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Abstract—This paper proposes a new attack model where the
attacker tries to reconstruct a combinational logic circuit without
having full oracles access. This means due to limited access time
to the product, the attacker has access to only a limited number of
input-output (I/0) pairs and does not have any information about
the design. The goal of the attacker is to reconstruct a circuit to
be deployed with simulation or emulation, in order to act as an
efficient surrogate to perform fast attacks.

We propose Lorax, the first automated framework to recon-
struct circuits from limited access, using tree-based machine
learning (ML) models of different configurations. It features
early estimation of accuracy of the reconstructed oracle using
cross-validation, as well as approximation techniques for efficient
synthesis of the learned logic. For cases that are difficult to
learn, Lorax applies a special function matching phase utilizing
an explanatory analysis of a tree-based ML model to identify bit
importance. Our experiments show that with a training set of
6400 1/O pairs, Lorax can successfully approximate commonly-
used functions from a range of sources, including arithmetic
circuits, industrial designs, and computer vision problems, with
an accuracy of 79-84% on average and near 100% for some
arithmetic functions.

Index Terms—machine learning; logic reconstruction

I. INTRODUCTION

Oracle access to a logic circuit is a core step that is evoked in
important problems in hardware security such as logic locking
[11, [2], logic camouflage [3], gate-level reverse engineering
[4], physically unclonable function (PUF) attacks [5], etc. It
assumes an attacker can query the circuit and obtain the output
corresponding to any desired inputs patterns. As one example,
AppSAT [1] exploits oracle access to derive an approximate
key using a Boolean satisfiability solver during logic locking.
As another example, Ganji e al. [6] show how oracle access
can be utilized on top of machine learning (ML) techniques to
learn logic locking schemes and PUFs.

The above cases often assume availability of full oracle
access, where the attacker is assumed to have unlimited access
to the circuit so they can query the output for any input pattern,
as many times as desired. However, this assumption may not
be realistic in many scenarios because access to the product
may be limited to a short duration of time.

Recently, Shamsi et al. include a brief study of oracle
learnability in the context of logic locking [7]. However, the
study on oracle learnability itself was quite limited and not the
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focus of their work [7]. Similarly, the work [5] studied oracle
learnability but with restriction to assumptions about PUFs.

The work [8] uses deep RNNs to attack logic locking with
less than 0.5% of input-output (I/O) pairs in the input space.
However, the number of patterns may still be very large even
for small circuits (e.g., 21 million for a circuit with 32 inputs,
which is impractical if attacker has access for a limited time).

In this paper, we focus on the scenario where the attacker
does not have full oracle access to a target circuit, nor do they
have access to design information such as port names, netlist or
layout. This attack scenario corresponds to the case when the
time an attacker can access a product is limited. This occurs,
for example, when the product is getting tested in the lab. They
only have access to the I/O pairs which because of the short
duration of access time is tiny-sized (< 2™ for m inputs).
The I/O pairs are uniformly sampled at random from the input
space to capture the fact that no specific knowledge about I/O
pairs is known in advance by the attacker. The goal of the
attacker is to reconstruct a gate-level circuit that is as close
as possible to the target in functionality. This is done while
imposing a limit on delay of the reconstructed circuit, so it can
serve as an efficient surrogate for simulation or emulation. For
example, if some applications allow errors or low precision, a
reconstructed circuit could be sold on the market with slightly
lower performance criteria than the original.

This work is the first to propose and study the above attack
model. We propose Lorax, an oracle reconstruction framework
that utilizes novel techniques. Lorax automatically explores
tree-based ML models of different configurations. It features
early estimation of accuracy of a reconstructed oracle using
cross validation, and approximation techniques for efficient
synthesis of the learned logic. Lorax is also able to evoke
a special matching phase to check for existence of standard
functions which are known to be hard to learn. This matching
phase is guided by an explanatory analysis of the ML model
to identify bit importance. None of the techniques which are
utilized by Lorax have been explored in prior work.

We experiment with functions from a variety of domains,
including arithmetic circuits, industrial designs, symmetric
functions, and computer vision problems, with an average of
179 inputs. We show they can be reconstructed with only 6400
I/O patterns, with an average accuracy of 79%—-84% depending
on the desired delay. Especially, we achieve an average of 94%
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Fig. 1. Overall workflow of ML-based oracle reconstruction with Lorax.

reconstruction accuracy for functions from industrial designs.
We show function matching with explanatory analysis of ML
model is effective for some hard-to-learn functions, of which
the reconstruction accuracy is further improved to near 100%.

We note, the scope of our work (including validation) does
not yet include the case when the function of the accessible
circuit is locked or otherwise altered. The novelty of our work
is proposing the limited-access attack model, as well as illus-
trating the effectiveness of Lorax for a variety of application
domains.

II. ATTACK MODEL

We define the following attack model for oracle reconstruc-
tion. For an m-input unknown Boolean function f : B™ — B
where B = {0, 1}, the attacker is given a set of n uniformly
random I/O pairs @ = {(x;, f(x;))}1; where n < 2™.

The attacker tries to find a reconstructed circuit f that has
the highest possible accuracy with delay no more than T
The accuracy acc is defined as the probability the output of
the reconstructed oracle coincides with the original oracle in
the entire input space, formally acc = 7 >, cpm 1(f(x) =
f(x)), which can be estimated using a uniformly random test
set S C B™ independent from the input patterns in @, i.e.,
ace ~ Vs LU (x) = F(x).

The above attack model assumes all I/O pairs are accessible
but because of the limited time to access them, the attacker can
only obtain |S| < 2™ pairs. Also, the scope of this paper is
limited to the cases when the function of the accessible circuit
is not locked or otherwise altered.

III. OVERVIEW OF LORAX

Fig. 1 shows the overall workflow of Lorax. Starting from
the left panel, Lorax first evaluates ML models with different
configurations, synthesizes each one to identify the delay of
the corresponding oracle candidate, and then applies cross
validation to identify the most accurate model among the ones
which have a synthesized circuit with delay lower than the
imposed time limit. If the accuracy is found to be satisfactory by
the attacker, then the identified best ML model is reconstructed
as the final oracle, as shown in the middle panel of Fig. 1. If
the accuracy is unsatisfactory, in the right panel, Lorax deploys

a special function matching step based on explanatory analysis
of an ML model. This step checks the match with specific
functions that are known to be hard to identify with ML only.

More specifically, the early evaluation phase (left panel)
consists of three steps. First, three different “tree-based” ML
models of nine different configurations are evaluated in parallel
to learn the underlying logic implied by the available, tiny-
sized I/O pairs. This step is also referred to as logic regression.
(The details of logic regression is explained in Sec. IV-A.)
Second, it reconstructs each ML model as an oracle candidate
by synthesizing the learned logic into a compact circuit as an
and-inverter graph (AIG). This is done by applying a unified
flow of logic minimization, quantization of leaf nodes in the
tree-based ML model, and performing a gate approximation
technique. The delay of each reconstructed oracle candidate is
then estimated from its AIG and the ones with delay higher than
the imposed time limit are discarded. (This step is explained
in Sec. IV-B.) Third, for the remaining reconstructed oracles,
Lorax applies cross validation given the specific set of tiny-
sized I/O patterns to identify the model/configuration of the
highest accuracy. (Details of this step is explained in Sec. IV-C.)

Next, the middle panel acts as the core of Lorax which
retrains the best-identified ML model (this time using the entire
set of available I/O pairs for training, as opposed to the rolling
90%/10% splits for training/testing during the cross validation),
and synthesizes it as a compact circuit.

Finally, in the right panel, Lorax applies special function
matching by first checking for symmetric functions and if there
is no match, it guides the function matching by exploiting
SHapley Additive exPlanations (SHAP) which aims to improve
the accuracy further by examining the importance of each input
bit from the learned logic (explained in Sec. IV-D).

IV. DETAILS
Here we explain more details about components of Lorax.

A. Logic Regression with Tree-Based ML Models

We perform logic regression using three tree-based super-
vised learning models: decision tree (DT) [9], XGBoost (XGB)
[10], and random forest (RF) [11]. The advantages of tree-based
models include the straightforward conversion from tree nodes
to truth tables of the learned logic, as well as the availability
of SHAP tree explainer [12], an efficient, specially-optimized
algorithm to evaluate SHAP values that we can use for function
matching, which will be detailed in Sec. IV-D.

We show the process of logic regression using an example.
Fig. 2(a) shows a trained XGB or RF model, which consists of
many decision trees (only showing the first two trees). Numbers
in leaf nodes (rectangular boxes) indicate the possible outputs
of a tree!. Fig. 2(b) shows the first tree in (a) after leaf node
quantization. The resulting tree can then be transformed to a
truth table. Fig. 2(c) shows the corresponding truth table in
PLA format of the tree in (b). As can be seen, each quantized
leaf node of the tree corresponds to a product term in the truth
table, and the conversion is straightforward. We then use the
logic minimization tool espresso [13] to simplify the truth
table, and use the AIG synthesis tool abc [14] to generate the

IThe DT model is similar except that it has a single tree with binary leaves.
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Fig. 2. (a) Hlustration of underlying trees in a trained XGB or RF model. (b)
The first tree in (a) after quantization. (c) The corresponding truth table in PLA
format for the tree in (b). A dash for an input means “don’t care”.

reconstructed circuit. The above process works naturally for a
single tree (among the trees in XGB or RF) and for DT (which
does not require quantization because the leaves are already
binary values). Next, we explain how the trees in XGB and RF
can be combined/approximated to convert into a compact AIG.

B. Model Approximation and Conversion

The explained logic regression process was applicable to a
single decision tree but by definition, both XGB and RF consist
of multiple decision trees, where the final prediction is derived
by the sum of leaf node values from each tree. Depending on
the implementation of an RF or XGB model, the value in a leaf
node can be any real number. Specifically in XGB, leaf values
are expressed in logit odds, where a positive value means the
function is more probable to output a 1 than a 0, and vise
versa. This means for an XGB model with 100 trees (which is
a nominal number in practice), we would need an adder to sum
up 100 real numbers, and determine the prediction by the sign
of the sum, if we wanted the exact prediction. However, this is
neither feasible nor necessary—even if we somehow managed
to do it, the resulting circuit would be extremely complex.

Therefore, we first quantize the leaf node values to one bit
(i.e. binary) as shown in Fig. 2(b). This can reduce the adder
to a majority gate, which simply compares the numbers of
ones and zeros in the inputs. However, a majority gate with
a large number (e.g. 100) of inputs is still very complex and
prone to very large delay. To address it, we further approximate
this majority gate as a hierarchical network of simpler majority
gates. Fig. 3 shows an example that approximates a 125-input
majority gate as a 3-level network of 5-input majority gates.
Though demonstrated with XGB, the proposed quantization and
gate approximation work for RF as well. Our experiments show
that the proposed approximate majority gate works well.

C. Early Estimation of Accuracy With Cross Validation
Before the attacker performs actual reconstruction, they can
use cross validation to get an early idea of accuracy and
delay of the reconstructed oracle, and choose the best model
and hyperparameter set. Specifically, we randomly divide the
available I/O patterns into 10 equally-sized groups and use a 10-
fold cross validation to compare configurations with different
models, numbers of trees (for XGB and RF only) and tree
depths. For XGB and RF, we go through the same quantization
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Fig. 3. A three-layer network of 5-input majority gates as an approximation
of a large, complex 125-input majority gate.
and majority gate approximation process as explained before.
Specifically, everything in cross validation is the same as in
Sec. IV-A, except that we run the process 10 times. In each
pass, we reserve one of the 10 groups (which traverses through
the 10 groups in each pass) for evaluation and use the remaining
9 groups for ML training and reconstruction. The accuracy
and delay of the reconstructed oracle are averaged over the
10 passes for each configuration. The configuration that has
the best accuracy and satisfies the limit on delay is used for
actual reconstruction.

D. SHAP-Guided Function Matching

By nature, tree-based ML models may not work well to
predict the outputs of unseen inputs for functions formed
by many XOR gates, which is often the case for arithmetic
functions and some symmetric functions. To alleviate this issue,
we propose SHAP-guided function matching that identifies
important input bits and insert multiplexers (MUX) to reduce
the problem into simpler cases.

SHAP tree explainer [12] is a recent advance in explanatory
analysis of tree-based ML models (e.g. DT, XGB, RF), focusing
on efficient and exact evaluation of Shapley values (a.k.a.
SHAP values) of each bit in the prediction made by a tree-
based ML model. SHAP decomposes the prediction output as
f(xi) = E[f(x)]—kzj 5(i, ), where E[f(x)] is the average ML
prediction based on the training set, and s(i,j) is the SHAP
value of input pattern ¢ and bit j, which reveals the expected
marginal contribution of bit j in predicting the output of pattern
i. Therefore, it can serve as a measure of bit importance or the
“weight” of the input bit in the predicted output.

To get this information, the attacker would first train an
initial tree-based ML model using all available I/O patterns
(as training samples), preferably XGB with a large number of
trees (e.g., 216) and a large depth (e.g., 8) for the best possible
accuracy. Note that for SHAP analysis, we use the model
without quantization and approximation, nor do we consider
the limit on delay. Although this initial model may not be very
accurate, the attack can get the most important input bits by
examining the mean absolute SHAP values® S; of each input
bit j across patterns 4, i.e. S; = E;epm (|s(4,)|), and taking
the bit j* with the highest S;, i.e. j* = argmax; S;.

Once the attacker identifies the the most important bit j*,
they can assume the function as the output of a 2-1 MUX,
where the select input is z[j*], and data inputs are connected
to two separate functions fo(x) and f;(x) that are trained with
two subsets of the available I/O patterns where z[j*] = 0

2We elaborate the process with an example in our experiments.



and z[j*] = 1, respectively. In case of two equally important
bits are identified, a 4-1 MUX with two select inputs can be
assumed similarly, and the available I/O patterns would be
divided into four subsets. It works similarly for more than two
important bits. This process can be applied recursively as long
as each subset includes enough number of patterns. In practice,
however, with a limited number (e.g. 6400) of I/O patterns,
a limited number (e.g. 6) of important bits can be identified
before the subsets become too small to train accurate functions.

In case that the attacker achieves a high accuracy (e.g.
> 99%) for some function, they can generalize the learned
function into a function template that describes the functional-
ity. An example template is “XOR of the highest bit and the
middle bit”, more precisely, 2:[n — 1] XOR z[n/2 — 1] (zero-
based indices) for an n-input function. These templates can be
used to match against the available I/O patterns for validation,
whose underlying function may be otherwise difficult to learn.

V. EXPERIMENTAL RESULTS

We use 100 functions and corresponding data sets from the
IWLS 2020 programming contest benchmark [15]. We divide
the functions into function groups with similar functionalities
and/or sources, whose profile is shown in Table II. Each func-
tion in the benchmark comes with a training set, a validation
set, and a test set. Regardless of the number of input bits in
the underlying function, each data set includes 6400 I/O pairs
that are randomly sampled from the input space. This training
set is a tiny fraction of the input space in most cases (e.g.
around 10~% for a 32-input function) and is solely used in our
experiments to reconstruct the oracle.

Recall, in our attack model, the goal of the attacker is to
use the reconstructed oracle for accelerated simulation or emu-
lation. Therefore, in our experiments, we report the delay and
accuracy of the AIG circuit corresponding to the reconstructed
oracle’. We evaluate the accuracy using the provided test set
in [15] which is independent of the used training set. All
ML models are implemented in C++ with XGBoost APIs. All
experiments are carried out on a Linux desktop with an Intel
3.60 GHz CPU and 64 GB memory. Multi-threading is disabled.
A. Oracle Reconstruction with ML Only

Here, we show the results of oracle reconstruction with ML-
only Lorax, which corresponds to the two left panels in Fig. 1.
For each ML model, we consider a few configurations with the
following naming convention. For the XGB and RF models, we
use {model: X/R}{number of trees}-{max tree depth}. (We
use “U” to refer to unlimited tree depth.) For DT models,
we use DT-{max tree depth}. The cross validation process
selects one ML configuration from DT-6, DT-8, DT-U, X125-4,
X125-6, X125-8, R125-6, R125-8, and R125-U, after imposing
an attacker-provided limit on the delay of the synthesized oracle
circuit. Therefore, the selected model/configuration may vary
across the functions and limits on the oracle delay.

Table I compares the accuracy and delay of the reconstructed
oracle under different limits on delay. The results in each
row are averaged over all functions in the corresponding

3Since the functions used in our experiments have a single output, we report
the delay to be proportional to length of the longest path of the AIG circuit.
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function group. For each group and limit, we also report the
most common model (MCM) selected by Lorax. A dash in
MCM indicates no prevailing model in the function group.
The bottom rows of the table report average, min, and max
oracle reconstruction runtimes in Lorax, which includes cross
validation, model training and synthesis.

Looking at the overall average row in Table I, we observe that
imposing the smallest limit yields 4x lower oracle delay with
5% degradation in accuracy (from 84% to 79%) and selecting
DTs as MCM. This is compared to the case with the largest
limit when XGB and often RF will be the selected MCM,
yielding higher accuracy but significantly higher delay. This
trend exists for each function group in the table.

The runtime to reconstruct the oracle increases when increas-
ing the limit, as reported in the bottom rows of the table. We
also report the runtime for cross validation solely, which is
included in the runtime of Lorax. In general the runtime of
Lorax is dominated by the cross validation process, which is
expected, due to the iterative validation passes. However, the
overall runtime overhead is still small (the longest runtime is
within minutes). Since we disabled multithreading in our ex-
periments, the reported runtimes include all configurations and
passes in cross validation performed in series. Moreover, these
runtimes should be viewed considering the attacker reconstructs
the oracle once with the goal to deploy it frequently to simulate
or emulate the behavior of the circuit.

To illustrate the effectiveness of Lorax, next, in Fig. 4,
we show comparison in delay and accuracy with single ML
models/configurations. Each point is averaged over all 100
functions in the benchmark. (The numbers for each single
model/configuration is when it is exclusively applied to all the
100 functions.) From the figure we can see that Lorax is always
better than any single ML configuration with a tradeoff curve
above all the points of single configurations.

B. Oracle Reconstruction with SHAP-Guided Matching
We can see from Table I that some functions are difficult to

learn by Lorax when the training sample size is small, i.e.,
arithmetic functions in ex00-08 even, ex20-28 even,
and ex40-49, as well as symmetric functions ex74-79. In
such a case, the attacker can still use Lorax to get an estimated
accuracy early in the cross validation process. In case this
estimated accuracy is not satisfactory, the attacker can then
apply our proposed function matching techniques to check for
existence of these special functions in attempt to enhance the
accuracy. More specifically, we check for symmetric functions
by comparing the number of ones in the input vector and the
output bit, and implemented them by adding a side circuit that
counts the number of ones in the input bits, and a DT that learns



TABLE I
COMPARISON OF DELAY (D) AND ACCURACY (A) OF RECONSTRUCTED ORACLES, AND THE MOST COMMON ML MODEL (MCM) SELECTED BY LORAX IN
EACH FUNCTION GROUP WHEN THE ATTACKER IMPOSES DIFFERENT LIMITS ON DELAY.

Limit on delay — 10 15 20 25 30 40 Unlimited Fn Match
Fn group (size) | D AMCM|D A MCM|D A MCM |D A MCM |D A MCM |D A MCM |D A MCM D A
ex00-08 even (5) 10 52 DT-6 |10 52 DT6 |14 53 DT-8 |21 53 DTU |26 55 XI125-4|32 60 X125-8 |39 61 — 53 100
ex01-09 odd (5) 8 97 DT-8 |12 98 DTU |12 98 DT-U |12 98 DTU |12 98 DT-U |32 98 RI25-U |32 98 R125-U 51 100
ex10-14 (5) 10 82 DT6 |14 8 DT8 |16 8 DT-U |19 8 DTU |19 8 DT-U |31 87 RI25-8 |41 88 RI25-U, R216-U || — —
ex15-19 (5) 9 8 DT6 |13 90 DT-8 |15 90 DT-8 |15 90 DT-8 |15 90 DT-8 |36 91 RI25-U |40 91 R216-U — —
ex20-28 even (5) 10 50 DT-6 |10 50 DT6 |14 50 DT-8 |18 51 DT-8 |18 51 DT-8 |31 51 — 33 52 — — —
ex21-29 odd (5) 10 60 DT-6 |11 62 DT6 |17 65 DT-8 |23 86 XI125-4 |23 85 XI25-4 |27 91 XI125-4 |34 92 R216-U 2 100
ex30-39 (10) 8 97 DT-8 |12 98 DTU |12 98 DT-U |12 98 DTU |14 98 DT-U |35 98 R216-U |35 98 R216-U 29 100
ex40-49 (10) 11 57 DT-6 |1l 58 DT6 |14 60 DT8 |19 61 DT-U (19 61 DT-U |32 61 RI25-6 |35 62 R125-6/U — —
ex50-59 (10) 8 8 DT6 |10 8 DT8 |10 90 DT-8 |11 90 DT8 |16 90 DT-6 |27 91 RI25-8 |31 91 R216-U — —
ex60-73 (14) 7 95 DT-6 |10 96 DT-8 |12 97 DT-U |13 97 DT-U |15 97 DT-U |25 97 RI25-U |27 97 R216-U — —
ex74-79 (6) 8 71 DT-6 |11 71 DT-6/8|16 72 DT-U |17 74 DTU |17 74 DT-U |30 80 XI125-8 |30 80 X125-8 20 100
ex80-89 (10) 11 91 DT6 |14 92 DT8 |17 93 DT-U |24 94 X1254 |27 96 XI125-6 |29 97 XI125-8 |30 97 X216-8 — —
ex90-99 (10) 10 66 DT-6 |11 66 DT-6 |11 66 DT-6 |24 69 X125-4|28 71 RI25-6 |34 72 RI25-8 |55 72 R216-U — —
Overall average (100) | 9 79 DT-6 |11 80 DT-6 |14 80 DT-8/U|17 82 DTU |19 83 DT-U |30 84 RI25-8 |35 84 R216-U [| NA
Avg. runtime (s) 2.6 4.1 22.7 70.0 120.2 311.2 397.7
— cross validation (s) 2.5 4.0 22.6 69.4 119.1 308.4 392.1 N/A
Min. runtime (s) 1.2 22 79 15.5 21.2 523 523
Max. runtime (s) 6.9 83 79.7 289.2 820.1 1130.5 1590.0
TABLE II

PROFILE OF FUNCTION GROUPS IN IWLS 2020 CONTEST BENCHMARK
Function ‘ Group | Description # input bits per fn. kol 002 | | “ |“ | | | b 0.02
Tou size Min Max  Av S | | S | | | | | | |
grotp - & 2 0.00] 'k '|'| |||I|||I | | I ||II | : 0.00 III T 11 fhl I" || ]
ex00-08 even 5| 2nd MSB of sum of two integers 32 512 198 3 |I| | | | || | " 3 || ||| |||| || 1 | ||||| l” ||
ex01-09 odd 5| MSB of sum of two integers 32 512 198 o 0.02 &)
ex10-14 5| LSB of quotient of integer division 32 512 198 : —0.02
ex15-19 5 | LSB of remainder of integer division | 32 512 198 5 10 20 30 40 50 60 0 10 20 30 40 50 60
ex20-28 even 5 | Middle bit of product of two integers | 16 256 99 Input bit Input bit
ex21-29 odd 5| MSB of product of two integers 16 256 99 . . . .
ex30-39 10 | Comparator of two signed integers 20 200 110 (a) Correlation coefficient, ex02 (b) Correlation coefficient, ex25
ex40-49 10 | LSB of square root 10 256 75
ex50-59 10 | Selected outputs of PicoJava design 19 394 84 06 a3
ex60-73 14 | Selected outputs of MCNC designs 16 52 34 é E
ex74-79 6 | Selected symmetry functions 16 16 16 ©n 0.4 n?2
ex80-89 10 | Binary classifications of MNIST 196 196 196 =) =]
ex90-99 10 | Binary classifications of CIFAR-10 768 768 768 é 0.2 g 1
Overall | 100 | | 10 768 179

0075710 20 30 40 50 60 06" 16™"56""30""46™"56""60

the relationship between the count and the original output. This
helps identify 6 symmetric functions ex74-79.

For arithmetic functions, we use SHAP-guided analysis to
check for patterns in the importance of input bits for adders,
comparators, outputs of XOR or MUX, as detailed in Sec. IV-D.
Specifically, SHAP value is quite effective to measure the bit
importance. We demonstrate this point using an example shown
in Fig. 5. The figure compares the correlation coefficients and
the mean absolute SHAP values of each input bit with respect to
the output bit, for two functions ex02 and ex25, respectively.
For each function, we can see two peaks in the distribution of
mean absolute SHAP values in Fig. 5(c) and (d), corresponding
to the two most important bits in the input vector. In contrast,
correlation coefficients in Fig. 5(a) and (b) show small random
noises, which do not give any apparent hint of bit importance.

Once the most important bits are identified, the attacker may
use a MUX with these important bits as the select bits, divide
the training set according to the values of these select bits and
re-train models in different modes.

Take ex02 as an example. Since Fig. 5(c) shows that bits 31
and 63 (denoted x[31] and z[63]) are two most important bits,
we divide the training set into four subsets with z[63]z[31] =
00,01, 10, 11, respectively, train four separate ML models and
generate AIGs, combine them with a 4-1 MUX with z[63]
and z[31] being select inputs. In the example of ex02, we

Input bit
(c) Mean |SHAP|, ex02

Input bit

(d) Mean |[SHAP|, ex25
Fig. 5. (a)-(b) Correlation coefficients and (c)-(d) mean absolute SHAP values
(based on 10k random patterns) of each input bit with respect to the output
bit in functions ex02 and ex25, respectively. SHAP-guided analysis allows
identifying the important bits while correlation coefficient fails to do so.
get higher accuracy from all four separated models than the
original model. In function group ex21-ex29 odd, we can
even achieve near 100% accuracy from all separated models.

With these function matching techniques, we are able to
identify 31 out of 100 functions in the benchmark, on which
we can build custom AIGs of the identified functions and
achieve close to 100% accuracy. We report the delay and
accuracy for these functions in the last two columns of Table I
and mark those for other functions with dashes. Note that
ex00-09 have large delay because we implemented the exact
function as identified. To reconstruct a faster oracle, input bits
of lower importance can be ignored for a negligible error rate.
Finally, we do not report runtime for oracle reconstruction using
function matching because it is mostly a process performed by
the attacker but guided by the SHAP analysis of Lorax.
C. Impact of Quantization and Approximate Majority Gate

Recall, Lorax utilizes approximation techniques including
leaf node quantization and approximated majority gate (approx-
MAJ) to synthesize the oracle as a compact AIG with low delay.



TABLE III
ACCURACY OF XGB AND RF WITH/WITHOUT QUANTIZATION (Q) AND APPROXIMATED MAJORITY GATE (M). AVERAGE DELAY IS IN THE BOTTOM ROW.

X125-4
QQM| @

X125-6 X125-8
QQM| @ Q QM| @

X216-4 X216-6
QQM| & QQM

Function group
(group size)

N

E

X216-8

R125-6
QQM| @

R125-8 R125-U
QQM|g QQM| @

R216-6
QQM| o

R216-8 R216-U

QQMH@ QQM|Z QQM

ex00-08 even (5)
ex01-09 odd (5)
ex10-14 (5)
ex15-19 (5)
ex20-28 even (5)
ex21-29 odd (5)
ex30-39 (10)
ex40-49 (10)
ex50-59 (10)
ex60-73 (14)
ex74-79 (6)
ex80-89 (10)
ex90-99 (10)

65
99

54
94
83
88
50
74
94
58
89
95
72
93
70

Avg. accuracy |85 81 79|85 83 81| 86 84 8285 80 80| 86 82 82| 86

82 80|84 83|84 84|82 80[84 83 83|84 84

Avg. delay |[— 192 24|— 196 28| — 198 30|]— 329 30| — 331

32| —332

33|— 208 40|— 333 34|— 338 39|— 345

To measure the impact of quantization and approxMAIJ for
XGB and RF models, we train these models with the relevant
configurations introduced earlier and perform quantization and
approxMAJ, as given in Sec. IV-B.

We report in Table III the accuracy before quantization
(denoted @), immediately after quantization (denoted Q), and
after both quantization and approxMAJ (denoted QM). The
reported accuracy is averaged within each function group. We
also report the average delay across all functions in the bottom
row of Table III. Delay before quantization (the column of &)
is not reported because synthesizing the tree with floating point
leaf nodes results in complex circuits, and the resulting circuits
would be much more complex than that after quantization.

From Table III we make the following observations. For both
XGB and RF, approxMALJ significantly reduces the complexity
of the generated AIGs, which can be seen as significant
reduction in delay (on average by a factor of 8 across all
models). This is while the degradation of accuracy is fairly
small compared to the original (2% and 0.5% respectively,
averaged over all models and functions). We can conclude that
both techniques are quite effective in creating an approximate
circuit as a faster oracle without much degradation in accuracy.
D. Effect of Training Set Size

We study how training set size affects the accuracy and
the delay of the reconstructed oracle with Lorax. We vary the
training set size from 1600 to 12800 by taking the first 1600 and
3200 I/O patterns from the training set, the entire training set (of
size 6400), and combining the training set and validation set for
each function (to build the 12800-sample data set), respectively.
As always, the accuracy is evaluated with a separated test set
that is different than both the training and validation sets.

Fig. 6 shows tradeoff curves of average accuracy vs delay
with different training set sizes. With more training data, we
can observe a general increase in accuracy with the same
delay. However, the increase is less obvious with smaller delays
resulting from simpler configurations (e.g., DTs of smaller
depths selected by Lorax). This is expected intuitively, as a
single DT has limited capability to express complex functions.
In other words, if a low oracle delay is desired, we can
reconstruct with few training samples without loss of accuracy.

VI. CONCLUSIONS
We presented Lorax, a framework for oracle reconstruction

—e— 1600
3200
+— 6400

12800

10 15 20 25 30 35 40
Delay of reconstructed oracle

Fig. 6. Average delay vs accuracy of the reconstructed oracle by Lorax using
different training set sizes (shown in legend).

with limited random I/O patterns. In our experiments, we
showed with a tiny-sized training set, Lorax can approximate a
range of functions from arithmetic circuits, industrial designs,
and computer vision problems, with an average accuracy of
79%—-84%, depending on the desired delay limit. We also
showed function matching with explanatory analysis can boost
the accuracy of some arithmetic functions to near 100%.

REFERENCES

[1] K. Shamsi et al., “AppSAT: Approximately deobfuscating integrated

circuits,” in HOST, 2017, pp. 95-100.

F. Yang et al.,, “Stripped functionality logic locking with hamming

distance-based restore unit (SFLL-hd) — unlocked,” IEEE Trans. on

Information Forensics and Security, vol. 14, no. 10, pp. 2778-2786, 2019.

G. Di Crescenzo et al., “Boolean circuit camouflage: Cryptographic

models, limitations, provable results and a random oracle realization,”

in ASHES, 2017, pp. 7-16.

S. Keshavarz et al., “SAT-based reverse engineering of gate-level schemat-

ics using fault injection and probing,” in HOST, 2018, pp. 215-220.

U. Riihrmair et al., “Modeling attacks on physical unclonable functions,”

in CCS, 2010, pp. 237-249.

F. Ganji et al., “Pitfalls in machine learning-based adversary modeling

for hardware systems,” in DATE, 2020, pp. 514-519.

K. Shamsi et al., “On the impossibility of approximation-resilient circuit

locking,” in HOST, 2019, pp. 161-170.

[8] F. Tehranipoor et al., “Deep rnn-oriented paradigm shift through bocanet:
Broken obfuscated circuit attack,” in GLSVLSI, 2019, pp. 335-338.
[9] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,

no. 1, pp. 81-106, 1986.

[10] T. Chen et al., “XGBoost: A scalable tree boosting system,” in SIGKDD,
2016, pp. 785-794.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32, 2001.

[12] S. M. Lundberg et al., “From local explanations to global understanding
with explainable Al for trees,” Nature Machine Intelligence, vol. 2, no. 1,
pp. 56-67, 2020.

[13] R. L. Rudell et al., “Multiple-valued minimization for PLA optimization,”
IEEE Trans. on CAD, vol. 6, no. 5, pp. 727-750, 1987.

[14] R. Brayton et al., “ABC: An academic industrial-strength verification
tool,” in Computer Aided Verification, 2010, pp. 24-40.

[15] A. Mishchenko et al., “IWLS 2020 programming contest benchmark,”
2020. [Online]. Available: https://github.com/iwls2020-1sml-contest

[2]

[3]

[4]
[5]
[6]
[7]



