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Abstract—This paper proposes a new attack model where the
attacker tries to reconstruct a combinational logic circuit without
having full oracles access. This means due to limited access time
to the product, the attacker has access to only a limited number of
input-output (I/O) pairs and does not have any information about
the design. The goal of the attacker is to reconstruct a circuit to
be deployed with simulation or emulation, in order to act as an
efficient surrogate to perform fast attacks.

We propose Lorax, the first automated framework to recon-
struct circuits from limited access, using tree-based machine
learning (ML) models of different configurations. It features
early estimation of accuracy of the reconstructed oracle using
cross-validation, as well as approximation techniques for efficient
synthesis of the learned logic. For cases that are difficult to
learn, Lorax applies a special function matching phase utilizing
an explanatory analysis of a tree-based ML model to identify bit
importance. Our experiments show that with a training set of
6400 I/O pairs, Lorax can successfully approximate commonly-
used functions from a range of sources, including arithmetic
circuits, industrial designs, and computer vision problems, with
an accuracy of 79–84% on average and near 100% for some
arithmetic functions.

Index Terms—machine learning; logic reconstruction

I. INTRODUCTION

Oracle access to a logic circuit is a core step that is evoked in

important problems in hardware security such as logic locking

[1], [2], logic camouflage [3], gate-level reverse engineering

[4], physically unclonable function (PUF) attacks [5], etc. It

assumes an attacker can query the circuit and obtain the output

corresponding to any desired inputs patterns. As one example,

AppSAT [1] exploits oracle access to derive an approximate

key using a Boolean satisfiability solver during logic locking.

As another example, Ganji et al. [6] show how oracle access

can be utilized on top of machine learning (ML) techniques to

learn logic locking schemes and PUFs.

The above cases often assume availability of full oracle

access, where the attacker is assumed to have unlimited access

to the circuit so they can query the output for any input pattern,

as many times as desired. However, this assumption may not

be realistic in many scenarios because access to the product

may be limited to a short duration of time.

Recently, Shamsi et al. include a brief study of oracle

learnability in the context of logic locking [7]. However, the

study on oracle learnability itself was quite limited and not the
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focus of their work [7]. Similarly, the work [5] studied oracle

learnability but with restriction to assumptions about PUFs.

The work [8] uses deep RNNs to attack logic locking with

less than 0.5% of input-output (I/O) pairs in the input space.

However, the number of patterns may still be very large even

for small circuits (e.g., 21 million for a circuit with 32 inputs,

which is impractical if attacker has access for a limited time).

In this paper, we focus on the scenario where the attacker

does not have full oracle access to a target circuit, nor do they

have access to design information such as port names, netlist or

layout. This attack scenario corresponds to the case when the

time an attacker can access a product is limited. This occurs,

for example, when the product is getting tested in the lab. They

only have access to the I/O pairs which because of the short

duration of access time is tiny-sized (� 2m for m inputs).

The I/O pairs are uniformly sampled at random from the input

space to capture the fact that no specific knowledge about I/O

pairs is known in advance by the attacker. The goal of the

attacker is to reconstruct a gate-level circuit that is as close

as possible to the target in functionality. This is done while

imposing a limit on delay of the reconstructed circuit, so it can

serve as an efficient surrogate for simulation or emulation. For

example, if some applications allow errors or low precision, a

reconstructed circuit could be sold on the market with slightly

lower performance criteria than the original.

This work is the first to propose and study the above attack

model. We propose Lorax, an oracle reconstruction framework

that utilizes novel techniques. Lorax automatically explores

tree-based ML models of different configurations. It features

early estimation of accuracy of a reconstructed oracle using

cross validation, and approximation techniques for efficient

synthesis of the learned logic. Lorax is also able to evoke

a special matching phase to check for existence of standard

functions which are known to be hard to learn. This matching

phase is guided by an explanatory analysis of the ML model

to identify bit importance. None of the techniques which are

utilized by Lorax have been explored in prior work.

We experiment with functions from a variety of domains,

including arithmetic circuits, industrial designs, symmetric

functions, and computer vision problems, with an average of

179 inputs. We show they can be reconstructed with only 6400

I/O patterns, with an average accuracy of 79%–84% depending

on the desired delay. Especially, we achieve an average of 94%



Fig. 1. Overall workflow of ML-based oracle reconstruction with Lorax.

reconstruction accuracy for functions from industrial designs.

We show function matching with explanatory analysis of ML

model is effective for some hard-to-learn functions, of which

the reconstruction accuracy is further improved to near 100%.

We note, the scope of our work (including validation) does

not yet include the case when the function of the accessible

circuit is locked or otherwise altered. The novelty of our work

is proposing the limited-access attack model, as well as illus-

trating the effectiveness of Lorax for a variety of application

domains.

II. ATTACK MODEL

We define the following attack model for oracle reconstruc-

tion. For an m-input unknown Boolean function f : Bm → B

where B = {0, 1}, the attacker is given a set of n uniformly

random I/O pairs Q = {(xi, f(xi))}
n
i=1

where n � 2m.

The attacker tries to find a reconstructed circuit f̂ that has

the highest possible accuracy with delay no more than T .

The accuracy acc is defined as the probability the output of

the reconstructed oracle coincides with the original oracle in

the entire input space, formally acc = 1

2m

∑
x∈Bm 1(f(x) =

f̂(x)), which can be estimated using a uniformly random test

set S ⊆ B
m independent from the input patterns in Q, i.e.,

acc ≈ 1

|S|

∑
x∈S 1(f(x) = f̂(x)).

The above attack model assumes all I/O pairs are accessible

but because of the limited time to access them, the attacker can

only obtain |S| � 2m pairs. Also, the scope of this paper is

limited to the cases when the function of the accessible circuit

is not locked or otherwise altered.

III. OVERVIEW OF LORAX

Fig. 1 shows the overall workflow of Lorax. Starting from

the left panel, Lorax first evaluates ML models with different

configurations, synthesizes each one to identify the delay of

the corresponding oracle candidate, and then applies cross

validation to identify the most accurate model among the ones

which have a synthesized circuit with delay lower than the

imposed time limit. If the accuracy is found to be satisfactory by

the attacker, then the identified best ML model is reconstructed

as the final oracle, as shown in the middle panel of Fig. 1. If

the accuracy is unsatisfactory, in the right panel, Lorax deploys

a special function matching step based on explanatory analysis

of an ML model. This step checks the match with specific

functions that are known to be hard to identify with ML only.

More specifically, the early evaluation phase (left panel)

consists of three steps. First, three different “tree-based” ML

models of nine different configurations are evaluated in parallel

to learn the underlying logic implied by the available, tiny-

sized I/O pairs. This step is also referred to as logic regression.

(The details of logic regression is explained in Sec. IV-A.)

Second, it reconstructs each ML model as an oracle candidate

by synthesizing the learned logic into a compact circuit as an

and-inverter graph (AIG). This is done by applying a unified

flow of logic minimization, quantization of leaf nodes in the

tree-based ML model, and performing a gate approximation

technique. The delay of each reconstructed oracle candidate is

then estimated from its AIG and the ones with delay higher than

the imposed time limit are discarded. (This step is explained

in Sec. IV-B.) Third, for the remaining reconstructed oracles,

Lorax applies cross validation given the specific set of tiny-

sized I/O patterns to identify the model/configuration of the

highest accuracy. (Details of this step is explained in Sec. IV-C.)

Next, the middle panel acts as the core of Lorax which

retrains the best-identified ML model (this time using the entire

set of available I/O pairs for training, as opposed to the rolling

90%/10% splits for training/testing during the cross validation),

and synthesizes it as a compact circuit.

Finally, in the right panel, Lorax applies special function

matching by first checking for symmetric functions and if there

is no match, it guides the function matching by exploiting

SHapley Additive exPlanations (SHAP) which aims to improve

the accuracy further by examining the importance of each input

bit from the learned logic (explained in Sec. IV-D).

IV. DETAILS

Here we explain more details about components of Lorax.

A. Logic Regression with Tree-Based ML Models

We perform logic regression using three tree-based super-

vised learning models: decision tree (DT) [9], XGBoost (XGB)

[10], and random forest (RF) [11]. The advantages of tree-based

models include the straightforward conversion from tree nodes

to truth tables of the learned logic, as well as the availability

of SHAP tree explainer [12], an efficient, specially-optimized

algorithm to evaluate SHAP values that we can use for function

matching, which will be detailed in Sec. IV-D.

We show the process of logic regression using an example.

Fig. 2(a) shows a trained XGB or RF model, which consists of

many decision trees (only showing the first two trees). Numbers

in leaf nodes (rectangular boxes) indicate the possible outputs

of a tree1. Fig. 2(b) shows the first tree in (a) after leaf node

quantization. The resulting tree can then be transformed to a

truth table. Fig. 2(c) shows the corresponding truth table in

PLA format of the tree in (b). As can be seen, each quantized

leaf node of the tree corresponds to a product term in the truth

table, and the conversion is straightforward. We then use the

logic minimization tool espresso [13] to simplify the truth

table, and use the AIG synthesis tool abc [14] to generate the

1The DT model is similar except that it has a single tree with binary leaves.
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Fig. 2. (a) Illustration of underlying trees in a trained XGB or RF model. (b)
The first tree in (a) after quantization. (c) The corresponding truth table in PLA
format for the tree in (b). A dash for an input means “don’t care”.

reconstructed circuit. The above process works naturally for a

single tree (among the trees in XGB or RF) and for DT (which

does not require quantization because the leaves are already

binary values). Next, we explain how the trees in XGB and RF

can be combined/approximated to convert into a compact AIG.

B. Model Approximation and Conversion

The explained logic regression process was applicable to a

single decision tree but by definition, both XGB and RF consist

of multiple decision trees, where the final prediction is derived

by the sum of leaf node values from each tree. Depending on

the implementation of an RF or XGB model, the value in a leaf

node can be any real number. Specifically in XGB, leaf values

are expressed in logit odds, where a positive value means the

function is more probable to output a 1 than a 0, and vise

versa. This means for an XGB model with 100 trees (which is

a nominal number in practice), we would need an adder to sum

up 100 real numbers, and determine the prediction by the sign

of the sum, if we wanted the exact prediction. However, this is

neither feasible nor necessary—even if we somehow managed

to do it, the resulting circuit would be extremely complex.

Therefore, we first quantize the leaf node values to one bit

(i.e. binary) as shown in Fig. 2(b). This can reduce the adder

to a majority gate, which simply compares the numbers of

ones and zeros in the inputs. However, a majority gate with

a large number (e.g. 100) of inputs is still very complex and

prone to very large delay. To address it, we further approximate

this majority gate as a hierarchical network of simpler majority

gates. Fig. 3 shows an example that approximates a 125-input

majority gate as a 3-level network of 5-input majority gates.

Though demonstrated with XGB, the proposed quantization and

gate approximation work for RF as well. Our experiments show

that the proposed approximate majority gate works well.

C. Early Estimation of Accuracy With Cross Validation

Before the attacker performs actual reconstruction, they can

use cross validation to get an early idea of accuracy and

delay of the reconstructed oracle, and choose the best model

and hyperparameter set. Specifically, we randomly divide the

available I/O patterns into 10 equally-sized groups and use a 10-

fold cross validation to compare configurations with different

models, numbers of trees (for XGB and RF only) and tree

depths. For XGB and RF, we go through the same quantization

Fig. 3. A three-layer network of 5-input majority gates as an approximation
of a large, complex 125-input majority gate.

and majority gate approximation process as explained before.

Specifically, everything in cross validation is the same as in

Sec. IV-A, except that we run the process 10 times. In each

pass, we reserve one of the 10 groups (which traverses through

the 10 groups in each pass) for evaluation and use the remaining

9 groups for ML training and reconstruction. The accuracy

and delay of the reconstructed oracle are averaged over the

10 passes for each configuration. The configuration that has

the best accuracy and satisfies the limit on delay is used for

actual reconstruction.

D. SHAP-Guided Function Matching

By nature, tree-based ML models may not work well to

predict the outputs of unseen inputs for functions formed

by many XOR gates, which is often the case for arithmetic

functions and some symmetric functions. To alleviate this issue,

we propose SHAP-guided function matching that identifies

important input bits and insert multiplexers (MUX) to reduce

the problem into simpler cases.

SHAP tree explainer [12] is a recent advance in explanatory

analysis of tree-based ML models (e.g. DT, XGB, RF), focusing

on efficient and exact evaluation of Shapley values (a.k.a.

SHAP values) of each bit in the prediction made by a tree-

based ML model. SHAP decomposes the prediction output as

f̂(xi) = E[f̂(x)]+
∑

j s(i, j), where E[f̂(x)] is the average ML

prediction based on the training set, and s(i, j) is the SHAP

value of input pattern i and bit j, which reveals the expected

marginal contribution of bit j in predicting the output of pattern

i. Therefore, it can serve as a measure of bit importance or the

“weight” of the input bit in the predicted output.

To get this information, the attacker would first train an

initial tree-based ML model using all available I/O patterns

(as training samples), preferably XGB with a large number of

trees (e.g., 216) and a large depth (e.g., 8) for the best possible

accuracy. Note that for SHAP analysis, we use the model

without quantization and approximation, nor do we consider

the limit on delay. Although this initial model may not be very

accurate, the attack can get the most important input bits by

examining the mean absolute SHAP values2 Sj of each input

bit j across patterns i, i.e. Sj = Ei∈Bm(|s(i, j)|), and taking

the bit j∗ with the highest Sj , i.e. j∗ = argmaxj Sj .

Once the attacker identifies the the most important bit j∗,

they can assume the function as the output of a 2-1 MUX,

where the select input is x[j∗], and data inputs are connected

to two separate functions f̂0(x) and f̂1(x) that are trained with

two subsets of the available I/O patterns where x[j∗] = 0

2We elaborate the process with an example in our experiments.



and x[j∗] = 1, respectively. In case of two equally important

bits are identified, a 4-1 MUX with two select inputs can be

assumed similarly, and the available I/O patterns would be

divided into four subsets. It works similarly for more than two

important bits. This process can be applied recursively as long

as each subset includes enough number of patterns. In practice,

however, with a limited number (e.g. 6400) of I/O patterns,

a limited number (e.g. 6) of important bits can be identified

before the subsets become too small to train accurate functions.

In case that the attacker achieves a high accuracy (e.g.

> 99%) for some function, they can generalize the learned

function into a function template that describes the functional-

ity. An example template is “XOR of the highest bit and the

middle bit”, more precisely, x[n − 1] XOR x[n/2 − 1] (zero-

based indices) for an n-input function. These templates can be

used to match against the available I/O patterns for validation,

whose underlying function may be otherwise difficult to learn.

V. EXPERIMENTAL RESULTS

We use 100 functions and corresponding data sets from the

IWLS 2020 programming contest benchmark [15]. We divide

the functions into function groups with similar functionalities

and/or sources, whose profile is shown in Table II. Each func-

tion in the benchmark comes with a training set, a validation

set, and a test set. Regardless of the number of input bits in

the underlying function, each data set includes 6400 I/O pairs

that are randomly sampled from the input space. This training

set is a tiny fraction of the input space in most cases (e.g.

around 10−6 for a 32-input function) and is solely used in our

experiments to reconstruct the oracle.

Recall, in our attack model, the goal of the attacker is to

use the reconstructed oracle for accelerated simulation or emu-

lation. Therefore, in our experiments, we report the delay and

accuracy of the AIG circuit corresponding to the reconstructed

oracle3. We evaluate the accuracy using the provided test set

in [15] which is independent of the used training set. All

ML models are implemented in C++ with XGBoost APIs. All

experiments are carried out on a Linux desktop with an Intel

3.60 GHz CPU and 64 GB memory. Multi-threading is disabled.

A. Oracle Reconstruction with ML Only

Here, we show the results of oracle reconstruction with ML-

only Lorax, which corresponds to the two left panels in Fig. 1.

For each ML model, we consider a few configurations with the

following naming convention. For the XGB and RF models, we

use {model: X/R}{number of trees}-{max tree depth}. (We

use “U” to refer to unlimited tree depth.) For DT models,

we use DT-{max tree depth}. The cross validation process

selects one ML configuration from DT-6, DT-8, DT-U, X125-4,

X125-6, X125-8, R125-6, R125-8, and R125-U, after imposing

an attacker-provided limit on the delay of the synthesized oracle

circuit. Therefore, the selected model/configuration may vary

across the functions and limits on the oracle delay.

Table I compares the accuracy and delay of the reconstructed

oracle under different limits on delay. The results in each

row are averaged over all functions in the corresponding

3Since the functions used in our experiments have a single output, we report
the delay to be proportional to length of the longest path of the AIG circuit.

Fig. 4. Delay and accuracy (averaged over 100 functions) of the reconstructed
oracle with different ML models/configurations and Lorax.

function group. For each group and limit, we also report the

most common model (MCM) selected by Lorax. A dash in

MCM indicates no prevailing model in the function group.

The bottom rows of the table report average, min, and max

oracle reconstruction runtimes in Lorax, which includes cross

validation, model training and synthesis.

Looking at the overall average row in Table I, we observe that

imposing the smallest limit yields 4× lower oracle delay with

5% degradation in accuracy (from 84% to 79%) and selecting

DTs as MCM. This is compared to the case with the largest

limit when XGB and often RF will be the selected MCM,

yielding higher accuracy but significantly higher delay. This

trend exists for each function group in the table.

The runtime to reconstruct the oracle increases when increas-

ing the limit, as reported in the bottom rows of the table. We

also report the runtime for cross validation solely, which is

included in the runtime of Lorax. In general the runtime of

Lorax is dominated by the cross validation process, which is

expected, due to the iterative validation passes. However, the

overall runtime overhead is still small (the longest runtime is

within minutes). Since we disabled multithreading in our ex-

periments, the reported runtimes include all configurations and

passes in cross validation performed in series. Moreover, these

runtimes should be viewed considering the attacker reconstructs

the oracle once with the goal to deploy it frequently to simulate

or emulate the behavior of the circuit.

To illustrate the effectiveness of Lorax, next, in Fig. 4,

we show comparison in delay and accuracy with single ML

models/configurations. Each point is averaged over all 100

functions in the benchmark. (The numbers for each single

model/configuration is when it is exclusively applied to all the

100 functions.) From the figure we can see that Lorax is always

better than any single ML configuration with a tradeoff curve

above all the points of single configurations.

B. Oracle Reconstruction with SHAP-Guided Matching
We can see from Table I that some functions are difficult to

learn by Lorax when the training sample size is small, i.e.,

arithmetic functions in ex00-08 even, ex20-28 even,

and ex40-49, as well as symmetric functions ex74-79. In

such a case, the attacker can still use Lorax to get an estimated

accuracy early in the cross validation process. In case this

estimated accuracy is not satisfactory, the attacker can then

apply our proposed function matching techniques to check for

existence of these special functions in attempt to enhance the

accuracy. More specifically, we check for symmetric functions

by comparing the number of ones in the input vector and the

output bit, and implemented them by adding a side circuit that

counts the number of ones in the input bits, and a DT that learns



TABLE I
COMPARISON OF DELAY (D) AND ACCURACY (A) OF RECONSTRUCTED ORACLES, AND THE MOST COMMON ML MODEL (MCM) SELECTED BY LORAX IN

EACH FUNCTION GROUP WHEN THE ATTACKER IMPOSES DIFFERENT LIMITS ON DELAY.

Limit on delay → 10 15 20 25 30 40 Unlimited Fn Match

Fn group (size) ↓ D A MCM D A MCM D A MCM D A MCM D A MCM D A MCM D A MCM D A

ex00-08 even (5) 10 52 DT-6 10 52 DT-6 14 53 DT-8 21 53 DT-U 26 55 X125-4 32 60 X125-8 39 61 — 53 100

ex01-09 odd (5) 8 97 DT-8 12 98 DT-U 12 98 DT-U 12 98 DT-U 12 98 DT-U 32 98 R125-U 32 98 R125-U 51 100

ex10-14 (5) 10 82 DT-6 14 85 DT-8 16 85 DT-U 19 86 DT-U 19 86 DT-U 31 87 R125-8 41 88 R125-U, R216-U — —

ex15-19 (5) 9 88 DT-6 13 90 DT-8 15 90 DT-8 15 90 DT-8 15 90 DT-8 36 91 R125-U 40 91 R216-U — —

ex20-28 even (5) 10 50 DT-6 10 50 DT-6 14 50 DT-8 18 51 DT-8 18 51 DT-8 31 51 — 33 52 — — —

ex21-29 odd (5) 10 60 DT-6 11 62 DT-6 17 65 DT-8 23 86 X125-4 23 85 X125-4 27 91 X125-4 34 92 R216-U 2 100

ex30-39 (10) 8 97 DT-8 12 98 DT-U 12 98 DT-U 12 98 DT-U 14 98 DT-U 35 98 R216-U 35 98 R216-U 29 100

ex40-49 (10) 11 57 DT-6 11 58 DT-6 14 60 DT-8 19 61 DT-U 19 61 DT-U 32 61 R125-6 35 62 R125-6/U — —

ex50-59 (10) 8 89 DT-6 10 89 DT-8 10 90 DT-8 11 90 DT-8 16 90 DT-6 27 91 R125-8 31 91 R216-U — —

ex60-73 (14) 7 95 DT-6 10 96 DT-8 12 97 DT-U 13 97 DT-U 15 97 DT-U 25 97 R125-U 27 97 R216-U — —

ex74-79 (6) 8 71 DT-6 11 71 DT-6/8 16 72 DT-U 17 74 DT-U 17 74 DT-U 30 80 X125-8 30 80 X125-8 20 100

ex80-89 (10) 11 91 DT-6 14 92 DT-8 17 93 DT-U 24 94 X125-4 27 96 X125-6 29 97 X125-8 30 97 X216-8 — —

ex90-99 (10) 10 66 DT-6 11 66 DT-6 11 66 DT-6 24 69 X125-4 28 71 R125-6 34 72 R125-8 55 72 R216-U — —

Overall average (100) 9 79 DT-6 11 80 DT-6 14 80 DT-8/U 17 82 DT-U 19 83 DT-U 30 84 R125-8 35 84 R216-U N/A

Avg. runtime (s) 2.6 4.1 22.7 70.0 120.2 311.2 397.7

N/A
– cross validation (s) 2.5 4.0 22.6 69.4 119.1 308.4 392.1

Min. runtime (s) 1.2 2.2 7.9 15.5 21.2 52.3 52.3

Max. runtime (s) 6.9 8.3 79.7 289.2 820.1 1130.5 1590.0

TABLE II
PROFILE OF FUNCTION GROUPS IN IWLS 2020 CONTEST BENCHMARK

Function Group Description # input bits per fn.

group size Min Max Avg

ex00-08 even 5 2nd MSB of sum of two integers 32 512 198

ex01-09 odd 5 MSB of sum of two integers 32 512 198

ex10-14 5 LSB of quotient of integer division 32 512 198

ex15-19 5 LSB of remainder of integer division 32 512 198

ex20-28 even 5 Middle bit of product of two integers 16 256 99

ex21-29 odd 5 MSB of product of two integers 16 256 99

ex30-39 10 Comparator of two signed integers 20 200 110

ex40-49 10 LSB of square root 10 256 75

ex50-59 10 Selected outputs of PicoJava design 19 394 84

ex60-73 14 Selected outputs of MCNC designs 16 52 34

ex74-79 6 Selected symmetry functions 16 16 16

ex80-89 10 Binary classifications of MNIST 196 196 196

ex90-99 10 Binary classifications of CIFAR-10 768 768 768

Overall 100 10 768 179

the relationship between the count and the original output. This

helps identify 6 symmetric functions ex74-79.

For arithmetic functions, we use SHAP-guided analysis to

check for patterns in the importance of input bits for adders,

comparators, outputs of XOR or MUX, as detailed in Sec. IV-D.

Specifically, SHAP value is quite effective to measure the bit

importance. We demonstrate this point using an example shown

in Fig. 5. The figure compares the correlation coefficients and

the mean absolute SHAP values of each input bit with respect to

the output bit, for two functions ex02 and ex25, respectively.

For each function, we can see two peaks in the distribution of

mean absolute SHAP values in Fig. 5(c) and (d), corresponding

to the two most important bits in the input vector. In contrast,

correlation coefficients in Fig. 5(a) and (b) show small random

noises, which do not give any apparent hint of bit importance.

Once the most important bits are identified, the attacker may

use a MUX with these important bits as the select bits, divide

the training set according to the values of these select bits and

re-train models in different modes.

Take ex02 as an example. Since Fig. 5(c) shows that bits 31

and 63 (denoted x[31] and x[63]) are two most important bits,

we divide the training set into four subsets with x[63]x[31] =
00, 01, 10, 11, respectively, train four separate ML models and

generate AIGs, combine them with a 4-1 MUX with x[63]
and x[31] being select inputs. In the example of ex02, we

(a) Correlation coefficient, ex02 (b) Correlation coefficient, ex25

(c) Mean |SHAP|, ex02 (d) Mean |SHAP|, ex25

Fig. 5. (a)-(b) Correlation coefficients and (c)-(d) mean absolute SHAP values
(based on 10k random patterns) of each input bit with respect to the output
bit in functions ex02 and ex25, respectively. SHAP-guided analysis allows
identifying the important bits while correlation coefficient fails to do so.

get higher accuracy from all four separated models than the

original model. In function group ex21-ex29 odd, we can

even achieve near 100% accuracy from all separated models.

With these function matching techniques, we are able to

identify 31 out of 100 functions in the benchmark, on which

we can build custom AIGs of the identified functions and

achieve close to 100% accuracy. We report the delay and

accuracy for these functions in the last two columns of Table I

and mark those for other functions with dashes. Note that

ex00-09 have large delay because we implemented the exact

function as identified. To reconstruct a faster oracle, input bits

of lower importance can be ignored for a negligible error rate.

Finally, we do not report runtime for oracle reconstruction using

function matching because it is mostly a process performed by

the attacker but guided by the SHAP analysis of Lorax.

C. Impact of Quantization and Approximate Majority Gate

Recall, Lorax utilizes approximation techniques including

leaf node quantization and approximated majority gate (approx-

MAJ) to synthesize the oracle as a compact AIG with low delay.



TABLE III
ACCURACY OF XGB AND RF WITH/WITHOUT QUANTIZATION (Q) AND APPROXIMATED MAJORITY GATE (M). AVERAGE DELAY IS IN THE BOTTOM ROW.

Function group X125-4 X125-6 X125-8 X216-4 X216-6 X216-8 R125-6 R125-8 R125-U R216-6 R216-8 R216-U

(group size) ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM ∅ Q QM

ex00-08 even (5) 65 56 55 68 61 59 66 62 60 68 58 55 68 61 58 67 62 60 58 54 54 61 59 58 62 60 59 58 54 54 61 59 58 62 60 59

ex01-09 odd (5) 99 96 94 99 97 96 99 97 96 99 95 95 99 97 96 99 97 97 95 94 94 97 97 97 98 98 98 95 94 94 97 97 97 98 98 98

ex10-14 (5) 83 77 74 86 83 80 87 85 83 83 77 78 86 83 83 87 84 85 84 83 83 87 87 87 88 88 88 84 83 83 87 87 87 88 88 88

ex15-19 (5) 86 83 80 89 87 84 90 87 85 87 82 84 89 85 87 90 86 88 88 88 80 90 90 90 91 91 91 88 88 88 90 90 90 91 91 91

ex20-28 even (5) 51 51 50 51 51 51 51 51 51 50 50 50 51 51 51 51 51 52 50 51 50 51 51 51 52 51 51 50 50 50 51 51 51 51 51 51

ex21-29 odd (5) 98 88 85 99 89 85 100 92 88 99 80 78 100 84 82 100 81 80 90 74 73 92 86 83 92 88 86 90 75 74 93 87 84 93 90 86

ex30-39 (10) 99 96 93 99 97 96 99 98 97 99 95 95 99 97 97 99 97 97 95 94 94 97 97 97 98 98 98 95 94 94 97 97 97 98 98 98

ex40-49 (10) 58 57 56 60 59 58 62 60 60 58 57 56 61 59 59 62 60 60 58 58 58 61 61 61 62 62 62 59 58 58 61 61 61 62 62 62

ex50-59 (10) 90 87 85 90 88 85 91 89 87 90 86 87 90 86 88 91 86 89 89 89 89 90 90 90 91 91 91 89 89 89 90 90 90 91 91 91

ex60-73 (14) 97 94 93 98 96 95 98 96 95 97 91 94 98 94 96 98 94 97 96 95 95 97 97 97 98 97 97 96 95 95 97 97 97 97 97 97

ex74-79 (6) 83 77 74 82 79 78 81 80 79 84 74 76 83 79 78 82 79 79 72 72 72 74 74 74 74 74 74 73 72 72 74 73 73 74 74 74

ex80-89 (10) 98 96 95 98 98 97 98 98 97 98 96 95 98 98 97 98 98 97 94 93 93 95 95 95 96 96 96 94 93 93 95 95 95 96 96 96

ex90-99 (10) 74 71 69 74 72 70 74 73 71 74 71 70 75 73 71 75 73 72 70 70 70 72 72 72 73 73 72 70 70 70 72 72 72 73 73 72

Avg. accuracy 85 81 79 85 83 81 86 84 82 85 80 80 86 82 82 86 82 83 82 80 80 84 83 83 84 84 84 82 80 80 84 83 83 84 84 84

Avg. delay — 192 24 — 196 28 — 198 30 — 329 30 — 331 32 — 332 33 — 195 27 — 201 33 — 208 40 — 333 34 — 338 39 — 345 46

To measure the impact of quantization and approxMAJ for

XGB and RF models, we train these models with the relevant

configurations introduced earlier and perform quantization and

approxMAJ, as given in Sec. IV-B.

We report in Table III the accuracy before quantization

(denoted ∅), immediately after quantization (denoted Q), and

after both quantization and approxMAJ (denoted QM). The

reported accuracy is averaged within each function group. We

also report the average delay across all functions in the bottom

row of Table III. Delay before quantization (the column of ∅)

is not reported because synthesizing the tree with floating point

leaf nodes results in complex circuits, and the resulting circuits

would be much more complex than that after quantization.

From Table III we make the following observations. For both

XGB and RF, approxMAJ significantly reduces the complexity

of the generated AIGs, which can be seen as significant

reduction in delay (on average by a factor of 8 across all

models). This is while the degradation of accuracy is fairly

small compared to the original (2% and 0.5% respectively,

averaged over all models and functions). We can conclude that

both techniques are quite effective in creating an approximate

circuit as a faster oracle without much degradation in accuracy.

D. Effect of Training Set Size

We study how training set size affects the accuracy and

the delay of the reconstructed oracle with Lorax. We vary the

training set size from 1600 to 12800 by taking the first 1600 and

3200 I/O patterns from the training set, the entire training set (of

size 6400), and combining the training set and validation set for

each function (to build the 12800-sample data set), respectively.

As always, the accuracy is evaluated with a separated test set

that is different than both the training and validation sets.

Fig. 6 shows tradeoff curves of average accuracy vs delay

with different training set sizes. With more training data, we

can observe a general increase in accuracy with the same

delay. However, the increase is less obvious with smaller delays

resulting from simpler configurations (e.g., DTs of smaller

depths selected by Lorax). This is expected intuitively, as a

single DT has limited capability to express complex functions.

In other words, if a low oracle delay is desired, we can

reconstruct with few training samples without loss of accuracy.

VI. CONCLUSIONS

We presented Lorax, a framework for oracle reconstruction

Fig. 6. Average delay vs accuracy of the reconstructed oracle by Lorax using
different training set sizes (shown in legend).

with limited random I/O patterns. In our experiments, we

showed with a tiny-sized training set, Lorax can approximate a

range of functions from arithmetic circuits, industrial designs,

and computer vision problems, with an average accuracy of

79%–84%, depending on the desired delay limit. We also

showed function matching with explanatory analysis can boost

the accuracy of some arithmetic functions to near 100%.
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