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Abstract 
 
Two-photon lithography (TPL) is a direct laser writing process that enables the fabrication of cm-scale 
complex three-dimensional polymeric structures with sub-micrometer resolution. In contrast to the slow 
and serial writing scheme of conventional TPL, projection TPL (P-TPL) enables rapid printing of entire 
layers at once. However, process prediction remains a significant challenge in P-TPL due to the lack of 
computationally efficient models. In this work, we present machine learning-based surrogate models to 
predict the outcomes of P-TPL to >98% of the accuracy of a physics-based reaction-diffusion finite element 
simulation. A classification neural network was trained using data generated from the physics-based 
simulations. This enabled us to achieve computationally efficient and accurate prediction of whether a set 
of printing conditions will result in precise and controllable polymerization and the desired printing versus 
no printing or runaway polymerization. We interrogate this surrogate model to investigate the parameter 
regimes that are promising for successful printing. We predict combinations of photoresist reaction rate 
constants that are necessary to print for a given set of processing conditions, thereby generating a set of 
printability maps. The surrogate models reduced the computational time that is required to generate these 
maps from more than 10 months to less than a second. Thus, these models can enable rapid and informed 
selection of photoresists and printing parameters during process control and optimization.  
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1. Introduction 
 

Two-photon lithography (TPL) is at the forefront of nanofabrication technologies under development 
today, promising true three-dimensional (3D) fabrication capabilities with feature resolution below 100 nm 
[1-3]. TPL systems typically achieve such sub-diffraction-limit resolutions by focusing an intense 
femtosecond laser beam into a small spot within a curable photopolymer material [4]. Focusing of intense 
femtosecond light enables one to achieve nonlinear two-photon absorption wherein appreciable light 
absorption and polymerization-based curing occurs in only a small region within the focal volume [5]. This 
powerful capability of TPL has been widely applied to fabricate a variety of functional nano-enabled 
devices, such as microelectronics [6, 7], microfluidics [8, 9], micro-and nano-photonics [10-13], bio-
scaffolds and grafts [14, 15], micro-robots [16, 17], and mechanical metamaterials [18, 19].  

Given the resolution and versatility of TPL, there have been substantial efforts to scale up the method 
in terms of throughput, while also reducing cost per unit mass [20-25]. Conventional TPL is slow due to its 
point-by-point serial writing scheme. One approach to parallelization-based scale up, demonstrated by our 
group, uses a layer-by-layer projection-based TPL (P-TPL) writing scheme to effectively overcome the 
traditional rate-versus-resolution tradeoff. In our past work, we have demonstrated P-TPL printing of 
nanowires with widths and heights smaller than 175 nm and at throughputs 1000 times higher than serial 
techniques [20]. We have also demonstrated that it is possible to computationally model the P-TPL process 
using a finite element (FE) based reaction-diffusion simulation that is capable of handling the time and 
length scales of P-TPL [26]. 

For further development of P-TPL, it is crucial to not only advance the printing technology to improve 
performance and reduce cost, but to also accurately characterize the parameter space associated with the 
printing process. In the absence of reliable characterization data and robust modeling tools, one must rely 
on iterative trial-and-error printing runs to fabricate the desired features. This imposes a significant barrier 
to the adoption of the technology for scalable manufacturing of nano-enabled devices. In addition, 
identifying the process limits is impractical through an iterative empirical approach. For example, choosing 
the printing conditions and photopolymer material that will produce the highest resolution (i.e., generate 
the smallest features) is challenging without an accurate model of the process. This is incompatible with a 
vision of TPL as a mature, scaled-up technology. Computational modeling of the process offers a path 
towards process scalability. 

While we have previously demonstrated the ability to predict the feature size using FE simulations [26], 
in the present work we approach the modeling problem at a higher level. Here, our aim is to rapidly 
characterize printability over broad parameter spaces instead of predicting the printed geometry under a 
specific set of conditions. Physics-based FE simulation is an appropriate choice when prediction of the 
printed geometry is desired for a specific combination of printing setup and a photoresist material. Under 
such a specific set of operating conditions, several model parameters can be empirically calibrated to 
generate an accurate model over a narrow parameter space. However, it is impractical to use FE simulations 
to model broad parameter spaces wherein multiple parameters can widely vary. This is because it takes 
several minutes to solve an FE analysis problem for P-TPL. For instance, in this study, we are interested in 
investigating the process outcome corresponding to 10 input parameters with several parameters varying 
over multiple orders of magnitude. Producing a process map over such a broad range would require tens of 
thousands of data points and would take thousands of CPU-hours using FE modeling on cluster computing. 
Even if such a simulation were to be performed once, it is impractical to repeat this simulation every time 
a new process map is desired. Here, we adopt a surrogate modeling approach to solve this challenge. By 
training a classification neural network (CNN) on data points generated from FE simulations, we can 
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accurately investigate printability regimes with solve times at least seven orders of magnitude faster than 
the full FE simulation.  The surrogate model is presented in Section 2 and the results of the printability 
mapping are presented in Section 3.  

2. Modeling methods 
2.1.Projection TPL 

The underlying physics of TPL is the two-photon absorption process, in which two photons are 
simultaneously absorbed by the irradiated material, exciting it into a resonant state [27]. This is a nonlinear 
process and high intensities are required to achieve appreciable light absorption in UV curable photoresist 
materials. Generation of free radicals is observed upon relaxation of the photoinitiator molecules from the 
excited state. It is these free radicals that initiate the polymerization process in the photoresist material [28]. 
The relationship between the incident light and the resulting number of free radicals generated can be 
written as [29]: 

∆[R*] = 𝐷𝐷𝑝𝑝𝜎𝜎(2)Ф
ℎ2𝑣𝑣2

[PI]                  (1) 

 
Here, ∆[R*] represents the increase in concentration of the primary radicals R*, measured in mol/dm3, over 
the duration of a single laser pulse. The primary radicals refer to those radicals that are formed from the 
photoinitiator molecules. The parameter 𝐷𝐷𝑝𝑝 represents the optical dosage delivered during a single laser 
pulse. The optical dosage is the square of the instantaneous light intensity, integrated over the duration of 
a single pulse. The intensity of light increases linearly with the optical power of the beam. The physical 
significance of the optical dosage is that it is proportional to the amount of energy absorbed per unit volume 
of the material in the two-photon absorption mode. The parameter σ(2) represents the two-photon cross-
section of the photoinitiator molecule and the parameter Φ represents the quantum yield of radical 
formation, i.e., it quantifies the fraction of excited molecules that generate the radicals. The parameter h 
represents Planck’s constant and ν is the frequency of the light that illuminates the photoresist material.     

In a serial TPL process, the dosage is delivered to the photoresist material sequentially one point at a 
time. However, in the P-TPL process, an entire 2D light sheet can be illuminated at once, as shown in Figure 
1. A digital micromirror device (DMD) is used to selectively illuminate the desired region, acting as a 
digital mask. Through the simultaneous spatial and temporal focusing of femtosecond light, the entire 2D 
image can be brought into focus and a whole 2D layer can be printed at once [20].  

2.2.Reaction-diffusion model 

Previously, we have described a reaction-diffusion modeling scheme for the P-TPL process [26]. The 
set of chemical equations that capture the essential polymerization process after photoinitiation per equation 
(1) can be given as: 

R* + O2 ⟶
𝑘𝑘𝑞𝑞

Rx                   (2) 

R* + P ⟶
𝑘𝑘𝑝𝑝

P*                           (3) 

P* + P ⟶
𝑘𝑘𝑝𝑝

P*                          (4) 

P* + O2 ⟶
𝑘𝑘𝑡𝑡

Px                   (5) 
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Here, Eq. (2) represents inhibition of the primary free radical, R*, by oxygen dissolved in the photoresist 
medium [30]. Those free radicals that are not immediately quenched go on to start polymerization chain 
reactions, modeled in equations (3) and (4) as the addition of monomer molecules to a growing polymer 
chain. The primary radicals react with the monomer molecules (represented by P here) in the photoresist 
material to generate the secondary radicals P*. The secondary radicals continue to react with more monomer 
molecules to form a growing chain of polymer. The number of secondary radicals is preserved during the 
growth process as each secondary radical forms a new secondary radical upon incorporation into a polymer 
chain. The polymer chains keep growing until they are terminated through reaction with an oxygen 
molecule, per equation (5). Other termination mechanisms have been neglected here because oxygen 
termination has been shown to be the dominant termination mechanism for TPL [31]. The reaction rate 
constants kq, kp, and kt correspond to the rates of the quenching, polymerization, and termination reactions 
respectively.  

These reaction rate equations can be rewritten as a system of partial differential equations (PDEs) as: 

d
d𝑡𝑡

[R*] = −𝑘𝑘𝑝𝑝[P][R*] − 𝑘𝑘𝑞𝑞[O2][R*] + 𝐷𝐷𝑅𝑅∗ �
∂2[𝑅𝑅∗]
∂𝑥𝑥2

+ ∂2[𝑅𝑅∗]
∂𝑧𝑧2

�               (6) 

 

d
d𝑡𝑡

[P] = −𝑘𝑘𝑝𝑝[P][R*] − 𝑘𝑘𝑝𝑝[P][P*]                             (7) 

 

d
d𝑡𝑡

[P*] = 𝑘𝑘𝑝𝑝[P][R*] − 𝑘𝑘𝑡𝑡[O2][P*]                  (8) 

 

d
d𝑡𝑡

[O2] = −𝑘𝑘𝑞𝑞[O2][R*] − 𝑘𝑘𝑡𝑡[O2][P*] + 𝐷𝐷O2 �
∂2[O2]
∂𝑥𝑥2

+ ∂2[O2]
∂𝑧𝑧2

�               (9) 

d
d𝑡𝑡

[Rx] = 𝑘𝑘𝑞𝑞[O2][R*]                  (10) 

 

d
d𝑡𝑡

[Px] = 𝑘𝑘𝑡𝑡[O2][P*]                (11) 

 

This system of PDE represents the rate of change of the concentration of the reacting chemical species. 
In addition to changes in concentration caused by the aforementioned chemical reactions, diffusion of O2 
and R* from regions of high concentration to regions of low concentration is also captured through the 
spatial derivatives in equations (6) and (9). The slower diffusion of other larger molecules is neglected. 
Thus, Eqs. (6)-(11) govern the reaction-diffusion mechanism underlying photopolymerization in P-TPL. 
The initial conditions and the parameters for the simulation are provided in Table 1. For these initial 
conditions, the properties of pentaerythritol triacrylate (PETA) monomer were used here because PETA 
has been widely used for TPL printing in the past [31, 32]. It is noteworthy here that despite these fixed 
initial conditions, a large set of different photoresist material properties could be simulated here because 
the reaction rate constants, the concentration of the photoinitiator, and the quantum yield of the 
photoinitiator were allowed to vary over large ranges.  
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The reaction-diffusion finite element simulation was performed with the commercially available 
COMSOL Multiphysics software package. The PDE system was solved over a given geometry and for a 
specified amount of time using a direct time-dependent solver. All simulation in this work was performed 
for a 2D geometry representing the centermost XZ plane when printing a set of nanowires. It is reasonable 
to use 2D geometry to model the formation of the nanowires due to the inherent symmetry of system along 
the length of the nanowires. The simulation has been updated from the version described in more detail 
previously [26], notable changes are discussed below. 

The mesh that the equations were solved over has been updated to the one shown in Figure 2. Instead 
of a mesh with uniformly-sized elements, this mesh uses progressively finer elements near the focal plane. 
This mesh has been found to increase the accuracy of printing prediction. Mesh convergence was verified 
by successively refining the mesh; mesh with values of n = 40 were found to be sufficiently fine for 
simulation of nanowires under most parameter conditions. For challenging parameter regimes (such as at 
extremely high doses or extremely rapid reactions), a mesh of n = 50 was used. 

In our prior work [26], the value of the rate constant kp was modeled as a function of the degree polymer 
of conversion (DOC) based on literature data, with the other rate constants being fixed. In this work, both 
the kp and kt rate constants were modeled as exponential functions of DOC, with the shape of the function 
given by parameters A and B, respectively. These functions are: 

 

𝑘𝑘𝑝𝑝 = �𝐴𝐴 − 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷

(𝐴𝐴−1)𝐷𝐷𝐷𝐷𝐷𝐷−1
 � 𝑘𝑘𝑝𝑝−0               (12) 

 

𝑘𝑘𝑡𝑡 = �𝐵𝐵 − 𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷

(𝐵𝐵−1)𝐷𝐷𝐷𝐷𝐷𝐷−1
 � 𝑘𝑘𝑡𝑡−0               (13) 

where kp and kt are real numbers. This allows the rate constants to decrease from their initial value to zero 
as polymerization progresses and the viscosity of the photoresist increases. Similarly, the diffusivity of 
oxygen is also modeled to decrease linearly with increasing DOC as the reaction progresses. The diffusivity 
of R* is approximated as a constant since this species is consumed rapidly at the start of the polymerization. 

While the previous version of the simulation was initialized by evaluating the dosage as the product of 
the square of time-averaged light intensity and a constant pulse duration [26], this version uses dosage 
values calculated by performing a time-integral of the square of the instantaneous intensity, with integration 
performed over the duration of the entire pulse. The intensity and pulse durations were evaluated through 
an optics simulation similar to the one described in the supporting materials of Saha et al. [20]. Since P-
TPL uses temporal focusing, dosage values that account for the different pulse durations at different 
locations are more accurate than dosage values calculated by assuming the same pulse duration at all 
locations. The model was also updated to account for the consumption of the photoinitiator after each pulse, 
thereby increasing the accuracy of predictions. Furthermore, the optical parameters (such as magnification 
and laser repetition rates) were changed to reflect our new P-TPL printing system located at Georgia Tech.  

The output of the FE reaction-diffusion simulation is the spatio-temporal evolution of the concentration 
of each chemical species. From these data, the DOC at the final time is calculated. The DOC refers to the 
fraction of the monomer that has converted to the polymer; therefore, it characterizes the progress of the 
polymerization process. From this simulated data, the regions of the photoresist that have cured can be 
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predicted by applying a threshold on the DOC. This thresholding replicates the experimental observation 
that the photoresist becomes insoluble in solvents when the DOC exceeds the threshold DOC (DOCth). 
Regions with DOC above this threshold are retained intact after development, i.e., after cleaning the 
photoresist with solvents. Thus, by applying a threshold, as shown in Figure 3, the shape and size of the 
printed regions can be discerned. The width and height are measured from this geometric data.   

 
2.3.Training data generation 

To train a neural network capable of acting as a surrogate model for the FE simulation, it was necessary 
to first generate a large amount of training data. This was accomplished through the use of the PACE High 
Performance Computing (HPC) resource at Georgia Tech. Solving a single model takes on the order of ~5 
minutes on a workstation computer with an Intel® i7-9700K CPU and 64 GB of RAM; this time can be 
more or less depending on the simulation parameters. While using HPC does not necessarily speed up the 
runtime of a single model, it does allow for parallel solving of multiple models simultaneously. This vastly 
reduces the time needed to generate a large dataset. After some optimization, it was possible to perform on 
the order of 100 FE model solves per hour, depending on the amount of compute resources allocated. 

All simulations for this work were performed with the same projection comprising a set of 5 lines, with 
a width of 5 pixel and a period of 15 pixel on the DMD. Chemical parameters as well as the duration of 
exposure and the optical power were varied to capture a wide range of conditions. The 10 input parameters 
that were varied are listed in Table 2, along with the maximum and minimum values they were allowed to 
take. The parameters ‘number of pulses’ and the ‘optical power’ represent the illumination-based process 
parameters that quantify the total amount of optical dosage. The parameters [PI] and Φ represent the process 
parameters that are determined by the photoinitiator, whereas the rest of the parameters represent the 
material properties of the monomer in the photoresist. Thus, by varying these three sets of process 
parameters, one may achieve a vast number of different P-TPL process set ups. It is impractical to attempt 
the mapping of printability over this entire design space using FE simulations. Instead, samples were 
generated using FE simulations to train the neural network (NN) models.  

A full-factorial sampling scheme was inappropriate for a ten-dimensional parameter space such as this, 
because aiming to sample each parameter at just 5 levels would require 510 simulations to be performed. 
This is impractical given the compute time per simulation. Instead, a modified Latin Hypercube Sampling 
(LHS) scheme was adopted using the lhsdesign() function built into MATLAB’s Statistics and Machine 
Learning Toolbox. The LHS method divides each parameter range into segments and chooses n random 
points equally distributed among the segments. As a result, it is guaranteed to be more representative of the 
sample space than pure random selection, such as Monte Carlo sampling [33]. LHS sampling allows for far 
more dense sampling than factorial sampling, at the cost of not generating all possible combinations of 
parameter levels.  

While the ranges of the rate constants span 8 orders of magnitude, it was thought likely that large 
portions of this space might not generate any printing. Since there is no benefit to sampling these regions 
densely, the simulations were performed in batches, with each batch focused on the parameter space deemed 
to be most promising for printing by the previous batches. 

The simulation process was automated through the use of MATLAB LiveLink for COMSOL 
Multiphysics, which allows algorithmic control of the COMSOL simulation by a MATLAB script. The 
generation of parameters, batch model solves, and post-processing to find the width and height of the 
resulting print was automated in this way. In total, 7,084 model solves were completed. Data augmentation 
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was then performed from these results to increase the size of the dataset that was used for training the neural 
networks. Due to the nature of the process, it was possible to generate several datapoints from each model 
solve by varying the DOCth parameter and taking measurements without re-solving the model, since the 
underlying DOC information remains the same. In addition, it was possible to apply physics-based prior 
process knowledge to augment the data. For example, it is known that if a given set of parameters failed to 
print, then decreasing the parameters that are positively correlated with printing (e.g. kp-0, power), while 
keeping the other parameters constant would also lead to no printing. Here, positive correlation means that 
individually increasing the input parameter will lead to an increase in the amount of printing. Similarly, 
increasing the parameters that are negatively correlated with printing (e.g. kq, kt-0), while keeping the other 
parameters constant would also lead to no printing. The converse is true for those datapoints that resulted 
in runaway printing (i.e. over-polymerization). Because the data was created by a deterministic physics-
based simulation, it was known with certainty that increasing or decreasing these parameters would always 
change the outcome in the same direction; that direction can be deduced from the definition of the parameter 
and the process equations. In this way, synthetic datapoints were generated with high confidence without 
performing full model solves. The augmented dataset had 26,769 points, i.e., about 4 times the number of 
models solved. The entire training dataset is available elsewhere [34]. 
 
2.4.Neural network surrogate modeling 

A surrogate model, or a metamodel, is a computationally inexpensive approximation of a high-fidelity 
model. Surrogate models are fit to datasets of the type generated here; they are generally not trained on the 
underlying model physics but solely on input-output relationships. While regression and response surface 
models have been traditionally popular choices for surrogate models, artificial neural networks (NNs) 
trained through backpropagation are an increasingly popular choice for high dimensional data [35, 36]. 
Since this is a high dimensional parameter space with large ranges for each parameter, a NN was chosen 
over a traditional regression model.  

An NN is a machine learning method loosely modeled on the human brain [37, 38]. A network of nodes 
is set up where each node receives inputs, assigns them weights, and passes them through a transfer function 
to generate an output. Neural network topologies can include many thousands of layers of nodes. However, 
for the purpose of this work, a shallow NN with a few layers will suffice [39]. A classification neural net 
(CNN) applies this principle to classification problems, assigning each input data vector to one of several 
output classes.  

Since a surrogate model inherently has some approximation error, it was not expected that a surrogate 
model could perform feature size prediction at accuracies comparable to the FE model. Rather, the surrogate 
model was tasked with predicting whether a given set of printing conditions would result in no printing, 
printing, or overprinting. These three categories were assigned labels of -1, 0, and 1 respectively. The 
ground truth labels for the training dataset were generated by analyzing the results of the FE simulations. 
Prints with connected features or a marked change in aspect ratio were classified as ‘overprinted’. Prints 
with no regions above DOCth were categorized as having ‘no printing’. Prints with intermediate values of 
DOC and distinct line features were categorized as ‘printing’. Figure 4 illustrates these categories for a 
representative value of DOCth=0.30. The DOC of 0.30 is not achieved at any spatial location in the ‘no 
printing’ outcome. In the overprinting case, there is runaway polymerization leading to merging of the line 
features, i.e., a contiguous patch of material with DOC>0.30 exists between the centers of adjacent line 
features. 
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Neural network training was performed in MATLAB using the fitcnet() function, which allows for the 
training of a shallow feedforward NN for classification problems. 15% of datapoints were reserved for 
testing. The rest were used to train a classification neural network with 4 layers of sizes: 15, 9, 5, and 3. 
ReLU (rectified linear unit) activation functions were used for the hidden layers and a softmax activation 
function was used for the output layer. All input and output data were treated as real numbers, including 
the number of pulses (which only took integer values in the training dataset). k-fold cross-validation with k 
= 5 was performed to avoid overfitting. The network was trained on an Intel® i7-1165G7 system with 
16GB of RAM. It took an average of 4 minutes to train the net. A schematic representation of the neural 
network is shown in Figure 5. 

3. Results and discussion 
3.1.Performance of neural network 

The NN was tested on the 15% of reserved datapoints, and it was found to predict the correct result 
98.1% of the time. This is possibly a slight overestimation of the true performance, since slight correlations 
in the dataset might have been introduced during the data augmentation phase. Nonetheless, this 
performance is generally considered satisfactory for a classification model of this type [39]. The confusion 
matrix shown in Figure 6 demonstrates that the NN excels at correctly identifying overprinting and non-
printing conditions. Accuracy at distinguishing false negatives is slightly lower, with printable conditions 
being correctly recognized 94.6% of the time. The training dataset contained 39% datapoints of Class -1, 
9% datapoints of Class 0, and 52% datapoints of Class 1. As the training dataset consisted of fewer 
datapoints of Class 0 (printing) in comparison to Class -1 (no printing) and Class 1 (overprinting), so slightly 
lower accuracy for Class 0 was expected. 

Although the accuracy of the NN model is lower than that of the physics-based FE simulations, the NN 
model has a significant advantage in the computational efficiency. The evaluation time for the NN model 
is almost instantaneous, taking an average of 0.32 μs for a single model evaluation. This is significantly 
shorter than the several minutes taken to solve even a simple 2D FE simulation, with more complex 
simulations taking even longer. The rapid solve times enable evaluation of tens of thousands of parameter 
combinations within seconds, accomplishing the main aim of surrogate modeling. The NN model also has 
an advantage over the FE simulations in the amount of data storage that is required. Each solved FE 
simulation generates a vast amount of simulation data (~100s of megabyte) that must be parsed to determine 
the output class corresponding to the printing outcome. In contrast, the NN models directly generate the 
output class (~ 1 byte) for a given set of input parameters (~100 byte). Thus, such a surrogate model can be 
deployed on low-cost computing infrastructure, such as edge computing devices, to perform real-time 
manufacturing process control and optimization.    

3.2.Printability maps 

Having generated the surrogate model, it is possible to perform some tests to demonstrate the utility of 
the model. First, printability mapping was performed by varying two reaction rate constants at a time while 
holding the other parameters constant. The aim is to verify whether the surrogate model is capable of 
accurately exploring the material design space, thus enabling choosing reagents with the rate constants 
required to print under a given set of conditions. To validate this, a random sample of FE simulations was 
also performed in the same parameter range, to provide a coarse printability map to benchmark against. 

The printability map corresponding to varying combinations of polymerization and termination rate 
constants (i.e., kp-0 and kt-0) is shown in Figure 7. All other input process parameters were held constant at 
a randomly chosen set of values. A DOCth value of 0.20 was used. The background colors represent the 
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results from the NN, from densely sampled points. The triangles represent FE results for comparison. In 
this parameter range, it is observed that the NN has captured the essential behavior of the process, albeit 
with inaccuracies. The NN predicts a gradual shift from non-printing to printing to overprinting as kp-0 is 
increased and kt-0 is decreased. This is valid according to the FE model; however, the exact boundaries 
between the different regimes are not perfectly accurate, as represented by some FE model points being in 
a different NN region. Nonetheless, the NN has predicted a wide printing band and narrow bands for no 
printing and overprinting in approximately the correct parameter locations. While an FE model would be 
necessary to quantify the exact boundaries of printability, the NN can be used to qualitatively assess 
printability behavior over a broad range of the input parameters.   

Similar results were observed when combinations of polymerization and quenching rate constants (i.e., 
kp-0 and kq) were varied, as illustrated in Figure 8. This printability map shows kq vs. kp-0 with the other input 
parameters held constant at a different set of values than in Figure 7. Over this parameter space, only 
printing and no printing outcomes are observed. While the NN results do not exactly match the FE results, 
the NN is nonetheless able to approximately locate the boundary between the printable and non-printable 
region. It is interesting to note that despite the inaccuracy in quantitatively locating the boundary, the NN 
model can qualitatively predict that the boundary gradually shifts toward the top-right corner as the value 
of kp-0 increases. The dotted circles were drawn on Figure 8 to highlight this trend. Thus, the NN surrogate 
model can be an efficient and effective tool for the prediction of printability over a broad material design 
space.          

A comparison of the compute times required to generate the FE and NN predictions for the two 
printability maps is summarized in Table 3. Despite the FE sampling being much coarser, generation of the 
FE datasets takes over an hour, compared to under a second for the NN. Furthermore, the FE solve time 
depends on how challenging the parameter regime is, which results in an exceedingly long solve time of 
over 7 hours for the parameter combination in Figure 7. In contrast, the NN solve time does not depend on 
the input parameter combination. Generation of the printability map of Figure 7 with 100,000 FE 
simulations would have taken more than 10 months of computation compared to the <1 s taken by the NN 
model. Thus, the NN surrogate model enables rapid prediction of printability in P-TPL over broad operating 
regimes, thereby solving a problem that was intractable in the past.      

Although our work here has been limited to predicting printability in the P-TPL process, we anticipate 
that our ML-based approach can also be applied for the printability prediction of other TPL 
implementations. Our approach is particularly well suited for those TPL implementations that use low 
repetition rate femtosecond lasers (i.e., rates of ~1 kHz), such as the high-throughput implementation 
demonstrated by Ouyang et al. [40]. Our model of photopolymerization can be adapted to such studies with 
minimal changes due to the similar time scale of illumination and polymerization reactions. To adapt our 
work to the more prevalent TPL implementations that use high repetition rate lasers (i.e., rates of ~100 
MHz), one must modify the polymerization rate equations to include the illumination term within the 
differential rate equations. Nevertheless, our work demonstrates that ML-based surrogate modeling is an 
effective and resource efficient approach to predicting printability over a wide range of operating 
conditions.  

As our goal here was to generate ML-based surrogate models of the physics-based FE models, our ML 
models were trained exclusively with computational data from the FE models. The FE models were 
themselves validated against experiments [26], but data from experiments were not used to directly train 
the ML models. In the absence of validated FE models, it is tempting to train the ML models exclusively 
on experimental data. However, such an approach is more challenging to implement due to the need for a 
large amount of experimental data and the presence of experimental uncertainty in the data. More 
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importantly, FE models can generate data over such large operating spaces that cannot be readily accessed 
through physical experiments with specific systems and photoresist materials. Thus, we anticipate that FE 
modeling will be an important source of training data for future ML models. Nevertheless, we believe that 
the accuracy of the ML models can be further improved in the future by fusing the computational dataset 
with data from physical experiments, as has been demonstrated in ML-based modeling of other AM 
processes [41].    

4. Conclusion 

In summary, we have demonstrated that neural network based surrogate modeling is capable of 
capturing the essential features of the P-TPL parameter space. We have successfully trained a classification 
model that is capable of evaluating printability for a set of parameters with solve times on the order of 
microseconds rather than minutes. While the surrogate model currently lacks the accuracy needed for 
precise feature size prediction, it nonetheless enables computationally cheap qualitative mapping of 
printability over broad operating regimes. Therefore, it significantly reduces the barriers to the practical 
adoption of P-TPL as a high-throughput nanoscale additive manufacturing capability by enabling rapid 
process planning and optimization. Thus, we anticipate that this work will enable scalable 
nanomanufacturing of complex 3D structures for a variety of devices with applications in computing, 
energy, transportation, and human health.      
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Nomenclature 

Chemical Species 
 
PI  photoinitiator 
R*  primary radical 
P  monomer 
O2  oxygen 
P*  active polymer chain 
Rx  quenched primary radical 
Px  dead polymer chain 
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Symbols 
 

kp  polymerization rate constant at a specific degree of polymer conversion 
kp-0  polymerization rate constant at the beginning of polymer conversion 
kq  radical quenching rate constant  
kt  termination rate constant at a specific degree of polymer conversion 
kt-0  termination rate constant at the beginning of polymer conversion  
DR*  diffusivity of R* 
DO2  diffusivity of O2 

DOC degree of polymer conversion 
DOCth threshold degree of polymer conversion 
𝐷𝐷𝑝𝑝  optical dosage per pulse 
𝜎𝜎(2) two-photon cross-section of photoinitiator 
h  Planck’s constant 
Φ  quantum yield of photoinitiator 
v  frequency of light 
A  kp exponential function shape parameter 
B  kt exponential function shape parameter 
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Figure Captions List 

Fig. 1: Schematic of P-TPL. (A)  Process overview, (B) System overview. From [20]. Reprinted with 
permission from AAAS. 
 
Fig. 2: Mesh for reaction-diffusion finite elements simulation 
 
Fig. 3: Degree of conversion thresholding. DOC increases from blue to red (top panel). DOC > DOCth 
shows printed regions only (bottom panel). 
 
Fig. 4: Printing outcomes corresponding to the three output classes. (A) class -1: no printing, (B) class 0: 
printing, and (C) class 1: overprinting. 

Fig. 5: Neural network architecture 

Fig. 6: Confusion matrix for the performance of the neural network over the testing dataset that was not 
used for model training 

Fig. 7: Printability map generated via NN and FE models for kt-0 (dm3 mol-1 s-1) vs kp-0 (dm3 mol-1 s-1) 

Fig. 8: Printability map generated via NN and FE models for kq (dm3 mol-1 s-1) vs kp-0 (dm3 mol-1 s-1) 
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Table Captions List 

Table 1: Initial conditions for simulations 

Table 2: Training dataset parameter ranges 

Table 3: Comparison of NN and FE model solve times 
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24 
 

Figure 8 
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Table 1 

Variable Value  Source 
[R*]0, [P*]0, 
[Rx]0, [Px]0 

0 mol dm–3 No light exposure 
before printing 

[P]0 3.956 mol dm–3 Material datasheet 
[O2]0 6×10–3 mol dm–3 Mueller et al. [31] 
DO2 1.2×10-12 m2 s–1 Estimated with Stokes-

Einstein equation DR* 10-13 m2 s–1 
Pulse 
repetition rate 

5 kHz Printing conditions 
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Table 2 

Parameter Lower Bound Upper Bound Units 

kp-0 1 1×108 dm3 mol-1 s-1 
kq 1 1×108 dm3 mol-1 s-1 
kt-0 1 1×108 dm3 mol-1 s-1 
Number of pulses 1 20 - 
A 1×10-20 1×10-10 - 
B 1×10-20 1×10-10 - 
Optical power 0.01 0.50 W 
Φ 1×10-4 1×10-2 - 
[PI] 1×10-4 1×10-2 mol/dm3 
DOCth 0.02 0.70 - 
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Table 3 

Parameter combinations Number of datapoints Time taken to generate 
Figure 7: NN 100,000 <1s 
Figure 7: FE 96 7h 14min 
Figure 8: NN 100,000 <1s 
Figure 8: FE 96 1h 19min 
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