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Abstract

Excessive emission of carbon dioxide (CO,) has posed an imminent threat to human’s

environment and global prosperity. To achieve a sustainable future, solid oxide electrolysis cell

(SOEC), which can efficiently combine CO, reduction reaction (CO,RR) and renewable energy

storage, has become increasingly attractive owing to its unique functionalities. Additionally,



symmetrical SOEC (SSOEC) has been considered as one of the most versatile cell
configurations due to its simplified process, high compatibility and low cost. However, the
electrode material requirements become very demanding since efficient catalytic-activities are
required for both CO,RR and oxygen evolution reaction (OER). Herein, we demonstrate a novel
high-entropy perovskite type symmetrical electrode Pro.sBagsMng2Feo2C00.2Nio.2Cuo203.5 (HE-
PBM) for SSOEC. B-site doping of transition metals such as Mn, Fe, Co, Ni, and Cu in HE-
PBM anode has been found to strongly accelerate the OER in the anode. Moreover, the presence
of in-situ formed Fe-Co-Ni-Cu quaternary alloy nanocatalysts from HE-PBM cathode under
reducing atmosphere has resulted in superior catalytic-activity towards CO,RR. The faster
kinetics are also reflected by the significantly low polarization resistance of 0.289 Q ¢m? and
high electrolysis current density of 1.21 A cm for CO,RR at 2.0 V and 800 °C. The excellent
electrochemical performance and stability demonstrate that the high-entropy perovskite
material is a promising electrode material in SSOEC for efficient and durable CO,RR.

Keywords: High-entropy oxide; Carbon dioxide reduction reaction; Quaternary alloy; In-situ

exsolution; Solid oxide electrolysis cell.



1. Introduction

Due to ever increasing global industrial activities and the extensive use of fossil fuels, CO2
emissions are constantly increasing. The urgent economic and political problems of the world's
countries have also shifted toward tackling the global warming. Converting atmospheric CO»
into reusable chemical energy is an effective and sustainable way to slow the growth of CO»
emissions and mitigate the greenhouse effect[1-3]. Among the existing methods,
electrochemical CO, reduction reaction (CO2RR) via a solid oxide electrolysis cell (SOEC) is
an effective CO, conversion method, and electrocatalytic CO, conversion holds great promise
as a future technology for long-term storage of renewable energy and sequestration of CO; in
the earth's carbon cycle. In general, CO2RR can be carried out over a wide range of temperatures
and/or pressures, and therefore becomes a prominent research direction.

SOEC is an important tool for the increasingly widespread use of carbon dioxide resources
owing to its unique functionalities[4-9]. The electricity used can be derived from intermittent
energy sources such as wind, solar and tidal energy, thus storing electricity at the same time.
Oxygen ions (O*) separated from CO: at intermediate temperatures can pass through the
electrolyte of the oxide ionic conductor[10-13]. However, its high cost and complex assembly
have severely hindered its practical application. A symmetrical solid oxide electrolysis cell
(SSOEC), where the same electrode material is used on both sides of the cell, is an effective
way of simplifying the production of the cell and lowering costs[14-18]. The current anode
material and cathode material correspond to high performance oxygen evolution reactions
(OER) and CO2RR, respectively[19]. In contrast, the SSOEC is made of the same material as

both anode and cathode. Therefore, the selection of appropriate materials with both good



electro-catalytic activity as well as stability towards OER and CO,RR is key to its advancement.

In recent years, some perovskite materials have been investigated as electrodes for SSOECs,
such as SrFe;sMo0osOe5[20], Lag75Sr025CrosMngsOs.5[21], and ProsBagsMnOs5[22]. In
addition, some new materials such as LagsSri2Fe9C00.104.5[16] and Lag 3Sro7Feo.7Tio303.5[23]
have also been investigated for electrode in SSOECs. Among all these materials,
ProsBagsMnQOs.s (PBM) exhibits relatively high electrical conductivity, excellent redox stability,
and coking tolerance. However, the development of suitable electrodes comparable in
performance to conventional Ni-Y'SZ but more stable remains a challenge.

Recently, high-entropy oxide (HEO) was proposed, which showed excellent chemical
properties due to the highly disordered structural features and a multi-component random
distribution[24-29]. For instance, Lag sSro.MnOs.; (LSM) has been employed as a high-entropy
cathode with A-site or B-site doping in SOFC, which exhibits high performance and suppresses
Sr segregation[30-32]. A Lag2Pro>Ndy>Smg2Bag 1Sro.1C002Fe06Nio.1Cup.1035 high entropy
perovskite (HEP) with high elements contents was also proposed as a cathode for SOFC[33].
However, there have been no reports of high entropy perovskite materials as symmetrical
electrodes in SSOECs. Currently, there are generally two definitions of HEO: one is composed
of at least five elements (5%-35%) in the composition; the other is that the conformational
entropy (S) needs to be higher than 1.5R (R is gas constant). The configurational entropy can
be calculated with the formula of S = - R-Z xi-In (x)[34], where x; is the mole percent of
component i.

In this work, we design a symmetrical electrode of high-entropy perovskite oxide

Pro.sBag sMng2Feo2C00.2Nio2Cu 2035 (HE—PBM) for CO, electrolysis via a SSOEC, and the



transition elements can promote OER in the anode, while the in-situ exsolved Co-Fe-Ni-Cu
quaternary alloy nanoparticles can accelerate CO>RR in the cathode. The configurational
entropy of HE-PBM is 2.30R, which qualifies as HE oxides. Electrical and chemical properties
of HE-PBM and traditional PBM were compared in symmetrical single cells, and the
mechanism of the performance enhancement in high-entropy perovskite was proposed. This

work offers an alternative symmetrical electrode in SSOEC applications.

2. Results and discussion

2.1. Phase composition and morphology

Fig. 1a shows the Rietveld refined X-ray diffraction (XRD) pattern of HE-PBM after the
initial synthesis at 1100 °C. The well-fitting data show that all the peaks belong to a cubic
structure without any impurity, and the lattice parameters of HE-PBM are a=b=c=3.884 A.
XRD of as-prepared PBM powder (Fig. S1) exhibits cubic and hexagonal mixed phases, in
agreement with other reports [35]. High-resolution transmission electron microscopy (HR-
TEM) images of HE-PBM in Fig. 1b-c show that the particle size is approximately 250-300 nm,
and the lattice spacing of the crystal is measured to be 0.278 nm, consistent to the XRD result.
Energy-dispersive X-ray spectroscopy (EDS) element mapping in Fig. 1d shows that all the
elements involving Pr, Ba, Mn, Fe, Co, Ni, Cu, and O elements are uniformly distributed on the
surface of the HE-PBM, indicating that all the metal ions are successfully integrated into the
lattice. It is well-known that Goldschmidt tolerance factor (t) is a key-parameter to evaluate the

degree of structure distortion based on the geometric configuration and ionic radii according to

Eq. (1):
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where 14, 18 and ro represent the radii of A-site, B-site and oxygen-ion in the perovskite material,
respectively. The Goldschmidt tolerance factor (t) of the HE-PBM is calculated to be 0.88,
which is located in the range of 0.78 <t < 1.05, further indicating that this high-entropy oxide
belongs to a perovskite [30, 31, 36]. The schematic diagram of the crystal structure is shown in
Fig. le. The chemical compatibility between HE-PBM and LSGM electrolyte was also
examined by the XRD, and the results are shown in Fig. S2 indicate that no secondary phase

has been formed during the sintering process up to 1000 °C[37-39].
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Fig. 1. (a) Powder XRD patterns for the synthesized PBM and HE-PBM powders, (b) TEM and

(c) HR-TEM images for HE-PBM, (d) SEM image and EDS element distribution diagram of

HE-PBM, (e) The schematic diagram of HE-PBM crystal structure.

2.2. Physicochemical properties

As electrodes for SSOEC, sufficient catalytic activity is required for both electrode reactions,
including OER in the anode and CO2RR in the cathode. Thermogravimetric analysis (TGA)

measurements were performed and shown in Fig. S3a to evaluate the oxygen non-stoichiometry.



The weight loss below 400 °C corresponds to the evaporation of water and other gases adsorbed
in powders. At temperatures above 400 °C, the weight loss is probably attributed to the loss of
lattice oxygen. Up to 850 °C, HE-PBM powders exhibit a weight loss of 3.488%, higher than
1.576% for PBM, indicating a higher content of oxygen vacancies in HE-PBM. CO; adsorption
and desorption properties are also evaluated for the electrode, as shown from the CO»-
temperature-programmed desorption (CO»-TPD) curves in Fig. S3b. The peaks at 300-500 °C
are related to the decomposition of bidentate carbonates [40, 41], while the peak starting at 600
°C corresponds to the chemical adsorption of CO,, which dominates the binding capacity of
CO,[42]. The bonding of adsorbed CO» has efficiently reinforced as the temperature increases.
The peaks of HE-PBM are higher than the PBM, indicating more favorable CO, adsorption in

HE-PBM, which is beneficial to CO,RR.

2.3. Nanoparticles generation in CO-CO;

During the CO,RR process, CO; has been converted to produce CO, which could reduce the
electrode and alter its composition. The evolution of the HE-PBM was studied after treating it
in the 67%CO0-33%CO, atmosphere at 800 °C. As shown from the scanning electron
microscopy (SEM) images in Fig. 2a, nanoparticles were exsolved on the surface of the
substrate. To evaluate the possibility of metal formation, the change of Gibbs free energy (AG)
was calculated by using HSC6.0 software for the chemical reaction between Fe, Co, Ni, Mn,
and Cu oxides with CO. The results show that AG is negative for reducing Fe, Co, Ni, and Cu
oxides at 800 °C (Egs. 2-5), indicating that these four metals could be spontaneously generated
after reduction in the CO atmosphere. For the Mn element, AG is negative when MnO, is

reduced to Mn,O; (-217.4 kJ mol™!) but positive when Mn,Os is reduced to Mn® (114.4 kJ mol



1, indicating that it is only thermodynamically favorable to reduce Mn*" to Mn** with CO (Eq.

6) at 800 °C.
Fe:05+3C0(g) = 2 Fe + 3COx(g),  AG =-26.456 kJ mol” )
CoO+CO(g) » Co+ CO2(g), AG =-30.752 kJ mol’! 3)
NiO+CO(g) = Ni + COx(g),  AG = -46.972 kJ mol"! (4)
CuO+CO(g) » Cu+ COxg), AG =-129.084 kJ mol’! (5)
Mn;035+3CO(g) = 2Mn + 3COx(g),  AG = 114.363 kJ mol”! (6)
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Fig. 2. (a) SEM image of reduced HE-PBM powders (b) The change of Gibbs free energy for
the chemical reaction between Pr, Ba, Mn, Fe, Co, Ni, and Cu oxides with CO.

Fig. 3 shows HRTEM images of the reduced HE-PBM sample after being heat-treated in the
CO-CO; atmosphere. Numerous nanoparticles with diameters of 10-40 nm have been exsolved
from the substrate. Magnification of the nano-sized particles in Fig. 3b-c exhibits that nearly
1/3 of the in-situ exsolved nanoparticles in the bottom are deeply anchored into the substrate.
High-angle annular dark field-scanning transmission electron microscopy (HADDF-STEM)-

EDS mapping elemental analysis shows that Co, Ni, and Cu elements enrich in the exsolved



nanoparticles (Fig. 3d), while Pr, Ba, and Mn elements are uniformly distributed throughout the
substrate. No significant enrichment of the Fe element was observable in the element mapping
due to low discriminant validity with the substrate. However, the element line-scanning across
the exsolved nanoparticle in Fig. 3e contains all four elements, Fe, Co, Ni, and Cu, consistent
to the prediction from the negative AG (Fig. 2), indicating that the exsolved particles are
quaternary alloys. The HADDF-STEM-EDS mapping test with overlapped images was also
performed (Fig. S4). It can be seen that Ni, Co, and Cu are enriched on the same particle.
Although Fe elements are widely distributed on the surface, they are more concentrated in the

alloyed region.
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Fig. 3. (a)-(c) HRTEM image of reduced HE-PBM with exsolved nanoparticle at different



magnifications, (d) HADDF-STEM and EDS element mapping, (e)-(f) linear-scan images.
The valence states of fresh and reduced HE-PBM powders are measured by recording their
X-ray photoelectron spectroscopy (XPS) spectra, and the results in the binding energy of 0-
1000 eV are shown in Fig. S5. The fitting results of Fe 2p, Co 2p, Ni 2p, Cu 2p, Mn 2p, and O
1s spectra are present in Fig. 4a-e. The fitted result demonstrates that Fe®, Ni°, Co?, and Cu®
existed in the reduced HE-PBM (R-HE-PBM), confirming the exsolution of quaternary alloy[9,
43, 44]. These alloy nanoparticles can provide efficient active sites for the CO, reduction
reaction. In the Mn 2p peaks, Mn*" is the dominant chemical state in the fresh sample, and it
converts to Mn*" and Mn*" in the R-HE-PBM sample, indicating that Mn is reduced in this
process[30]. In the O 1s spectra (Fig. 4f), two characteristic peaks identified as lattice oxygen
(Oatice) 1n 529 eV and adsorbed oxygen (Oags) in 531.1 eV are detected[40, 45]. The Ojagice has
been significantly decreased in the R-HE-PBM, implying that more oxygen vacancy is
generated after reduction. The corresponding XPS fitting data with relative atomic

concentration of Fe 2p, Co 2p, Ni 2p, Cu 2p, Mn 2p, and O 1s are listed in Table S1-S3.
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Fig. 4. XPS spectra of (a) Fe 2p, (b) Ni 2p, (c) Co 2p, (d) Cu 2p, () Mn 2p and (f) O 1s for HE-

PBM before and after reduction treatment.

2.4. Electrochemical performance
The electrochemical performance of the LSGM electrolyte-supported solid oxide
electrolyzers was carried out with PBM and HE-PBM as the symmetrical electrode. The cross-

sectional morphology of the electrolyzer with the cell configuration of HE-PBM-SDC/LSGM/



HE-PBM-SDC is shown in Fig. S6. The electrolyzer consists of the ~20 um-thick porous
symmetrical cathode and anode, which are both well-connected to the dense LSGM electrolyte
with a thickness of 250 pm.

Fig. 5a shows the electrochemical impedance spectra (EIS) measured at 800 °C under open
circuit voltage (OCV) conditions and their corresponding fitting results by ZSimpWin software
with an equivalent circuit of LRommic(R1C1)(R2C2)(R3CPE3). Compared with PBM, the
electrode polarization resistance (Rp=R1+R2+R3) of HE-PEM has significantly decreased
from 0.808 to 0.291 Qcm?, indicating that the electrode reaction has been significantly
accelerated. To further understand the electrode reaction process, distribution of relaxation
times (DRT) method was used to separate the impedance spectra[46-49]. The peak in the DRT
plots represents different sub-steps, and the integrated area represents each polarization
resistance. As shown in Fig. 5b, the electrode reaction can be divided into three steps including
a high-frequency step in 10*-10° Hz, an intermediate frequency step in 10-10* Hz, and a low-
frequency step in 1-10 Hz. In general, the high frequency (HF) region can be assigned to the
O, evolution at the anode, the intermediate frequency (IF) region is mainly ascribed to the CO»
electrochemical reduction process and carbonate intermediate species dissociation, and the low
frequency (LF) region is associated to the surface exchange and O* transportation process [50,
51]. As shown from the DRT plot in Fig. 5b, the IF process is the predominant step, while both
the IF and HF process has dramatically decreased in the HE-PBM electrode due to faster
kinetics of electrode reaction. Fig. 5S¢ shows the Arrhenius plot of the polarization resistance
for PBM and HE-PBM, and an apparent activation energy (Ea) is decreased from 1.23 to 0.69

eV with a lower energy barrier. The corresponding Rp values are shown in the column graphs
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Fig. 5. (a) EIS data of the solid oxide electrolyzer of PBM and HE-PBM under OCV condition
at 800 °C, (b) the corresponding DRT analysis results of EIS data, (c) the Arrhenius plot of Rp
in the temperature range of 700-800 °C for PBM and HE-PBM, (d) the column graphs of Rp at
different temperature.

The current density-voltage (i-7) curve with the applied voltage from OCV to 2.0 V is shown
in Fig. 6a. The current density of PBM and HE-PBM symmetrical single cells reached 0.55 and
0.91 A cm? at 800 °C and 2.0 V, respectively. Moreover, the electrochemical performance of
the electrolyzer is significantly enhanced to 1.21 A ¢m? for the dual-phase HE-PBM-SDC
(Ceo.8Sm 201 ) electrolyzer, which is 2.2 times higher than the PBM electrode. It can be noticed
that the i-V curve shows a high linearity in the region of high voltage, which corresponds to the
Tafel behavior in high polarization condition[52, 53]. As shown in Fig. 6b, Tafel plots of three
electrodes with calculated slopes are given according to the Tafel equation (Supplementary

Materials). It can be observed that the HE-PBMM-SDC electrode exhibits the lowest Tafel



slope value at the high voltage region, confirming the obtained excellent OER performance
during the CO2RR operation. Potentiostatic measurements at different voltages from 1.0 V to
1.6 V were conducted (Fig. 6¢). The results are consistent with the i~V curve that the HE-PBM-
SDC electrode exhibits a better electrochemical performance in CO,RR. The corresponding
CO production rate and Faraday efficiency on HE-PBM-SDC electrode are summarized in Fig.
6d. Faraday efficiency higher than 95% is obtained at the different applied voltages, verifying
the highly efficient CO;RR and energy conversion process. To further illustrate the better
CO;RR performance of dual-phase electrodes, the EIS data for HE-PBM and HE-PBM-SDC
single cells exposed to pure dry CO; and operated at 800 °C under 1.2 V were also measured
and then fitted by using ZSimpWin software. It is shown in Fig. 6e that the polarization
resistance (Rp) decreased from 1.89 to 1.09 Qcm? by adding the SDC phase. Similarly, to
illustrate the origin of the enhanced electrochemical catalytic performance, the EIS spectra in
Fig. 6f are analyzed using the DRT method. The low frequency (LF) arc, related to the surface
exchange and O* transportation process, was significantly decreased in the HE-PBM-SDC cell.
The enhancement of introducing SDC into HE-PBM is mainly due to the generation of more
active sites for CO; adsorption.

Moreover, the stability of the single cells is an essential factor for the application of SOECs.
Therefore, the long-term tests of these electrolysis cells at 1.2V under 800 °C were performed
(Fig. 6g). The HE-PBM-SDC cell reached a higher current density and there was no significant
decay for the three electrodes within 60 hours[54-56]. Post-test analysis of the cells also

displayed an intact microstructure with no delamination between the electrode and electrolyte.
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Fig. 6. (a) i-V curves for CO; electrolysis in the solid oxide electrolyzer with PBM, HE-PBM
and HE-PBM-SDC electrode measured at 800 °C, (b) the corresponding Tafel curve in high
current region with calculated Tafel slopes, (c) the potentiostatic tests for PBM, HE-PBM and
HE-PBM-SDC electrodes of CO- electrolysis at different voltage at 800 °C, (d) Faraday
efficiencies and CO production rates of HE-PBM-SDC electrode for CO; electrolysis at
different applied potentials, (e) EIS spectra of HE-PBM and HE-PBM-SDC electrode at 1.2V,
(f) the corresponding DRT analysis results of EIS data, and (g) long-term electrochemical

stability during CO; electrolysis at 1.2V.



The microstructure of the HE-PBM-SDC electrode before and after the long-term test is
shown in Fig. S7a-b. The fresh HE-PBM electrode reveals a smooth surface while abundant
nanoparticles are exsolved and pined on the electrode surface after-test, which is consistent with
the morphology in CO-CO; reduction. Furthermore, the ex-situ Raman spectrum was collected
for the electrode before and after-test (Fig. S7¢). and no signals belonging to carbon at 1340
and 1580 cm™ were detected, indicating a good coking resistance [57]. Scheme 1 shows the
diagram of the operation process of SSOEC with the reactions occurring at the high-entropy
cathode and high-entropy anode, respectively. The presence of in-situ formed Fe-Co-Ni-Cu
quaternary alloy nanocatalysts from HE-PBM cathode under reducing atmosphere has resulted
in more active sites towards faster CO2RR, while B-site doping of transition metals such as Mn,
Fe, Co, Ni, and Cu in HE-PBM anode can serve as high-entropy catalyst to strongly accelerate
the OER in the anode, making the whole system more efficient and energy-saving. These results

fully illustrate the good stability of HE-PBM, offering a new option for electrode for SSOEC.

Faster CO,RR via alloy active site

CO, +Vjy +2e” - CO + 0}
Faster OER via high-entropy catalyst

Q HE-PBM () spC  § Quaternary alloy
Cum @c @o 205~ (0)us

Scheme 1. The schematic of the evolution of quaternary alloy@HE-PBM-SDC in CO;



electrolysis.

3. Conclusions

High entropy perovskite-type oxide HE-PBM was used as both the cathode and anode of
a symmetrical solid oxide electrolyzer to perform CO; electrolysis. The HE-PBM cathode was
reduced to exsolve multiple elements in random distribution and generate oxygen vacancies,
which plays a significant role in enhancing the catalytic activity for CO2RR. The electrolysis
performance has been further increased in the composite by combining R-HE-PBM with SDC,
and it exhibited a current density of 1.21 A cm™? at 2 V and a low Rp of 1.09 Qcm? at 800 °C.
The electrode shows no decay or coking during the long-term operation. This work presents a

promising way to design a symmetrical electrode with significant and stable performance.

4. Experimental

4.1. Powder synthesis

Pro sBag sMng2Fep2Co02Nip2Cuo2035 (HE-PBM) powders were synthesized via a sol—gel
combustion route[35, 58, 59]. The SDC powder was synthesized via a combustion method. The
synthesis process is listed in detail in the Supplementary Materials. The PBM electrode ink and
HE-PBM ink are obtained by mixing the PBM powders or HE-PBM powders with a-terpineol
(AR, Sinopharm Chemical Reagent Co., Ltd.) at a weight ratio of 10 : 15, while HE-PBM
powders, CepsSmg201.9 (SDC) powders, and a-terpineol solution with a weight ratio of 7 : 3 :

15 are mixed to form the homogenous HE-PBM-SDC ink.

4.2. Characterization

The crystal structure of HE-PBM powders is investigated using XRD (Xpert Pro). The



element valence states of HE-PBM powders are examined by XPS (ESCALAB250Xi). The
SEM and EDS-mapping of the HE-PBM electrode as well as the morphology of the
symmetrical cell is measured via SEM (Tescan MIRA 3). HRTEM (JEM-F200) is used to
determine the microstructures and fine structures of the samples. TGA of the pristine PBM and
HE-PBM powders is carried out at the temperature range of 60-850 °C by using a
thermogravimetric analyzer (HTC-01, Hengjiu Instruments). CO,-TPD is performed on a
Micromeritics Chemisorption Analyzer (VODO VDsorb-91i) with a TCD detector. The coke

deposition degree is evaluated by a Raman microscope (Renishaw RM-1000).

4.3. Cell preparation and Electrochemical measurements

Electrolyte-supported symmetrical single cells with a configuration of HE-PBM-
SDC/LSGM/HE-PBM-SDC and PBM symmetrical cell was also prepared for comparison. Cell
performance and polarization resistance were determined by an electrochemical workstation
(Zahner Zennium E). EIS are collected at the temperature of 700-800 °C with a voltage
amplitude of 30 mV in the frequency range from 10 m to 1 M Hz, while i-V curves are measured
from OCV to 2.0 V at a scan rate of 30 mV s!. The flow rate of feeding gas CO; in the cathodes
is monitored by a digital mass flowmeter (APEX, Alicat Scientific) and set as 20 mL min’!,

while the anode is exposed to ambient air.
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