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Abstract—One recent method to approximate and physically
implement fractional-order elements utilizes a fully-controllable
immittance converter (FGIC). With this approach, external com-
ponents are used with the FGIC to implement a target floating
immittance value. This immittance can be fractional-order if at
least one of the external components is a fractional-order element.
Here, a fractional-order capacitor is approximated for use as
the fractional-order element using an RC-network; designed
specifically to meet the usable bandwidth (10 kHz to 1 MHz) of an
FGIC44 (an integrated circuit realization of a floating immittance
converter using operational-transconductance amplifiers).

I. INTRODUCTION

The field of fractional-order circuits refers to electrical
circuits that utilize concepts from fractional calculus in their
design and realization [1]. Fractional calculus is the branch
of mathematics concerning the differentiation and integration
of functions to non-integer order [2]. As an example, the
Grunwald-Letnikov definition of a fractional-order derivative,
with non-integer order α, is given by [3]:

aD
αf(x) = lim

h→0

1

hα

[ x−a
h ]∑

m=0

(−1)
m Γ (α+ 1)

m!Γ (α−m+ 1)
f (x−mh)

(1)
where Γ(·) is the gamma function and n − 1 ≤ α ≤ n.
The integration of these concepts into circuits and systems
has yielded fractional-order impedances [4], fractional-order
control systems [5], [6], and fractional-order oscillators [7] to
name a few recent advances.

Focusing on fractional-order circuits and system in the
analog domain, the ideal realization of this class of circuits
requires a fractional-order element (FOE). This terminology
refers to an electrical component with voltage/current rela-
tionship defined by a fractional-order differential equation.
This generalization to the fractional-order domain realizes
voltage/current characteristics between the traditional resistors,
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Fig. 1. Impedance (a) magnitude and (b) phase of ideal 1 µF/sec1−α

fractional-order capacitors with α = 0.2 to 0.8 in steps of 0.2 from 10
Hz to 10 MHz.

indicators, and capacitors. As an example, a fractional-order
capacitor has the voltage/current relationship given by:

i = Cα
dαv

dtα
(2)

where 0 ≤ α ≤ 1 is the fractional-order and Cα is the pseudo-
capacitance with units F/sec1−α. When α = 1 this component
is a traditional (integer order) capacitor and when α = 0 it is
a resistor. Applying the Laplace transform (with zero initial
conditions) to (2), the expression can be rearranged to yield the
electrical impedance of the fractional-order capacitor (FOC)



TABLE I
FGIC44 FRACTIONAL-ORDER ADMITTANCE USING ONE SEED FOE WITH

α = 0.205

α1 α2 α3 α4 α
1 0 1 1 −2
1 0 0.205 0 −1.205
0 0 1 0 −1
0 0.205 1 0 −0.795

0.205 0 0 0 −0.205
0 0 0 0 0
0 0.205 0 0 0.205
0 1 0.205 0 0.795
0 1 0 0 1
0 1 0 0.205 1.205
0 1 0 1 2

given by:

Z(s) =
V (s)

I(s)
=

1

Cαsα
(3)

where s = jω. To illustrate the fractional-order properties
of ideal FOEs, the impedance magnitude and phase from 1
Hz to 10 MHz for a 1 µF/sec1−α component with α = 0.2
to 0.8 in steps of 0.2 are shown in Fig. 1. To highlight the
fractional-order steps, the ideal values of a resistor (α = 0)
and traditional capacitor (α = 1) are provided for reference.
Both the magnitude and phase of the FOE impedance are
dependent on the order (α). In the context of the magni-
tude, the fractional-order impacts the slope as the magnitude
decreases with increasing frequency. For phase, which is
constant with frequency, the fractional-order affects the value
such that φα = −90α◦. While fractional-order components
(e.g. fractional-order capacitors and inductors) are not com-
mercially available progress has been made regarding both
their realization [8] and methods to approximate them using
traditional (and commercially available) components [9].

One recent method to approximate and physically imple-
ment FOEs utilizes a fully-controllable immittance converter
(FGIC) [10] with fractional-order “seeds” [11], [12]. With this
approach, external components are used with the FGIC to
implement a target floating immittance value. This immittance
can be fractional-order if at least one of external components is
a FOE and both the immittance and order can be tuned through
the targeted use of other component values. For example,
Koton et al. [11], [12] presented that the use of a single
“seed” admittance with α = 0.2 could approximate fractional-
orders from −2 to 2 in steps of 0.2 [11]. This provides a
method to realize a wide range of FOEs when only a limited
number of “seeds” are available. To validate this approach,
fractional-order seeds were approximated using both 5-th order
[11] and 7-th order RC networks [12]. Generally, as the order
of an approximation is increased the frequency band that it
approximates and the error in that frequency band (compared
to the ideal case) decreases. While the earlier 5-th order and
7-th order approximations validated the operation of the FGIC
there has been limited efforts in evaluating what order of
“seed” is necessary to realize a FOE across the operational
bandwidth of the FGIC (which motivates this work).

In this work, an analysis of the FOE characteristics (band-
width, peak error, RMS error) when 5-th, 7-th, and 8-th order
approximations are utilized is outlined. From this analysis rec-
ommendations on the approximation order for FGIC designs
will be presented with simulations and experimental results of
the FOE characteristics provided to support.

II. FGIC44 OPERATION AND PERFORMANCE SUMMARY

The FGIC44 is an integrated circuit realization of a floating
immittance converter using operational-transconductance am-
plifiers (OTAs) [10], [12]. The input admittance of this design
is given by:

[
YIN

]
=

[
1 −1
−1 1

]
Y2Y4

Y1Y3

gm1gm2gm3gm4

gm5gm6gm7
(4)

where Y1,2,3,4 are the admittances of the external components
and gm1−7 are the transconductances of the internal OTAs.
This design realizes an admittance with fractional-order given
by:

α = α2 + α4 − α1 − α3 (5)

where α1−4 are the orders of the externally connected admit-
tances Y1−4, respectively. Complete details of the design and
characterization are provided by Koton et al. [11] and Dvorak
et al. [10] for interested readers. The values given in Table I
highlight how a range of overall fractional-orders (from −2 to
2) can be realized using only one “seed” element. From the
experimental characterization by Dvorak et al. of the realized
FGIC44 designs using the 0.18 µm TSMC CMOS technology
process, the internal OTAs had magnitude and phase responses
that were constant from 1 Hz to 1 MHz (magnitude) and 100
kHz (phase) [10]. Therefore, the FOE components used as
“seeds” with the FGIC should also have bandwidths that match
these ranges for magnitude and phase.

III. APPROXIMATION OF FRACTIONAL ORDER CAPACITOR

Approximating a fractional-order capacitor requires the de-
sign and realization of an electric network with magnitude and
phase characteristics similar to the theoretical FOC impedance
over a frequency band of interest. One approach designs a
rational approximation for sα that is used in (3), generating
an integer-order function that can be implemented using tradi-
tional (i.e. integer order) electric network synthesis techniques.
Towards this process, an n-th order approximation (where n
is an integer) of sα is given by:

sα ∼= ωα
0 ·

ans
n + an−1ω0s

n−1 + ...+ a1ω
n−1
0 s+ a0ω

n
0

bnsn + bn−1ω0sn−1 + ...+ b1ω
n−1
0 s+ b0ωn

0

(6)

where a0 to an are the numerator coefficients, b0 to bn are the
denominator coefficients, and ω0 is the center frequency of the
approximation. The next steps are generating the appropriate
capacitance value for the integer-order realization. A FOC and
traditional capacitor do not share the same units but can be
related to each other at a specific frequency (ω0, in rad/s) given
by:

C =
Ca

ω1−α
0

(7)
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Fig. 2. Impedance (a) magnitude and (b) phase of 5-th, 7-th, and 8-th order
approximations of s0.205 compared to ideal case.

where C is the integer order capacitor (with units of F) and Cα

is the pseudo-capacitance (with units F/sec1−α) [13]. This ex-
pression supports the design of a FOC approximation through
the calculation of the equivalent integer-order capacitance to
represent the target C at a particular frequency of interest.

To realize an approximated FOC with C = 1 nF and
α = 0.205 with a center frequency of 31.7 kHz (selected
as a logarithmic midpont between 10 kHz and 1 MHz), the
value of Cα using (7) is 16.3 µF/sec1−α. Substituting both (6)
and (7) into (3), the approximated fractional order impedance
(and its inverse, admittance) are given by:

Z(s) ≈ 1

Cω0
· bns

n + bn−1ω0s
n−1 + ...+ b1ω

n−1
0 s+ b0ω

n
0

ansn + an−1ω0sn−1 + ...+ a1ω
n−1
0 s+ a0ωn

0
(8)

Y (s) ≈ Cω0 ·
ans

n + an−1ω0s
n−1 + ...+ a1ω

n−1
0 s+ a0ω

n
0

bnsn + bn−1ω0sn−1 + ...+ b1ω
n−1
0 s+ b0ωn

0
(9)

Note that the a and b coefficients in (6) are dependent on the
value of α. Their value as a function of α can be generated

using the general form for continued fraction expansion to
(1 + x)α, given by [14]:

(1 + x)α =
1

1−
αx

1+
...
(n+ α)x

2+

(n− α)x

(2n+ 1)+
... (10)

in which the substitution x = s− 1 is made. From this form,
using the approach presented by Tsirimokou et al. [13], the
a and b coefficient values for the 8-th order approximation of
sα are given in Table II.

A. Impedance Characteristics

As noted previously, FOE approximations can be improved
by increasing their order, that is the number of elements in
the realization. This improvement is observed as an increase
of the approximated frequency band and/or decrease of ap-
proximation error.

Previously, 5-th and 7-th order approximations of sα have
been utilized in the approximation of a FOC when the FGIC44
has been utilized [10], [12]. To visualize the improvements
increasing approximation order yields, the magnitude and
phase of 5-th and 7-th order approximations of Cα = 16.3
µF/sec1−α, α = 0.205, and center frequency of 31.7 kHz
are given in Fig. 2. For comparison, the ideal magnitude and
phase (φ0.205 = −18.45◦) are also provided. The impedance
magnitude of the approximations in Fig. 2(a) show very good
visual agreement with the ideal case over the shown frequency
band (1 kHz to 1 MHz). From 2(a), it was discovered that the
frequency ranges of the 5-th and 7-th orders with less than 1%
deviation from the ideal is 2.39 kHz to 1 MHz and 1 kHz to 1
MHz, respectively. Focusing on the phase in Fig. 2(b), the 5-
th order approximation has less than 1% error for a frequency
range of 1.20 kHz to 1 MHz with an increase to 1.02 kHz
to 1 MHz for the 7-th order approximation of the impedance
phase angle.

To increase the approximated frequency band of the FOC
for future use with an FGIC44 an 8-th order approximation
is selected (increasing beyond the 5-th and 7-th previously
utilized). The necessary polynomials for this approximation
for a FOC with Cα = 16.3 µF/sec1−α, α = 0.205, and center
frequency of 31.7 kHz were generated in MATLAB using
(6), (10), and (8). The magnitude and phase characteristics
of this approximation are also given in Fig. 2 to visualize the
improvements.

While the bandwidths of the previous approximations high-
light the increased frequency range that increasing order
yielded, this metric does not reflect the overall change in ac-
curacy across the entire frequency band. For this comparison,
the root mean square (RMS) error was calculated for both
magnitude and phase for each approximation (when α = 0.2,
0.5, and 0.8) over the bandwidth in which its error was < 1%.
These values and are given in Table III). This RMS value was
calculated by:

xRMS =

√√√√ 1

N

N∑
n=1

|xn|2 (11)



TABLE II
8-TH ORDER APPROXIMATION COEFFICIENTS AS A FUNCTION OF FRACTIONAL ORDER (α)

Coefficient Coefficient Polynomial
a8 = b0 α8 + 36α7 + 546α6 + 4536α5 + 22449α4 + 67284α3 + 118124α2 + 109584α + 40320
a7 = b1 ω0(-8α8 - 216α7 - 1848α6 + 504α5 + 110208α4 + 788256α3 + 2572928α2 + 4110336α + 2580480)
a6 = b2 ω2

0(28α8 + 504α7 + 168α6 - 47376α5 - 278628α4 + 498456α3 + 9310112α2 + 30030336α + 31610880)
a5 = b3 ω3

0(-56α8 - 504α7 + 7224α6 + 75096α5 - 236544α4 - 3630816α3 - 1746304α2 + 56899584α + 126443520)
a4 = b4 ω4

0(70α8 - 12180α6 + 765030α4 - 20509720α2 + 197568000)
a3 = b5 ω5

0(-56α8 + 504α7 + 7224α6 - 75096α5 - 236544α4 + 3630816α3 - 1746304α2 - 56899584α + 126443520)
a2 = b6 ω6

0(28α8 - 504α7 + 168α6 + 47376α5 - 278628α4 - 498456α3 + 9310112α2 - 30030336α + 31610880)
a1 = b7 ω7

0(-8α8 + 216α7 - 1848α6 - 504α5 + 110208α4 - 788256α3 + 2572928α2 - 4110336α + 2580480)
a0 = b8 ω8

0(α8 - 36α7 + 546α6 - 4536α5 + 22449α4 - 67284α3 + 118124α2 - 109584α+ 40320)

TABLE III
ROOT MEAN SQUARE ERROR FOR 5-TH, 7-TH, AND 8-TH ORDER APPROXIMATIONS OF sα

α 5-th Order Phase 5-th Order Impedance 7-th Order Phase 7-th Order Impedance 8-th Order Phase 8-th Order Impedance
0.2 2.78 2.02 1.85 0.44 1.23 0.16
0.5 1.91 3.72 1.35 0.73 0.87 0.28
0.8 0.81 2.43 0.56 0.42 0.34 0.18

where N is the total datapoints in the bandwidth of comparison
and xn is the difference between the ideal magnitude or phase
and the approximation. For the purpose of results summarized
in Table III, the assumed bandwidth was 10 kHz to 1 MHz
and N = 1001 datapoints that were logaritmically distributed
inside the frequency range. The RMS values decrease with
increasing approximation order for all values of α in Table
III for both magnitude and phase. This supports that the error
of the higher-order approximations decreases across the entire
frequency band of interest.

B. RC Ladder (Foster I) Realization

For use with an FGIC44, the approximation must be realized
as a physical circuit. One realization method uses an RC-ladder
structure such as the Foster I network shown in Fig. 3. This
network uses parallel resistor/capacitor pairs (Ri, Ci where
i = 1, 2, ...n) in series with each other and a single resistor
(R0). The impedance expression, Z(s), of the Foster I network
is given by:

Z(s) = R0 +
n∑

i=1

1
Ci

s+ 1
RiCi

(12)

The values of the passive elements of the Foster I network can
be calculated by equating the coefficients of (8) with those
derived from the partial fraction expansion of the Z(s) found
in Table II given by:

Z(s) = k +

n∑
i=1

ri
s− pi

(13)

where k, ri, and pi are constants, residues, and poles of the
impedance, respectively. From equating terms in (12) and (13),

the values of resistors and capacitors in the network are given
by:

R0 = k (14)

Ci =
1

ri
(i = 1...n) (15)

Ri =
1

Ci|pi|
(16)

Using (14)-(16) and the coefficients in Table II, the ideal
component values for the 8-th order approximation of Cα =
16.3 µF/sec1−α, α = 0.205 and center frequency 31.7 kHz
are given in Table IV. Values of E96 resistor and E24
capacitor series closest to the ideal were selected to realize
the RC network. These nominal values are also given in Table
IV. Note that to achieve target capacitance values, parallel
capacitors were implemented for C1, C2, C3, C6, C7, and
C8. In these cases, the two nominal values of these parallel
capacitors are listed in Table IV.

IV. EXPERIMENTAL VALIDATION

The 8-th order approximation of the FOC using the Foster-
I network was physically implemented using a printed circuit
board design populated with the discrete E96 resistors and
E24 capacitors with values from Table IV. To validate that
the constructed network yielded the expected impedance,
measurements of the electrical impedance were collected
using a Agilent 4294A impedance analyzer in a bipolar
(two-wire) measurement configuration. Measurements were
collected from 1 kHz to 1 MHz and the values saved for
transfer to a computer for further processing.

The experimental magnitude and phase data compared to
both ideal and LTSpice simulations (of the RC ladder) are
given in Figs. 4(a) and 5(a). Both experimental and LTSpice
simulated impedance magnitude show very good agreement
with the ideal values from 10 kHz to 1 MHz and the phase
shows very good agreement from approximately 20 kHz to



R0

R1 R3 R4 R5 R6 R7 R8R2

C1 C8C7C6C5C4C3C2

Fig. 3. Foster I topology of RC ladder network to realize 8-th order approximation of FOC.

TABLE IV
IDEAL AND NOMINAL ELEMENT VALUES FOR FOSTER I RC NETWORK FOC REALIZATION

Element Ideal Resistance (Ω) Nominal Resistance (Ω) Element Ideal Capacitance (F) Nominal Capacitance (F)
R1 1.06k 1.10k C1 123p 120p ∥ 3.30p
R2 733 740 C2 877p 820p ∥ 51.0p
R3 654 647 C3 2.61n 2.0n ∥ 0.68n
R4 676 677 C4 5.54n 5.6n
R5 798 784 C5 9.88n 10.0n
R6 1.11k 1.096k C6 16n 15n ∥ 1.0n
R7 1.98k 1.955k C7 25.5n 22n ∥ 3.30n
R8 6.8k 6.81k C8 49n 47n ∥ 2.20n
R0 1.6k 1.603k
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Fig. 4. Experimental and Ideal Impedance Magnitude Data Comparison for
α = 0.205

500 kHz. To quantify the difference, the deviation of the
experimental from the ideal values for magnitude and phase
are shown in Fig. 4(b) and 5(b). The magnitude and phase have
less than 6.8% and 5% deviation across the previously noted
frequency bands of good visual agreement. The deviation of
the experimental impedance magnitude/phase from the LT-
Spice simulations is attributed to deviations of the components
from the nominal values due to their tolerances and also the
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Fig. 5. Experimental and Ideal Phase Angle Data Comparison for α = 0.205

introduction of parasitics from the PCB implementation.

V. CONCLUSION AND NEXT STEPS

The 8-th order approximation of the fractional-order ca-
pacitor in this work achieved the study requirements of
magnitude/phase performance across three frequency decades
(10 kHz - 1 MHz). This support the future use of this
approximation with FGIC44 devices to realize immittances



with adjustable fractional-order (examples of the range of
orders with this device are given in Table I ).

While this work has designed and fabricated the necessary
FOC approximation, further work is required to i) experimen-
tally validate the fractional-order immittance realized when
this design is used with the FGIC44 and ii) design further
unity “seed” elements to increase the range of fractional-order
immittances that can be realized and how the use of two seed
approximations may impact the overall performance.
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