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ABSTRACT

Nucleation is important in processing of good quality diamond crystals and textured thin films by microwave plasma enhanced chemical
vapor deposition (MPECVD) for applications in quantum devices and systems. Bias-enhanced nucleation (BEN) is one approach for
diamond nucleation in situ during MPECVD. However, the mechanism of diamond nucleation by BEN is not well understood. This paper
describes results on the nucleation of diamond within a carbon film upon application of electric field during the BEN-facilitated MPECVD
process. The nature of the diamond film and nuclei formed is characterized by SEM (scanning electron microscopy), Raman spectroscopy,
and high-resolution transmission electron microscopy (HRTEM). The HRTEM images and associated diffraction patterns of the nucleation
layer show that the diamond nuclei are formed within the carbon film close to the Si (100) substrate surface under the influence of micro-
waves and electric fields that lead to formation of the textured diamond film and crystal upon further growth. These results are expected to
develop diamond films of optimum quality containing a nitrogen-vacancy center for application in quantum systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143800

INTRODUCTION

Diamond and other materials in the boron-carbon-nitrogen
(B-C-N) ternary system are attractive because of their wide
bandgap, optical transparency, and high thermal conductivity.
These properties make diamond an ideal semiconductor for
quantum electronics, optical devices, and thermal management of
electronics for use in ambient as well as extreme conditions of high
temperature and neutron irradiation.' In particular, diamond has
point defects and defect centers with unusual properties for applica-
tions in quantum computing,’ quantum entanglement,” encryp-
tion,” biolabeling,” and magnetic field sensing.'’ Nitrogen-vacancy
(NV) centers in diamond have attracted significant attention for
biological sensing,'' quantum information processing,'”~ and NMR
(nuclear magnetic resonance) spectroscopy.13 Qubit states (spins) of
NV centers'* can be controlled by microwave and optical signals,
thereby rendering quantum network,'> quantum memory,'®"” and
quantum sensing.'’ The NV centers in diamond are generally

oriented randomly along four possible (111) directions. However,
the need and challenge are to preferentially orient NV centers along
one of the four (111) directions. The oriented NV centers are desir-
able for enhancing detectability using optically detected magnetic
resonance (ODMR). We are addressing this challenge through our
research based on appropriate selection of the substrate orientation
and texturing of the grown diamond films in situ using
bias-enhanced nucleation (BEN) followed by growth by microwave
plasma enhanced chemical vapor deposition (MPECVD). A funda-
mental understanding of the diamond nucleation mechanism of
BEN on Si substrates is also needed to achieve the goals of our
research. To further explain our approach, we first describe how
diamond is normally processed, which is followed by description of
the important role of diamond nucleation and in situ doping to
create NV defects in diamond.

Diamond powder for grinding and polishing is generally pro-
cessed at high temperatures and high-pressures (HPHT) where it is
thermodynamically stable and upon cooling retains the cubic phase
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TABLE I. Process conditions used for the BEN and growth of diamond films.
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Deposition parameters Hydrogen etching Carburization Bias-enhanced nucleation Growth
Duration of the step (min) 15 60 5 or 60 480
Bias voltage (V) 0 0 150 0
Substrate temperature (°C) 750 750 750 750
Pressure (Pa) 2666.4 2666.4 2666.4 12670
H, flow (sccm) 100 100 100 39
CH, flow (sccm) 0 2 4 1
Ar flow (sccm) 0 0 0 60
Microwave power (W) 500 600 600 900

in ambient conditions. It can also be processed at low pressures in
an activated plasma environment typical of a MPECVD. There are
different approaches to processing diamond containing NV defects.
These include detonation synthesis of diamond particles and
HTHP for small diamond crystals."**° MPECVD is the most
promising approach for synthesizing diamond over a wider area on
a variety of substrates, including on HPHT-synthesized single
crystal diamond. MPECVD also offers much better control of
diamond phase purity and crystalline defects as described in our
research™”'~* and of many other researchers.’’™*

The NV defect centers in diamond can be created in situ via
doping with nitrogen (N) during MPECVD, which requires a fun-
damental understanding of the diamond nucleation and growth
steps. Diamond does not nucleate homogeneously on most solid
substrates because of the high surface energy. Thus, to process con-
tinuous diamond films on Si or other substrates by MPECVD,
nucleation is encouraged by one of three ways, i.e., (1) seeding of
the surface with nanodiamond particles, (2) ultrasonic agitation
with diamond particles, and (3) scratching the surface. These
approaches are used to facilitate heterogeneous nucleation sites fol-
lowed by growth on already nucleated diamond. Narayan’s group
nucleated and grew diamond from carbon films by a novel
approach of laser irradiation.”” In addition, electrical
bias-enhanced nucleation (BEN) in a plasma has been used for
promoting nucleation in situ followed by growth to synthesize
diamond thin films by MPECVD.?*~** The BEN approach in com-
bination with MPECVD also offers an independent control of the
nitrogen doping via gaseous precursors of N, or NH; to grow
diamond crystals and films for creating NV defect centers in situ of
desired quality.

Bias-enhanced nucleation has been used by us and other
researchers®’™** for enhancing nucleation and promoting heteroepi-
taxial growth of diamond on Si and other substrates. In the BEN
approach, a thin layer of carbon is deposited on the Si substrate fol-
lowed by application of an electrical bias (100-300 V) in situ for a
short duration (5-15 min), followed by growth, all in a MPECVD
environment. Several mechanisms have been suggested for the
nucleation process, such as super saturation of carbon at the
surface,”* enhanced surface mobility,”” faster reaction rate at the
surface,’® formation of an epitaxial layer of SiC on Si,*” and forma-
tion of a carbon layer that condenses to form epitaxial nuclei.”®
There is clearly no consensus among researchers on the mechanism

of BEN. However, supporting evidence has been presented for each
of these mechanisms although some contradict each other.

Therefore, the objectives of our research are to study and shed
new insights on the fundamental of a diamond nucleation mecha-
nism on an Si (100) substrate using BEN in a MPECVD process
leading to formation of the textured diamond polycrystalline film.
This paper describes results on the nucleation of diamond within
the carbon film upon application of the bias electric field in situ
during MPECVD. The nature of the diamond film and the nuclei
formed are characterized by SEM, Raman spectroscopy, and
HRTEM. The HRTEM images and associated diffraction patterns
of the nucleation layer are used to show that diamond nuclei are
formed within the carbon film close to the Si (100) substrate under
the influence of microwave and electric fields that lead to a textured
diamond film and oriented crystals within upon further growth.
The textured diamond film is a promising host for promoting ori-
ented NV centers in situ by MPECVD for a myriad of applications
in quantum devices and systems.

EXPERIMENTAL METHODS

The deposition process was carried out in an ASTEX AX5100
MPECVD system, which has been described earlier in several of
our publications.” ™** To enable application of the electrical bias, a
wire mesh screen made of a 0.3 mm diameter molybdenum wire
was used that was held on a 2 mm diameter circular molybdenum
wire. This wire mesh was inserted into the MPECVD chamber and
held 20 mm above the substrate. The screen mesh was connected to
one terminal of an MDX-500 DC power supply though an electri-
cal feedthrough. The substrate holder and the MPECVD chamber
were grounded as was the other terminal of the power supply.

P-type silicon (100) wafers diced into 2.54 x 2.54 cm? squares
were used as substrates. All substrates were etched in a standard
hydrofluoric-nitric-acetic (HNA) acid solution (20 ml HF + 60 ml
HNO; + 160 ml CH3;COOH) to remove any contaminated top
layer. This was followed by cleaning the silicon pieces in a 2% HF
solution in DI water to remove the native oxide layer before silicon
pieces were placed inside the deposition chamber. The chamber
was evacuated, and a base pressure of at least 1x 107> Pa was
achieved at a process temperature of 750 °C. The silicon was then
etched in hydrogen plasma for 15 min at 2666.44 Pa, 100 sccm H,
flow, and 500 W microwave power to remove surface impurities.
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This was followed by a carburization step for 60 min in which
2 sccm of CH, was introduced into the chamber and the microwave
power was increased to 600 W. Then, the bias voltage of +150 V
was applied to the molybdenum screen mesh through the electrical
feedthrough. The duration of the bias step was varied in the experi-
ments. After the nucleation enhancement steps, the samples were
placed in the deposition chamber and this time, the mesh was
removed. Diamond films were grown on the pre-nucleated wafers
in a 900 W plasma of H,-Ar-CH, mixture at the ratio of 39:60:1
and at a pressure of 12 670 Pa. The substrate temperature as mea-
sured by a thermocouple below the substrate holder was around
750 °C. The growth step was carried out for 8 h followed by 15 min
of hydrogen plasma etching to remove the carbon deposits. The
growth conditions were selected based on the previous results that
showed well-crystallized diamond grains with low secondary nucle-
ation. A summary of the process conditions is given in Table I.

The samples were characterized by a Philips XL-30 FEG environ-
mental scanning electron microscope (ESEM). Raman spectroscopy
measurements were made using a model T 64000, Jobin Yvon triple
monochromator system, equipped with an Olympus BX-41 microscope
attachment. The Raman scattering was performed using a 514.5nm
Ar" ion laser. For the HRTEM study, free standing diamond thin films
were prepared by etching the silicon substrate in an SFg rf-plasma
etcher. The films were then ion milled either from both sides to study
the bulk region of the film or exclusively from the top to characterize
the nucleation layer. The HRTEM studies were performed using a
Philips CM-20 transmission electron microscope (TEM).

RESULTS AND DISCUSSION

The SEM image from films grown after nucleation by the
BEN technique is shown in Fig. 1. The samples nucleated for 5 min

FIG. 1. SEM of oriented and textured diamond films nucleated by BEN at
150 V for 5 min and grown using MPECVD on an Si (100) substrate. The major-
ity of diamond crystals are oriented similarly in the x-y plane leading to high
degree of pyramidal shape and texture.

ARTICLE scitation.org/journalljap

under a 150 V bias have led to formation of the oriented grains on
the silicon substrate with the diamond [110] edges parallel to the Si
[110] and the diamond (100) planes parallel to the Si (100) planes.
Each of the grains has a pyramidal shape with a square base of
(100) planes parallel to the Si (100) planes and four pyramidal
planes (111) of a diamond crystal. This growth morphology of
diamond crystals is consistent with the surface energies (y) of dif-
ferent planes of diamond, ie., y (111) <y(110) <y(100). A careful
observation of individual grains also shows only slight misorienta-
tion between some of the grains in the x-y plane of the paper. On
increasing the bias duration to 15 min, the fraction of grains that
have identical x-y orientation is reduced quite drastically (not
included in this paper), which confirmed that there is an optimum
bias duration for nucleation and growth of the oriented and tex-
tured diamond crystals. This observation then prompted us to
explore the nature of the diamond nucleation process in more
detail using HRTEM that led to the oriented/textured growth of
diamond thin films shown in Fig. 1.

The thin sections of the diamond film suitable for an HRTEM
study were prepared by a combination of rf plasma etching using
SF¢ and ion milling using Ar as described earlier. These approaches
led to thin foils near the Si-diamond interface from the nucleating
region. The HRTEM images of the nucleation layer of the diamond
film created by 5 min of BEN at 150 V are shown in Fig. 2. Figure 2
shows that the majority of the area is covered by small almost cir-
cular/spherical nuclei of the order of about 5-10nm diameter.

FIG. 2. HRTEM images [(a) and (b)] from a nucleating layer of diamond on an
Si (100) substrate upon BEN for 5 min at 150 VV showing nucleation of diamond
nano-grains in an amorphous carbon created during carburization treatment.
Some of these nano-diamond nuclei show lattice fringes indicating diamond
crystal formation. Also shown is an electron diffraction pattern (c) from the nucle-
ating layer consistent with the diamond crystal lattice.
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These nanometer size nuclei are separated by an intermediate
region of about 2-3 nm. The darker nuclei in the higher magnifica-
tion image in Fig. 2(b) show parallel lattice patterns, indicating
nucleation of the crystalline diamond. The electron diffraction
pattern from this region of the nucleating layer is shown in
Fig. 2(c). It has bright spots located on circular rings at a distance/
reciprocal space typically seen for a well-crystallized diamond film
or crystal. The first ring is from a diamond plane (111), the second
from a plane (220), and the third from a plane (311). There is also
a large and bright diffused spot at the center of the diffraction
pattern, which can be attributed to an amorphous phase of carbon
created during carburization and BEN steps during processing by
MPECVD. These observations suggest that diamond nuclei are
formed and crystallized in the amorphous carbon film created as a
result of the carburization, BEN, and exposure to microwave
plasma. The crystallization of an amorphous carbon film to isolated
diamond nuclei appears to be caused by bias and microwave
plasma during processing, which seem to be the most likely expla-
nation for the circular/spherical morphology of nuclei observed in
Fig. 2. The small size of the nuclei near the Si substrate ensures
their strong interaction with the substrate leading to preferred ori-
entation of diamond upon further growth. It is well-known that
processing of a diamond film by MPECVD involves deposition of
both sp® and sp> carbons. However, there is also plasma etching
underway simultaneously in the plasma environment, which etches
away a softer sp> carbon leaving behind an essentially phase pure
diamond phase with an sp>-bonded carbon. This hypothesis is
further explored through Raman analyses of films obtained from
different stages of processing, including BEN and plasma etching
as described next.

In this approach, the deposited film was removed after BEN
steps and characterized using Raman spectroscopy. Then, this film
was plasma-etched to remove a non-diamond carbon phase prefer-
entially and characterized again by Raman spectroscopy. The
plasma etching was done by exposing the film to a plasma in the
same MPECVD reactor under the conditions of a microwave
power of 900 W, a pressure of 12670 Pa, and gas flow rates of
60sccm Ar and 40sccm H,. The plasma etching was done for
120 min. Since no carbon precursor is present in the plasma
etching gases, there is no possibility of diamond or carbon forma-
tion during etching. This plasma etching procedure is expected to
reveal the relative effects of the plasma on the components of the
previously formed BEN layer. The Raman spectra of films before
and after plasma etching are shown in Fig. 3(a). Also, included are
Raman spectra from a single crystal diamond (HPHT-synthesized)
and a sample of CVD graphite. A strong first order phonon peak at
1333cm™' is from single crystal diamond. The CVD graphite
shows strong peaks at 1352 cm™ !, 1585cm™Y, and a shoulder at
1615 cm ™" associated with D, G bands of graphite, and disordered
or amorphous carbon, respectively. The Raman spectrum for the
BEN film deposited for 1h [1 h BEN shown in Fig. 3(a)] looks
more like CVD graphite except that both peaks are broadened in
comparison with the CVD graphite, and the D band of graphite is
clearly shifted toward the peak at 1332 cm™!, which is attributed to
diamond. These observations suggest that deposition of a film
under BEN and in an MPECVD environment forms carbon con-
taining both sp>- and sp>-bonded carbons. This film was then

ARTICLE scitation.org/journalljap

Ar-H, plasma-etched in the MPECVD system for 2h, and the
Raman spectrum from an etched film shows a strong peak at
1332 cm™" and very weak peaks at ~1455 and ~1550 cm™ . These
observations indicated that the plasma etching basically removes
the non-diamond sp” carbon leaving behind an sp*-bonded carbon
from the diamond phase.

The Raman spectra obtained from the BEN film before and after
plasma etching were analyzed using PeakFit software.”” In this
approach, the experimentally observed spectrum is deconvoluted into
different Raman peaks originating from different phases of carbon
and diamond. Then, these peaks are used in the software to deter-
mine the fitted spectrum by adjusting the peak height, width, and
position parameters. The analysis of this type of data can give quanti-
tative estimates of the different phases forming the film after due cor-
rection from the Raman scattering cross sections of different phases.
The Raman spectra in the range of 1000-1700 cm™ were baseline
corrected, smoothened for noise, and fit with the Lorentzian function
for the diamond peaks and the Gaussian function for the non-
diamond components. The results are presented in Figs. 3(b)
and 3(c). Figures 3(b) shows results for the as-deposited 1-h BEN
film fitted using four Raman peaks located at 1209, 1335, 1505, and
1585 cm™". The peak at 1209 is attributed to trans-polyacetylene seg-
ments at grain boundaries and surfaces. The peak at 1335 is attributed
to the first order phonon peak of diamond broadened by phonon
confinement. The peak at 1505 is attributed to the I-band from amor-
phous carbon or sp2 carbon clusters. The peak at 1585 is attributed
to the G band of graphite-like inclusions or amorphous carbon.
Therefore, the Raman spectra in Fig. 3(b) suggest nucleation of an sp’
carbon in a matrix of an sp” carbon because of the BEN.

Figure 3(c) shows results for the plasma-etched film fitted
using seven different peaks located at 1175 (attributed to trans-
polyacetylene), 1284 (attributed to a disordered carbon phase),
1330 (attributed to a first order phonon peak of diamond), 1371
(attributed to a D-peak associated with a disordered carbon), 1445
(attributed to amorphous polyacetylene bonds), 1543 (attributed to
a G-band of graphite-like inclusions or an amorphous carbon), and
1607 (attributed to an amorphous carbon or microcrystalline
graphite). The appearance of the diamond first order Raman line
in the etched BEN film at 1332 cm™ is clearly evident. In addition,
a strong reduction in the amplitude of the G band from an sp®
carbon peak at 1580 cm™" is also observed in the etched film when
compared with the BEN film, indicating a reduction in the sp® and
amorphous carbon content in the etched film. A dominant broad
peak at around 1450 cm ™" associated with the I-band of the carbon
is found in the etched film. Though this peak is frequently associ-
ated with an amorphous carbon or sp> carbon clusters of various
sizes, it is commonly seen in low quality as grown CVD diamond
films. These results indicate that the amorphous carbon formed
under the carburization and BEN steps are etched away by the
Ar-H, plasma. Furthermore, observations from Raman analyses of
samples obtained from different stages of processing suggest that
diamond nuclei shown in Figs. 2(a) and 2(b) are formed in the
amorphous carbon phase in the proximity of the Si-substrate
because of the biasing electric field and microwave plasma environ-
ments. These nuclei then act as a seed for further growth and coa-
lescence leading to textured and faceted polycrystalline diamond
film processed in the MPECVD as shown in Fig. 1.
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FIG. 3. Raman spectra from (a) a
diamond film deposited for 1 h under a
150V bias followed by H,-Ar plasma
etching for 120 min. Also shown are
Raman spectra from a single crystal
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Some researchers’’ have suggested that formation of SiC
nuclei on an Si substrate during BEN is responsible for diamond
nucleation. However, neither the HRTEM results from the nucle-
ation layer nor the Raman data provided any evidence of SiC for-
mation. The strong Raman peaks for a 6H-SiC polytype are
generally observed at 505, 768, 796, 888, and 966 cm™'.*" For the
cubic 3C-SiC polytype, the strong Raman peaks are at 795 and
973 cm™"."” We did not find any evidence of SiC-related Raman
peaks in the BEN films, which indicated that SiC formation cannot
be attributed to diamond nucleation during BEN and MPECVD of
diamond films.

The findings from this research are important for process-
ing diamond containing nitrogen-vacancy centers (NV) for
quantum devices. Most researchers have used HPHT-synthe-
sized tiny diamond crystals and grown diamond films on
diamond crystals. Then, they implant nitrogen and anneal at
high temperatures (1200-1500 °C) to create NV centers. This
complicates processing of devices and limits widespread

1200

1400 1600

Raman shift

applications to quantum devices and systems. In this research,
we have shown that textured polycrystalline diamond films of
good quality can be processed through understanding of the
nucleation mechanism of BEN. In the future, we plan to explore
in situ doping of nitrogen during growth by MPECVD. In addi-
tion, the texture of diamond crystals grown in the Z-direction
and the XY plane can be controlled using some of our
approaches, which are expected to offer many more possibilities
for achieving preferred orientation of the NV centers in
diamond for applications in quantum systems. We had previ-
ously done research on diamond doping in situ by nitrogen and
pursuing it at the present for creating NV centers. The optimum
nitrogen doping level has to be determined, but it should not be
too high for preserving a diamond crystal structure. The quality
of NV centers, thus, created will be characterized by ODMR
(optically detected magnetic resonance) and PL techniques,
which will provide feedback on the processing of optimum
quality NV centers in diamond films by MPECVD.
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CONCLUSIONS

The diamond nucleation mechanism responsible for creating
textured diamond films on Si wafers using BEN and MPECVD was
studied. SEM results from the grown diamond film on an Si (100)
substrate indicated that highly textured films with diamond grains
displaying pyramidal morphology and preferred orientation within
the x-y plane of most diamond crystals were processed. HRTEM
images from the nucleating layer on an Si (100) substrate showed
formation of circular/spherical diamond nuclei of ~5-10 nm diam-
eter within the amorphous or sp® carbon film that formed during
the BEN and MPECVD process. Raman spectroscopy data of the
carbon film formed during BEN and MPECVD further indicated
that the diamond nucleated and crystallized within the carbon film.
The diamond nuclei then grew further upon MPECVD in which
the sp” carbon etched away by the plasma leading to formation of
diamond films with excellent texture within the x-y plane and
along the z direction. HRTEM and Raman data from the nucleating
layer did not show any evidence of an SiC phase, which suggested
that the diamond nucleation is not related to SiC formation on the
Si substrate.

These results provided a fundamental understanding of
diamond nucleation for processing diamond films and crystals of
improved quality for a myriad of quantum devices and
applications.
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