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for gauge fields and a 4d WZW theory
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We consider the volume of the gauge orbit space for gauge fields on four-dimensional complex
projective space. The analysis uses a parametrization of gauge fields where gauge transformations act
homogeneously on the fields, facilitating a manifestly gauge-invariant analysis. The volume element
contains a four-dimensional Wess-Zumino-Witten (WZW) action for a Hermitian matrix-valued field.
There is also a masslike term for certain components of the gauge field. We discuss how the mass term
could be related to results from lattice simulations as well as Schwinger-Dyson equations. We argue for a
kinematic regime where the Yang-Mills theory can be approximated by the 4d-WZW theory. The result is
suggestive of the instanton liquid picture of QCD. Further it is also indicative of the mechanism for
confinement being similar to what happens in two dimensions.
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I. INTRODUCTION

In this paper, we continue our analysis of quantum fields
on the manifold CP? focusing on the gauge-invariant
volume element relevant to the functional integration over
gauge fields [1]. As is well known, in a gauge theory, the
physical degrees of freedom correspond to the space of all
gauge potentials (A4) modulo the set of all gauge trans-
formations which are set to the identity at some chosen
point of the spacetime manifold (G, ). The volume element
on the gauge orbit space C = A/G, is what appears in the
functional formulation of gauge theories, eliminating the
redundant degrees of freedom corresponding to gauge
transformations. Despite being a key foundational ingre-
dient for the quantum description of gauge theories, there is
no satisfactory expression for this volume element for
four-dimensional non-Abelian gauge theories [2]. While
perturbation theory is well understood by use of gauge
fixing and Faddeev-Popov ghosts, or, equivalently,
via the Becchi-Rouet-Stora-Tyutin procedure, an analytic
approach to nonperturbative questions such as confinement
remains elusive.
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The motivation to consider non-Abelian gauge theories
on the manifold CP? is from two and three dimensions. In
two dimensions, it is possible to calculate the volume
element for C exactly in terms of a Wess-Zumino-Witten
(WZW) action [3]. The same calculation placed within a
Hamiltonian formulation of (2 + 1)-dimensional gauge
theories has led to an analytic formula for the string tension
[4,5] which agrees very well, to within about 2%, with the
results from numerical simulations [6]. Another prediction
regarding the Casimir effect for non-Abelian gauge theories
also seems to agree, to within one percent or so, with
numerical estimates [7]. The key feature which facilitated
such calculations was the complex structure of the two-
dimensional spaces and an associated parametrization of
gauge potentials which allowed for factoring out gauge
transformations and reduction to gauge-invariant degrees of
freedom in a simple way. The manifold CP? then emerges
as the natural candidate for a similar scenario in four
dimensions. This is a complex Kihler manifold with a
standard choice of metric as the Fubini-Study metric which
is given in local complex coordinates z%, 7%, a =1, 2,
a=1,2, by

ds? — dz - dz _
(1+2z-2/r%)

Z-dzz-dz
(1 +z-z/r)?

= Gaadz®dz®. (1)

Here r is a scale parameter defining the volume of the space
as 7°r*/2. As r — oo, the metric becomes flat (albeit
modulo some global issues), so that one can compare
results with expectations in flat space. The main advantage
is that CP? = SU(3)/U(2), so that, utilizing group
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theoretic techniques, one can obtain a parametrization of
gauge fields similar to what was obtained in two dimen-
sions. This was indicated in [8] and explained in detail in
[1]. In the latter paper, we calculated the leading quantum
corrections, i.e., monomials of fields and derivatives of the
lowest dimensions generated by loops, due to a chiral scalar
field on CP? coupled to gauge fields. The effective action
from integrating out the scalar fields comprised of a
quadratic divergence corresponding to a possible gauge-
invariant mass term, standard logarithmic divergences
corresponding to wave function and/or coupling constant
renormalization and a finite WZW action, which is a
dimensionally upgraded version of the 2d-WZW action.
The natural next set of questions will be about contributions
due to the gauge fields themselves, with the volume
element on C being a key part of the one-loop results.
This is the subject of the present paper.

The organization of the paper is as follows. The para-
metrization of the gauge fields and the factoring out of the
gauge degrees of freedom are reviewed in Sec. II. The
formal expression for the volume element for the gauge
orbit space C = A4/G, is given in Sec. III, where we also
identify the relevant Jacobian determinant to be calculated.
In addition to the scalar propagator on CP? (with hyper-
charge Y = 0), which was calculated in [1], we will need
the propagator for an antisymmetric rank-2 tensor (with
Y = —2). This is calculated in Sec. IV. A covariant point-
splitting regularization, consistent with the isometries of
CP?, is discussed in Sec. V. In Sec. VI, we give the key
results of our calculations. We have calculated the terms of
the lowest scaling dimension (<4), which are presumably
the most relevant for the long-wavelength modes of the
fields. These include a four-dimensional WZW term with a
finite coefficient, a mass-like term with a quadratically
divergent coefficient and a set of log-divergent terms of
dimension 4. The physical implications of these results are
discussed in Sec. VII. There are two appendixes which give
details of the calculations for the WZW term and the UV-
divergent terms.

II. PARAMETRIZATION OF GAUGE FIELDS

We start by recalling the parametrization of the gauge
fields introduced in [1]. The manifold CP? is taken to be the
group coset space CP? = SU(3)/U(2), so that it can be
coordinatized in terms of a group element g € SU(3),
with identification g ~ gh, h € U(2) c SU(3). Thus U(2)
defines the local isotropy group. As aresult, vectors, tensors,
etc., transform as specific nontrivial representations of U(2).

Consider the group g € SU(3) defined in its fundamental
representation as a 3 x 3 unitary matrix g of unit determi-
nant. It may be taken to be of the form g = exp(it,¢"),
where ¢, form a basis for traceless Hermitian 3 x 3 matrices,
with Tr(t,1,) = 15,;, and ¢ are the coordinates for SU(3).
The SU(2) Cc U(2) subgroup is the standard isospin
subgroup, defined by the upper left 2 x 2 block, and

corresponding to the generators 7, a = 1, 2, 3. The U(1)
part of U(2) is defined by the hypercharge transformations,
with the generator ¥ = 215 //3. We also define right trans-
lation operators on g by R,g = gt,. In terms of the frame
fields E¢ for SU(3), we may write these as differential
operators:

. .0
g‘ldg:—itaE?dgo’, Ra:i(E‘l)’a—.,
d¢p'

R.g=gte-  (2)
Translations on CP? correspond to the coset directions 7,
a=4,5,6,7, and we can define the complex translation
operators as

Ri] - R4 :l: iRs, Rﬂ:Z — R6 Zl: lR7 (3)
These will be denoted by R; and R;, i,i = 1, 2.

Functions on CP? are invariant under the U(2) sub-
group. So they admit a mode expansion of the form

Flg) =YD () = S (s Algls.w).  (4)
s,A s,A

Here D% (9) = (s,Alg|s,B) are the finite-dimensional
unitary representation matrices for SU(3) and in (4) the
states on the right, namely, |s, w) are invariant under the
U(2) subgroup of SU(3). The action of R, on DE‘SZ); (9) is
given by

Ry(s,Alg

5.8) = (s, A|9Ta|s.B) = (5.Al7

5,C)(Ta)cp,  (5)

where 7, are the matrix representatives of 7, in the
representation designated by s. The invariance condition
for functions may therefore be stated as

T,|s,w) =0, a=1,2,3,8. (6)
In more detail, we can specify a state |s,A) = |aa,...a,,
byb,...b,) corresponding to a finite-dimensional SU(3)

representation of the form TZ:Z;“Z”, ai,bj =1, 2, 3. We
b,

will refer to this as a (p, ¢)-type representation. These are
totally symmetric in all the upper indices a;’s and totally
symmetric in all the lower indices b;’s with the trace (or any
contraction between any choice of upper and lower indices)

aa,...a,

vanishing. Under the action of g € SU(3), T, by...b, TANS-
form as

aa...a, vard sard aydy...d,
Tblbz..,bq = (grg e 2"‘)(gblb’lgbzb’z-‘-)Tb/lbé,__b; (7)

For functions, we need (s,A|j|s,w), with states of the
(p, p) type, with |s, A) being general and
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s,A)y =|333...,333...). (8)

Vectors on CP? must transform the same way as R ;, so
they must be doublets of SU(2) c SU(3) and must carry
hypercharge Y = £1. Derivatives of functions of the form
R ;f obviously satisfy this requirement. Another possibil-
ity is given by representations of the type (p + 3, p) and
(p, p+3), so that a general parametrization of a vector
takes the form

A= —Rif — ey CY (s, AJg[j33....33...).

s.A
A = —Rif — ey CY7 (57 Al9)33....33..). (9)
s*,A

The particular state |j33...,33...) [of the (p + 3, p) type]
can be obtained, by the application of R;, from the SU(2)
invariant states, with all indices equal to 3, as
nie’]j33....33...) = nzelIR;[33....33...),  (10)
where 7;; = 8;; is the metric for CP? in the tangent frame
and €'/ is the Levi-Civita tensor. With a similar result for

the conjugate representation, the parametrization (9) can be
written as

A; = —Rif —nze' Ry,
A; = —R;f — 'R . (11)
In a coordinate basis, rather than the tangent frames we
have used above, this becomes

A =Vif = 9u V",

A= _ka'i'gkl}vrh)(l_(mv (12)

where y*™ and y*" are antisymmetric rank-two tensors,
which for dimensional reasons, are proportional to €™ and
€k and so can be reduced to y and 7.

The non-Abelian generalization of (12) leads to the
following parametrization for the gauge potentials:

Aj=-V,MM™ + gi;D;(pU,

A; = M™'ViMT — gD (13)
In these expressions, M and M' are complex matrices
which are elements of SL(N,C) if the gauge group is
SU(N); i.e., they are N x N complex matrices with
determinant equal to 1. (More generally, M and M" will
be in the complexification of the gauge group.) Further,
¢ =€ and ¢’V =it are also complex N x N
matrices in the Lie algebra of SL(N,C). We also use an
anti-Hermitian basis for the fields, so that A; = —(A;)". The
derivatives D; and D; in (13) are defined by

D}-(I) = V}-(I)-l- [MT_IV;MT,CD}. (14)
We have written these in terms of the action on a field ®
(like ¢ or ¢') which transforms under the adjoint repre-
sentation of the gauge group, i.e., as ® - UDU", where
U € SU(N) is the gauge transformation. The gauge trans-
formation of the matrices M and M" is given by M — UM
and M" — MTU'. We can then see that the potentials in
(13) transform as connections. It is sufficient to use just
(-V;MM~', M"='V;M") in D; and D5 to ensure that D ;®
and D;CD transform covariantly under gauge transforma-
tions. (V s V}-) are also taken to be Levi-Civita covariant, so
that (13) behave correctly under gauge and coordinate
transformations.

It is possible to write the parametrization (13) in terms of
manifestly gauge-invariant fields by using the identities

D¢ = V¢t + MM, ]
= M[V;(M~' M) + [H™'V;H, (M~ pM) ]| M~
= M(D;(M~'¢M) 1 \M~" = M(Dsx' )M,

D¢t = M1 (DM, (15)

Here y'/ = e/(M~'pM), y1i = /(M p"M*~1) and H =
MTM. The derivatives Z_); and D; are defined using the
connections H‘lv]H and —VjHH‘l; ie.,

'D}q) = V;fb + [H_IV;H, (I)],

By virtue of (15), the parametrization (13) can be written as

A; = -V:MM~" + M(g;Diy' )M,

Ay = MTYWiMT + M (g DML (17)
Another equivalent version is given by
Ai = —V[MM_I —Ma,»M_l,
A; = MT"V;M* +MT_lc_l;MT,
a; = =M~ g;D;p" M = —g;Diy'
@ =-M'g;Dip" M = —g; Dy = a;f. (18)
Notice that a; and a; obey the conditions
g’;"@,;ai = —D;D})(;} = 0, gk;'DkC_l; = 0, (19)

so that, effectively, they have only one independent compo-
nent each.
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The gauge-invariant degrees of freedom are given by
H=M'M and y=M~"'¢M, y" =M"'¢" M. Equivalently,
they may be taken as H = MM and a;, a;, where there are
the additional constraints (19). Yet another choice, also
equivalent to the above mentioned ones, would be
Y =M¢oM™', YT =M'¢p"M and H = M'M. From
the point of view of carrying out the functional integration,
these fields are the coordinates for the gauge-orbit space C.
A polar decomposition of M as M = Up, where p is
Hermitian, allows us to factor out the gauge degrees of
freedom and define a volume measure on C = A/G,. This
will be taken up in the next section.

An interesting feature which is worthy of comment is
the holomorphic ambiguity or redundancy of the para-
metrization (13) or (18). Notice that (M, a;, M', a;) and
(MV(%), V-1 (x)a;V(x), V(x)MT, V(x)a;V~'(x)) lead to
the same gauge potentials, where V(x) is an SL(N,C)
matrix with matrix elements which are holomorphic func-
tions and V(X) is a similar antiholomorphic matrix. Thus
there is a certain ambiguity in how the matrices M and M
can be chosen if (A;, A;) are given. On CP?, there are no
globally defined holomorphic or antiholomorphic func-
tions, except for a constant. So there are no additional
degrees of freedom associated with this. However, as
mentioned in [1], this feature may be useful with locally
defined V and V to express fields in a nonsingular way in
various coordinate patches.

We close this section with another comment on the
uniqueness of the parametrization of the fields. This will be
important for the metric and volume element which we
consider in the next section. We have argued, based on the
group theoretic counting of functional degrees of freedom,
that any vector can be parametrized as in (11); hence any
gauge potential on CP? can be written in terms of M, M", y,
and y*. The construction of A; and A; from the data
(M,M",y,x") is thus clear. Conversely, we can ask
whether we can construct (M, M",y,x7) from (A;, A;).
This can indeed be done, as explained in some detail in [1].
The fields (M, M",y, ") will be nonlocal functions of
Ai,;\; and their derivatives, consistent with the fact that
there is no way to factor out the gauge degrees of freedom
and obtain (unconstrained) gauge-invariant degrees of
freedom in a local way in terms of A; and A;.

III. THE METRIC AND VOLUME ELEMENT FOR C

We now turn to the metric on the space of gauge potentials
(A) and the reduction of the associated volume element to the
gauge orbit space A/G,. The starting point is the standard
Euclidean metric on the space of the fields A, given by

ds2 = —/d/,tg’;Tr(éAlSA;) (20)

Here du denotes the volume element for CP2. In terms of
the parametrization of the fields (13), we find

8A; = —D,0 + gz€' (D36 + (D36, ¢))
= -D;0+ (0", Ma,M~'] + gze'D;5¢,
6A; = Di6" — %eij(DjM’T - [Dj97 Al
=D:;0" + [0. M a;M"| — g;;/D;5¢)'7, (21)
where 0 = SMM™"', 0" = M™'sM*, ¢’ = ¢ + 07, ¢],
and 6¢'7 = 5¢" — [0, ¢']. We have also used the definition

of a;, a; from (18). Upon using (21) in (20) and carrying out
some integrations by parts, we find

ds? = /dﬂTr[é’*(—D -D)0 +6¢/(~D - D)é¢/"

+ 0" g [ Ma;M™, M a: M, 0]

+ 04 [M~'a;M*, D,6) — 0t g [Ma;M~", D:6)
+ 0 [M™a:M", Do)

—0'¢''[Ma;M™", D ;5¢'"]).

We can write this as a quadratic form:

as =3 [ My E=(0.0"08.5"). (23)

We have written this in terms of components in the Lie
algebra of the gauge group SU(N) by taking & = &%(—ir%),
where * form a basis for the Lie algebra. It is useful to
compare this with the metric

1
ds(%zi/dﬂé’rafa:/dﬂ[eTa9(1+5¢/(15¢/T(1]

_ / du[(M1=1 M) (SMM )+ HY /%6 ). (24)

In the second line, we used the fact that &y =
S(MTPM™") = MT6¢/ M~ and its conjugate version to

rewrite the last term. Further Hj:’flj is the adjoint represen-

tation of H defined by Hzfij = =2Tr(H~'1*H?P).

From the structure of (23), we see that the volume
element takes the form dV = v/det MdV,, where dV is
the volume element corresponding to (24). The first term in
(24) is the integral over CP? of the Cartan-Killing metric
for SL(N, C). The corresponding volume element is thus
the product over all points of the Haar measure for
SL(N, C). Using the polar decomposition M = Up, where
p is Hermitian, and writing out the differential form of the
top rank, we can see that this gives the volume element
[1.[dU)du(H), where dU is the volume of SU(N) and
du(H) is the Haar measure for SL(N, C)/SU(N). Further,
since H* has unit determinant, we can write the volume
element of ds3 as
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dVy = [ [ldU)du(H)dy'dy'". (25)

X

Finally going back to (23), we get the corresponding
volume element as

dv = Vet M [[dU]du(H)dy'dy'". (26)

We can now factor out the volume of gauge transforma-
tions, i.e., factor out [ [, [dU] to obtain the volume element

for C = A/G, as

du[C) = Vdet M [ du(H)dy' dy*. (27)

The differentials appearing in this expression are for gauge-
invariant fields.

The next step is the calculation of the determinant of M.
For this, it is simpler to write the determinant as a functional
integral over a set of auxiliary fields B, B, C, and C.
Explicitly,

1
vdet M

_ / [dBABACAC)e=S5,  (28)

where

So = / du[C*(-D - D)#CP + B*(-D - D)*B/],  (29)

S, = / du[C*(MaM~" - MT='aM™)P CP

+ C*(M™taM™ - D)#CP + C*(~MaM~! - D)*#CP
+ Ca(—E;;MT_l(_Z;M“-D])aﬂBﬂ
+ C*(e"Ma;M™"'D ;) B’]. (30)
Equation (28) expresses the required determinant in the
form of a functional integral for a standard field theory. We
have taken C and C to behave like 6 and 07, so they are
scalar fields. B and B correspond to ¢’ and 8¢, so they
are fields with ¥ = 2 and —2, respectively. The terms in S
involve powers of a and a, while the differential operators
in Sy only depend on H via the covariant derivatives. Our
strategy will be to evaluate the integral in (28) as a
perturbation series by expanding e¢~5! in powers of S;.

The integral over e~ will define the lowest-order result.
Writing I' = logv/det M, we find I' = Iy + A", with

e'o = [det(=D - D)y_ol[det(=D - D)y__,],

e = (o751 =

] / [dBABACAT)e=S—5 . (31)

1
Je
The evaluation of the determinant det(—D - D),_, was
considered in [1]. This was done by writing its variation as

8(Trlog(=D-D)y_,) = / duTr[s(M='VMT M= (JyMT

+ Hermitian conjugate], (32)

where

~

() = -DGx )y :

G(x.y) = <ﬂ> N (33)

The free “propagator” G = (—=V - V)~! for scalar fields on
CP? was calculated exactly. The propagator G(x,y) could
then be obtained by expansion in powers of VHHH™!, since
D, as defined in (16), involves this connection. With
regularization to take care of singularities as y — x in the
expression for (J(x)), we obtained the leading terms in the
expansion of log det(—D - D),_ in terms of the monomials
of H and its derivatives of increasing scaling dimension. The
lowest-order term was a WZW action for H, somewhat
surprisingly, with a finite coefficient. The next set of terms of
dimension four were the H-dependent part of Tr(F?) and
Tr(¢""Fj;)?, with a logarithmically divergent coefficient.
There are also terms of higher dimension which will have
finite coefficients; these were not explicitly calculated in [1].
We do not display the leading terms of det(—D - D),_, at
this point; they will be given later, together with some of the
other terms in (31) which will be calculated presently.
The calculation of the leading terms in det(—D - D),__,
will proceed as in the case of det(—D - D)y_,. Since we
will again expand in powers of VHH™!, the key ingredient
for this will be the free propagator (=V - V)~!, now for
Y = =2 fields. This, as well as the issue of regularization
for such propagators, will be taken up in the next section.
Once we have the propagators, the calculation of terms
resulting from §; will be straightforward. We will focus on
the terms of scaling dimension < 4, corresponding to
possible quadratic and logarithmic divergences. For these
terms, it will suffice to consider terms up to four powers of S;.

IV. THE PROPAGATOR FOR Y = -2 FIELDS

In this section, we calculate the propagator for fields with
Y = —2, such as the field B in (29) and (30). This field was
identified as the variation of ¢' in ¢p'/ = €'/ ¢", where ¢/
is a second-rank antisymmetric tensor. The Laplace oper-
ator on a second-rank antisymmetric tensor with holomor-
phic indices will lead to the equation for the propagator for
B. Rather than using the tangent frame basis, if we use the
coordinate basis for CP2, we can write

Syl = 6_”5¢+ _p

V9 Vi

Since CP? is a Kihler manifold with potential K =
log(1 + Z - z), the metric and Levi-Civita connections are
easily worked out as

(34)
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Naa  Naillap? 2
+z-2) (1+z-2)%
g4 =(1+7-2)(n¥@ + z2%),
(83nee + 8inpe)Z°
(1+z-2)

Yaa = (1

. =- FZ& =T.) . (35)

The other components of the connection vanish. Using
these results, we find

/ dpgin (V3677 (V,50™)
:/dﬂB{—(l+z-z)(5-a+z-9z-a)+3+22'z
—%(l—l—Z-Z)(Z'@—Z‘a)]B- (36)

This identifies the kinetic operator on B. The propagator
thus obeys the equation

- = 9
—(1+Z'z)(0‘6+2‘02‘0)+3+12-z

S (4)
—%(1+Z-z)(z-0—2-0) G(z,y)=%7 (37)

where G(z,y) is the free propagator for ¥ = —2 fields, to
be distinguished from G(z,y), which denotes the free
propagator for scalars with ¥ = 0. In the case of scalar
fields, we could take the propagator G to be a function of
the distance between the two points corresponding to z and
v. However, in the present case, there is an additional phase
factor due to the presence of the operator z-90—7Z-d in
(37). This is ultimately due to ¥ = —2 for the field, which
implies that it couples to the Y component of the curvature
and connection. To isolate the phase factor, we note that the
B field has the mode expansion

B=> BY(s.A§33....33....) (38)
S.A P p+3

As a result, the propagator for the ¥ = —2 fields takes the
form

¢ — dl’ . PP .
G<Z’y>_;<p+2)(p+3) <§f’%lgygz|%/’%>
~1(909)5 Y[ 9)w(dla)ssl +-1. (39)

where d, =1 (p+1)(p +4)(2p + 5) is the dimension of
the (p, p + 3) representation. In the second line of this
equation, we have indicated the result in terms of products
of g;gZ and its conjugate, where ¢ is the 3 x 3 matrix g €
SU(3) used to define local coordinates in the coordinate

patch we are using. There are also lower powers of
(959.)33(g5,)s; for each representation, as indicated by
the ellipsis in the square brackets. The point is that there is a
common term [(g}g,)s3]® which leads to a phase factor. To
see this more explicitly, we note that g € SU(3) is related to
the local coordinates as

(9:)n= A (40)

1
(91)33 - m

The square of the distance, s, between two points with local
coordinates 7', y' can be taken to be

2 7;—
s(z.y) =0z = (99:)33(929y)33 1
4z 45y
Ty olrzy) "

This is clearly translationally invariant [under left trans-
lations g — ug, u € SU(3)] and agrees with s = Z - z when
y =0, ie., for g, = 1. Thus, we see from (39) that Gisa
function of s, apart from the prefactor

(ST

cy o [@n] ) a L [(@e)s]
(haoml = [(222] Yaloot = [ 4252 g
C[(1+y-2)] 1
- [ (5o )

Combining this with (39) we see that a general ansatz for
the propagator can be taken as

Gz.y) = {w} Fs). 3)

(1+z-y)

Having identified the phase factor, we can now use (37) to
calculate F(s). For z # y, or s # 0, the § function has no
support and we can check that the homogeneous equation is

solved by
1+ 2s s
21
s(1+s) * 0g<1 + s)}

+Cy(1+5)%, (44)

F(s) = C,(1 +s)3[

where C; and C, are arbitrary constants. Considering the
short-distance behavior, we see that we need C :% to
reproduce the 6 function on the right-hand side of (37).
Further, there should be no singularity as s — oo; this
identifies C, = 0. Combining (43) and (44), we get the
propagator for ¥ = -2 fields as
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Glem =) [21 2(11+s>“°g<1isﬂ ng]
=Fs) {m}z (45)

where s = o2, is as given in (41). The last factor which is

the phase can also be viewed as arising from the path-
ordered integral of the Levi-Civita connection along a line
joining y and z.

V. REGULARIZATION

The regularization of the propagator for ¥ = —2 fields
will use the same point splitting which was used for scalar
fields in [1]. The key idea was to define the regularized
version of G(z,y) as G(z,)"), where y' specifies a point
displaced from y by a small distance of order /€. Thus e will
serve as the regularization parameter, with ¢ — 0 recovering
the unregularized results. The shift y — y’ must be done in a
way consistent with the isometries and gauge symmetries. It
is useful to work this out in terms of the homogeneous
coordinates Z = (Z,,Z,,7Z3), Y =(Y,Y,,Y3) for the
points z, y, with the identifications Z ~ AZ, Y ~ 'Y, and
A, A" € C — {0}. In terms of these coordinates, the distance
between the points, given in (41), can be written as

~i

-Z

.7 -1=06*Z,7). (46)

N| Nl

Y
-Z

~i

Notice that this expression has invariance under the scaling
Z —AZ, Y - Y. In a particular coordinate patch with
Z3,Y3 # 0, we can write

Z= Z3(zl,z2, 1) = ZV1+z- 2(913, 923, 933)
Y=Yy 32 1) = V145 (43 ghs. Fh3)- (47)

where 7/ = Z//Z3 and y' = Y'/Y?. We then recover the
expression given in (41). With s written in homogeneous
coordinates as in (46), (45) gives a globally valid expression
for the propagator.

For the point-splitting regularization, we shift the point ¥
to Y/, which is chosen to be

WYY
Y=Y -Y). 48
+a< AT ) (48)
Here « is a small complex number, |a|~ /e, and W

parametrizes the shift of coordinates. The added term is
chosen so as to have the same scaling behavior as Y. We
then find that

1+ 6%(Z,Y') =

(14 6*(Z,Y))(1 + aac*(Y,W))
1

1+ ey - DI +aGEFE - D)
(49)

In Eq. (45), we can replace all factors of s by 62(Z,Y’)
given by (49). Under coordinate transformations, the
propagator must transform as u'(z)G(z,y)u(y), where
u' is the hypercharge phase transformation with ¥ = —2.
(u will correspond to Y = 2.) To preserve this property, we
add an extra phase factor joining y and y’. We can view this
extra term as a path-ordered integral for the Levi-Civita
connection along a line joining y and y’, analogous to the
Wilson line for the gauge fields (see below) that is needed
to maintain gauge covariance of the regulator. Thus the UV-
regularized form of the propagator is given by

T 7]

Breglz.3) = F(2(Z.Y)) [
(50)

where as in [1] we will do a suitable angular averaging over
the displacement due to point splitting. (It will turn out that,
for some of the calculations we do, one of the arguments of
the propagator can be shifted to the origin by virtue of
translational invariance. The details of how this can be done
in terms of the homogeneous coordinates are given in [1];
see also Appendix A of this paper.)

Since 6*(Z,Y) and 6*(Z,Y’) are covariant quantities
respecting the full isometry [namely, left SU(3) trans-
formation on Z or Y] of CP2, the procedure we have
outlined provides a covariant point-splitting regularization.
However, we will need to modify this slightly to take
account of covariance with respect to gauge transforma-
tions as well. We have so far considered the free propagator.
In the presence of gauge fields, the propagator is
G(z.y) = ((=D-D)z})y__,. We carry out the explicit
calculations by expandlng this in powers of the gauge
field as

g(z,y)=5(z,y)+/ G(z.y1)Vy,G(y1.y)

Y1
+ / G20V, GO y2)Vy G y)
Y1y
4., (51)

where V=A-0+A-0+ (0-A) +A-A. The propagator
G(z,y) transforms as G(z,y) = U(z)G(z.y)U(y) under
the gauge transformation M — UM, M" — MTUT. This
should be respected in calculating currents such as
(J(z)) = =D,G(z.y)],_.. in (32) and (33), with regulari-
zation. In other words, even though we shift y to y’, the
gauge transformation must maintain the action of U (y) at
the second argument to be consistent with its role in the
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current (J(x)). This means that a gauge-invariant point
splitting is given by

Gree(2,Y) =G(z.y' Pexp( T (MM - VMM—1)>

[GReg(ZY / (z.y1)V(y GReg(Yle)+ ]
i

xPexp( /y (MM - VMM‘1)>.
)7

(52)

Here G is as in (50) and y' =y + &y, with §y*5y® —
en®® in taking the small € limit in a symmetric way. (This is
for the case when y can be set to zero, which will cover the
calculations for which we need this factor.) The path-
ordered exponential helps to convert the U'(y') [due to
G(z,¥')] back to U (y). (Such a step was already included
for the isometries since we added an extra phase factor in
GReg connecting y to y'.) Because it involves the integral of
one-forms, it is adequate to use local coordinates y, y'
in (52).

Turning to the infrared side of calculations, note that
there are no infrared divergences since CP? is a compact
space of finite volume. However, we are only calculating
the leading terms in I', up to terms of scaling dimensions
< 4. Terms of higher dimension will be ultraviolet finite.
While they are irrelevant for issues of renormalization, we
need to identify a kinematic regime where such terms are
suppressed to be able to make any conclusions with the
terms we calculate. If we use an infrared cutoff A, then the
terms of higher scaling dimension will carry inverse powers
of this cutoff and will be suppressed for modes of the fields
with small momenta compared to A. This is what we do
here. (This rationale for the infrared cutoff is explained in
more detail in [1].) The WZW action will be special
because it is a term of lower dimension yet appears with
a finite coefficient. Just for that particular term, we do the
calculations both with and without an infrared cutoff.

The details of the UV- and IR-regularized calculations
will be given in Appendix B, but here we note that the IR
regularization is easily incorporated by using a simple
integral representation for F(s) in (45) and including a
lower cutoff. Explicitly, we write

I [ 1
F(s) = —2/ dte™" [5(1 + )2
r?

r

+(1+ s)%C (e =1)+e (1 + %))} . (53)

We have introduced 7> via the scaling of coordinates. The
infrared cutoff 1 appears as the lower limit of the integration
over t. When 1 is set to zero, we clearly reproduce F(s) in

(45). This result, combined with (52), can be used for
calculating the effective action.

VI. RESULTS

We are now ready to present the results regarding the
volume element for A/G,. As mentioned at the end of
Sec. III, we will consider the expansion of I" as a series in
terms of increasing scaling dimension, focusing on those
with dimension < 4. These are the terms we can expect to
be relevant for the long-wavelength modes of the fields;
they are potentially UV-divergent terms, up to a possible
logarithmic divergence. For scaling dimension 2, the
possible terms correspond to a masslike term for a and
a (with a coefficient of order 1/¢) and a WZW term
Swzw(H), which, somewhat surprisingly, has a finite
coefficient. There are also terms of dimension 4 which
arise with a coefficient of order loge.

A. The WZW action

All purely H-dependent terms, such as the WZW action,
come from Iy as defined in (31). As mentioned above, the
determinant det(—D - D),_, for scalar fields was already
found in [1]. Using the result from there

Tr 10g<—D : D)Y:O = CY:OSWZW(H) T (54)

1 3 A
Cy_ 0=—3 { —log2—|— e 4 2]

+# [(El () —E(247)) _%e—m (1 _e_hz)]

12 [(1 —e )2

.l By —|-/1r2(e”2—1)E1(2/1r2)]. (55)

Here S, (H) is the four-dimensional WZW action given
by [9,10]

1 2 _ _
SWZW<H) = E/%dﬂgaaTr(vaHvaH_l>

b

24x

:% / dug®Te(V,HV H)

o A Tr(H™'dH)?

o 4” o A Tr(H ' dH), (56)

where o is the Kihler two-form on CP2. This can be
expressed in local coordinates as

w = ig,zdz"dz® (57)

with g,; given by the Fubini-Study metric (1). The last term
in (56) is, as usual, over a five-manifold which has CP? as
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the boundary. We have normalized the volume of CP? to 1,
so there is an extra factor of z2/2 in (56) compared to the
standard normalizations. (Also, we use a slightly different
convention for the normalization of @, compared to [8].)

It is straightforward to simplify the expression for Cy_,
in (55) to show that in the absence of an infrared cutoff
(4 — 0) we get a finite result with no infrared divergence:

5
Cy_g=—, A—0. 58
=0 n? -~ (58)
On the other hand, for Ar2 > 1,
4 2
CY:O = 4— + O(l), /1" > 1 (59)
v s

Turning to the ¥ = -2 partof [y, i.e., Trlog(=D - D)y__,,
we can proceed analogously as in [1] by defining and
calculating the current (J(H, 1)). As for the scalar case

&(Trlog(=D - D)y__,)
:/2WHM@H”WMUM“%ﬂM*+H@L

<J> = _’ng(x’ y)|y—>x’ (60)
where the only difference is that G(x,y) = (=V - D);) is
now defined as an expansion in free propagators for ¥ = —2
fields on CP? (with the covariant derivatives V including the
appropriate Levi-Civita connections).

Expanding (J) in powers of VHH™', and using the
UV- and IR-regularized propagators as defined in (52) and
(53), we can in principle find (J) as we did for the scalar
case. However, as the result is much more complicated for
Y = =2 fields, instead, here we present the results in the
two relevant limits, one with no infrared cutoff (A — 0) and
the other for Ar? > 1:

<ja> = _gCY:—ZvaHH_l + -y

Trlog(=D - D)y__ = Cy—Suu(H) + -+, (61)
1
CY:_Z = — > A— 0, (62)
r
A 2
CY=—2 = 4— + O(l), Are > 1. (63)
T

The details of this calculation are given in Appendix A. We
may also note that the transition from the variation and the
current in (60) and (61) to the integrated version S, (H)
relies on the four-dimensional version of the Polyakov-
Wiegmann identity, which gives

S (H) =1 / dug Te [V, (SMIMT-1)V, HH1]. (64)

As for the scalar case, other than the WZW action, I’
will also include log € terms (see below) and finite terms as
well (if we include terms with scaling dimension > 4,
involving more derivatives on H). We will not calculate the
finite terms in this paper.

Combining the results for the ¥ = 0 and ¥ = -2 fields,
we have

[y = Trlog(=D - D)y_q + Trlog(=D - D)y__,

:CSWZW(H)+"" (65)

where C = Cy_q + Cy—__,. In the case of no infrared cutoff
the WZW action has a finite coefficient

C=53. =0 (66)
For Ar? > 1,
A 2
=—, r .
c 3 Art>1 (67)
z

B. The mass term

Now we turn to terms with quadratic divergence. In I,
the only term that could have 1/¢ divergence is the WZW
action. However, as we have seen, for this term all
divergences cancel out, giving an overall finite coefficient.

Among the next set of terms in Al in (31), there are a
couple of possible candidates for quadratic divergence.
However, the only term which survives is a mass term for a
and a. This is expected as the only quadratically divergent
term in AT that is invariant under the holomorphic trans-
formation M" — VM" is a mass term Tr[aHaH™'].

Looking back at (31) and expanding the exponential in
S| we can write

1
ST 4305

1
Al = (S)) — 31

X (68)

where the sum is over connected diagrams. S, is defined in
(30), and

(CT0)) = ( L

-D-D

(B()B()) = ( !

) =gty

=G(x.y). (69
55)  ~Own. )
Since each term in the expansion of AI'is a trace over the
operators MaM~', M"~'aM", D, D and (—=D - D)~" in each
such trace we can factor out M", effectively setting M* — 1
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and M — H.' Quadratically divergent terms will come only
from the first two terms in the expansion. Performing
similar calculations as in the case of the current in I,
we get

1 1 _
ATl = [ ——+—1 “aTr(a,Ha,H"
< 4€+2r2 oge)/d,ug r(azHa,H™)
+ O(loge). (70)

The only quadratically divergent term is thus a mass term
for a and a.

C. The log-divergent terms

Logarithmically divergent terms can arise from both I’
and AI'. Combining all such contributions,

[ioge = Totoge T Aloge
=R [ 1], (V, HH )
+ ¢“gPPlaz, Ha,H " |V (V,HH™")
—g""g" (Vo(VyHH ™) a5, Ha,H™'|

+Vaa;Dy(HayH™))), (71)

+ (gaaa&HaaH_l )2

where the trace is in the adjoint representation. (Once again,
the details are given in Appendix B.)

VII. DISCUSSION

The key results we have obtained are the following. We
introduced a parametrization of the gauge potentials [see
Eq. (18) in Sec. II], which allows for the explicit factoring
out of gauge transformations and consequent reduction to
gauge-invariant degrees of freedom. In particular, the
volume element for the gauge orbit space C = A/G, can
be written as

)dy'dy"". (72)

— eerﬂ

Unlike the case of two dimensions, an exact calculation of
I" is not possible in four dimensions. We have calculated
the first set of terms in I' corresponding to monomials of
the fields and their derivatives of scaling dimension <4.
These are the terms which can be expected to be poten-
tially ultraviolet divergent. The first of these terms is
a four-dimensional WZW action S, (H) for H €
SL(N,C)/SU(N) [for an SU(N) gauge theory], given in
(65). A priori, on dimensional grounds, one may expect this

Altematlvely, in the path 1ntegra1 formulation of e~ one can
make the transformations C - M'C, C - CM'™™', B > BM'~!
and B - M'B. Since detM" =1 this redeflmtlon of the fields
does not affect the volume element for the path integral.

term to be quadratically divergent, but, somewhat surpris-
ingly, it arises with a finite coefficient. The sign of the
coefficient is “correct” in the sense of ensuring convergence
for functional integration over H. [In [1], we calculated a
similar contribution due to chiral scalar fields on CP2. The
coefficient of S,,,,(H) was such that it tends to destabilize
the theory for long-wavelength modes of H. It is interesting
that chiral scalars on CP? have this destabilizing effect. For
the volume element for C, there is no such issue.]

The second term in I" is a mass term for the components
a; and a; of the potentials, which are related to ” and ' as
a; = —gi;ein‘l(V;)(’)H and a; = — iiein(ijﬁ)H_l’
respectively. The coefficient of this term, say, uﬁiv, is
quadratically divergent. Since ultraviolet divergences are
related to products of operators at the same point, i.e., to
ultralocal geometry and hence not sensitive to global
geometry, the divergence shows that this term should
survive even if we take the large r limit of CP2.
Further, since it is consistent with gauge invariance and
all the isometries of CP2, there is no reason to reject this.
This means that the functional measure has to be defined by
introducing a similar counterterm (with a coefficient
Uounter) from the beginning and then renormalizing by
setting 3, + #2ouner to a finite value pZ,,. This finite
renormalized value ug., has the dimensions of mass and
will serve as the mass parameter defining the theory. This is
in accordance with the fact that dimensional transmutation,
with the introduction of an arbitrary scale factor, is needed
to define four-dimensional gauge theories. In the usual
perturbative approach, this would enter via loop corrections
and the running coupling constant, but in our formulation,
it appears as what is needed to make the volume element for
C (or the measure of functional integration) well defined. If
loop calculations are carried out in our approach, the results
will be functions of ug.,; there will be no need for
additional dimensional parameters; what is conventionally
considered as Agcp will be related to pigep.

There is also a set of terms which are of scaling
dimension 4 with a logarithmically divergent coefficient;
see (71). Unlike the case of flat space, these terms do not
combine into Tr(F?) since the reduced isometries of CP?
allow for additional tensor structures. Presumably, to make
the volume element well defined, similar counterterms have
to be introduced a priori and renormalization has to be
carried out. Finally there is also an infinity of terms of
scaling dimension > 4, which are ultraviolet finite, which
we have not calculated. They are presumably less relevant
to the dynamics of long-wavelength modes of the fields
compared to the terms we have calculated.

Returning to the mass term (70), we note that the
possibility of a soft gluon mass has been proposed already
in the 1980s [11]. Lattice simulations of the gluon
propagator in the Landau gauge also indicate its saturation
to a finite value at low momenta, consistent with a
propagator mass [12]. At least qualitatively, we need an
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analytic understanding of these lattice results. Indeed, a
number of papers have analyzed the Schwinger-Dyson
equations of QCD with a view to showing that the gluon
self-energy is nonvanishing at zero momentum, along with
attempts to extract quantitative predictions from it [13,14].
The appearance of a possible gauge-invariant mass term in
our analysis provides a parallel track of viewing such
analyses.

Perhaps the most striking and qualitatively new feature
of our analysis is the appearance of the WZW action
Swew(H). With the above given argument for a nonzero
mass term (70), it is then possible to consider a kinematic
regime of momenta <up., where we can neglect the
massive components a; and a; and consider a reduced
theory where

A, ~ -V MM, Az =M™ MT (73)
The volume element then takes the form
du[C] = " du(H).
I'~CSy,(H) + C, /Tr(gfmva(vaHH—'))2 +--
X CSypw(H) + - (74)

[Here C; is the renormalized value of the coefficient of
the term in (71), after the log e divergence is eliminated.]
In the last line of (74) we have neglected the term quartic in
the derivatives as it is less significant for long-wavelength
modes compared to Sy, (H). The theory defined by (74)
should be applicable for A < uZ.., with Ar? > 1. This
theory is the four-dimensional WZW theory on CP2. So
our conclusion is that we expect that for fields of modes of
wavelength small compared to pg.,, the four-dimensional
Yang-Mills theory can be approximated by a 4d-WZW
theory for the field H € G*/G = SL(N,C)/SU(N).

The 4d-WZW theory, we may note, also has a history
going back to the 1980s, appearing first in the work of
Donaldson in the context of anti-self-dual instantons [9].
The same theory is obtained in the Kihler-Chern-Simons
theory [10] which attempted to generalize the 2d-WZW
theory to four dimensions, a paradigm similar to the WZW-
CS relation in two and three dimensions [15]. As shown in
[10] and elaborated in [16,17], this action also leads to a
holomorphically factorized current algebra, analogous to
the case in two dimensions. 4d-WZW theories have also
been found in higher-dimensional quantum Hall systems
[18]. They also describe the target space dynamics of
(world-sheet) N =2 heterotic superstrings [19]. More
recently, such theories have been analyzed in [20] in the
context of holomorphic field theories on twistor space.

The critical points of the action S, (H) are anti-self-
dual instantons. They are related to holomorphic vector
bundles, with M and M" defining the holomorphic frames

for the bundle. What is interesting is that there is some
evidence, based on lattice simulations, that the correlation
functions for gauge fields and hadrons seem to be domi-
nated by instantons at low energies; see, for example,
[21,22]. While it is difficult to see instanton dominance
analytically for fields on R*, the present result that the
theory can be approximated by the 4d-WZW theory along
the lines argued above provides some analytical evidence
for an instanton liquid picture.

Finally, there is another aspect of the 4d-WZW theory
which is worth pointing out. In the (2 + 1)-dimensional
analysis considered in [4,5] the expectation value of the
Wilson loop operator (in a representation indicated as R)
takes the form

(2d)

(Wr(C)) = N / A 2ersEE)

X exp <—§”/Tr(V(VHH-‘))2>

€7°Cy
x Tr [Pefc VHHA]

—ogArea(C) , 4 CACR

4z

~e oR=c¢ (75)

where S\(szdv)V(H ) is the 2d-WZW action for H, ¢y and ¢4 are

the values of the quadratic Casimir operators for the
representation R and for the adjoint representation, respec-
tively. e? is the coupling constant of the Yang-Mills theory.
Notice that, as ¢* — oo, which is the limit where the
integrand in (75) defines the 2d-WZW theory for H, the
expectation value of W(C) vanishes for any curve C
enclosing any nonzero area. If we consider evaluating
(W(C)) in terms of correlators for the current VHH ™!, the
leading term due to the two-point function is of the form

%]{dzdz’(VHH‘l(z)VHH"(z’)) N_CR?{j{(ZdidZZ/;Z‘
(76)

The UV singularity of this integral is not regularized when
e? — 0, and this is the genesis of the vanishing of (W(C)).

We see that a similar situation is obtained in the theory
defined in the 4d-theory (74). Using the Polyakov-

Wiegmann identity

SWZW(NH) = SWZW(H) + SWZW(N)

—;f / FTe(N"'V,NY, HHY), (77

we obtain
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/ du(H) exp <CSWZW<H>

-c2 / g"‘“Tr(N—lvanaHH—l)> = e . (78)

By taking small variations of N, we then find

(g Va(VHH) ()" V5 (V,HH ()

4 -
=== GV Va,o(y, x)6%, (79)

The two-point function for the currents can be obtained
from this as

(VHH)*(x)(V,HH ) (v)) = %Va,va,yG(y, )87,
(80)

where G(y, x) is the propagator for scalars on CP? given
in [1] as

1 1 s 3
- _2 81
Gl x) =55 20g<1+s> 4 (81)

where s = o7, is given by (41). We see that the logarithmic
term of G(y, x) in (80) can indeed reproduce a result similar
to what was obtained in (2 + 1) dimensions. It is not
possible to make a more complete analysis at this stage, but
clearly the similarity with (2 4- 1) dimensions shows that
the reduced theory (74) in terms of the 4d-WZW action is
worthy of further investigation. This will be left to
future work.
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APPENDIX A: CALCULATING (J) FOR THE
Y = -2 FIELDS

In this Appendix we outline the calculations of the
current (J) in (60) for ¥ = —2 fields. The procedure is
analogous to the scalar calculation in [1]. The only differ-
ence is in the propagator and the connections of the
gradients as given in (35).

The current is

<j> = _DXGReg (X, y) |y—>x
=Term1 + Term?2 + Term3 + - - -,

. 1+y-9)]2
Term 1 = -V ,_,G(x,)') [%]

X Pexp (/y VHH‘1>
y y—x

Term?2 = (V,HH™"), G(x, x') [%

3
2
9

Term 3 :/va(x,Z)g’gl_’(vaH‘l)ﬁsz(z,x’)
z

1 AN
« [Qtx D) (A1)
(I1+X-x)

The primed coordinate is given in (48) and we perform an
angular integration over w and a with the conditions that
la|?> = € and ¢?(x,w) = 1.

As in the scalar calculation (in [1]), we make a coordinate

: / a _ a —1\a _w"

transformation w — w' such that w* = x* + (')} 1257
where e~! are the tangent frame fields. Under this trans-
formation 62 (x, w) = [w/|>. Term 1 in (A1) becomes

Term 1 = —Lé(|o¢|2 —e)/vé(oz(x,w) -1)

(- y)b(vaH-'>y|H}

€

~ S (0P @ -3FO). (42

where the extra term — % F(€) (as compared to the scalar case)

comes from the spin connection in V, and the phase factor of
G(x,y"). Including the scale r in (A2), we take € — ¢/r* and
F(s) is the IR-regulated propagator

Lofe ] -1
F(s) —rzlrz dte [2(1+s) 2
1
+(1 +5) <;(e" -1)+ e‘t<1 +%>>} (A3)
Term 1 then becomes
Term1 = (V,HH™") L (A4)
“ “\ 4e 8r2)°

Performing similar calculations as for Term 1 it is
straightforward to find that
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11 i1
Term?2 = (V,HH™"), [2_ +—log (%) _r
€ r r

1 .
t5ae (34 Ar%)

+ % (E1(Ar?) + log(Ar?) + y):| , (AS)

where E; is the exponential integral

o dt
El(w):j —e M,

, (46)

For Term 3 we need three coordinate transformations:
(i) a transformation w — w’ such that ¢°(x, w) = 1, as
explained above;

Term3 — (V, HH1), / 5(laf? = €) /

a w

5(62(x, w) — 1) /

+
+
= (oA, [ @)1+ ) mn(en ) (PP -+ ) - PP )

x (F’(Iilz(l +e)+e)(1 4121 +¢) —i—%F(Iz

3
2(1+5s)

— (ot [ s (P) -
=ZI(V,HH™)..

The exact calculation of Z is more complicated than for its
scalar counterpart. So instead of calculating it for arbitrary
A, we find it in the two limits, namely, in the case of no
infrared cutoff, i.e., A — 0, and in the case of 1r2 > 1.
Including the scale factor r, we find

1 1 € 13
7= Lig(8) -1 0

4e r? Og(r2> 8r2’ 40,

1 1 31
I:_E—ﬁlog(ﬂe)+§+0(l), Arr> 1. (A8)

Combining (A4), (AS), and (A8) and taking the appropriate
limits,

() = =5 CroaVHH -
1
Cy-n=—3, 4 =0,
r
)
Cyz =1+ O(1). 2> 1, (A9)
T

which are the results in (62) and (63).

(ii) a transformation z — z’ such that z% = x“+
(e e, setting 0%(x. 2) = |2/[%

(iii) finally, a transformation z’—Z, which can be given in
homogenous coordinates as Z/Zy=W5Z'/(W'-Z'),
where W' = (aW/, aWh, W) = W, (aw), aw), 1).

The first two transformations effectively eliminate x from
the integrals by translating the integration variables. The
last one is useful because 1+ o6*(Z/,aw’) = (1 +¢€)(1 +
|7|?) which significantly simplifies the integrals in Z and w'.
These transformations are the same as in [1] (where more
details are given as well) and, as was the case there, the
integration measures remain unchanged. With these
changes, Term 3 becomes

*(1+e) —l—e))

F(s))( (s(1+e€)+e)(l +e) +2(13+S)F(s(1 +e) +e)>

APPENDIX B: ULTRAVIOLET-DIVERGENT
TERMS

In this Appendix we go over some of the calculations
leading to the mass term and log-divergent terms in (70)
and (71). For the mass term we proceed as in Appendix A.
As for terms that have at most a log divergence we calculate
them in the flat limit (r — o), afterward restoring r in the
metric and the volume element.”

We take the flat limit after performing similar coordi-
nate transformations as in Appendix A, most significantly,
the transformation 7' — % that sets 1+ o*(Z,aw') =
(1+12*)(1 + €). Thus, in the r — oo limit, we can take
the regulated propagator to be

Gres(223) = 57— (B1)

o=y +e)

20On dimensional grounds, for terms that are at most log
divergent, r can only appear in terms that go as O(x/r). To
preserve the symmetries of the space such terms can only appear
in the metric (or its inverse or the volume element for the space).
By contrast, a term that can have 1/e divergence can also have
terms of order (loge)/r?.
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Here we only included the first term in the propagator, as in
the r — oo limit it is the only term that survives for both the
scalar and Y = -2 fields. The IR regulator does not show
up in UV-divergent terms.

In I’y the only term that can have 1/e divergence is the
WZW action which happens to have a finite coefficient (see
above). For log-divergent terms we expand (f ) further in
VHH"'. However, since we calculate them in the limit
r — oo, the result will be the same for scalar and ¥ = -2
fields. Thus we can use our result from [1], where we
calculated the log-divergent term for the scalar current.
Here, we simply need to double it, as there is one term
coming from the scalar part of [y and one from the Y = -2
part:

loge

F:
712

Tr(V(VHH™"))? + finite.  (B2)

For AT" we can take M — H and MT — 1, as discussed
in Sec. VIB. Thus,

AT = (8) = o= (82) + 2 (5]) +

2v< 31

= AT + AT@ 4 ATG) ... (B3)

where

S, = / du[C(HaH" - 8P CP + Co(a - D)PCP

+ C(=HaH™" - V)#CP + C*(—€'a; V)" BP

+ C*(e"Ha;H™'V ;) B/, (B4)

B\ — (scalar _ , an pa _OY="2 _
CeCP) = gl = (V- D)}, and (B°BF) = G¥=2

(=V-D)7L _,. In carrying out various calculations, we will

be expanding G*¥¥ and GY=2 in terms of the correspond-
ing free propagators G and G, as in (51). For Y = —2, the
UV-regularized form of the free propagator is given in (45)
and (50). The scalar propagator was given in [1] and has the
form

1 1 s 3
o) =5-3e(rh5) 3 o=

with the replacement of s by ¢*(Z,Y’) to take account of
regularization.

For the mass term, we keep r finite and perform similar
calculations as in Appendix A. The log-divergent terms can
be obtained by calculating in the flat space limit and then
upgrading the metric and volume factors to the curved
space expressions. Then, expanding each G in VHH™!, we
find the following UV-divergent terms:

(BS)

AT = (§,) = /TrHaH—lagffé‘éar = (21 zlzloge> /TrHaH‘l_ lf /T tHaH'aV(VHH™"), (B6)
€

1
Ar® = —5; (%)
] ) — == _ X .. oA VN
— 2 Tr[HaH 15 gscalarHaH 15 gscalal' 4a.DgscalaIHaH—l _vglffgéar+261]v;(aj_gscalax)euHaiH—legg;g 2]
3 1 -1 1 —-1-)2 5 -1 v -1
=(—-—+—loge TrHaH 'a +loge | Tr|-(HaH 'a)* ——HaH 'aV(VHH™')
de = r? 4 12
) _
~ o5 Va5 Dy (Hay H )= g PV HE ) g, HayH ). (B7)
1
ro = (s}
/TI' HCZH 15 gscaldrHaH agscaldrHaH 15 gscaldr 12a - DgscalarHaH—lagscalarHaH—l . vg’iicedédr
(a gscalar)HaH agscalar ”HaH ]D gR; ]
5
= —Zloge/Tr(HaH"Zl)z, (B8)
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1
4

AT = (84

_ —%/Tr[l&'z . DgscalarHaH—l . vglscalarc—l . «DgscalarHaH—l . vg/i'{c:éar

—16HaH™" - vg/scalara . DgscalareinaiH—lDjQY:—zefjv;(a}gscalar>

Reg

-+ 26;}@7(a;gscalar)einaiH—l DjGY:_z(:ij]‘( (aigscalar)eleakH—l D, C E;—Z]

13
= ﬁloge/Tr(HaH_lc_z)2,

(B9)

where in the above G = (=D - V)~! and the traces are in the adjoint representation.

Combining the four terms

Putting together I and AI" from (B2) and (B10) above

I'=

11 1 -
AT = <—4——|—Floge> /TrHaH‘IEz—I—Eloge/Tr[[Zz,HaH‘l]V(VHH‘I) + (HaH™'a)?
€ r

— 99" (VaayDo(Ha,H™") + V5(V,HH™)[az, Ha,H™'])].

[y + Al

(B10)

(—41€+21210g e> /TraHaH‘l +lloge/Tr[(V(VHH-1))2 + (@, HaH'|V(VHH™") + (aHaH™")?
.

12

- ga&gbi7 (vl; (vaHH_l) [a&v HabH_l] + vt‘zaBIDa (HabH_I»]’

(B11)

which are the results for the mass term and log-divergent terms in (70) and (71).
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