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Abstract

Inverse problems with spatiotemporal observations are ubiquitous in scientific studies and engineering applications. In these
spatiotemporal inverse problems, observed multivariate time series are used to infer parameters of physical or biological
interests. Traditional solutions for these problems often ignore the spatial or temporal correlations in the data (static model),
or simply model the data summarized over time (time-averaged model). In either case, the data information that contains
the spatiotemporal interactions is not fully utilized for parameter learning, which leads to insufficient modeling in these
problems. In this paper, we apply Bayesian models based on spatiotemporal Gaussian processess (STGP) to inverse problems
with spatiotemporal data and show that the spatial and temporal information provides more effective parameter estimation
and uncertainty quantification (UQ). We demonstrate the merit of Bayesian spatiotemporal modeling for inverse problems
compared with traditional static and time-averaged approaches using a time-dependent advection—diffusion partial different
equation (PDE) and three chaotic ordinary differential equations (ODE). We also provide theoretic justification for the
superiority of spatiotemporal modeling to fit the trajectories even if it appears cumbersome (e.g. for chaotic dynamics).

Keywords Spatiotemporal inverse problems - Spatiotemporal Gaussian process - Chaotic dynamics - Trajectory fitting -

Uncertainty quantification

1 Introduction

Many inverse problems in science and engineering involve
large scale spatiotemporal data, typically recorded as multi-
variate time series. There are examples in fluid dynamics that
describe the flow of liquid (e.g. petroleum) or gas (e.g. flame
jet) (Baukal Jr 2000). Other examples include dynamical sys-
tems with chaotic behavior prevalent in weather prediction
(Lorenz 1963), biology (Liz and Ruiz-Herrera 2012), eco-
nomics (Brooks 1998) etc. where small perturbation of the
initial condition could lead to large deviation from what is
observed/calculated in time. The goal of such inverse prob-
lems is to recover the parameters from given observations
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and knowledge of the underlying physics. The spatiotem-
poral information is crucial and should be respected when
considering proper statistical models for parameter learning.
This is not only of interest in statistics, but also beneficial
for practical applications of physics and biology to obtain
inverse solutions and UQ more effectively.

Traditional methods for these spatiotemporal inverse
problems often ignore the time dependence in the data for
a simplified solution (Villa et al. 2021; Cleary et al. 2021,
Lan et al. 2022). They either treat the observed time series
statically as independent identically distributed (i.i.d.) obser-
vations across time (Villa et al. 2021; Lan et al. 2022) (hence
named as “static” model), or summarize them by taking time
average or higher order moments (Morzfeld et al. 2018;
Cleary et al. 2021; Huang et al. 2022) (referred as “time-
averaged" approach). The former is prevalent in Bayesian
inverse problems with time series observations (Lan et al.
2022). The latter is especially common in parameter learn-
ing of chaotic dynamics, e.g. Lorenz systems (Lorenz 1963;
Cleary et al. 2021), due to their sensitivity to the initial
conditions and the system parameters (and the nature of
the time-averaging procedure), which in turn cause a rough
landscape of the objective function. In both scenarios, the
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spatiotemporal information is not fully integrated into the
statistical modeling.

In this paper, we propose to apply Bayesian methods based
on Gaussian Process (GP) (Sacks et al. 1989; Oakley and
O’Hagan 2002, 2004; Kennedy and O’Hagan 2001; Hig-
don et al. 2004; O’Hagan 2006) to the inverse problems
with spatiotemporal data to account for the space-time inter-
dependence. This leads to fitting the whole trajectories of
the observed data, rather than their statistical summaries,
with elaborated models. More specifically, we use the STGP
model (Cressie and Wikle 2011; Gneiting 2002; Paciorek
et al. 2003; Wang et al. 2020; Lan 2022) to fit the observed
multivariate time series in comparison with the static or the
time-averaged (for summarized data) models. Theoretically,
we justify why the STGP model should be preferred to by
investigating their Fisher information, which can be used as
a measurement of convexity: STGP renders a more convex
likelihood than the other two models and leads to an easier
learning of the parameters. We also demonstrate in numerical
experiments (Sect.4) that the STGP model yields parameter
estimates closer to the truth with smaller observation window
required, and also provides more reasonable UQ results. Note
this implies faster convergence (future work) by the STGP
model, which is computationally important because complex
ODE/PDE systems are usually expensive to solve.

Spatiotemporal reasoning/modeling was introduced to
inverse problems. However, it was either applied to spe-
cific domains such as functional magnetic resonance imag-
ing (fMRI) (Woolrich et al. 2004), electroencephalography
(EEG) (Siregar and Sinteff 1996) and electrocardiography
(ECG) (Shcherbakova et al. 2021), or to a simplified Gauss-
linear problem (Long 2011; Ojeda et al. 2019; Conjard and
Omre 2021; Yang 2017). Spatiotemporal information was
also used to construct prior (Zhang et al. 2005) and regular-
ization (Yao and Yang 2016; Pasha et al. 2021), or to reduce
the number of parameters (Echeverria Ciaurri and Mukerji
2009). However, none of them formulates the spatiotempo-
ral modeling in the general framework of Bayesian inverse
problems with spatiotemporal observations. We summarize
the main contributions of this work as follows:

e It formulates a Bayesian modeling framework for inverse
problems with spatiotemporal data that includes tradi-
tional static and time-averaged methods;

e It provides a theoretical justification on why the STGP
model is preferable in the spatiotemporal inverse prob-
lems;

e It numerically demonstrates the advantage of the STGP
model in parameter learning and UQ.

The rest of the paper is organized as follows: Sect.2

reviews the background of Bayesian UQ for inverse prob-
lems, with a particular framework named Calibrate- Emulate-
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Sample (CES) (Cleary et al. 2021; Lan et al. 2022). In Sect. 3
we generalize the problem setup to include spatiotemporal
observations and compare the STGP model (Sect. 3.3) with
the static model (Sect.3.1) and the time-averaged model
(Sect.3.2). We prove in Theorems 3.1 and 3.2 that the
STGP model can have more convex likelihood than the static
and the time-averaged models. Then in Sect.4 we demon-
strate the advantage of the STGP model over the other two
traditional approaches with inverse problems involving an
advection—diffusion equation and three chaotic dynamics.
Finally we conclude with some discussions on future direc-
tions in Sect. 5.

2 Background: Bayesian UQ for inverse
problems

In many inverse problems, we are interested in finding an
unknown parameter, « (which could be a function or a vec-
tor), given the observed data, y. The parameter u usually
appears as a quantity of interest in the inverse problem, e.g.
the initial condition of a time-dependent advection—diffusion
problem (Sect.4.1) or the coefficient vector in the chaotic
dynamics (Sect.4.2). Let X and Y be two separable Hilbert
spaces. A forward mapping G : X — Y from the parame-
ter space X to the data space Y (e.g. Y = R” form > 1)
connects u € Xtoy € Y as follows:

y=Gw+n, n~N(OTI) ey
We can define the potential function (negative log-likelihood),
®:X xY — R, often with " = o21:

1 1
s y) =5y - Gt = S =G, Iy —Gwy))
)

The forward mapping G represents physical laws usually
expressed as large and complex ODE/PDE systems that could
be highly non-linear. Therefore repeated evaluations of G(u)
(which require solving ODE/PDE) and hence @ (u; y) are
expensive for different u’s.

In the Bayesian setting, a prior measure jo is imposed
on u, independent of 1. For example, we could assume a
Gaussian prior g = N(0, C) with the covariance C being
a positive, self-adjoint and trace-class operator on X. Then
we can obtain the posterior of u, denoted as w(u|y), using
Bayes’ theorem (Stuart 2010; Dashti and Stuart 2017) if 0 <
Z = [y exp(—=®(u; y))po(du) < +o0:

=L exp—o 3
%(u) = E exp( (u; y)) 3)

Bayesian UQ for inverse problems involves learning the
posterior distribution p(du) which often exhibits strongly
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non-Gaussian behavior, posing significant challenges for effi-
cient inference methods such as Markov Chain Monte Carlo
(MCMO).

There are three urging computational challenges in the
Bayesian UQ for inverse problems: (1) intensive compu-
tation for likelihood evaluations, which require expensive
solving of forward problems; (2) complex (non-Gaussian)
posterior distributions; and (3) high dimensionality of the
discretized parameter (still denoted as u when there is no
confusion from the context). The last one makes the first
two more difficult in the sense that high dimensionality not
only demands efficient forward solvers, but also challenges
the robustness of sampling algorithms. To address these
challenges, an approximate inference framework named
Calibrate-Emulate-Sample (CES) has recently been pro-
posed by Cleary et al. (2021) whose GP emulator is replaced
with neural network (NN) by Lan et al. (2022) for high dimen-
sional approximate UQ. It consists of the following three
stages:

1. Calibrate using optimization-based (ensemble Kalman)
algorithms to obtain parameter estimation and collect
expensive forward evaluations for the emulation step;

2. Emulate recycling forward evaluations from calibration
to build an emulator for sampling;

3. Sample sampling the posterior approximately based on
the emulator, which is much cheaper than the original
forward mapping.

CES calibrates the model with ensemble Kalman (EnK)
methods (Evensen 1994; Evensen and van Leeuwen 1996).
Two algorithms, ensemble Kalman inversion (EKI)
(Schillings and Stuart 2017a; Garbuno-Inigo et al. 2020a)
and ensemble Kalman sampler (EKS) (Garbuno-Inigo et al.
2020a,b), evolve K ensemble particles {u(k)}f:1 according
to the following equations respectively:

ek 20 i(g( ®)y Gy —Gu®)
: =— u —-G,y—6Gu
di K~
dw® :
+«/§—dr > @) — i)
r
du® 1 & Neoos
: ! ©Y_ Gy — ™) .
EKS : — _Kk;@(u ) =G,y =G )>r
, dw®
@) — @) — Cane~"u® + 20w

dt

where i = % Zle ub G = % Zle Gu®), =z =0
or I', {W®} are independent cylindrical Brownian motions
onY,and C(u) := + 35 @® — i) ® @® — ). Imple-
mented in parallel, EnK algorithms converge quickly to the

optimal parameter with a few (usually hundreds of) ensem-
bles without explicit calculation of gradients. However, due
to the collapse of ensembles (Schillings and Stuart 2017a, b;
de Wiljes et al. 2018; Chada et al. 2020), the sample vari-
ance given by {u(k)}f:1 tends to underestimate the actual
uncertainty (see Figure 1 in Lan et al. 2022, ).

CES recovers the proper uncertainty by running sampling
algorithms based on an emulator G¢ : X — Y trained on
data {u,(f), Q(u,(lk))}f:’llv 2—o that have been collected in the
calibration stage. The emulator can be GP (Cleary etal. 2021;
Sacks et al. 1989; Kennedy and O’Hagan 2001; Higdon et al.
2004; O’Hagan 2006) or NN, e.g. convolutional NN (Lan
et al. 2022; Krizhevsky et al. 2012; Goodfellow et al. 2016;
Zammit-Mangion et al. 2020).

Once the emulator is built, CES approximately sam-
ples from the posterior with dimension-independent MCMC
algorithms based on the emulated likelihood ®¢ and its gra-
dient D®° (defined by substituting G with G¢ in (2)) at
much lower computational cost. Note, a class of dimension-
independent algorithms—including preconditioned Crank-
Nicolson (pCN) (Cotter et al. 2013), infinite-dimensional
MALA (co-MALA) (Beskos et al. 2008), infinite-dimensional
HMC (co-HMC) (Beskos et al. 2011), and infinite
-dimensional manifold MALA (co-mMALA) (Beskos 2014)
and HMC (co-mHMC) (Beskos et al. 2017)—are used in
place of traditional Metropolis—Hastings algorithms to avoid
the deteriorating mixing time as the dimension of parameter
space increases.

3 Spatiotemporal inverse problems (STIP)

When the observations are taken from a spatiotemporal pro-
cess, y(X, t), simple Gaussian likelihood function as (2) with
I = o2], for example, may not be sufficient to describe the
space-time interactions. To address this issue, we propose to
rewrite the data model (1) in terms of a GP with spatiotem-
poral kernel I'(x, #):

y(x, 1) =Gu)(x, 1) +n(x, 1),

©)
n(x, 1) ~GP, T'(x,1t))

In practice, the forward model often involves time-
dependent PDE, e.g. heat equation and Navier—Stokes
equations. Therefore, it is crucial to allow for the spatiotem-
poral correlations in the statistical analysis of such inverse
problems. Compared to (1), the model (5) offers a more
appropriate definition of the likelihood by incorporating the
spatiotemporal structures in the data.

Note, the proposed general framework (5) also includes
many existing statistical models as special cases. For exam-
ple, if we define the forward map based on some covariates,
X(x,1), G(B)(x,t) = X(x,1)B(x, 1), then (5) is simply a
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Fig. 1 Advection—diffusion inverse problem: comparing maximum a posteriori (MAP) estimates of parameter 1y = u(x, 0) by the static model

(middle) and the STGP model (right) with the truth ug (left)

regression model. If we set G(u)(x, t) = L(x, r)u(x, t) with
loading matrix L(x, t), then (5) becomes a latent factor model
(Agarwal and Chen 2009; Webb 2011; Jenatton et al. 2012).

In the following, we will review the static (Sect.3.1)
and the time-averaged (Sect. 3.2) models and unify them in
the framework of STGP model (Sect.3.3). For the conve-
nience of exposition, we fix some notations in the following.
Denote X := {x,-}{zl, t = {tj}jj.;é, and Y := y(X,t) =
{v(xi, t.;)}l.l’zjlfjlzo, data observed at I locations and J time
points. C, is the covariance matrix of the covariance kernel
C, restricted on the finite-dimensional discrete space for
being either x or 7.

3.1 Static model

In the literature of Bayesian inverse problems (Dashti and
Stuart 2017; Cleary et al. 2021), the noise 1 is often assumed

i
ii.d. over time in (5), i.e. n(x, t;) i N (0, Cx). This leads to
the following static model where the temporal correlation is
ignored:

y&, Olu, I' ~ GPG)(x, 1), I'(x, 1))

'x,1)=CG QI 2

static :

where Z; is the Dirac operator such that Z; (¢, ') = 1 only if
t = t’. When the spatial dependence is also suppressed (as
in the advection—diffusion example of Sect.4.1 and in Villa
et al. (2021); Lan et al. (2022)), we have Cx = afIx.

The temporal correlation is disregarded in the static model
(6). When there is (spatio-)temporal effect in the resid-
ual 7, the static model (6) may be insufficient to account
for the spatiotemporal relationships contained in the data.
For illustration, we consider an inverse problem involving
advection—diffusion (Sect.4.1) equation (Villa et al. 2021,
Lan et al. 2022) of an evolving concentration field u(Xx, t),
e.g., temperature for heat transfer, and seek the solution to
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the initial condition, #¢ = u(x, 0), based on spatiotemporal
solutions observed (through an observation operator Q) on
the boundaries of two boxes (Fig. 1, left panel) for a given
time period,i.e. y = Qu(x,t)+n, n ~ N(O, 03). As shown
in Fig. 1, the simple static model (6) used in Lan et al. (2022)
does not account for space-time interactions hence yields the
result underestimating the true function ug (left panel). On
the contrary, the estimate by the spatiotemporal model (15)
(right panel) is much closer to the truth.

3.2 Time-averaged model

In many chaotic dynamics, we observe the trajectories as
multivariate time series that are very sensitive to the ini-
tial condition and the parameters. This usually results in
a complex objective function with multiple local minima
(Abarbanel 2013). They in turn form a rough landscape of the
objective and pose extreme difficulties on parameter learn-
ing (Cleary et al. 2021) (See also Fig. 6). The time-averaged
approach is commonly used in the spirit of extracting suffi-
cient statistics from the raw data (Fisher and Russell 1922).
We consider the same data model as in (5) with G () being
the observed solution x(¢; u, xg) of the following chaotic
dynamics (rth order ODE) for a given parameter u € R”:

d
(= d_’t‘ = ra,xxD, x50, x(0) =x0 e RT (D)

That is, G(u) = Ox(t; u,Xg) with an observation opera-
tor O. At each time ¢, the observed vector could include
components of x and up to their kth order interactions
for k > 1. For example, if x = [x,...,x7], we could
include all the first and second order moments in the observa-
tion vector, Ox = [xy, .. .,xl,x%,xlxz, XX, ,x%].
Because the trajectories of G(u) are usually complex, it is
often to average them over time and consider the following
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forward mapping instead:

1
Gr(u; Xp) = 7/:

0

to+T
Ox(t; u, Xo)dt 8

where f is the spin-up time and 7 is the window length for
averaging the observed trajectories of the dynamics.

Following Cleary et al. (2021), we make the same assump-
tion regarding the dynamical system (7):

Assumption 1 1. For u € X, (7) has a compact attractor A,
supporting an invariant measure (dx; u). The system is
ergodic, and the following limit of Law of Large Numbers
(LLN) is satisfied: for xo ~ wu(-; u) fixed, with probability
one,

Tlim Gr(u; X0) = Goo(u) := / Ox(t; u, Xo)u(dx; u)
—00 A
)

2. The Central Limit Theorem (CLT) holds quantifying the
ergodicity: for xo ~ u(-; u),

Gr(: x0) ~ N (Goo ), T~ 5 ) (10)

The limit G, (1) becomes independent of the initial con-
dition xy. However, the finite-time truncation, Gr (u; Xo),
with different random initializations Xg, generates random
errors from the limit Gy, (1), which are assumed approxi-
mately Gaussian. Assume the data y can be observed with a
true parameter ut,ie. y = Gr ' x0). The following time-
averaged model is usually adopted for the inverse problems
involving chaotic dynamics (Cleary et al. 2021):

ylu, Su) ~ N (Goo (), T' S (w))

. 1 (11)
time-average : T~ X (u) = [opg
where the empirical covariance ['ops can be estimated with
G (u; xp) fort > T.

In practice, we follow Cleary et al. (2021) to observe from
G- (u; Xo) long enough (7) to estimate I"opg. This is done once
to reduce the influence of the initial condition x¢. The infer-
ence is conducted on [fg, fg + T'] where we need to choose
to and T appropriately to trade off between the stability and
the computational feasibility (See more studies in Sect.4.2
for Figs.7, 11, 15). We also replace G (1) with Gr (u; X0)
in (11) and define the potential @, () of parameter « for the
time-averaged model (11) as follows:

1
Or(u) = SNy — Ir(u; x0)[IE 12)

obs

If we observe the trajectories (all the first order moments,
i.,e. Ox = x) at discrete time points t with f;_| = #y +

T, then Ox(t; u) yields multivariate time series, denoted as
X)ixs = x(t;u) = [x(to; u), ..., x(ty—1; u)]. Then we
have

_ 1 1
Gr (u; xo) = X(u) := X(u>7’, y= X(uf>7’,

)
Tops = X(u") [IJ - 1’11 f} X' (13)

Denote Xg = X(u) — X(u"). Therefore the potential @,
becomes

.
11,

Dr(u) = 277

T
xgr;,ixo% = %tr [l’jifxgroblsxo} (14)

Note, averaging the trajectories over time does not ease
the difficulty of rough landscape, see for instance Fig. 6 for an
illustration. However, the potential function for the following
STGP model (15) is more convex around the true values ut
compared with the time-averaged approach (11).

The aforementioned two approaches, the static model (6)
and the time-averaged model (11), can be recognized as spe-
cial cases of a more general framework of spatiotemporal
modeling based on STGP, to be discussed in the following
section.

3.3 Spatiotemporal GP model

For the spatiotemporal data y(x, 7) in the inverse problems,
we consider the following likelihood model based on STGP:

vy, Hlu, I' ~GPGwm)(x,1), [(x,1))
STGP: TI'(x,1)=Cx®C (15)

where Cx and C; are spatial and temporal kernel respectively.

If we observe the process y(x, t) according to (15), the
resulted data matrix Y = G(u) (X, t) + 5 follows the matrix
normal distribution (denoted as ‘MN") (Gupta and Nagar
2018) for which we can also specify three above-mentioned
models

Y M, U,V~MNM,U,V), M=Gu")X, t

static : Uy = 0’Iy, Vs =1, (16a)
time-average : Ur = [gps, Vi = Jz(ljl-g)_ (16b)
STGP : Uy, = Cy, Vi =C; (16¢c)

where U (V) refers to the covariance matrix characterizing the
row (column) wise dependence in data Y, Y = Ox(¢; u) =
X(u) for the static model and M~ is the pseudo-inverse of
M.

In all the above three models (16), we assume Y i.i.d.
over u’s. Denote &, and Z, as potential function and Fisher
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information matrix with * being ‘S’ for the static model (16a),
“T” for the time-averaged model (16b) and ‘ST’ for the STGP
model (16c) respectively. The following theorem compares
the convexity of their likelihoods and indicates that the STGP
model (16¢) with proper configuration has the advantage of
parameter learning with the most convex likelihood among
the three models.

Theorem 3.1 If we set the maximal eigenvalues of Cx and
C; such that dmax(Cx)Amax(C;) < 03, then the following
inequality holds regarding the Fisher information matrices,
I and Iy, of the static model and the STGP model respec-
tively:

Lsr(u) = Zs(u) a7)

If we control the maximal eigenvalues of Cx and C; such
that Amax (Cx)Amax (Cr) < JAmin(Dops), then the following
inequality holds regarding the Fisher information matrices,
I, and Ly, of the time-averaged model and the STGP model
respectively:

Zor(u) = Zy(u) (18)

Proof See “Appendix A”. O

Remark 1 In practice, we can choose proper parameters, e.g.
the magnitude o2, of the covariance kernels Cy and C; to make
their maximal eigenvalues upper-bounded. For example, we
can set o> small enough so that inequalities in the condition
can be satisfied.

The following theorem considers a special case, Cx =
[obs, under a milder condition (straightforward to check e.g.
in Sect.4.2) in comparing the likelihood convexity of the
time-averaged model and the STGP model.

Theorem 3.2 If we choose Cx = T 55 and require the max-
imal eigenvalue of C;, Amax(C;) < J, then the following
inequality holds regarding the Fisher information matrices,
I, and Ly, of the time-averaged model and the STGP model
respectively:

Zo(u) = Z(u) (19)

Proof See “Appendix A”. O

Remark 2 1n general, @, () is not the potential of a Gaussian
distribution because of the possible non-linearity of G(u).
Theorems 3.1 and 3.2 indicate that for each u € X, the STGP
model can have a more convex Gaussian proxy in the Laplace
approximation.

Often we are interested in predicting the underlying
process y(x,t) at future time 7, given the spatiotemporal
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observations Y. Based on the STGP model (15), we could
use the following posterior predictive distribution

Py, 1)]Y) = /p(y(x, t)u, Y)p(u|Y)du (20)
Denote the conditional prediction E[y(X, #,)|u, Y] as

GHu)(x, ) = Gu) (X, ) + T T (Y — G)(X, 1)) (21)
———
Physical

Statistical

Then we predict y(x, t.) with the following predictive mean

E[y(x, £:)|Y] = Eyy[G" ) (x, 1,)]

- > - (22)

~G(X, 1) + Tl (Y = G(X, 1))
where G(x,t,) := % ZSSZI Gu™)(x, ty) with u® ~
p|Y). And we can quantify the uncertainty using the law
of total conditional variance:

Var[y(x, t.)|Y]
=Ty, — Dot Dy T, + Varyy[GF () (X, 1,)] (23)
~ Ty, — Dl Tur, + 85+ (X, 1)

where s2.(x, 1) = £ Y3 [G* ) (X, ) — G*(x, )]
with u® ~ p(u|Y).

Assume t, ¢ t. For the static model (6), we have I'; ¢ =
0 thus G*(u)(x, ty) = G(u)(X, t,). Therefore we have the
simplified results

E[y(Xv t*)lY] ~ g(xa t*)v

24
Var[y(x, t,)[Y] & 02 + s§(x, 1,)

This may underestimate the uncertainty compared with the
more general STGP model (15). If we are only interested
in predicting the forward map G(u) to new time t = t,, we
actually have similar results

E[Gu)(x, t)|[Y] ~ G(x, 1.,

) (25)
Var[G(u) (x, 1)|Y] ~ s3(x, 1,)

Note all the above prediction is feasible only if we are able
to solve ODE/PDE systems to time #,, i.e. we can evaluate
Gu)(x, t) at t = .. When we do not have the computer
codes available for doing so, we could model G (u)(x, t) with
another GP GP(0, Fg) and further predict the forward map-

ping:

G (x, £)Gu)(X, t) ~

(26)
NI TH g, b, 1Y,

~ @)
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(a) True initial condition (top left), and the solutions (b) Spatiotemporal observations at 80 selected locations

u(x,t) at different time points ¢.

Fig.2 Advection—diffusion inverse problem

Before concluding this section, we comment on the com-
putational cost of these models in (16). Given the mean
(forward output), the complexity of the static model (16a) is
O(I3J) in general, or O(IJ) if Cx = I, the time-averaged
model (16b) has complexity O(/ 37) and the STGP model
(16¢) has complexity O(I3J 4 1J3). However, compared
with the cost of fitting these statistical models, it is usually
more computationally demanding to evaluate the physical
model G, whose cost can be reduced by solving the system
for less time with better statistical (STGP) model for the
inverse solution at the same level of accuracy (See Sect.4.2).
There is in general a trade-off between the model complexity
(hence computational expense) and the quality of parameter
estimation and UQ.

4 Numerical experiments

In this section, we demonstrate the numerical advantage of
spatiotemporal modeling in parameter estimation and UQ.
More specifically, we compare the STGP model (15) with the
static model (6) using an advection—diffusion inverse prob-
lem (Sect.4.1) previously considered in Villa et al. (2021);
Lan et al. (2022) with the static method. Then we compare
the STGP model (15) with the time-averaged model (11)
using three chaotic dynamical inverse problems (Sect.4.2) of
which the Lorenz problem (Sect. 4.2.1) was studied by Cleary
etal. (2021) with the time-averaged approach. Numerical evi-
dences are presented to support that the STGP model (15) is
preferable to the other two models. All the computer codes
are publicly available at https://github.com/lanzithinking/
Spatiotemporal-inverse-problem.

(color dots) across different time points.

4.1 Advection—diffusion inverse problem

First, we consider an inverse problem governed by a parabolic
PDE within the Bayesian inference framework. The under-
lying PDE is a time-dependent advection—diffusion equation
that can be applied to heat transfer, air pollution, etc. The
inverse problem involves inferring an unknown initial con-
dition ug € L*(S2) from spatiotemporal point measurements
{y(xi, 1))}

The parameter-to-observable forward mapping G : ug —
Ou maps the initial condition #( to pointwise spatiotemporal
observations of the concentration field u(x, t) through the
solution of the following advection—diffusion equation (Petra
and Stadler 2011; Villa et al. 2021):

U —kAu+v-Vu=0 in Q2 x (0,T)
u(-,0) =ug in 2
kVu-n=0, ondQ2x(0,T)

27)

where Q C [0, 1]? is a bounded domain shown in Fig.2a,
« = 1073 is the diffusion coefficient, and T > 0 is the
final time. The velocity field v is computed by solving the
following steady-state Navier—Stokes equation with the side
walls driving the flow (Petra and Stadler 2011):

1
——AvV+Vg+v-Vv=0 inQ
Re

Vev=0 inQ (28)

v=g, ondQ

Here, g is the pressure, and Re is the Reynolds number, which
is set to 100 in this example. The Dirichlet boundary data
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g € R? is given by g = e, = (0, 1) on the left wall of the
domain, g = —e; on the right wall, and g = 0 everywhere
else.

We set the true initial condition ug = 0.5nexp{—100[(x —
0.35)%+(y—0.7)1}, illustrated in the top left panel of Fig. 2a,
which also shows a few snapshots of the solutions u(x, t) at
other time points on a regular grid mesh of size 61 x 61.
To obtain spatiotemporal observations {y(x;, #;)}, we collect
solutions u(x, t) solved on a refined mesh at I = 80 selected
locations {xi}i]:1 across J = 16 time points {t j}jJ.:1 evenly
distributed between 1 and 4 seconds (thus denoted as Ou)
and inject some Gaussian noise A (0, O')%) such that the noise
standard deviation is 0, = 0.5 max Ou, i.e.,

y =Gl = Oux, t;uy) + 1. n~NO, 07 I1280)

Fig. 2b plots 4 snapshots of these observations at 80 locations
along the inner boundary. In the Bayesian setting, we adopt a
GP prior for ug ~ o = GP(0, C) with the covariance kernel
C = (8Z — y A)~? defined through the Laplace operator A,
where § governs the variance of the prior and y /§ controls
the correlation length. We set y = 2 and § = 10 in this
example.

The Bayesian inverse problem involves obtaining an esti-
mate of the initial condition #( and quantifying its uncertainty
based on the 80 x 16 spatiotemporal observations. The
Bayesian UQ in this example is especially challenging not
only because of its large dimensionality (3413) of spatially
discretized u (Lagrange degree 1) at each time 7, but also due
to the spatiotemporal correlations in these observations.

We compare two likelihood models (6) and (15). The static
model (6) is commonly used in the literature of Bayesian
inverse problems (Lan 2019; Villa et al. 2021; Lan et al.
2022). Here the STGP model (15) is considered to better
account for the spatiotemporal relationships in the data. We
estimate the variance parameter of the joint kernel from data.
The correlation length parameters are determined (¢x = 0.5
and ¢, = 0.2) by investigating their autocorrelations as in
Fig. 18. Figure 1 compares the maximum a posterior (MAP)
estimates of the parameter ug by the two likelihood models
(right two panels) with the true parameter ug (left panel). The
STGP model yields a better MAP estimate closer to the truth
compared with the static model.

We also run MCMC algorithms (pCN, co-MALA, and
00o-HMC) to estimate uq. For each algorithm, we run 6000
iterations and burn in the first 1000. The remaining 5000
samples are used to obtain the posterior mean estimate
(Fig.3a) and the posterior standard deviation (Fig.3b). The
STGP model (15) consistently generates estimates closer to
the true values (refer to Fig. 1) with smaller posterior stan-
dard deviation than the static model (6) using various MCMC
algorithms. Such improvement of parameter estimation by
the STGP model (15) is also verified by smaller relative error
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lizg—u)|

e |
which summarizes the results of 10 repeated experiments
with their standard deviations in the brackets.

Finally, we consider the forward prediction (25) over the
time interval [0, 5]. We substitute each of the 5000 sam-
ples {u(s)}g():olo generated by co-HMC into G(u®)(x, t;)
to solve the advection—diffusion equation (27) for #, €
[0,5]. We observe each of these 5000 solutions at the
80 locations (Fig.2b) for 50 points equally spaced in
[0, 5]. Then we obtain the prediction by g_(x, 14)80%x50 =
ﬁ Zggolo Gw™)(x, t,), and compute the relative errors in
terms of the Frobenius norm of the difference between the

of mean estimates, REM = , reported in Table 1,

): né<x.r*>—g<u;§><x.t*)n.

rediction and the true solution G (i, X, t -
p Gug) (X, 1 16 G (x.10)]

Table 1 shows the STGP model (15) provides more accu-
rate predictions with smaller errors compared with the static
model (6). Figure 4 depicts the predicted time series G(x, 1)
at two selective locations based on the static (blue dashed
lines) and the STGP (orange dot-dashed lines) models along
with their credible bands (shaded regions) compared with the
truth (red solid lines) in the right two panels. Note that with
smaller credible bands, the static model is more certain about
its prediction that is further away from the truth. While the
STGP model provides wider credible bands that cover more
of the true trajectories, indicating a more appropriate uncer-
tainty being quantified. Therefore, on the left panel of Fig. 4,
the STGP model has a higher rate for its credible intervals
among these 80 locations to cover the truth, g(ug)(x, ty),
on most of #, € [0, 5]. Note these models are trained on
t € [1, 4], so the STGP model does not show much advan-
tage at the beginning but quickly outperforms the static model
aftert, = 1.

4.2 Chaotic dynamical inverse problems

Chaos, refers to the behavior of a dynamical system that
appears to be random in long term even its evolution is
fully determined by the initial condition. Many physical sys-
tems are characterized by the presence of chaos that has
been extensively demonstrated (Lorenz 1963; Ivancevic and
Ivancevic 2008; Bishop 2017). The main challenges of ana-
lyzing chaotic dynamical systems include the stability, the
transitivity, and the sensitivity to the initial conditions (which
contributes to the seeming randomness) (Effah-Poku et al.
2018). In the study of chaotic dynamical systems, one of the
interests is determining the essential system parameters given
the observed data. In this section, we will investigate three
chaotic dynamical systems, Lorenz63 (Lorenz 1963), Agiza
and Yassen (2001) and Yassen (2003), that can be summa-
rized as the first-order ODE: x = f(x; u). We will apply
the CES framework (Sect. 2) to learn the system parameter u
and quantify its associated uncertainty based on the observed
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(a) Posterior mean estimates of the initial concentration field wug(x).
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(b) Posterior standard deviation estimates of the initial concentration field ug(x).

Fig.3 Advection—diffusion inverse problem: comparing posterior estimates of parameter u in the static model (upper row) and the STGP model
(lower row) based on 5000 samples by various MCMC algorithms
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Table1 Advection—diffusion inverse problem: comparing (i) posterior estimates of parameter u in terms of relative error of mean REM = w
Uy
. - . . 16 (x.1:) =G ug) (x.1:) I .
and (ii) the forward predictions G(u)(x, t,) in terms of relative error T Gehmml by two likelihood models (static and STGP)
ug) (X, 1
Estimation Prediction
Models pCN oco-MALA oo-HMC pCN oco-MALA oo-HMC
static 0.83 (0.023) 0.81 (0.011) 0.79 (0.005) 0.43 (0.013) 0.4 (0.006) 0.4 (0.003)
STGP 0.74 (0.021) 0.73 (0.012) 0.73 (0.003) 0.44 (0.068) 0.32 (0.016) 0.31 (0.005)

Each experiment is repeated for 10 runs of MCMC (pCN, co-MALA, and co-HMC respectively) and the numbers in the bracket are standard

deviations of these repeated experiments

truth covering rate of credible bands

forward prediction (x=0.375, y=0.401)

forward prediction (x=0.249, y=0.250)

015
1.00 o

; — truth oz0d T truth 4 L
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Fig. 4 Advection—diffusion inverse problem: comparing forward pre-
dictions, G(x, ), based on the static model and the STGP model. The
left panel plots the curves representing the percentage of 80 (correspond-
ing to the selected locations) credible bands that cover the true solution

trajectories. We find the spatiotemporal models numerically
more advantageous by fitting the whole trajectories than the
common approach by averaging the trajectories over time
(Schneider et al. 2017; Cleary et al. 2021; Huang et al. 2022).

4.2.1 Lorenz system

The most popular example of chaotic dynamics is the
Lorenz63 system (named after the author and the year it was
proposed in Lorenz 1963) that represents a simplified model
of atmospheric convection for the chaotic behavior of the
weather. The governing equations of the Lorenz system are
given by the following ODE

x =o(y—x),
y =x(p—2)—, (29)
z =xy— Bz,

where x, y, and z denote variables proportional to the convec-
tive intensity, horizontal and vertical temperature differences
and u := (o, p, B) represents the model parameters known
as the Prandtl number (o), the Rayleigh number (p), and an
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g (ug)(x, t.) ateach time 7, € [0, 5]. The right two panels show the pre-
dicted time series (blue dashed and orange dot-dashed lines) along with
the credible bands (shaded regions) by the two models compared with
the truth (red solid lines) at two selective locations x = (0.375, 0.401)
and x = (0.249, 0.250). Blues dots are observations

unnamed parameter (8) used for physical proportions of the
regions (Ott 1981).

The behavior of Lorenz63 system (29) strongly relies
on these parameters. In many studies, the parameter p
varies in (0, c0) and the other parameters o and S are
held constant. In particular, (29) has a stable equilibrium
point at the origin for p € (0,1). For p € (1,y) with
y = o%, (29) has three equilibrium points, one
unstable equilibrium point at the origin and two stable
equilibrium points at (v/B(p — 1), V/B(p — 1), p — 1)T and
(—VBlo =D, —vBp =1, p—1)'. When p > y, the
equilibrium points become unstable and it results in unsta-
ble spiral shaped trajectories. One classical configuration for
the parameters in (29) is 0 = 10, 8 = %, p = 28 when
the system exhibits two-lobe orbits (Yang et al. 2002) (See
the left panel of Fig.5). In this example, we seek to infer
such parameter u' = (o, ,BT, ,oT) = (10, 8/3, 28) based on
the observed chaotic trajectories demonstrated in the middle
panel of Fig.5. Note the solutions (x(¢), y(t), z(t)) highly
depend on the initial conditions (x(0), y(0), z(0)), we hence
fix (x(0), y(0), z(0)) in the following.
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Fig.5 Lorenz63 dynamics: two-lobe orbits (left), chaotic solutions (middle) and coordinates’ distributions (right)

27.0 A AN T
9.0 9.5 10.0 10.5 11.0
o

V
27 28 29
o B P

Fig. 6 Lorenz inverse problem: marginal (diagonal) and pairwise (lower triangle) sections of the joint density p(u) by the time-averaged model
(left) and the STGP model (right) respectively. Red dashed lines indicate the true parameter values

Due to the chaotic nature of the states {(x (), y(¢), z(¢)) :
t € [0, T]}, we can treat these coordinates as random vari-
ables. In the right panel of Fig.5, we demonstrate their
marginal and pairwise distributions (diagonal and lower tri-
angle) estimated by a collection of states (upper triangle)
along a long-time trajectory solved with u'. For a given
parameter u = (o, B, p), we have the trajectory G(u) as the
following map:

Gy : Ry > R, 10> (x(t;u), y(t;u), z(t;w)) - (30)

where (x(t; u), y(t; u), z(t; u)) is the solution of (29) for a
given parameter u. We generate spatiotemporal data from
the chaotic dynamics (29) with ut = (o, g%, pH by
observing its trajectory on J = 100 equally spaced time
points #; € [to,%0 + T1: X )3x100 := {GwN(t)) =
(x (23 uT), y(tj; uT), z(tj; zﬁ))}lj.zl. These observations can
be viewed as a 3-dimensional time series that estimate the

empirical covariance I'gps as in Cleary et al. (2021). The
inverse problem involves learning the parameter u given
these observations, also known as parameter identification
(Negrini et al. 2021).

Following Cleary et al. (2021), we endow a log-Normal
prior on u: logu ~ N(uo, 03) with no = (2.0,1.2,3.3)
and o9 = (0.2, 0.5,0.15). We compare the two likelihood
models (11) and (15) for this dynamical inverse problem.
For the time-averaged model (11), we substitute X(u)3x1
with X*(u)9x1 = OG*(u)(r) by averaging the following
augmented trajectory G*(u)(¢) in time (Cleary et al. 2021):

G*(u)(t) = (x (1), y(1), 2(1), x> (1), > (1), 2(1),
x(@)y(), x(2)z(), y(t)z(t))

For the spatiotemporal likelihood model STGP (15), we
set the correlation length £x = 0.4 and ¢; = 0.1 for the spatial
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kernel Cx and the temporal kernel C; respectively. They are
chosen to reflect the spatial and temporal resolutions.

We first notice that the spatiotemporal modeling facili-
tates the learning of the true parameter u'. As illustrated
in Fig. 6, despite of the rough landscape, the marginal (e.g.
p(o, BT, p™)) and pairwise (e.g. p(o, B, p")) sections of the
joint density p(u) by the STGP model (15) are more convex
in the neighbourhood of u compared with the time-averaged
model (11). This verifies the implication of Theorem 3.2
on their difference in convexity. Therefore, particle based
algorithms such as EnK methods have higher chance of con-
centrating their ensemble particles around the true parameter
value uf, leading to better estimates. Here, the roughness
of the posterior creates barrier for the direct application of
MCMC algorithms. Therefore, we apply more robust EnK
methods for the parameter estimation.

We run each of the two EnK algorithms for N = 50 itera-
tions and choose the ensembles (of size K') when its ensemble
mean attains the minimal error in estimating the parameter
u with reference to its true value u'. In practice, EnK algo-
rithms usually converge quickly within a few iterations so
N = 50 suffices the need for most applications.

To investigate the roles of spin-up length #y and obser-
vation window size 7', we run EnK multiple times varying
each of the two quantities one at a time. Seen from Fig. 7, we
observe consistently smaller errors by the STGP model (15)
compared with the time-averaged model (11). More specif-
ically, the upper row indicates that the estimation errors,

measured by REM = ”'ﬁ;‘l?”, are not every sensitive to the
spin-up fo given sufficient window size T = 10. On the
other hand, for fixed spin-up #y = 100, both models decrease
errors with increasing window size T as they aggregate more
information. However, the STGP model requires only about
% time length as the time-averaged model to attain accuracy
at the same level (T = 1 vs. T = 4). This supports that
the STGP is preferable to the time-average approach as the
former may add a small overhead for the statistical inference
but could save much more in resolving the physics (solving
ODE/PDE), which is usually more expensive.

Now we set spin-up 7y = 100 long enough to ignore the
effect of initial condition in the dynamics and choose the
observation window size 7 = 10. We compare the two mod-
els (11) (15) using EnK algorithms with different ensemble
sizes (K) to obtain an estimate u of the parameter u. Fig-
ure 19 shows that the STGP model performs better than the
time-averaged model in generating smaller errors (REM) for
almost all cases. In general more ensembles help reduce the
errors except for the time-averaged model using EKI algo-
rithm. Note, the STGP model with EKS algorithm yields
parameter estimates with the lowest errors. Table 2 sum-
marizes the REM’s by different combinations of the two
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likelihood models (time-averaged and STGP) and two EnK
algorithms (EKI and EKS). Again we can see consistent
advantage of the spatiotemporal likelihood model STGP (15)
over the simple time-averaged model (11) in producing more
accurate parameter estimates.

Next, we apply CES (Sect. 2) (Cleary etal. 2021; Lan et al.
2022) to quantify the uncertainty of the estimate . Direct
application of MCMC suffers from the extremely low accep-
tance rate because of the rough density landscape (Fig.6).
Ensemble particles from EnK algorithm cannot provide rig-
orous systematic UQ due to the ensemble collapse (Schillings
and Stuart 2017a,b; de Wiljes et al. 2018; Chada et al.
2020) (See red dots in Fig. 8). Therefore, we run approximate
MCMC based on NN emulators built on the EnK outputs
{u ,(,k), G(u ,S"’ ) }]{(:,11\7 1—o- Note, we have different structures for
the observed data in the two models (11) (15): 9-dimensional
summary of time series for the time-averaged model (11) and
3 x 100 time series for the STGP model (15). Therefore we
build densely connected NN (DNN) G¢ : R? — R? for
the former and DNN-RNN (recurrent NN) type of network
G¢ - R3 — R3*100 for the latter to account for their different
data structures in the forward output. Figure 8 compares the
marginal (diagonal) and pairwise (lower triangle) posterior
densities of u estimated by 10,000 samples (upper triangle)
of the pCN algorithm based on the corresponding NN emu-
lators for the two models. The spatiotemporal model STGP
(15) estimates the posterior densities peaked around the true
parameter u' in contrast to the estimates by the time-averaged
model (11) that are far off from the truth. This is because the
DNN-RNN network adopted by the STGP model (15) has an
RNN layer for the output to respect the time series nature of
the data thus provides a more informative surrogate for the
underlying posterior than DNN does for the time-averaged
model (11).

Finally, we consider the forward prediction G(x, t,) (25)
fort, € [19, to+ 1.5T] with K = 500 EKS ensembles corre-
sponding to the lowest error. Figure 9 compares the prediction
results given by these two models. The result by the STGP
model is very close to the truth till # = 113 while the pre-
diction by the time-averaged model quickly departs from the
truth only after r = 102. The STGP model predicts the future
of this challenging chaotic dynamics significantly better than
the time-averaged model.

4.2.2 Rossler system

Next we consider the Rossler dynamics (Hegazi et al. 2001)
governed by the following system of autonomous differential
equations:

X =-y-—z,
y =x+ay, (31
z =b+z(x —o).
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shows the results by varying the observation window size T and fixing
to = 100. Each experiment is repeated for 10 runs of EnK (EKI and
EKS respectively) with K = 500 ensembles and the shaded regions
indicate standard deviations of such repeated experiments

Table2 Lorenz inverse problem: comparing posterior estimates of parameter u for two models, time-average (Tavg) and STGP, in terms of relative

error of median REM = %

Model-Algorithms K =50 K =100 K =200 K =500 K =1000

Tavg-EKI 0.06 (0.03) 0.09 (0.03) 0.09 (0.01) 0.06 (0.04) 0.07 (0.02)
Tavg-EKS 0.10 (0.02) 0.07 (4.62¢—03) 0.05 (2.60e—03) 0.03 (3.04e—03) 0.03 (8.56e—04)
STGP-EKI 0.07 (0.03) 0.04 (0.03) 0.03 (0.02) 0.02 (0.03) 0.02 (0.01)
STGP-EKS 0.09 (0.03) 0.05 (0.03) 0.03 (0.02) 3.97e—04 (1.06e—03) 5.52e—04 (6.37e—04)

Each experiment is repeated for 10 runs of EnK (EKI and EKS respectively) and the numbers in the bracket are standard deviations of such repeated

experiments
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Fig. 8 Lorenz inverse problem: marginal (diagonal) and pairwise
(lower triangle) distributions estimated with 10,000 samples (upper
triangle) by the pCN algorithm based on NN emulators for the time-
averaged model (left) and the STGP model (right) respectively. Red
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Fig.9 Lorenz inverse problem: comparing forward predictions G(x, #,) based on the time-averaged model and the STGP model

where a, b, ¢ > 0 are parameters determining the behav-
ior of the system. The Rossler attractor was originally
discovered by German biochemist Otto Eberhard (Rossler
1976; Rossler 1979). When ¢2 > 4ab, the system (31)
exhibits continuous-time chaos and has two unstable equi-
librium points (ay—, —y—, y—) and (ay+, —y4+, y+) with
Ve = ”—Vi;““b, y— = C_—chz_“”b. Note that the Réssler
attractor has similarities to the Lorenz attractor, neverthe-
less it has a single lobe and offers more flexibility in the
qualitative analysis. The true parameter that we try to infer
isu' = (@, b", ") = (0.2,0.2,5.7). Figure 10 illustrates
the single-lobe orbits (left), the chaotic solutions (middle)
and their marginal and pairwise distributions (right) of their
coordinates viewed as random variables.
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Note, the Rossler dynamics evolve at a lower rate com-
pared with the Lorenz63 dynamics (compare the middle
panels of Figs. 10, 5). Therefore, we adopt a longer spin-
up length (7o = 1000) and a larger window size (T = 100).
For the STGP model (15), spatiotemporal data are gener-
ated by observing the trajectory (30) of the chaotic dynamics
(31) with u™ = (a', b7, ¢") for J = 100 time points in
[to, to + T]. We also augment the time-averaged data with
second-order moments for the time-averaged model (11).
In this Bayesian inverse problem, we adopt a log-Normal
prioron u: logu ~ N (1o, 002) with g = (—1.5, —1.5,2.0)
and op = (0.15, 0.15, 0.2). Once again, with spatiotempo-
ral likelihood model STGP (15), learning the true parameter
value u" becomes easier because the posterior density p ()
concentrates more on 1! compared with the time-averaged
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Fig. 10 Rossler dynamics: single-lobe orbits (left), chaotic solutions (middle) and coordinates’ distributions (right)

model (11), as indicated by Theorem 3.2. See Fig. 20 for the
comparison on their marginal and pairwise sections of the
joint density p(u).

We also compare the two models (11) (15) when investi-
gating the roles of spin-up length 7y and observation window
size T in Fig.11. Despite of the consistent smaller errors
(expressed in terms of REM) by the STGP model, REM is not
every sensitive to the spin-up 7y given sufficient window size
T = 100. However, for fixed spin-up #p = 100, the STGP
model (15) is superior than the time-averaged approach (11)
in reducing the estimation error using smaller observation
time window T': the former requires only half time length as
the latter to attain the same level of accuracy (T = 30 vs.
T = 60 with EKI and T = 20 vs. T = 40 with EKS).

Now we fix o = 1000 and T = 100. Figure 21 compares
these two models (11) (15) in terms of REM’s of the param-
eter estimation by EnK algorithms with different ensemble
sizes (K). The STGP model (15) shows universal advan-
tage over the time-averaged model (11) in generating smaller
REM’s. Note, the time-averaged model becomes over-fitting
if running EKS more than 10 iterations, a phenomenon also
reported in Iglesias et al. (2013) and Iglesias (2016). Table 3
summarizes the REM’s by different combinations of likeli-
hood models and EnK algorithms and confirms the consistent
advantage of the STGP model over the time-averaged model
in rendering more accurate parameter estimation.

We apply CES (Sect.2) (Cleary et al. 2021; Lan et al.
2022) for the UQ. Based on the EKS (K = 500) outputs, we
build DNN G¢ : R? — R? for the time-averaged model (11)
and DNN-RNN G¢ : R? — R¥*1% for the STGP model
(15) to account for their different data structures. Figure 12
compares the marginal and pairwise posterior densities of
u estimated by 10,000 samples of the pCN algorithm based
on the corresponding NN emulators for the two models. The
STGP model (15) generates more appropriate UQ results
than the time-averaged model (11) does. Finally, we consider

the forward prediction G(x, 1) (25) for t,, € [to, 19 + 1.5T']
with K = 500 EKS ensembles corresponding to the lowest
error. Figure 13 shows that the STGP model provides better
prediction consistent with the truth throughout the whole time
window while the result by the time-averaged model deviates
from the truth quickly after r = 1020.

4.2.3 Chen system
Yet another chaotic dynamical system we consider is the

Chen system (Chen and Ueta 1999) described by the fol-
lowing ODE:

X =aly —x),
y =(c—a)x —xz+cy, (32)
z =xy—bz.

where a,b,c > 0 are parameters. When a = 35,0 =

3,c = 28, the system (32) has a double-scroll chaotic
attractor often observed from a physical, electronic chaotic
circuit. The true parameter that we will infer is u’ =
(@, b, c"y = (35,3,28). With u, the system has three
unstable equilibrium states given by (0, 0, 0), (v, v, 2c —a),
and (=Y, —y,2c — a) where y = /b(2c —a) (Yassen
2003). Figure 14 illustrates the two-scroll attractor (left), the
chaotic trajectories (middle) and their marginal and pairwise
distributions (right) of their coordinates viewed as random
variables.

The Chen dynamics has trajectories changing rapidly as
the Lorenz63 dynamics (compare the middle panels of Fig. 14
and Fig. 5). Therefore we adopt the same spin-up length (p =
100) and observation window size (7" = 10) as in the Lorenz
inverse problem (Sect.4.2.1). We generate the spatiotempo-
ral data and the augmented time-averaged summary data by
observing the trajectory of (32) over [1, o + T'] solved with
u' similarly as in the previous sections. A log-Nomral prior is
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Fig. 11 Rossler inverse problem: comparing posterior estimates of
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the results by varying the window size 7" and fixing fo = 100. Each
experiment is repeated for 10 runs of EnK (EKI and EKS respectively)
with K = 500 ensembles and the shaded regions indicate standard
deviations of such repeated experiments

Table 3 Rdssler inverse problem: comparing posterior estimates of parameter u for two models (time-average and STGP) in terms of relative error

of median REM = li=v'l

il
Model-Algo K =50 K =100 K =200 K =500 K = 1000
Tavg-EKI 0.16 (0.09) 0.11 (0.06) 0.10 (0.07) 0.07 (0.04) 0.11 (0.07)
Tavg-EKS 0.06 (0.02) 0.06 (7.61e—03) 0.06 (6.20e—03) 0.06 (5.37e—03) 0.06 (2.53e—03)
STGP-EKI 0.02 (0.02) 0.01 (0.01) 0.02 (0.02) 0.01 (9.09e—03) 0.01 (0.02)
STGP-EKS 0.02 (0.01) 2.47e—03 (0.02) 7.63e—04 (2.86e—03) 4.23e—04 (2.45¢—04) 3.62e—04 (1.19e—04)

Each experiment is repeated for 10 runs of EnK (EKI and EKS respectively) and the numbers in the bracket are standard deviations of such repeated

experiments
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Fig. 14 Chen dynamics: double-scroll attractor (left), chaotic solutions (middle) and coordinates’ distributions (right)
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by varying the observation window size 7" and fixing 7o = 100. Each
experiment is repeated for 10 runs of EnK (EKI and EKS respectively)
with K = 500 ensembles and the shaded regions indicate standard
deviations of such repeated experiments

Table 4 Chen inverse problem: comparing posterior estimates of parameter u for two models (time-average and STGP) in terms of relative error

of median REM = M
flu™ll

Model-Algo K=50 K =100 K =200 K =500 K = 1000

Tavg-EKI 0.07 (0.03) 0.04 (0.04) 0.04 (0.04) 0.05 (0.04) 0.04 (0.04)
Tavg-EKS 0.12 (0.03) 0.10 (0.02) 0.09 (0.02) 0.09 (0.01) 0.09 (0.01)
STGP-EKI 0.14 (0.09) 0.09 (0.08) 0.09 (0.08) 0.03 (0.03) 0.01 (9.87e—03)
STGP-EKS 0.07 (0.04) 0.05 (0.04) 0.01 (0.01) 2.89e—03 (6.07e—03) 3.32e—04 (4.66e—04)

Each experiment is repeated for 10 runs of EnK (EKI and EKS respectively) and the numbers in the bracket are standard deviations of such repeated

experiments
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Fig.16 Chen inverse problem: marginal (diagonal) and pairwise (lower
triangle) distributions estimated with 10,000 samples (upper triangle)
by the pCN algorithm based on NN emulators for the time-averaged

adopted for u: logu ~ N (1o, 002) with o = (3.5, 1.2, 3.3)
and og = (0.35, 0.5, 0.15). The STGP model (15) still posses
more convex posterior density p(u) than the time-averaged
model (11) asillustrated by its marginal and pairwise sections
plotted in Fig.22.

Varying the spin-up length #y and the observation window
size T one at a time in Fig. 15, we observe similar advantage
of the STGP model compared with the time-averaged model
regardless of the insensitivity of errors with respect to fg.
Similarly, the STGP model demands a smaller observation
window than the time-averaged model (T = 2 vs. T = 6
with EKI and T = 2 vs. T = 3 with EKS) to reach the same
level of accuracy.

Again we see the merit of the STGP model (15) in reduc-
ing the error (REM) of parameter estimation compared with

forward prediction (x)

forward prediction (y)

model (left) and the STGP model (right) respectively. Red dots (lower
triangle) are selective 10,000 ensemble particles from running the EKS
algorithm. Gray dashed lines indicate the true parameter values

the time-averaged model (11) in various combinations of
EnK algorithms with different ensemble sizes (K) in Fig. 23
and Table 4. As in the previous problem (Sect.4.2.2), simi-
lar over-fitting (bottom left of Fig.23) by the time-averaged
model occurs if running EKS algorithms more than 5 itera-
tions (or earlier).

UQ results (Fig. 16) by CES show the STGP model esti-
mates the uncertainty of parameter # more appropriately than
the time-averaged model. Finally, though the prediction is
challenging to the Chen dynamics (32), the STGP model
still performs much better than the time-averaged model by
predicting more accurate trajectory for longer time (r = 111
vs t = 101) as shown in Fig. 17.

forward prediction (z)

401 — truth
304 ---- time-average 1
—— STGP

— truth — truth
---- time-average 80 ---- time-average
—-—- STGP —-— STGP

108 110 112 114 100 102 104 106

t
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Fig. 17 Chen inverse problem: comparing forward predictions G(x, #,) based on the time-averaged model and the STGP model
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5 Conclusion

In this paper, we investigate the inverse problems with spa-
tiotemporal data. We compare the Bayesian models based
on STGP with traditional static and time-averaged models
that do not fully integrate the spatiotemporal information.
By fitting the trajectories of the observed data, the STGP
model provides more effective parameter estimation and
more appropriate UQ. We explain the superiority of the
STGP model in theorems showing that it renders more convex
likelihood that facilitates the parameter learning. We demon-
strate the advantage of the spatiotemporal modeling using an
inverse problem constrained by an advection—diffusion PDE
and three inverse problems involving chaotic dynamics.

Theorems 3.1 and 3.2 compare the STGP model with the
static and the time-averaged models regarding their statis-
tical convexity. These novel qualitative results imply that
the parameter learning (based on EnK methods) with the
STGP model converges faster than the other two traditional
methods. In the future work, we will explore a quantitative
characterization on their convergence rates particularly in
terms of covariance properties.

The STGP model (15) considered in this paper has a clas-
sical separation structure in their joint kernel. This may not
be sufficient to characterize complex spatiotemporal rela-
tionships, e.g. the temporal evoluation of spatial dependence
(TESD) (Lan 2022). We will expand this work by considering
non-stationary and/or non-separable STGP models (Cressie
and Wikle 2011; Zhang and Cressie 2020; Wang et al. 2020;
Lan 2022) to account for more complicated space-time inter-
actions in these spatiotemporal inverse problems.

Acknowledgements SL is supported by NSF grant DMS-2134256.

Appendix A Proofs

Theorem (3.1) If we set the maximal eigenvalues of Cx and
C; such that lmax(Cx)Amax(C;) < a , then the following
inequality holds regarding the Fisher mformanon matrices,
Is and T, of the static model and the STGP model respec-
tively:

T (u) = Zs(u) (A1)
If we control the maximal eigenvalues of Cx and C; such
that Amax (Cx)Amax (Cr) < JAmin(Tops), then the following
inequality holds regarding the Fisher information matrices,
I, and Ly, of the time-averaged model and the STGP model
respectively:

Zor(u) = Zy(u) (A2)

@ Springer

Proof Denote Yo =Y — M. We have @, (1)

= Jtr [V 'Y U Yo ] with * being S or ST. Us, Vs, Us; and
V¢ are specified in (16). We notice that both U, and V., are
symmetric, then we have

b, 1 Y] Y
L { r|:V*] ; OU*]YO} tir [V;lYgU;l i 0”
Uu; Uu;

ou; 2
1 0Yo
ou;

2P 3%y YT Y,
* ViU o e | v S 2
3u,—8uj Ou;ou; du; ouj

Due to the i.i.d. assumption in both models, Y is inde-

pendent of either BYO or 22Yo
du;duj

ERA Y} Y
(Z.)ij =E “ =B |u(vi U=l
8u,-au.,~ I/t,’ 314/

T
=E |:Vec<a—YO> (V;1 ® U;l)vec <8—Y0>:| (A3)
Bu,- 8“/’

,wp) € R” and w # 0, denote W :=

=tr [ 'YOU7

. Therefore

For any w = (wq, ...
le | Wivec ("Y") To prove Zg (1) > I (u) it suffices to
show W' (Vg @ Ug) "1 > W (V, @ Ug) ™!

By [Theorem 4.2.12 in Horn and Johnson (1991)], we
know that any eigenvalue of V, ® U, has the format as
a product of eigenvalues of V, and U, respectively, i.e.
M (Vi ® Uy) = 1;(Vo)A;(Uy), where where {A; (M)} are
the ordered eigenvalues of M, i.e. A\{(M) > --- > Lg(M).
By the given condition we have

A1 (Ve @ Up)™) = 47 (Ve ® Uyp)

=27 (€A (€O = 077 = (Vs @U)T)  (Ad)
Thus it completes the proof of the first inequality.

Similarly by the second condition, we have
d1 (Vs ® U™ = 271 (€2 1 (C)

= T hpin Tobs) = 21(V @ U (AS)
and complete the proof of the second inequality. O

Theorem (3.2) If we choose Cx = T'yps and require the max-
imal eigenvalue of C;, Amax(C;) < J, then the following
inequality holds regarding the Fisher information matrices,
I, and Ly, of the time-averaged model and the STGP model
respectively:
To(u) = Zr(u) (A6)
Proof Denote Yo = Y — M. We have @, (u)

= S [Vi'Y U Yo ] with * being T or ST. Uy, V,, Uy and
V¢ are specified in (16).
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By the similar argument of the proof in Theorem 3.1, we

have
vV IE BYEU—18Y0 (A7)
* Bul- * 8uj

92d,
Z.)ii =E =t
( *)l] |:8M,au]i| I
., wp) € R and w # 0, denote W :=
:
57 ik (U B2 ) W know W= 0,1

For any w = (wq, ..

suffices to show tr[VS_TlW] > u[Vo Iwy.
By the corollary (Marshall et al. 2011) of Von Neumann’s
trace inequality (Mirsky 1975), we have

J

D A VDA 1 (W) < (VW)
= (A8)

J
<Y RVIHAW)
j=1

Autocorrelation of observations in space

where {A;(M)} are the ordered eigenvalues of M, i.e.
AM(M) = -+ = Xg(M). The only non-zero eigenvalue of
V; =J72(1,1Y) is A (V;) = J L. Therefore, we have

[V, W < J 710 (W) < A7 (VD (W)+
J—1

Z Aj (VS_TI))»J—J'+1 (W) < t[V,'W]
j=1

(A9)

where A7 (V5!) = A71(C,) = J~" and A;(V3 1), (W) >
0. O

Appendix B More numerical results

See Figs. 18, 19, 20, 21, 22 and 23.

Autocorrelation of observations in time
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Fig. 18 Advection—diffusion inverse problem: auto-correlations of observations in space (left) and time (right) respectively
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Fig. 22 Chen inverse problem: marginal (diagonal) and pairwise (lower triangle) sections of the joint density p(u) by the time-averaged model
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