the 
mass concentration. Since Plantower PMS5003 sensor integrated in 
PurpleAir provides 2 min-averaged data [32], the sampling intervals for 
all PM sensors were set to 2-min. PurpleAir has six channels of size bin: 
≥0.3 μm, ≥0.5 μm, ≥1 μm, ≥2.5 μm, ≥5 μm, and ≥10 μm. Based on 
these size bins, we adjusted Grimm’s size bins to compare the results. 
Table 2 summarizes the specification of Grimm, Sidepak, and PurpleAir. 

PurpleAir has two Plantower PMS5003 (Plantower.co) sensors inside 
the unit to check internal precision which provides sensor health and 
fault detection [40]. Stavroulas et al. [35] reported that PM concen
trations measured by these two sensors inside the PurpleAir unit showed 

negligible differences of < 0.5%. In addition, PurpleAir has two inherent 
correction factors for mass concentration, CF = ATM and CF = 1, which 
were calculated using the particle count data with a proprietary algo
rithm proposed by the PMS5003 laser counter manufacturer [40]. Ac
cording to the “Using PurpleAir Data” guide, CF = 1 is appropriate for 
indoor or controlled environment applications, while CF = ATM is a 
proprietary correction for outdoor applications. Since incense stick 
burning and bacon pan frying are common indoor sources, CF = 1 was 
chosen in this study. 

2.3. Data analysis 

Intra-model consistency of an optical light scattering sensor was 
evaluated based on relative standard deviation (RSD) by comparing the 
mass and number concentrations of each particle size range as follows: 

RSD(t) = σ(t)/μ(t) Eq (1)  

where σ(t) is the standard deviation at given time t and μ(t) is the average 
particle concentration of the same model units at given time t. 

Furthermore, given that the data from the low-cost and the research- 
grade sensors could generate a constant or proportional bias [41], 
regression analysis was performed to investigate the correlation be
tween data from PurpleAir and two research-grade sensors. 

3. Results 

3.1. Intra-model consistency 

Table 3 shows the intra-model consistency of PurpleAir that repre
sents the agreement among different units of the same sensor. The intra- 
model consistency of six PurpleAir units was evaluated based on the 
coefficient of determination (R2) and relative standard deviation (RSD). 
R2 value indicates the linearity of pairwise units, while RSD indicates the 
amount of variation within a dataset; therefore, higher values of R2 and 
lower values of RSD represent better intra-model consistency. 

Table 1 
Description of the collocation and sensor performance tests.  

Test Site Air mixing Source Number of sensors Test hours 

PurpleAir Grimm Sidepak 

Collocation And Sensor performance tests Laboratory chamber (40.8 m3) – Incense stick burning 6 1 5 18 
Collocation test Apartment testbed (193 m3) O Bacon pan frying 4 – – 24 
Sensor performance test Incense stick burning 1 1 1 (PM1) 24 

Bacon pan frying 1 (PM2.5) 24 
Outdoor particles 1 (PM10) 72  

Table 2 
Summary of sensor specifications.  

Sensors Grimm 
(Grimm 11-A) 

Sidepak (TSI 
AM520) 

PurpleAir (PA-II- 
SD) 

Notation Grimm Sidepak PurpleAir 
Detectable size range 

(μm) 
0.25–32 0.1–10 >0.3 

Maximum detectable 
concentration 

3.0 × 109 m−3 

100 mg m−3 
100 mg m−3 1 mg m−3 

Volume flow rate 
(L•min−1) 

1.2 1.8 0.1 

Operating temperature 
(◦C) 

0–40 0–50 −40–85 

Operating humidity <95% <95% unknown 
Light source 

(wavelength) 
Diode Laser 
(683 nm) 

Diode Laser 
(650 nm) 

Diode Laser (680 
± 10 nm) 

Uncertainty 5% for whole 
range 

0.001 mg m−3 10% (0.1–0.5 mg 
m−3) 
0.01 mg m−3 

(<0.1 mg m−3)  
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According to the incense stick burning test (Table 3), all mass con
centrations of PurpleAir PM1, PM2.5, and PM10, have R2 values higher 
than 0.93 and RSD less than 0.07; all units of PurplaAir show similar 
peak concentrations and the decay patterns (see Fig. S1). These values 
are comparable to those of Sidepak, which showed 0.97 ≤ R2 ≤ 0.99 and 
0.05 ≤ RSD ≤0.08. These results imply that PurpleAir has high intra- 
model consistency in measuring particle mass concentration from the 

incense stick burning. It also corresponds with previous studies report
ing that particle sensors using Plantower PMS5003 show a good intra- 
model consistency for the particle mass concentration measurement 
[20,25,42]. 

For the bacon pan frying, the particle concentration patterns of four 
PurpleAir units show a good agreement with an R2 value greater than 
0.93 (Table 3 and Fig. S1). However, unlike the incense stick burning, 

Table 3 
Coefficient of determination (R2) and relative standard deviation (RSD) of mass and number concentrations obtained from the collocation test.  

Source Sensor PM R2 RSD 

Min Med Max Min Med Max 

Incense stick Burning (Chamber) PurpleAir (6 units) PM1 0.94 0.98 0.99 0.01 0.03 0.06 
PM2.5 0.94 0.99 0.99 0.01 0.03 0.07 
PM10 0.93 0.98 0.99 0.02 0.04 0.06 
0.3–0.5 μm 0.98 0.99 0.99 0.03 0.04 0.05 
0.5–1 μm 0.98 0.99 0.99 0.03 0.04 0.05 
1–5 μm 0.97 0.98 0.99 0.05 0.07 0.10 
5–10 μm 0.40 0.17 0.51 0.49 1.21 1.82 
≥10 μm 0.01 0.13 0.35 0.40 0.78 1.08 

Sidepak (5 units) PM2.5 0.97 0.99 0.99 0.05 0.06 0.08 
Bacon pan frying (Testbed) PurpleAir (4 units) PM1 0.97 0.98 0.99 0.01 0.12 0.29 

PM2.5 0.96 0.98 0.99 0.01 0.15 0.25 
PM10 0.93 0.94 0.99 0.01 0.32 0.70 
0.3–0.5 μm 0.98 0.99 0.99 0.04 0.06 0.10 
0.5–1 μm 0.98 0.99 0.99 0.03 0.08 0.11 
1–5 μm 0.95 0.92 0.94 0.07 0.30 0.45 
5–10 μm 0.30 0.12 0.44 0.51 1.35 1.89 
≥10 μm 0.01 0.08 0.29 0.42 0.90 1.23 

Note: Min, Med, and Max denote minimum, median, and maximum, respectively. 

Fig. 2. Time-series particle mass concentration measured by Grimm, Sidepak, and PurpleAir. Note that (a), (d), and (g) contains the concentrations obtained from 
two tests, incense stick burning tests in the chamber and in the testbed. Note that the concentration of each sensor is the average time-series concentration of all units. 
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the bacon pan frying test shows a higher RSD (0.01 ≤ RSD ≤0.70), and 
the average RSD of PM2.5 and PM10 is 5–8 times higher than the incense 
stick burning (Table 3). Such a trend is more pronounced as the particle 
size increases. 

Intra-model consistency of PurpleAir in monitoring number con
centration notably varies with the particle size. For both particle sour
ces, the relatively high intra-model consistency (R2 > 0.98, RSD <0.11) 
was observed with the particle size range from 0.3 μm to 1 μm. In 
contrast, the intra-model consistency sharply dropped for the particle 
sizes larger than 1 μm (0.01 ≤ R2 ≤ 0.99, 0.05 ≤ RSD ≤1.89). This trend 
suggests that particle number concentrations are less consistent among 
the units for particles larger than 1 μm. Tryner et al. [37] also observed 
this trend that RSD increases with monitoring coarser particles. 

3.2. Particle mass concentration readings 

Fig. 2 shows time-series particle mass concentration observed over 
the emission and decay periods with three different particle sources: 1) 
incense stick burning, 2) bacon pan frying, and 3) outdoor particles. 
Each panel illustrates mass concentrations measured by three PM sen
sors, Grimm, Sidepak, and PurpleAir with a sampling time interval of 2 
min. The figure shows that concentration differences among three sen
sors notably increase as the concentration is above 100 μg m−3, whereas 
the differences are marginal as the concentration is lower than 100 μg 
m−3. The incense stick burning test conducted in the testbed shows that 
PM2.5 concentrations of all sensors are less than 70 μg m−3, and they 
have no notable difference (The peak concentration from the testbed is 
lower than from the chamber due to the large air volume and the 
operation of a heat recovery ventilation system that yielded an average 
air change rate of 0.9 h−1). 

In Fig. 2d, with the incense stick burning in the chamber, PM2.5 
concentration rises higher than 100 μg m−3, and the concentration of 
Sidepak is about two times higher than that of PurpleAir. A similar trend 
appears when the particle source is bacon pan frying (Fig. 2b and e). At 
the peak concentration, PM1 and PM2.5 concentrations of Sidepak are 
about two times higher than that of PurpleAir. The difference is more 
pronounced (up to 280%) for PM10 concentration, especially at con
centrations higher than 100 μg m−3 (Fig. 2h). With outdoor-infiltrated 
particles, PurpleAir and Sidepak consistently show higher concentra
tions than Grimm (Fig. 2f and i). The particle mass concentration 
monitored by each sensor varies with the concentration range, particle 
size, and source type. This is mainly because they affect the detection 
efficiency of the sensor that operate based on a light scattering method 
[43,44]. 

However, according to Table 4, PurpleAir yields the mass concen
tration close to Grimm for PM1, PM2.5 and PM10 concentration range of 
10–100 μg m−3; the mean absolute error is less than 9.7 μg m−3 for the 
concentration of 10–100 μg m−3, while its range is 20.3–30.0 μg m−3 for 
the concentration >100 μg m−3. This corresponds with previous study 
results that the concentration of PurpleAir is highly correlated to that of 
research-grade sensors, but the discrepancy becomes larger as the con
centration increases [10,12,13]. This result implies that during episodic 
indoor emission events where the particle mass concentration increases 
dramatically (over 100 μg m−3 for PM2.5), proper performance evalua
tion and quality control are needed as PurpleAir readings can deviate 

from those reported by research-grade sensors. 
Fig. 3 shows time-series particle number concentrations for five 

different particle size bins measured by PurpleAir and Grimm. The 
figure indicates that the agreement between PurpleAir and Grimm in 
monitoring particle number concentration notably varies with the par
ticle size and source. For bacon pan frying, PurpleAir agrees well with 
Grimm in monitoring particles in the range of 0.3 μm–1 μm, with a 
maximum difference of 33% (Fig. 4c and f). However, for the incense 
burning, relatively large differences up to two orders of magnitude were 
observed between PurpleAir and Grimm (Fig. 4a, d, and g). Regardless of 
the particle source type, unreasonably large discrepancies were 
observed for particle sizes larger than 5 μm. This result is in line with 
several previous studies reporting that the accuracy of PurpleAir 
significantly decreases for coarser particles due to the low detection 
efficiency [16,37,42,44]. Even though the two particle sensors share a 
similar working principle, the light scattering with a diode laser, the 
sensing performances for particle number concentrations notably vary 
with the particle size, concentration range, and source type. These 
patterns suggest cautions in reporting number concentrations associated 
with indoor emission sources based on PurpleAir monitoring data, 
especially for particle sizes larger than 1 μm. 

3.3. Comparison of particle concentrations of PM sensors 

Fig. 4 shows the correlation between particle mass concentrations of 
PurpleAir and two research-grade sensors (Grimm and Sidepak). 
Table S2 provides detailed information about regression slopes, in
tercepts, and coefficients of determination (R2). Note that the concen
tration of PurpleAir is on the y-axis, so the slope less than one or higher 
than one means that PurpleAir underestimates or overestimates the 
concentration, respectively, compared to research-grade sensors. The 
figure reveals that the particle mass concentration of PurpleAir yields 
fairly high linearity (R2 ≥ 0.86, Table S2) with that of Grimm and 
Sidepak for all particle sizes and source types. However, according to 
Fig. 4e, the linearity between the concentrations of PurpleAir and 
Grimm decreases sharply when PM10 concentration is higher than 100 
μg m−3, and the regression fit is rather logarithmic. This result has been 
previously observed with monitoring outdoor-generated particles that 
Plantower PMS5003 sensor tends to report lower particle mass con
centration than research-grade sensors as the concentration increases 
[21,25,31]. We also found that PurpleAir tends to underestimate indoor 
PM10 concentrations higher than 100 μg m−3. 

Fig. 5 illustrates the correlation between particle number concen
trations of PurpleAir and Grimm, and the detailed information about 
regression slopes, intercepts, and coefficients of determination (R2) are 
described in Table S3. It is apparent that the linearity of particle number 
concentration highly varies relative to particle mass concentration with 
the particle size and source type. For the particle size of 0.3 μm–0.5 μm, 
PurpleAir underestimates the particle number concentration compared 
to Grimm, and for the particle size of 0.3 μm–1 μm, it overestimates the 
particle number concentration (Fig. 5a and b). When the particle size is 
greater than 1 μm, the particle number reading of PurpleAir varies with 
the particle source type (Fig. 5c). Moreover, even with the same particle 
source, the regression slopes show a noticeable difference depending on 
the particle size. When the particle size is small (0.3 μm–1 μm), the 

Table 4 
Mean absolute and relative errors of PurpleAir compared to Grimm.   

Mass concentration range 

<10 μg m−3 10–100 μg m−3 >100 μg m−3 

Absolute error (μg•m−3) Relative error (%) Absolute error (μg•m−3) Relative error (%) Absolute error (μg•m−3) Relative error (%) 

PM1 2.2 51 7.3 11 20.3 18 
PM2.5 2.3 36 9.4 7 29.4 12 
PM10 3.5 37 9.7 9 30.0 16  
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incense stick burning tests in the chamber and testbed yield a relatively 
similar trend, while for particles greater than 1 μm, the concentration 
from the chamber shows 3.5 times higher regression slop than from the 
testbed (Table S3). These results suggest that when reporting PurpleAir 
monitoring data, particle mass concentrations are better correlated to 
research-grade sensors and more consistent than particle number 
concentrations. 

3.4. Effect of particle size fraction 

Fig. 6 illustrates the particle size fraction of mass and number con
centrations reported by Grimm, Sidepak, and PurpleAir in the present 
study. Grimm shows the different particle size distribution with the 
particle source, while Sidepak and PurpleAir show a relatively constant 
size distribution regardless of the particle source (Fig. 6a). Although all 
sensors use the light scattering method for estimating the particle con
centration, specifically, Grimm and Sidepak use different methods; 
Grimm is a spectrometer and Sidepak is a nephelometer (also known as 

Fig. 3. Time-series particle number concentration measured by Grimm and PurpleAir. Note that the concentration of Purple is the average time-series concentration 
of all units. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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photometer). Since Plantower PMS5003 in PurpleAir is more alike the 
nephelometer than the spectrometer [44,45], PurpleAir and Sidepak 
show the similar mass concentration fraction. 

For particle number fraction, the same trend is shown (Fig. 6b); 
particle number concentration fraction for 0.3 μm–0.5 μm measured by 
Grimm changes with the particle source type, ranging from 81% to 95%. 
However, the concentration fraction of PurpleAir was fairly steady 
regardless of the particle source type, varying between 72% and 74%. 
The number concentration fractions of other size bins were also 
consistent: 23%–24% for 0.5 μm–1 μm, 2.6%–5.3% for 1 μm–2.5 μm, 
and less than 1% for particles larger than 2.5 μm. However, the number 
fraction of Grimm varied with particle size range: 4.9%–15% for 0.5 
μm–1 μm, 0.26%–2.9% for 1 μm–2.5 μm, and less than 1% for particles 
larger than 2.5 μm. This result resonates with previous studies. He et al. 
[46] tested Plantower PMS5003 sensors to measure ammonium sulfate 

polydisperse particles in a chamber and found out that PMS5003 always 
shows a consistent particle size distribution, regardless of the actual 
particle size distribution. Tryner et al. [37] also reported the similar 
result that Plantower PMS5003 sensors consistently reported about 70% 
of particles in a size range of 0.3 μm–0.5 μm with polystyrene latex 
particles. 

4. Discussion 

In this study, we conducted collocation and sensor performance tests 
to assess the feasibility of PurpleAir in monitoring indoor airborne 
particles. According to the collocation test, PurpleAir shows a good 
intra-model consistency when measuring the particle mass concentra
tions from the incense stick burning. This result is in line with previous 
studies that low-cost sensors have high intra-model consistency in 

Fig. 4. The correlation between particle mass concentrations of PurpleAir and two research-grade sensors, Grimm and Sidepak.  
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measuring ambient and indoor-generated particles [22,23,25,29,31,43]. 
However, our test reveals that the consistency among PurpleAir units 
decreases for particle sizes >1 μm, especially for bacon pan frying. This 
is mainly because two particle sources, incense stick burning and bacon 
pan frying, generate particles with different size distributions. 

According to the measurement by Grimm, the bacon pan frying gener
ates about 100 times more particles (>1 μm) than the incense stick 
burning (Fig. S2). Considering the low detection accuracy for measuring 
particles >1 μm [16,28,37,44], PurpleAir can report inconsistent par
ticle number concentrations when measuring high number 

Fig. 5. The correlation between particle number concentrations of PurpleAir and Grimm.  

Fig. 6. Particle size fraction reported by Grimm, Sidepak, and PurpleAir. (a) Particle mass fraction, (b) Particle number fraction.  
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concentrations of particles >1 μm, which can influence the readings of 
PM2.5 and PM10. 

According to the sensor performance test, PurpleAir shows fairly 
good agreements with Grimm and Sidepak in monitoring indoor particle 
mass concentration (Fig. 4 and Table S2). In this study, we used CF = 1, 
the correction factor for the mass concentration, and our results suggest 
that it is suitable for measuring indoor-generated particles. Likewise, 
Tryner et al. [37] reported that CF = 1 shows good linearity with a 
research-grade sensor. However, this correction factor in Plantower 
sensor has a critical drawback; it arbitrarily replaces the low concen
trations with zero [16,39]. Due to such limitation, the accuracy of 
reading the mass concentration considerably decreases when the con
centration is low (i.e., PM2.5 < 40 μg m−3) [22,25,31,39]. Moreover, as 
the concentration increases, the linearity between PurpleAir and Grimm 
becomes weaker (Fig. 4). This trend is pronounced for PM2.5 and PM10 
> 100 μg m−3 with the bacon pan frying, which is mainly because the 
bacon pan frying generates more particles >1 μm where the detection 
efficiency of Plantower sensor is less than 15% [44]. On the other hand, 
Plantower sensor installed in PurpleAir has a higher sensitivity for 
particles <1 μm. Accordingly it consistently reports that 70% fraction of 
measured particles is 0.3 μm–0.5 μm as shown in Fig. 6b, [20,37,46]. 
Due to the predetermined size selectivity of Plantower sensor, some 
studies recommended not to use it for measuring PM10 [16,44]. 

To improve the accuracy of PurpleAir, new algorithms for the 
correction factor have been developed such as Alternative method (ALT) 
based on the particle number concentration [16], correlation equation 
including the air temperature and RH [32,42,47], and machine learning 
methods [48,49]. These algorithms would be appropriate for the con
ditions where the particle size fraction and environmental factors are 
relatively stable [11,42]. Meanwhile, the air temperature and relative 
humidity of indoor environments such as a residential building can 
change with time [50,51], and even occasionally, relative humidity 
exceeds 80% where Plantower sensor frequently reports errors [22,31]. 
Furthermore, they have a variety of particle sources with different 
particle size distributions and compositions that affect the detection 
efficiency of Plantower sensor [29,37]. For example, gas or electric stove 
mainly generates ultrafine particles [52], and human activities such as 
making a bed and walking generate much larger particles >3 μm [53, 
54]. Therefore, sensor quality assurance is necessary for the research 
purpose to measure particles associated with episodic indoor particle 
emissions. 

Taken together, PurpleAir is useful for monitoring the mass con
centration of indoor airborne particles because of its reasonable agree
ment with research-grade sensors. Our results indicate that PurpleAir 
yields fairly reliable data for PM2.5 < 100 μg m−3. However, its detection 
efficiency decreases for particles >1 μm, and environmental conditions 
influence its performance. Also, our results reveal that PurpleAir needs 
careful calibration with research-grade sensors to ensure accuracy for 
measuring high concentrations (i.e., PM2.5 > 100 μg m−3), especially for 
indoor environments where episodic source emissions occur. 

5. Conclusions 

In this study, we evaluated the performance of a widely used low- 
cost PurpleAir sensor for monitoring indoor particles based on the 
comparison with two other research-grade sensors with the light- 
scattering method (Grimm and Sidepak). The tests involved three 
common residential particle sources: 1) incense stick burning, 2) bacon 
pan-frying, and 3) outdoor particle infiltration through the open win
dows. PurpleAir showed high intra-model consistency throughout all the 
mass and number concentrations, although it becomes weak when 
measuring number concentrations for particles >1 μm. The higher the 
mass concentration, the larger the concentration difference between 
PurpleAir and other sensors was observed. This result implies that for 
episodic indoor emission events where higher concentrations of PM2.5 
and PM10 (>100 μg m−3) are measured, proper performance evaluation 

and quality control are needed as PurpleAir readings notably deviate 
from those of the reference sensors. While the linearity of concentration 
readings of PurpleAir against other sensors shows relatively high R2 

values for mass concentration, using particle number concentrations 
measured by PurpleAir does not seem practical or possible for evaluating 
indoor exposure to airborne particles. 

Note that this study mainly focused on only three types of anthro
pogenic emissions, i.e., two indoor sources (bacon frying in pan and 
incense burning) and the outdoor air pollution. Future studies are 
warranted to examine the sensor performance for other common indoor 
aerosol emission sources considering building operating conditions in 
schools and offices [54,55]. 
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