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The combination of neural networks and quantum Monte Carlo methods has arisen as 
a promising path forward for highly accurate electronic structure calculations. Previous 
proposals have combined equivariant neural network layers with a final antisymmetric 
layer in order to satisfy the antisymmetry requirements of the electronic wavefunction. 
However, to date it is unclear if one can represent antisymmetric functions of physical 
interest, and it is difficult to precisely measure the expressiveness of the antisymmetric 
layer. This work attempts to address this problem by introducing explicitly antisymmetrized 
universal neural network layers. This approach has a computational cost which increases 
factorially with respect to the system size, but we are nonetheless able to apply it to 
small systems to better understand how the structure of the antisymmetric layer affects 
its performance. We first introduce a generic antisymmetric (GA) neural network layer, 
which we use to replace the entire antisymmetric layer of the highly accurate ansatz 
known as the FermiNet. We demonstrate that the resulting FermiNet-GA architecture 
can yield effectively the exact ground state energy for small atoms and molecules. We 
then consider a factorized antisymmetric (FA) layer which more directly generalizes the 
FermiNet by replacing the products of determinants with products of antisymmetrized 
neural networks. We find, interestingly, that the resulting FermiNet-FA architecture does 
not significantly outperform the FermiNet. This strongly suggests that the sum of products 
of antisymmetries is a key limiting aspect of the FermiNet architecture. To explore this 
further, we investigate a slight modification of the FermiNet, called the full determinant 
mode, which replaces each product of determinants with a single combined determinant. 
We find that the full single-determinant FermiNet closes a large part of the gap between 
the standard single-determinant FermiNet and FermiNet-GA on small atomic and molecular 
problems. Surprisingly, on the nitrogen molecule at a dissociating bond length of 4.0 
Bohr, the full single-determinant FermiNet can outperform the largest standard FermiNet 
calculation with 64 determinants.
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1. Introduction

A fundamental challenge in modeling the behavior of electrons in the many-body Schrödinger equation is that the elec-
tronic wavefunction must be antisymmetric with respect to particle exchange. This constraint is due to the Pauli exclusion 
principle and applies to any fermionic wavefunction. When the number of electrons grows, effective parametrization of the 
space of such wavefunctions becomes difficult. Deep learning techniques have recently impacted ab initio quantum chem-
istry by providing a new approach to the problem of tractable parameterization of high dimensional function spaces in 
quantum many-body problems. Over the past few years, a growing number of works [1–11] have demonstrated the use of 
neural networks in wavefunction approximation, with an increasing amount of importance placed on building symmetry 
constraints into models. In particular, several works [5,6,8,9,11] have recently applied neural networks to model antisym-
metric wavefunctions.

The simplest ansatz for representing antisymmetric electronic wavefunctions is known as a Slater determinant, which 
is an antisymmetrized product of single particle orbitals. The optimization of this ansatz is the core of the Hartree-Fock 
(HF) method [12]. Conventionally, the representation power of the Slater determinant has been improved by including 
multiplicative Jastrow factors and transforming the particle coordinates via a so-called backflow transformation [13,14], 
resulting in the Slater–Jastrow–backflow ansatz. While the Hartree Fock problem can be solved efficiently for a wide range 
of systems of interest using matrix diagonalization methods, the Slater–Jastrow and the Slater–Jastrow–backflow ansatzes are 
significantly more complicated and can in practice only be optimized using the quantum Monte Carlo (QMC) method known 
as variational Monte Carlo (VMC) [15–18]. According to the variational principle, the energy obtained by any admissible 
wavefunction ansatz is lower bounded by the exact ground state energy. For strongly correlated quantum systems, and even 
weakly correlated quantum systems when high accuracy is required, a linear combination of either a large number of Slater 
determinants (called the configuration interaction method (CI)) or a number of Slater–Jastrow–backflow ansatzes is needed 
to yield a sufficiently low, and therefore accurate, energy estimate.

Recently, these considerations have led to an active interest in leveraging neural networks to improve the construction 
of the backflow [5,8,9], the antisymmetry [6,9], and the Jastrow factor [8] of these ansatzes. PauliNet [8] uses relatively 
small permutation equivariant neural networks for the backflow and invariant neural networks for the Jastrow factor. The 
backflow transformation in PauliNet is applied multiplicatively to the Hartree-Fock orbitals before the determinant layer 
is applied. The FermiNet work [9,19], revealed around the same time as PauliNet, uses a more sophisticated equivariant 
backflow transformation with many more parameters. Another interesting and surprising feature of the FermiNet is that it 
eschews the Jastrow factor entirely. For a given system, the FermiNet often achieves lower energies than PauliNet [19].

While there has been some progress [20–24] in analyzing the expressiveness of the permutation equivariant mappings 
used in the backflow construction [25], the understanding of the effectiveness of the antisymmetric neural network layers 
remains limited [20,23,26]. Interestingly, Refs. [5,9,23] propose that a single FermiNet determinant could in theory achieve a 
universal representation of antisymmetric functions. However, these constructions are based on either a sorting process [5,9]
or an equivariant mapping that essentially encodes the entire wavefunction [23]. Both constructions yield discontinuous 
feature mappings when the ambient space dimension is larger than 1 or the number of particles is greater than 2, as 
opposed to the continuous neural network layers used in all works in the literature so far. The success of both PauliNet and 
FermiNet also depends crucially on the quality of the permutation equivariant backflow. Therefore when the VMC energy is 
higher than the exact ground state energy, it is difficult to pin down the source of the error.

To address this issue, we consider wavefunction ansatzes which replace parts of the antisymmetric layer of FermiNet 
with explicitly antisymmetrized universal neural networks. The obvious drawback of this approach is that its computational 
cost increases factorially with respect to the number of electrons, and it can therefore only be applied to very small atoms 
and molecules. However, the use of explicit antisymmetrization can still allow us to better understand how the structure of 
the antisymmetric layer affects the overall performance.

We first consider a generic antisymmetric (GA) layer, which replaces the entire sum of products of determinants structure 
in FermiNet with an explicitly antisymmetrized feed forward neural network. When combined with the FermiNet backflow, 
the resulting FermiNet-GA architecture can achieve a universal representation of antisymmetric functions by construction. 
We also find that the FermiNet-GA structure is empirically a highly expressive ansatz. For all systems studied, the error 
of the correlation energy is less than 1%, and is well below chemical accuracy (1 kcal/mol ≈ 1.6 × 10−3 a.u.). On the 
other hand, at least from a practical perspective, we find that the so-called single-determinant FermiNet, which is in fact 
computed as a product of two determinants, is not expressive enough to represent electronic wavefunctions of interest.

To investigate further, we replace the product of determinants in the single-determinant FermiNet with a product of 
explicitly antisymmetrized feed forward neural networks, yielding the factorized antisymmetric neural network layer of rank 
1 (FA-1). We find that FA-1 is not able to outperform single-determinant FermiNet, which suggests that the ineffectiveness 
of the single-determinant FermiNet is closely related to its product structure. We define a factorized antisymmetric neural 
network layer of rank K (FA-K ), which generalizes the structure of K -determinant FermiNet. We find that FermiNet-FA-K
does not outperform K -determinant FermiNet, which indicates that the sum-of-products structure is a key limiting feature 
of both architectures.

These results suggest that removing this sum-of-products structure may be a promising avenue towards developing an 
efficient antisymmetric layer that is more expressive than the original FermiNet architecture. We thus study a variant of the 
FermiNet called the full determinant mode, which replaces the products of determinants used in the FermiNet with single 
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combined determinants. The full determinant construction was mentioned in the original FermiNet paper [9] and was later 
implemented by the same authors in the JAX branch of the FermiNet repository [27], but to our knowledge its performance 
has not been previously reported in the literature. We specifically investigate the full single-determinant FermiNet, which 
replaces the product of two determinants used in single-determinant FermiNet with a single combined determinant. Our 
numerical results show that full single-determinant FermiNet can close a large part of the gap between standard single-
determinant FermiNet and the true ground state energy on small atomic and molecular problems. We further evaluate 
the performance of full single-determinant FermiNet on the nitrogen molecule at a dissociating bond length of 4.0 Bohr, 
a challenging strongly correlated system where the standard FermiNet architecture is not able to yield accurate results 
even with 64 determinants. We find that the full single-determinant FermiNet can outperform the standard 64-determinant 
FermiNet on this system, and the error of the energy can be as small as 0.4 kcal/mol compared to r12-MR-ACPF method.

2. Preliminaries

2.1. Many-body electron problem

We consider isolated quantum chemical systems in R3 and use atomic units (a.u.) throughout the paper. Let {ri}Ni=1

represent electron positions, {R(a)
I }Mi=1 nuclei positions, and Z I the Ith nuclear charge. Under the Born-Oppenheimer approx-

imation, the many body Hamiltonian with M nuclei and N electrons is

H = T̂ + V̂ei + V̂ee + E II, (1)

where the Hamiltonian is partitioned into the kinetic, electron-ion potential, electron-electron, and ion-ion interaction, 
respectively:

T̂ =
N∑

i=1

−1

2
�ri , V̂ei = −

N∑
i=1

M∑
I=1

Z I∣∣∣ri − R(a)
I

∣∣∣ , V̂ee =
N∑
i< j

1∣∣ri − r j
∣∣ , E II =

M∑
I< J

Z I Z J∣∣∣R(a)
I − R(a)

J

∣∣∣ . (2)

For a given atomic configuration {R(a)
I }, the ion-ion interaction simply adds a constant shift to the Hamiltonian.

Let X = (x1, . . . , xN) be the collection of spatial and spin indices of N electrons, where xi = (ri, σi), and assume the 
N electrons can be partitioned into N↑ spin-up electrons and N↓ spin-down electrons. We denote by R = (r1, . . . , rN )

the collection of spatial coordinates of the electrons. We also denote by R(a) = (R(a)
1 , . . . , R(a)

M ) the collection of atomic 
positions. Then the electron many-body wavefunction �(X) ≡ �(x1, . . . , xN ) is required to be antisymmetric with respect to 
the natural action of the symmetric group SN on the electron configuration X (i.e., the permutation of the particle indices):

�(π(X)) ≡ �(xπ(1), . . . ,xπ(N)) = (−1)π�(X), (3)

where (−1)π is the sign or parity of the permutation π ∈ SN .
Note that the Hamiltonian in Eq. (1) does not explicitly depend on the spin. As a result, the antisymmetry constraint 

over the spatial-spin electron configuration can be rewritten using a spin-independent wavefunction �(R) (abusing notation 
to reuse �), which reduces the number of degrees of freedom in the wavefunction and improves the efficiency in quantum 
Monte Carlo calculations [15].

To see this, let Ô be any totally symmetric spin-independent operator (e.g. electron density, energy), and assume we are 
interested in expectation values of Ô with respect to the many body wavefunction �(X):

〈Ô 〉 =
∑

σ

∫
�∗(X)Ô (R)�(X)dR∑

σ

∫
�∗(X)�(X)dR

. (4)

For each spin-configuration σ = (σ1, . . . , σN), we can always permute the particle index 1, . . . , N so that the spin-up 
indices appear in front of the spin-down indices. The integrals in the numerator and denominator of Eq. (4) are independent 
of such a permutation operation. Therefore we may define the spatial wavefunction

�(R) = �((r1,↑), . . . , (rN↑ ,↑), (rN↑+1,↓), . . . , (rN↑+N↓ ,↓)). (5)

By renaming the integration variables,

〈Ô 〉 =
∑

σ

∫
�∗(R)Ô (R)�(R)dR∑

σ

∫
�∗(R)�(R)dR

=
∫

�∗(R)Ô (R)�(R)dR∫
�∗(R)�(R)dR

.

3



J. Lin, G. Goldshlager and L. Lin Journal of Computational Physics 474 (2023) 111765
We further introduce the notation R↑ ≡ (r↑1 , . . . , r↑N↑ ) ≡ (r1, . . . , rN↑ ) and R↓ ≡ (r↓1 , . . . , r↓N↓ ) ≡ (rN↑+1, . . . , rN↑+N↓ ). Then the 
constraint that �(X) is antisymmetric with respect to the action of SN is equivalent to the requirement that

�(R) := �(R↑,R↓) (6)

is an antisymmetric function with respect to R↑ and R↓ separately, but not necessarily antisymmetric across the spin-up 
and spin-down indices. We can thus work with �(R) instead of �(X) as long as we enforce this symmetry. If needed, the 
original antisymmetric function �(X) can be recovered by antisymmetrizing the following spin-dependent function:

�(R)δσ1,↑ . . . δσN↑ ,↑δσN↑+1,↓ · · · δσN ,↓. (7)

2.2. Variational Monte Carlo

In the variational Monte Carlo (VMC) method, the goal is to find the variational minimizer � of the energy functional

E[�] =
∫

�∗(R)H�(R)dR∫
�∗(R)�(R)dR

. (8)

Given a wavefunction �, which may not be normalized, we can estimate the high-dimensional integral in Eq. (8)
via Markov-Chain Monte Carlo sampling. We first define the probability distribution associated with �(R) as p(R) =
|�(R)|2 / 

∫ |�(R)|2 dR. We then write the energy functional as a simple expectation over p(R):∫
�∗(R)H�(R)dR∫
�∗(R)�(R)dR

=
∫

RNd

H�(R)

�(R)
p(R)dR =

∫
RNd

EL(R)p(R)dR, (9)

where we have defined the so-called local energy associated with � as

EL(R) = H�(R)

�(R)
. (10)

The general strategy for solving the molecular many-body problem (1) is then to parametrize a family of real wave-
functions �θ ∈ L2 on some parameter domain (usually Rm , where m is the number of parameters) and combine the 
parameterization with Monte Carlo estimation to solve the resulting approximate eigenproblem. This is done by drawing 
a set of samples ξθ from pθ (R) using Markov-Chain Monte Carlo and estimating the loss as

L(θ) = E[�θ ] ≈ 1

|ξθ |
∑
R∈ξθ

EL(R; θ) = L̃(θ). (11)

In statistical machine learning parlance, L̃ is known as the empirical risk, and L is known as the true or population risk.

3. Architectures

In this section, we describe the architectures for the neural network-based ansatzes that we explore. We first describe 
the FermiNet architecture, which consists of a (generalized) backflow layer that produces permutation equivariant features, 
followed by an antisymmetric layer to compute the wavefunction amplitude. We then describe the other architectures that 
we explore, which use different antisymmetric layers but all share the same generalized backflow layer used in the FermiNet.

The overall structure of the FermiNet may be described as a composition of a general SN↑ × SN↓ equivariant feature 
map (see the definition below) Y(R) ≡ (Y↑(R), Y↓(R)), with an antisymmetric layer constructed as a sum of products of 
determinants of orbital matrices 	kσ :

�(R) =
K∑

k=1

det	k↑(Y↑(R))det	k↓(Y↓(R)). (12)

We describe the equivariant feature map and the orbital-determinant layer separately below.

3.1. Permutation equivariant features in FermiNet

The FermiNet feature map Y is a map from particle positions R ∈ RN×d to generalized coordinates Y ∈ RN×d′
. While 

d = 3 is the dimension of the physical space, d′ is the number of features and can be chosen arbitrarily. One particularly 
important symmetry of interest is given by the tensor product of the canonical permutation representations of SN↑ and 
SN↓ , defined by the action

(π ⊗ ρ)(R) = (π ⊗ ρ)(R↑,R↓) = (π(R↑),ρ(R↓)) = (r↑ , . . . , r↑ , r↓ , . . . , r↓ ). (13)
π(1) π(N↑) ρ(1) ρ(N↓)

4
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The FermiNet map Y is equivariant with respect to this action, i.e.

Y((π ⊗ ρ)(R)) = (π ⊗ ρ)(Y(R)). (14)

To ensure that Y is equivariant with respect to elements of SN↑ × SN↓ while incorporating information about the two-
electron distances, the basic layer involves two streams: a “one-electron stream” that starts with the electron positions 
R = (r1, . . . rN ), and a “two-electron stream” that starts with the electron-electron displacements ri j ≡ ri − r j . The streams 
are averaged over the electrons, concatenated onto the one-electron stream, and a dense layer followed by a nonlinear 
activation function such as tanh is applied. Residual connections [28] are also used between layers of the same shape for 
both streams.

More precisely, if hlα
i and hlαβ

i j are the outputs of the one- and two-electron streams at layer l with spins α, β ∈ {↑, ↓}, 
then the concatenated vector for index i and spin α is

flαi =
⎛⎝hlα

i ,
1

N↑

N↑∑
j=1

hl↑
j ,

1

N↓

N↓∑
j=1

hl↓
j ,

1

N↑

N↑∑
j=1

hlα↑
i j ,

1

N↓

N↓∑
j=1

hlα↓
i j

⎞⎠ (15)

and the output of layer l + 1 is given by the two streams

h(l+1)α
i = tanh

(
V lflαi + bl

)
+ hlα

i ,

h(l+1)αβ

i j = tanh
(
Wlhlαβ

i j + bl
)

+ hlαβ

i j .
(16)

As an initial pre-processing step, the electron positions R are converted to “atomic coordinates” as

h0α
i =

(
rαi − R(a)

1 ,

∣∣∣rαi − R(a)
1

∣∣∣ , . . . , rαi − R(a)
M ,

∣∣∣rαi − R(a)
M

∣∣∣) , (17)

h0αβ

i j =
(
rαi − rβj ,

∣∣∣rαi − rβj

∣∣∣) , (18)

which are invariant with respect to a simultaneous translation of the entire system. The explicit dependence on the absolute 
values enables the network to efficiently represent the derivative discontinuity due to the electron-nuclei cusp and electron-
electron cusp, respectively [9,29].

Each map (hl↑, hl↓) �→ (h(l+1)↑, h(l+1)↓) is SN↑ × SN↓ equivariant due to the averaging procedure [25] in Eq. (15), and the 
map R �→ h0 is parallel in the particle index i and thus equivariant as well. Therefore the map R �→ Y ≡ (Y↑, Y↓) ≡ (hL↑, hL↓), 
where L is the total number of one-electron layers, is also SN↑ × SN↓ equivariant. This is called a backflow map, which 
generalizes the original proposal of “backflow” by Feynman and Cohen [13].

Note that both Y↑ and Y↓ depend on the positions of all electrons. The index α in the notation Yα does not denote 
a dependence of Y only on the corresponding α-spin inputs Rα , but rather denotes the symmetry constraint of Yα as 
equivariant with respect to the action of SNα on Rα and invariant with respect to the action of SNβ on Rβ . Hence in this 
paper, we shall refer to the index {↑, ↓} in the expression (Y↑, Y↓) as the pseudospin index. It has been shown constructively, 
though without explicit error bounds, that a simplified version of this construction [23] can approximate all and only the 
equivariant continuous functions.

3.2. Antisymmetric layer in FermiNet

Once the equivariant feature maps Y = (Y↑, Y↓) are generated, they are then used to generate K pairs of orbital matrices 
(	k↑(Y↑), 	k↓(Y↓)). These orbital matrices are constructed using a set of per-pseudospin single particle orbitals ϕkσ

i (σ ∈
{↑, ↓}), which are defined by applying a simple dense layer to the equivariant features and multiplying by an exponential 
envelope function:

ϕkσ
i (yσ

j ) = (wkσ
i · yσ

j + bkσi )
∑
I

dkσi,I exp
(
−

∣∣∣�kσ
i,I (r j − R(a)

I )

∣∣∣) . (19)

Here wkσ
i ∈ Rm and bkσi ∈ R are the weights and biases of the dense layer, where m is the number of dimensions in 

the equivariant features yσ
i , which is chosen to be constant for all i, σ . The exponential envelopes are parameterized by 

dkσi,I ∈ R and a matrix �kσ
i,I ∈ Rd×d , which can also be set to a scaled identity matrix to simplify the ansatz. The parameters 

w, b, �, d are trainable and dependent on the pseudospin index σ . The exponential term ensures that the wavefunction is 
normalizable and that the support of each orbital does not extend too far away into the vacuum. While the orbital functions 
ϕkσ
i are applied only to single feature vectors y j , the ansatz can express complex correlations because the feature vectors 

themselves depend on all of the particles in a complex way.
5
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y↑
1

y↑
2

...

y↑
N↑

y↑
π(1)

y↑
π(2)

...

y↑
π(N↑)

π

y↓
1

y↓
2

...

y↓
N↓

y↓
ρ(1)

y↓
ρ(2)

...

y↓
ρ(N↓)

ρ

�FFNN(π(Y↑),ρ(Y↓))
FFNN

×sgn(π) sgn(ρ)

Fπ,ρ(Y)

Y

Fπ1,ρ1 (Y)

Fπ1,ρ2 (Y)

...

Fπ2,ρ1 (Y)

Fπ2,ρ2 (Y)

...

FπN↑!,ρN↓! (Y)

+ �

Fig. 1. The architecture for the generic antisymmetric layer. Left: calculation of the wavefunction contribution from a single pair of permutations π and 
ρ , denoted by Fπ,ρ(Y). Right: combination of contributions for all permutations π and ρ . This is implemented as a batch calculation over all pairs of 
permutations, but we show separate arrows for each pair of permutations to emphasize the factorial complexity of the operation.

The orbital matrices follow naturally from these single particle orbitals as

	kσ (Yσ ) =
⎛⎜⎝ϕkσ

1 (yσ
1 ) · · · ϕkσ

1 (yσ
Nσ

)

...
. . .

...

ϕkσ
Nσ

(yσ
1 ) · · · ϕkσ

Nσ
(yσ

Nσ
)

⎞⎟⎠ . (20)

Once these orbital matrices are constructed, FermiNet creates an antisymmetric wavefunction using a sum of products of 
determinants:

�(R) =
∑
k

det	k↑ det	k↓ (21)

These determinants are similar to Slater determinants except that their orbitals are general equivariant functions of all 
of the input particles rather than simple single particle orbitals. Such determinants are thus referred to as generalized 
Slater determinants. In fact, the original FermiNet architecture [9] used a weighted sum of products of generalized Slater 
determinants by adding in a set of trainable parameters wk and letting

�(R) =
∑
k

wk det	
k↑ det	k↓. (22)

However, these trainable weights were removed by the original authors in their follow-up work [19], as they do not add 
extra expressiveness on top of the ability to tune the scale of the orbital matrices themselves. We follow the simplified 
construction.

3.3. Generic antisymmetric neural network layer

In order to assess the effectiveness of the antisymmetric layer of the FermiNet, we can replace the product of pseudospin 
determinant terms with a truly universal antisymmetric neural network layer. Let us first define the antisymmetrization 
operator on spin σ as

Aσ [ f ](R) ≡
∑

πσ ∈SNσ

(−1)πσ f (πσ (R)), (23)

where SNσ is the symmetric group on {1, . . . , Nσ }. Following the Leibniz formula for the determinant, the antisymmetric 
structure for the standard single-determinant FermiNet can be written as
6
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�(R) = det	↑(Y↑(R)) · det	↓(Y↓(R))

=
∏

σ∈{↑,↓}

⎛⎝ ∑
πσ ∈SNσ

(−1)πσ ϕσ
1 (yσ

πσ (1)) · · ·ϕσ
Nσ

(yσ
πσ (Nσ ))

⎞⎠ ,

≡
∏

σ∈{↑,↓}
Aσ [�σ

FermiNet](Yσ ),

(24)

where we have defined the orbital product function �σ
FermiNet(Y

σ ) = ∏Nσ
i=1 ϕσ

i (yσ
i , θσ

i ).
However, we can treat the interaction between pseudospins in a more universal way by considering just a single func-

tion f (R↑, R↓) of all electron positions and antisymmetrizing f with respect to only the subsets of the input indices that 
correspond to the two spins:

A↑A↓[ f ](R↑,R↓) =
∑

π↑∈SN↑

∑
π↓∈SN↓

(−1)π↑(−1)π↓ f (π↑(R↑),π↓(R↓)). (25)

The standard FermiNet can be written as the doubly antisymmetrized product of orbitals over all particles

�FermiNet(R) = A↑A↓ [�FermiNet] (Y
↑,Y↓), (26)

where we define the product over all orbitals

�FermiNet(Y
↑,Y↓) = ϕ

↑
1 (y↑

1 ) · · ·ϕ↑
N↑(y↑

N↑)ϕ
↓
1 (y↓

2 ) · · ·ϕ↓
N↓(y↓

N↓). (27)

If we replace this all-particle product with a single feed-forward neural network (FFNN) denoted by �FFNN(Y↑, Y↓), we 
arrive at an architecture that we refer to as the generic antisymmetric layer (GA):

�GA(R) = A↑A↓[�FFNN](Y↑,Y↓). (28)

This ansatz can be evaluated explicitly with N↑!N↓! evaluations of �FFNN. Importantly, due to the equivariance property of 
Y, we do not need to antisymmetrize the composed function �FFNN ◦ Y, but only the comparatively small �FFNN. We have 
found that we can achieve sufficient expressiveness with a very simple choice of �FFNN, further reducing the computational 
cost. In our experiments, we use a single hidden layer with NFFNN = 64 nodes and a single application of the tanh activation 
function, followed by a linear combination operation. The cost of a single evaluation of �FFNN with a single hidden layer with 
NFFNN nodes is O (d(N↑ + N↓)NFFNN), resulting in an overall cost of O (d(N↑ + N↓)N↑!N↓!NFFNN). We depict the construction 
of the GA layer in Fig. 1.

This construction is a universal replacement for the antisymmetry layer in the original FermiNet, due to the universality 
of neural networks to approximate functions of various desired smoothness classes with an appropriate choice of activation 
function [30–33]. In fact, the multiplication of two numbers can be approximated to arbitrary accuracy with just four 
neurons [34], and following equations (19) and (24), the FermiNet determinant is simply an antisymmetrized product of 
simple linear and exponential terms. In this work we choose �FFNN to be a one-hidden-layer feed-forward neural network 
for simplicity and efficiency, but one can choose any universal function class, e.g. residual neural networks.

3.4. Factorized antisymmetric neural network layer

Instead of replacing the entire antisymmetric layer of the FermiNet, we can consider replacing each product function 
�σ

FermiNet in Eq. (24) with a feed-forward neural network, arriving at the ansatz

�(R) =
∏

σ∈{↑,↓}
Aσ [�σ

FFNN](Yσ ). (29)

We can relate this ansatz to the generic antisymmetric layer by assuming that �FFNN admits a functional low rank decom-
position

�FFNN(Y↑(R),Y↓(R)) ≈
K∑

k=1

�
k↑
FFNN(Y↑(R))�

k↓
FFNN(Y↓(R)). (30)

This is called the factorized antisymmetric layer of rank-K (FA-K ). When K = 1, we recover the ansatz in Eq. (29). We treat 
this FA-1 layer, also depicted in Fig. 2, as an especially interesting case given the conjecture of [23] that a single generalized 
Slater determinant may be universal. We note that much like in the FermiNet pseudospin determinant terms, the electron 
positions of different spins do interact with each other in each FA pseudospin term due to the construction of the backflow 
(15).
7
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yσ
1

yσ
2

...

yσ
Nσ

yσ
π(1)

yσ
π(2)

...

yσ
π(Nσ )

π �σ
FFNN(π(Yσ ))FFNN

sgn(π)

× Fσ
π (Yσ )

Y↑

F↑
π1 (Y

↑)

F↑
π2 (Y

↑)

...

F↑
πN↑! (Y

↑)

+ A↑[�↑
FFNN](Y↑)

Y↓

F↓
π1 (Y

↓)

F↓
π2 (Y

↓)

...

F↓
πN↓! (Y

↓)

+ A↓[�↓
FFNN](Y↓)

× �

Fig. 2. The architecture for the factorized antisymmetric of rank 1 (FA-1). Top: calculation of the wavefunction contribution from a single pseudospin σ and 
permutation π , denoted by Fσ

π (Yσ ). Bottom: combination of contributions for all permutations π for both up and down pseudospin components. This is 
implemented as a batch calculation for each pseudospin, but we show separate arrows for each permutation to emphasize the factorial complexity of the 
operation. For FA-K this entire computation would be copied K times, with a different feed-forward-neural network in each copy, and the results would 
be added together.

We can evaluate the FA-1 layer using Nσ ! evaluations of �σ
FFNN for each pseudospin. The cost of a single evaluation of 

�σ
FFNN is O (dNσ NFFNN) operations for the matrix-vector multiplication, and the total cost of the explicit antisymmetrization 

for FA-1 is O (d(N↑N↑! + N↓N↓!)NFFNN).
It is worth noting that both the factorized and the generic antisymmetric ansatzes have additional drawbacks beyond 

the obviously prohibitive factorial scaling. In our experiments with these ansatzes, we observed a great deal of numerical 
instability due to the massive numerical sign cancellation of the generally non-zero terms in the summations over the sym-
metric groups. We partially ameliorated this issue by performing the wavefunction evaluation in double precision instead of 
the more standard single precision (or even half precision) for modern deep learning, but even with this adjustment the nu-
merical stability properties are far too unfavorable to scale these ansatzes as N↑ and N↓ grow large. Thus these ansatzes are 
certainly not intended to be used to directly approximate the ground state wavefunction of heavy atoms or large molecules, 
but are instead used in this paper as a diagnostic tool for better understanding the empirical performance of the FermiNet 
backflow and antisymmetry layers. More details about the practical effects of the numerical instabilities on our experiments 
are available in Appendix C.

3.5. Jastrow factors

Although the GA architecture can represent general antisymmetric functions on compact domains, we have found that 
without some mechanism of confining the support size of the wavefunction, the Monte Carlo sampling procedure often 
becomes unstable. In the standard FermiNet orbitals, this decay is handled by the simple exponential envelope terms in 
Eq. (19). In our generic antisymmetric layer, however, we have not directly included exponential decay terms in the an-
tisymmetric part, so we require the presence of an additional decay term in the form of a Jastrow factor. We found that 
including an expressive Jastrow factor greatly increased the stability and accuracy of the ansatz, which suggests that the size 
of the wavefunction support and the behavior of the tails are of practical importance to the quality of the approximation.
8
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In general, we may implement a Jastrow factor by multiplying an antisymmetric wavefunction ansatz by exp
(
J (R↑, R↓;

R(a))
)
, where the Jastrow factor J is a function of the electron positions R and the nuclei locations R(a) . J must also be 

symmetric separately with respect to permutations of R↑ and R↓ in order to preserve the antisymmetry of the overall 
wavefunction. In order for J (R) to capture the decay of the wavefunction, it will need to satisfy J → −∞ as |R| → ∞. The 
standard Jastrow form [16] which explicitly handles electron-nuclei, electron-electron, and electron-electron-nuclei terms is 
given by

J (R;R(a)) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

χI

(∣∣∣Rα
i − R(a)

I

∣∣∣) +
∑

α∈{↑,↓}

∑
β∈{↑,↓}

Nα∑
i=1

Nβ∑
j=1

uαβ
(∣∣∣Rα

i − Rβ

j

∣∣∣)

+
∑

α∈{↑,↓}

∑
β∈{↑,↓}

Nα∑
i=1

Nβ∑
j=1

∑
I

f αβ
I

(∣∣∣Rα
i − Rβ

j

∣∣∣ , ∣∣∣Rα
i − R(a)

I

∣∣∣ , ∣∣∣Rβ

j − R(a)
I

∣∣∣) ,

(31)

where the functions {χI }, {uαβ}, and { f αβ
I } satisfy the desired behavior at infinity. One possibility is to use a simple one-

body Jastrow from the first term above and let χI represent multiplication by a fixed constant for each nucleus, so that 
χI (r) = −aI r, with aI > 0. Then we have

J (R;R(a)) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

χI

(∣∣∣Rα
i − R(a)

I

∣∣∣) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

−aI
∣∣∣Rα

i − R(a)
I

∣∣∣ . (32)

Similarly, one could use the first two terms in Eq. (31) to form a simple two-body Jastrow, with a similar choice for the 
electron-electron interaction which is identical for the two spin species, i.e. uαβ(r) = −γ r, with γ > 0. These approaches 
control the support size of the wavefunction, but do not allow much flexibility in the shape of the wavefunction tails outside 
of the asymptotic regime, where the wavefunction decay is known to be a simple isotropic exponential decay.

To build a more general Jastrow factor, we may leverage the generality of the FermiNet backflow construction to form 
the backflow-based Jastrow

J (R;R(a)) = − 1

N

∑
α∈{↑,↓}

Nα∑
i=1

∣∣∣Yα
Jastrow,i(R)

∣∣∣ . (33)

For our numerical results involving the GA and FA-K architectures, we use this general Jastrow expression. The Jastrow factor 
needs to be able to grow small as the electron positions move far from the nuclei, which suggests the use of an unbounded 
activation function. To achieve this in practice, we simply swap out the tanh activation in Eq. (16) for an approximate GeLU 
activation [35],

GeLU(x) = 0.5x

(
1+ tanh

(√
2

π

(
x+ 0.044715x3

)))
(34)

which, like the hyperbolic tangent function, has the desirable property of being smooth everywhere.

3.6. Full determinant FermiNet

We also explore a variant of the FermiNet called the full determinant mode, which was mentioned in the original Fer-
miNet paper [9] and implemented by the same authors in the JAX branch of the FermiNet repository [27]. Like the GA layer, 
the full determinant architecture does not assume a factorized form over the two pseudospins. In the full determinant mode, 
the single particle orbitals take exactly the same form as those used in the regular FermiNet architecture. The difference 
is that instead of using Nσ orbitals for each spin σ , we use N orbitals for both spins, where N = N↑ + N↓ . The up- and 
down-pseudospin orbital matrices are then concatenated into a square N × N matrix before taking the determinant. The 
new formula for the orbital matrices is

	kσ
full(Y

σ ) =
⎛⎜⎝ϕkσ

1 (yσ
1 ) · · · ϕkσ

1 (yσ
Nσ

)

...
. . .

...

ϕkσ
N (yσ

1 ) · · · ϕkσ
N (yσ

Nσ
)

⎞⎟⎠ , (35)

where the only difference from Eq. (20) is the change of the maximum orbital index from the pseudospin-specific Nσ to 
the total particle count N . Therefore 	kσ

full(Y
σ ) is a matrix of size N × Nσ . The final ansatz is then generated as the sum of 

the determinants of the concatenated orbital matrices:
9
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�FermiNet,full(R) =
K∑

k=1

det
[
	

k↑
full, 	

k↓
full

]
. (36)

The idea behind this construction is to provide a more flexible way to treat the interactions between the two pseudospin 
components. Importantly, because Y is only equivariant with respect to permutations which exchange particles of the same 
spin, the concatenated determinant does not enforce an antisymmetry constraint between particles of opposite spins. We 
also note that it is possible to reconstruct the original FermiNet ansatz as a special case of the full determinant ansatz, by 
setting ϕkσ

i (yσ
j ) = 0 whenever σ = ↑ and i > N↑ or σ = ↓ and i ≤ N↑ . In that case the full matrix becomes block-diagonal 

and the determinant factors into a simple product of pseudospin determinants [9]. We are particularly interested in the 
evaluating the performance of this full determinant mode when K = 1, which we refer to as the full single-determinant 
FermiNet.

4. Optimization

4.1. Gradient calculation

When computing parameter updates, estimating the gradient of L(θ) by directly differentiating the empirical risk L̃(θ)

defined in Eq. (11) using an automatic differentiation framework is generally difficult due to the dependence of the Monte 
Carlo sampling on the parameters θ . However, the following standard unbiased estimate of the gradient of the true expected 
energy E[�θ ] ≡L(θ) is available for real wavefunctions [36]:

∂θL(θ) =
∫
2(∂θ log |�θ |)(EL(R; θ) −L(θ)) |�θ |2 dR∫ |�θ |2 dR

≈ 1

|ξθ |
∑
R∈ξθ

2(∂θ log |�θ |)(EL(R; θ) − L̃(θ))

(37)

where ξθ are a set of samples from the density pθ (R) = |�θ(R)|2/ ∫ |�θ |2 dR. For completeness, the derivation of the gradi-
ent is provided in Appendix F.

The zero-variance principle [37] states that the eigenstates of the Hamiltonian (Eq. (1)) will have the same local energy 
everywhere. This improves the quality of the loss and gradient approximations as the training converges. In addition, this 
principle can make the variance of the local energy an attractive target for minimization. Indeed, variance minimization has 
an extensive history in the quantum Monte Carlo space [38–40]. Nonetheless, we follow the work of FermiNet [9,19] and 
only use energy minimization to optimize our wavefunctions.

4.2. Optimizer

The choice of efficient optimization algorithms for parameter updates in variational Monte Carlo has historically been a 
complex issue and is still under active debate (see e.g. [1,9,11,18,40–43]). Among these works, Ref. [9] provided evidence 
that the use of the Kronecker Factorized Approximate Curvature (KFAC) method [44] can be advantageous when compared 
to standard stochastic gradient descent-like methods used in the machine learning community such as Adam [45]. KFAC 
is a method for approximating natural gradient descent efficiently by preconditioning the gradient with an approximate 
inverse of the Fisher information matrix. Both the overall structure of KFAC and the extra steps required to apply KFAC 
to an unnormalized wavefunction are described succinctly in [9]. For the convenience of the reader we reproduce here an 
overview of these topics.

In the exact natural gradient descent method, the gradient of the loss function is multiplied by the inverse of the Fisher 
information matrix before using the gradient to make a parameter update [46]. This has the effect of taking the path of 
steepest descent not in Euclidean parameter space, but in the space of probability distributions defined by the model, with 
distance measured by the KL-divergence [47]. Concretely, updates in natural gradient descent take the form

θ ′ = θ − ηF−1∇θL(θ). (38)

Here η ∈ R is the learning rate and F is the Fisher information matrix defined as

Fi j = Ep(R)

[
∂ log p(R)

∂θi

∂ log p(R)

∂θ j

]
. (39)

Note that in our case p(R) ∝ |�θ(R)|2, though the two are not equal as � is not necessarily normalized. In fact, obtaining 
the Fisher information matrix requires a slightly different calculation in an unnormalized setting, which is usually referred 
to as stochastic reconfiguration [18]:

Fi j ∝ Ep(R)

[(
Oi −Ep(R) [Oi]

) (
O j −Ep(R)

[
O j

])]
, (40)
10
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where Oi = ∂ log |�θ(R)| /∂θi . The equivalence of this formulation is proved in Appendix C of [9]. In the setting of quantum 
information geometry, the Fisher information matrix is proportional to, and perhaps more accurately viewed as, the Fubini-
Study metric tensor or quantum geometric tensor [48].

Directly inverting the Fisher information matrix is infeasible for large models, as the matrix dimensions scale directly 
with the number of parameters. KFAC solves this problem by making two approximations to the Fisher matrix to allow 
its efficient inversion. The first is to assume that the Fisher entries for weights in different layers of the network are zero. 
This assumption reduces the Fisher matrix to a block diagonal form, so that inverting the remaining matrix only requires 
inverting each block independently. The second is based on the observation that the block corresponding to each layer of the 
network can be written as the mean-centered covariance of a Kronecker product of two vectors, one consisting of neuron 
activation values for the inputs to the layer and the other consisting of gradients of the loss with respect to the outputs of 
the layer. KFAC replaces this with the Kronecker product of the mean-centered covariance of the same vectors. As discussed 
in [44], this is a significant and theoretically unsupported approximation, but seems to work well in practice, at least in 
some use cases.

In our experiments, we rely on the JAX implementation of KFAC provided by the work of [9]. In using this implementa-
tion, we register all dense layers in our networks with KFAC, including those within the feed-forward neural networks of our 
generic antisymmetric and factorized antisymmetric layers. This ensures that we use the Kronecker product approximation 
of the Fisher matrix for all layers in the network, rather than defaulting to a simpler diagonal approximation.

5. Numerical experiments

In this section, we compare the previously described architectures on small atomic and molecular systems. All numerical 
experiments with the factorized and generic antisymmetric layers are performed using the VMCNet repository [49], which is 
based on the JAX framework [50]. In Appendix B, we demonstrate the comparability of the VMCNet repository with the JAX 
branch of the FermiNet repository [19]. Using JAX allows us to leverage the implementation of KFAC in [51], take advantage 
of the flexibility provided by JAX’s clean functional style, and enjoy the performance benefits granted by its excellent out-
of-the-box GPU utilization and just-in-time compilation. We used A100 GPUs on the Google Cloud Platform (GCP) for any 
calculations that required double precision, and GTX 2080TI GPUs with the Berkeley Research Computing (BRC) program for 
all other calculations.

To estimate energy values accurately after training, we ran pure MCMC for a large number of iterations without perform-
ing parameter updates, collecting samples every 10 iterations. We also estimated the integrated autocorrelation of the local 
energy during these evaluation runs in order to get a robust estimate of the standard error of our energy estimates. The 
hyperparameters we used, including the number of training and evaluation iterations, are listed in Appendix A. The gradient 
clipping and sampling procedures are described in Appendix G.

Throughout this section, we use the following standard notation to present our numerical results. All units are atomic 
units (a.u.) unless otherwise specified. The estimator of the energy used is the sample mean followed by, in parentheses, the 
standard error in the last digit(s) of the estimate. For example, -54.58868(4) means a sample mean of -54.58868 a.u. with a 
standard error of approximately 4 × 10−5 a.u., and -75.06314(13) means a sample mean of -75.06314 a.u. with a standard 
error of approximately 1.3 × 10−4 a.u.. The error of the energy is also measured by the percentage of the correlation energy 
recovered. The correlation energy is defined to be the difference between the Hartree-Fock energy and the exact ground 
state energy, so that recovering 0% of the correlation energy means that the calculation produces the Hartree-Fock energy, 
and recovering 100% means the calculation is exact. The correlation energy itself only contributes a tiny amount, usually 
less than 1%, to the ground state total energy, but capturing the correlation energy accurately is extremely important in 
chemistry.

5.1. Performance: atomic systems

We test our generic and factorized antisymmetric architectures on a few small atoms with nuclear charge from five 
to eight and compare these results to the results of FermiNet with 1 determinant, FermiNet with 1 full determinant, and 
FermiNet with 16 determinants. In Table 1, we compare the attained energies on these architectures after training with 
KFAC. These results are depicted as well in Fig. 3.

We find that the generic antisymmetric layer attains highly accurate energies when paired with the backflow-based Jas-
trow, achieving greater than 99.7% of the correlation energy. For the smallest systems, i.e. boron and carbon, the FermiNet-
GA ansatz does at least as well as many-determinant FermiNet. For the larger systems, the performance of FermiNet-GA in 
our implementation began to suffer noticeably as we hit the limitations of our computational resources. For example, our 
result on oxygen for the generic antisymmetric architecture used only the simple one-body Jastrow in Eq. (32) and may 
not have reached the lowest energy that could be attained with additional training. We provide further discussion of the 
challenges with numerical stability and computational cost in Appendix C.

Interestingly, we do not see a gap in the attained energy between the factorized antisymmetric layer of rank 1 and 
single-determinant FermiNet for any system except for boron. To test the robustness of this result, we compare these two 
architectures on the Nitrogen atom with a variety of hyperparameter settings. We vary the depth of the equivariant feature 
map, the width of the one-electron and two-electron streams, and the depth and width of the feed-forward neural network 
11
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Fig. 3. Comparison of methods on atomic systems. FA stands for factorized antisymmetric layer, and GA stands for generic antisymmetric layer, as discussed 
in section 3. The 16 determinant FermiNet numbers are taken from Ref. [9]. The GA result on the oxygen atom uses the more restrictive one-body Jastrow, 
and the parameters may not be fully optimized due to the limitations of our resources. Dashed line indicates 1% of the error in correlation energy.

Table 1
Comparison of methods on atomic systems. FA stands for factorized antisymmetric layer, and GA stands for generic antisymmetric 
layer, as discussed in section 3. The 16 determinant FermiNet and Hartree-Fock results are taken from Ref. [9].

FermiNet 
1 det

FA-1 FermiNet 
1 full det

FermiNet 
16 dets [9]

GA HF [9] Reference [52]

B -24.65236(3) -24.65251(2) -24.65300(3) -24.65370(3) -24.65380(2)
-24.53316 -24.65391

corr % 98.71(2)% 98.84(2)% 99.25(2)% 99.83(3)% 99.91(1)%

C -37.84247(4) -37.84252(3) -37.84384(4) -37.84471(5) -37.84473(3)
-37.6938 -37.8450

corr % 98.33(3)% 98.36(2)% 99.23(3)% 99.81(3)% 99.82(2)%

N -54.58662(5) -54.58664(4) -54.58800(8) -54.58882(6) -54.58868(4)
-54.4047 -54.5892

corr % 98.60(3)% 98.61(2)% 99.35(5)% 99.79(3)% 99.72(4)%

O -75.06314(13) -75.06305(6) -75.06510(6) -75.06655(7) -75.06506(6)a
-74.8192 -75.0673

corr % 98.32(5)% 98.29(3)% 99.11(2)% 99.70(3)% 99.10(3)%

a Due to the limitations of our computational resources, this result uses the simple but more restrictive one-body Jastrow from 
Eq. (32), and the parameters may not be fully optimized.

used in the factorized antisymmetric layer. The results are shown in Figs. 4 and 5. In all cases, the difference between the 
two methods is very small, and in particular is smaller than the difference between these methods and the GA method, 
when using default hyperparameter settings for GA.

To explore this trend further, we compare in Fig. 6 the factorized antisymmetric layers of rank 1 through 4 against the 
FermiNet with 1 through 4 determinants, again all on the nitrogen atom. We require two modifications to our optimization 
procedure to run these multi-determinant calculations. First, for all multi-determinant FermiNet calculations, we observe 
larger variance in the resulting energies between subsequent identical optimization runs. We describe this variance in more 
detail and with concrete data in Appendix D. To account for the variance, we report in Fig. 6 the best result of several 
runs. Second, when using 4 determinants, we find that the default VMCNet parameter initialization only captures 98.5-
99% of the correlation energy, which is less than that captured by the 3-determinant FermiNet. We find that we can close 
this gap by adopting the default parameter initialization from the FermiNet code repository for the 4-determinant case. This 
entails using LeCun normal initializations rather than orthogonal initializations for the one-electron stream, the two-electron 
stream, and the dense layers in the orbital construction. The subtle dependence on the initialization and the run-to-run 
variance indicate that the VMC optimizer may get stuck at local minima, and that there is need for further improvement of 
the robustness of the optimization procedure.

We find that FA-K performs approximately equivalently to k-determinant FermiNet in all cases, and in most cases it 
performs slightly worse. This comparison is telling since replacing each generalized Slater determinant in the K -determinant 
FermiNet with an explicitly antisymmetrized feedforward neural network yields exactly the FA-K architecture. These results, 
together with the previously described comparisons between FA-1 and single-determinant FermiNet, strongly suggest that 
the reason that K -determinant FermiNet is not fully general is not due to the structure of the individual generalized Slater 
12
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Fig. 4. Comparison of FA-1 and single-determinant FermiNet on the Nitrogen atom with varying hyperparameters for the equivariant feature map. The solid 
black line indicates the results of the GA architecture with default hyperparameter settings.

Fig. 5. Comparison of FA-1 and single-determinant FermiNet on the Nitrogen atom with varying hyperparameters for the feed-forward neural network used 
in the FA layer. The solid black line indicates the results of the GA architecture with default hyperparameter settings. The dotted line indicates the results 
of the single-determinant FermiNet architecture, also with default settings.

determinants, but rather due to the sum of products structure that is used to combine the generalized Slater determinants. 
This appears to be true even though the sum of products is taken with respect to the pseudospin components generated by 
the backflow rather than the original spins.

We also provide additional evidence in favor of the claim in [9] that KFAC provides an advantage over Adam when 
optimizing FermiNet-like architectures for small atoms and molecules. In Fig. 7 we provide a log-log plot of the correlation 
energy error during training of the generic and factorized antisymmetric architectures on the carbon atom. In this figure, 
the learning rate schedule for KFAC was chosen to be 5 · 10−2/(1 + 10−4t). The learning rate schedule differed slightly for 
Adam, chosen instead to be 10−4/(1 + 10−4t). To determine the initial learning rate for both Adam and KFAC, we coarsely 
swept over a range of initial learning rates between 1e-4 and 1e-1 on the Carbon atom and picked the learning rate which 
resulted in the lowest final energies without encountering numerical instability or NaNs. The difference in the learning 
rates which we found were best for the two optimizers may be due to the different scale of the updates prior to the 
13
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Fig. 6. Comparison of factorized antisymmetric layer of rank K with K -determinant FermiNet for K = 1, 2, 3, 4 on the nitrogen atom. Data for FA-K is 
presented with both the simple one-body Jastrow and the more expressive backflow based Jastrow, though results for the backflow Jastrow are limited to 
K ≤ 2 due to numerical stability issues and computational resource constraints. Data for multi-determinant FermiNet represent the best of several runs to 
account for run-to-run variance.

Fig. 7. Adam versus KFAC for the optimization of the generic and factorized antisymmetry architectures on the carbon atom. The proposed updates prior to 
the application of the learning rate may have different scales for the two optimizers, so we choose the largest stable initial learning rate for each from a 
coarse sweep of learning rates α with log10 α ∈ [−4, −1]. At each epoch, rolling averages of the previous 10% of training epochs are shown here for clarity. 
One epoch is one parameter update.

Fig. 8. KFAC at a few learning rates α for the optimization of the generic and factorized antisymmetry architectures on the carbon atom. At each epoch, 
rolling averages of the previous 10% of training epochs are shown here for clarity. One epoch is one parameter update. There is occasionally some initial 
instability within the first 10 or so epochs.

learning rate scaling. Fig. 8 shows that the choice of learning rate is quite important, and we generally found that in our 
experiments, using the highest consistently stable initial learning rate resulted in the lowest energies overall. When the 
learning rate is chosen in this way, KFAC reaches similar energy levels to Adam with as many as two orders of magnitude 
fewer epochs.

5.2. Performance: square H4 model

The square H4 model (Fig. 9) provides an interesting case study as a prototypical strongly correlated system [53]. Unlike 
the atomic case, the simple product of a pseudospin-up and pseudospin-down antisymmetry is inadequate to capture the 
ground state within a few percent of the correlation energy. In Fig. 10, we see that in both FA-1 and the standard single-
14
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Fig. 9. Atomic configuration for the square H4 model. The side length is a.

Fig. 10. Error of the total energy attained by various VMC ansatzes on the square H4 model of different bond lengths. Details on the complete basis set 
extrapolation for FCI are included in Appendix E.

Table 2
Comparison of methods on the square H4 model. Details on the complete basis set extrapo-
lation for RHF/UHF/FCI are included in Appendix E.

a (Bohr) RHF UHF FA-1 FermiNet 
1 det

FCI

1.0 -1.2863 -1.3358 -1.424518(7) -1.424531(6) -1.4390
4.0 -1.7492 -2.0092 -2.029525(4) -2.029502(4) -2.0342

a (Bohr) FermiNet 
2 dets

FermiNet 
16 dets

FermiNet 
1 full det

GA FCI

1.0 -1.438804(5) -1.438796(5) -1.438805(4) -1.438799(4) -1.4390
4.0 -2.034212(3) -2.034208(3) -2.034217(2) -2.034218(3) -2.0342

determinant FermiNet, the energy attained was significantly higher than that of any of the other neural network ansatzes 
tested here. We find excellent agreement between multiple-determinant FermiNet, full single-determinant FermiNet, and 
FermiNet-GA, agreeing within the estimated Monte-Carlo error. The failure of FA-1 to capture more of the ground-state 
energy than the standard single-determinant FermiNet again suggests that, at least for the small atomic and molecular 
systems modeled here, the FermiNet architecture is already very expressive for each pseudospin antisymmetry, even without 
an explicit Jastrow factor. The fact that even the addition of the general backflow-based Jastrow to the FA-1 architecture 
does not yield better results than FermiNet suggests that the lack of expressiveness of these simple “rank-one” product 
wavefunction ansatzes has to do with their nodal structure. See Table 2.

5.3. Comparison of nodal surfaces

Given a sufficiently general Jastrow correlation factor, the essential difficulty in the expressiveness of trial wavefunctions 
for quantum Monte Carlo methods lies in the accurate modeling of the nodal hypersurface [54]. We thus explore the nodal 
hypersurfaces generated by several of our ansatzes in Figs. 11 and 12, taking inspiration from [54]. In these figures, we 
fix the locations of all but one electron in the lithium and beryllium atoms and plot the nodal surface of the resulting 
one-body functions in the final electron position for four of our ansatzes: standard single-determinant FermiNet, FA-1, full 
15
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Fig. 11. Nodal surface cross-sections of various ansatzes on the lithium atom during training. The locations of two electrons are fixed, with one spin-
up (same spin) electron in blue and one spin-down (opposite spin) electron in red. The fixed electrons are in random locations. The surfaces shown are 
produced by evaluating the sign of the wavefunction on the position of the remaining (spin-up) electron in the box [−5, 5]3 on 150 points in each direction 
and using the Isosurface graph object of the Plotly python graphing library. (For interpretation of the colors in the figure, the reader is referred to the web 
version of this article.)

single-determinant FermiNet, and GA. This plotted nodal surface is thus a 3-dimensional cross-section of the full (3N − 1)-
dimensional nodal hypersurface of the many-body wavefunction, where for example for the beryllium atom 3N − 1 = 11.

The nodal surface of the lithium wavefunction is essentially described by the two-particle antisymmetry between the 
two electrons of the same spin. In this two-particle regime, Ref. [23] shows the universality of the single generalized Slater 
determinant. Indeed, a generic antisymmetry of two particles can be exactly written as a single two-particle determinant 
with an appropriately general backflow, and so the architectures compared here are functionally equivalent in terms of their 
representation power. We see good agreement between the nodal surface cross-sections as early as epoch 2500 (Fig. 11).

However, in beryllium, we observe qualitative differences between the nodal surface cross-sections between the different 
architectures. If we choose random locations for the three fixed electron positions, we find that the nodal surface cross-
sections look much like the smooth spheres in the lithium figure for all architectures. However, in Fig. 12 we choose the 
two opposite-spin electrons to be placed at (0, ±2, 0), and we see that the nodal surface cross-sections for FermiNet and FA-
1 (Fig. 12) appear to be the union of two smooth surfaces. We were able to confirm that these two surfaces originate from 
the product structure of the pseudospin terms by removing a psuedospin term and replotting the resulting nodal surface. 
On the other hand, the nodal surface cross-section obtained from GA and the full single-determinant FermiNet appear to 
consist of only one smooth surface. This difference aligns with our assertion that the product structure of FermiNet and 
FA-1 may limit their ability to represent the true nodal surface of the ground state wavefunction. A video is available with 
rotating views of the final cross-sections for all four wavefunction ansatzes [55].

Our study of the nodal surfaces in this section is importantly limited by the fact that we can only observe a 3-
dimensional cross-section of the full nodal surface, so we are not able to directly draw conclusions about the global structure 
of the nodal surface when using only a single cross-section. Ideally, we could benchmark these plots against the ground truth 
of the nodal surface generated by the FCI wavefunction for this system. We found, however, that even the qualitative shape 
of the FCI nodal surface (not depicted here) depends strongly on the choice of the finite sized basis set, and is thus difficult 
to compare systematically to the VMC-derived wavefunctions.
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Fig. 12. Nodal surface cross-sections of various ansatzes on the beryllium atom during training. The locations of three electrons are fixed, with one spin-up 
(same spin) electron in blue and two spin-down (opposite spin) electron in red. The fixed spin-up electron is placed at (2, 1, 0), and the two spin-down 
electrons are placed at (0, ±2, 0). The surfaces shown are produced by evaluating the sign of the wavefunction on the position of the remaining (spin-up) 
electron in the box [−5, 5]3 on 150 points in each direction and using the Isosurface graph object of the Plotly python graphing library. (For interpretation 
of the colors in the figure, the reader is referred to the web version of this article.)

5.4. Nitrogen molecule: performance of the full determinant FermiNet

We finally provide a comparison of a few different FermiNet architectures on the nitrogen molecule at both the equi-
librium bond length of 2.068 Bohr and a partially dissociated bond length of 4.0 Bohr. We are unable to test the FA and 
GA architectures on these systems within the constraints of our computational resources. However, we are able to test 
the standard FermiNet and the full determinant FermiNet. We find that the standard multi-determinant FermiNet consis-
tently outperforms the standard single-determinant FermiNet. In addition, at equilibrium bond length, we find that the full 
single-determinant FermiNet outperforms the standard single-determinant FermiNet but does not outperform the standard 
16-determinant (or greater) FermiNet. These results are both consistent with our findings on small atomic systems.

At a dissociating bond length of 4.0 Bohr, the N2 molecule is a challenging strongly correlated system. Pfau et al. [9]
demonstrate that the standard FermiNet architecture is not able to accurately model this system. We corroborate this finding 
on the VMCNet repository using 1 and 16 determinants, with results reported in Fig. 13. The energies may be found in Ap-
pendix I. In particular, Pfau et al. [9] report that for this system, the standard 64-determinant FermiNet does not outperform 
the 32-determinant FermiNet, which suggests that the energy does not approach the results obtained by the r12-MR-ACPF 
method [57] as the number of standard determinants increases. However, we find that the full single-determinant FermiNet 
is able to outperform the standard 64-determinant FermiNet and come within chemical accuracy of the r12-MR-ACPF value. 
This shows that some of the bottlenecks to the standard FermiNet’s performance on particularly challenging systems is 
related to the interaction between pseudospin outputs of the backflow and determinant layers. We observed a non-trivial 
amount of run-to-run variance in our results, indicating that initialization and optimization methods for FermiNet-like ar-
chitectures may require further investigation. However, we were able to replicate this result on several distinct optimization 
runs. This surprising result implies the need for further exploration into the benefits of the full determinant FermiNet for 
strongly correlated problems in quantum chemistry. Since the initial submission of this manuscript, a first step has been 
taken in this direction by Ren, Fu, and Chen [58], who show that the full 16-determinant FermiNet can outperform both the 
full single-determinant FermiNet and the r12-MR-ACPF method.
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Fig. 13. Visual comparison of different FermiNet architectures on the nitrogen molecule at (a) bond length 2.068 Bohr (equilibrium) and (b) bond length 
stretched to 4.0 Bohr. Energies shown are the absolute energy difference (in Hartrees) between the attained energy (E) and the spectroscopic experimental 
fit (Eexpt) recommended by Le Roy et al. [56]. The r12-MR-ACPF computational reference is taken from [57]. The UCCSD(T) and the Pfau et al. energies 
were extracted from Figure 5 in reference [9]. The full 16-determinant FermiNet results were extracted from Figure 3a in [58]. The dashed line indicates 
chemical accuracy from the experimental fit. When a data point was not available at 2.068 Bohr, a linear interpolation between the two nearest data points 
was used.

6. Discussion

We show that explicitly antisymmetrized neural networks can be used to advance the understanding of the performance 
of neural network based VMC ansatzes. By replacing the antisymmetric layer in the FermiNet with a generic antisym-
metrized neural network with relatively few nodes and a simple Jastrow factor, we find that the resulting FermiNet-GA 
structure is highly expressive and can yield accurate ground state energies (error of the correlation energy is less than 1%). 
On the other hand, if we replace each individual pseudospin determinant of FermiNet with an explicitly antisymmetrized 
neural network, the resulting FermiNet-FA-K structure does not outperform the K -determinant FermiNet. These observa-
tions suggest that the lack of expressiveness of the standard single-determinant FermiNet structure may be largely due to the 
product structure of the two pseudospin components of its determinant layer. This motivates us to investigate the “full de-
terminant” mode of the FermiNet, which significantly improves the accuracy compared to both standard single-determinant 
FermiNet and FermiNet-FA-1.

One of our original motivations for developing FermiNet-GA was to resolve the challenges of the stretched nitrogen 
molecule as discussed in Ref. [9]. This is a challenging strongly correlated system which the standard FermiNet is unable 
to model accurately even with many determinants. We are currently unable to apply the GA layer to this system due to its 
18



J. Lin, G. Goldshlager and L. Lin Journal of Computational Physics 474 (2023) 111765
prohibitive computational cost. However, inspired by the success of the full determinant on smaller systems, we investigate 
its performance on the nitrogen molecule both at equilibrium and at a stretched bond length of 4.0 Bohr. At equilibrium, 
the full single-determinant FermiNet performs better than standard single-determinant FermiNet, but worse than standard 
multi-determinant FermiNet. However, in the stretched configuration, the full single-determinant FermiNet outperforms the 
standard 64-determinant FermiNet, achieving an energy within 0.4 kcal/mol of the r12-MR-ACPF method [57]. This shows 
that it is essential to use the full determinant mode in order to get accurate energies from the FermiNet on this particular 
system. It is natural to ask whether there are other systems that exhibit a similar performance gap between the standard 
and the full determinant FermiNet, and whether it is possible to characterize the class of systems which exhibit such a gap. 
We hope that future work can clarify the answers to these questions.

In fact, since the initial submission of this manuscript, two preprints have been released which already shed further light 
on the utility of the full determinant construction. Casella et al. [59] use fermionic neural networks to study phase tran-
sitions of the homogeneous electron gas. They find that the use of full determinants (referred to as “dense determinants”) 
only marginally improves the performance relative to that of the standard FermiNet. This supports our finding that the mag-
nitude of the advantage of full determinant FermiNet over the standard FermiNet can be highly system-dependent. Ren et 
al. [58] combine the FermiNet with diffusion Monte Carlo to obtain more accurate results on a variety of chemical systems. 
Their experiments are conducted using the full determinant mode, and the results on the nitrogen molecule corroborate our 
finding that the full determinant provides a significant advantage on this system. Their results show that the advantage is 
even greater when using 16 full determinants, as they obtain energies that are significantly lower than the energies from 
the r12-MR-ACPF method.

As part of our work, we contribute a flexible, modular variational Monte Carlo repository called VMCNet [49], built on 
the JAX machine learning framework [50]. VMCNet is inspired by the JAX branch of the FermiNet repository [19] but uses 
the Flax API to facilitate developing new components and experimenting with different components of various architectures. 
We keep the model construction code in a separate submodule from the code for training, sampling, and evaluation, and we 
leverage simple asynchronous logging to enable monitoring of the training process. This work focuses on VMC simulation 
in the first quantization, but VMCNet can also be extended to simulate quantum systems in a second quantized form [60]
as well.

We hope this work provides a first step towards understanding the expressiveness of these FermiNet-like architectures. 
Our results suggest the utility of diagnostic tools such as explicitly antisymmetrized neural networks for building such 
understanding. They also suggest the need to further explore the benefits of the full determinant mode of FermiNet. By 
further improvement upon the architecture and the optimization of the full determinant FermiNet, it may yet be possible 
to consistently achieve accurate results for a large class of physical and chemical systems of interest.
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Appendix A. Hyperparameters

In Table 3 we list the hyperparameters used in our runs for the KFAC optimizer. For the stretched N2 geometry, to 
replicate the results reported by Ref. [9] as closely as possible, 4000 walkers were used instead of 2000, a two-electron 
stream width of 32 was used instead of 16, and when it resulted in lower energies, pretraining was also used for 1000 
iterations.
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Table 3
Table of hyperparameters for KFAC used during training.
Hyperparameter Value

Dense nodes per layer in antisymmetrized part 64
Layers per ResNet in antisymmetrized part 2
One-electron stream width 256
Two-electron stream width 16
Number of layers in equivariant part 4
Kernel initializers for dense layers orthogonal
Bias initializers for dense layers random normal
Backflow activation function tanh
ResNet antisymmetry activation function tanh
Jastrow (backflow) activation function gelu
Number of walkers 2000
Learning rate 5 · 10−2/(1+ 10−4t)
Optimizer KFAC
Threshold constant for local energy clipping 5.0
MCMC steps between updates 10
Training iterations (number of parameter updates) 2 · 105
Evaluation iterations (samples collected every 10) 2 · 105

Table 4
Comparison of the VMCNet repository with the FermiNet repository on the nitrogen atom, with 1, 2, and 4 
determinants. Data for 2 and 4 determinants represent the best of several runs to account for run-to-run 
variance observed in both repositories.
Repository 1 det corr % 2 det corr % 4 det corr %

VMCNet -54.5864(1) 98.48(8)% -54.58739(4) 99.02(2)% -54.58891(4) 99.85(2)%
FermiNet -54.58654(5) 98.56(3)% -54.58711(6) 98.87(3)% -54.58870(4) 99.73(4)%

Table 5
Comparison of the VMCNet repository with the Fer-
miNet repository on the H4 square, with 1 and 2 
determinants.

Repository 1 det 2 det

VMCNet -1.424531(7) -1.438804(5)
FermiNet -1.424429(7) -1.438796(5)

Appendix B. Code benchmarking

To demonstrate that our results for the original FermiNet are comparable to those reported by [9,19], we show that 
results obtained using the VMCNet repository are quantitatively comparable to that of the JAX branch of the FermiNet 
repository presented in [19] on several small systems. We compare the behavior on both the nitrogen atom and the square 
H4 model (Fig. 9), using settings corresponding to the original FermiNet model in both repositories. For the nitrogen atom, 
we compare results with 1, 2, and 4 determinants, while for the H4 square we compare results with just 1 and 2 determi-
nants, since 2 determinants already capture essentially 100% of the correlation energy. All results presented here come from 
our own numerical experiments with either the VMCNet repository or the publicly available JAX branch of the FermiNet 
repository. Since VMCNet does not support Hartree-Fock based pretraining, we turned this feature off in the FermiNet repos-
itory to make the comparison fair. Turning off pretraining reduces the consistency of the FermiNet optimization on some 
systems. In particular, when using multiple determinants for the nitrogen atom, we found that some runs both of our own 
code and of the FermiNet code without pretraining get stuck in local minima and never reach the lowest energy possible. 
This phenomenon may merit further investigation. For now, to account for this run-to-run variance, we have taken the best 
of several runs for all multi-determinant experiments on the nitrogen atom.

Representative training graphs can be found for the nitrogen atom in Fig. 14 and for the H4 square in Fig. 15. The values 
of the final energies obtained are presented in Tables 4 and 5, respectively. On both systems, the results of VMCNet are 
approximately equivalent to the results of FermiNet. The two repositories behave somewhat differently in the first 1,000 
epochs of training, with VMCNet often optimizing more quickly in this regime. However, the optimization trajectories are 
largely indistinguishable by 10,000 epochs and the final energies achieved are within a small margin of error of each other 
in all cases.

Appendix C. Numerical stability and computational cost of the antisymmetric layer

One challenge we faced when training the generic antisymmetric architecture was the numerical sign cancellation near 
the nodal hypersurface. When computing FermiNet-GA in single precision, we invariably encounted NaNs (not-a-number). 
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Fig. 14. Training runs on VMCNet and FermiNet repositories with the FermiNet architecture on the nitrogen atom. At each epoch, rolling averages of the 
previous 10% of training epochs are shown here for clarity. One epoch means one parameter update. Data for 2 and 4 determinants represent the best of 
several runs to account for run-to-run variance observed in both repositories.

Fig. 15. Training runs on VMCNet and FermiNet repositories with the FermiNet architecture on the H4 square. At each epoch, rolling averages of the previous 
10% of training epochs are shown here for clarity. One epoch means one parameter update.

Some investigation revealed that the computation of � could yield slightly different results depending on whether it was 
calculated during a simple forward pass evaluation or a gradient calculation involving a forward and backward pass. Due 
to this numerical inconsistency, the Metropolis-Hastings procedure would sometimes sample points on or extremely close 
to the nodal hypersurface. To contend with this in our experiments, we used double precision end-to-end, i.e. converted 
all arrays to double precision. It is possible that a more efficient implementation might use double precision only in the 
antisymmetric layer or only when evaluating the local energy. The use of double precision led us to use A100 GPUs, which 
have significantly better performance for these higher precision calculations than consumer GTX GPUs. We used GTX 2080TI 
GPUs for our experiments which did not require double precision. Despite these powerful GPUs, the unfavorable scaling 
of the brute-force antisymmetry meant that we reached the limits of our group’s resources with the calculations on the 
oxygen atom. On 4 A100 GPUs, training the FermiNet-GA architecture with the simplified Jastrow on the oxygen atom 
took 137 hours. In Fig. 16, we show the wall clock time used to train FA-1 and GA for boron through nitrogen, as well 
as the average time per iteration for standard single-determinant FermiNet, full single-determinant FermiNet, standard 16-
determinant FermiNet, FA-1, and GA.
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Fig. 16. Relative cost of various architectures on atomic systems during training. Tests were performed in double precision using 2 A100 GPUs.

Fig. 17. Run-to-run variance of the k-determinant FermiNet on the Nitrogen atom, as a function of k. Results of three subsequent optimization runs are 
reported for each value of k.

Appendix D. Run-to-run variance

We report the run-to-run variance when optimizing the multi-determinant FermiNet structure on the Nitrogen atom. 
Subsequent optimization runs with all of the same hyperparameters often obtain energies with differences on the order of 
0.5% of the correlation energy. This error is larger than the statistical error due to Monte Carlo sampling, which is on the 
order 0.05% of the correlation energy as reported in Table 1. To demonstrate this phenomenon more concretely, we report 
in Fig. 17 the results of three distinct optimization runs of the k-determinant FermiNet for each k from 1 to 4. The results 
for 4-determinant FermiNet use the initialization from the FermiNet repository as discussed in Section 5.1. Interestingly, the 
run-to-run variance is negligible for k = 1, but for each k > 1, we see that one of the three runs achieves a significantly 
better energy value than the other two. It is worth noting that these results do not incorporate the Hartree-Fock based 
pretraining used in [9].

Appendix E. Basis set extrapolation for the square H4 model

The Hartree-Fock (HF) and full configuration interaction (FCI) values for the square H4 model were extrapolated to 
the complete basis limit using cc-pvXz basis sets using PySCF [61,62]. For completeness, we reproduce the details of the 
extrapolation here.

The complete basis set Hartree-Fock energies were obtained by a fit to the function

EHF(X) = EHF(CBS) + a exp(−bX), (E.1)

where EHF(X) is the Hartree-Fock energy computed with cc-pvXz and the parameters EHF(CBS), a, and b are determined 
with a non-linear least-squares fit. Similarly, the complete basis set correlation energies are obtained by a fit to the function

Ecorr(X) = Ecorr(CBS) + aX−3, (E.2)
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where Ecorr(X) is the difference between the FCI and Hartree-Fock energies on the cc-pvXz basis and the parameters 
Ecorr(CBS) and a are determined with a non-linear least-squares fit.

For RHF/UHF at bond length 1.0, we used X = 2, 3, 4, 5, as the orbital overlap matrix became too ill-conditioned for 
larger X . For RHF/UHF at bond length 4.0, we used X = 5, 6, 8. The FCI calculations were done using restricted Hartree-Fock 
(RHF) as the initial reference, and the correlation energy was computed as the difference between the FCI and RHF energies. 
For the extrapolation of the RHF-FCI correlation energy we used X = 3, 4. Due to the relative unreliability of the data points 
from the small double-zeta basis set and the cost of the quintuple-zeta basis set, these points were not included in the 
extrapolation for the correlation energy. Judging simply from the square root of the variance of the parameter fit, the basis 
set extrapolation error is at least two orders of magnitude larger than that of the Monte Carlo error in the estimates of the 
VMC-derived energies, so fewer significant digits are reported for the RHF/UHF/FCI results.

Appendix F. Gradient calculation

In this section we derive an unbiased estimate for the gradient of the expected energy of the wavefunction. Recall that 
the expected energy is given by

L(θ) =
∫
EL(R; θ) |�θ |2 dR∫ |�θ |2 dR

. (F.1)

For the purposes of the following derivation, we will let θ be a real number representing any parameter. The derivative of 
the integrand in the denominator with respect to θ is
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To treat the latter term in the last expression above, we also take advantage of the following identity, which uses the 
essential self-adjointness of the Born-Oppenheimer Hamiltonian H [63]:∫
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Using these facts, the following calculation gives the derivative of the expected energy L with respect to θ :
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When the wavefunction is real, we may simplify this to

∂θL(θ) =
∫
2(∂θ�θ/�θ)(EL(R; θ) −L(θ)) |�θ |2 dR∫ |�θ |2 dR

. (F.6)

We may then use Monte Carlo sampling to estimate the gradient as

∂θL(θ) ≈ 1

|ξθ |
∑
R∈ξθ

2(∂θ log |�θ |)(EL(R; θ) − L̃(θ)) (F.7)

where ξθ are a set of samples from the density pθ (R) = |�θ(R)|2/ ∫ |�θ(R)|2 dR.
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Table 6
Numerical results for comparison of factorized antisymmetry of rank K with K -determinant FermiNet for K = 1, 2, 3, 4 on 
the nitrogen atom.

FA-K , one-body Jastrow corr% FA-K , backflow Jastrow corr% K -det. FermiNet corr%

K=1 54.58637(4) 98.47(2) -54.58664(4) 98.61(2) -54.5864(1) 98.48(8)
K=2 -54.58715(4) 98.89(2) -54.58733(4) 98.99(2) -54.58739(4) 99.02(2)
K=3 -54.58803(3) 99.37(1) – – -54.58817(4) 99.44(2)
K=4 -54.58855(5) 99.65(3) – – -54.58891(4) 99.85(2)

Table 7
Comparison of FermiNet architectures on the nitrogen molecule with at equilib-
rium bond length, 2.068 Bohr, and bond length stretched to 4.0 Bohr. When a 
data point was not available at 2.068 Bohr, a linear interpolation between the two 
nearest data points was used. The RHF result was extrapolated to the complete 
basis limit using cc-pvXz calculations in PySCF for X = 2, 3, 4, 5. The experimental 
result is computed from the MLR4(6, 8) fitted potential curve recommended by 
the authors of [56].

energy

2.068 Bohr 4.0 Bohr

RHF -108.9940 -108.3101

FermiNet, 1 det -109.5319 -109.1827
FermiNet, 16 dets -109.5398 -109.1891
FermiNet, 16 dets (Pfau et al. [9]) -109.5393 -109.1903
FermiNet, 32 dets (Pfau et al. [9]) -109.5399 -109.1913
FermiNet, 64 dets (Pfau et al. [9]) -109.5405 -109.1908
FermiNet, 1 full det -109.5353 -109.1940
FermiNet, 16 full dets (Ren et al. [58]) -109.5405 -109.1975

UCCSD(T) (Pfau et al. [9]) -109.5425 -109.1898
r12-MR-ACPF [57] -109.5370 -109.1947

experiment [56] -109.5423 -109.2021

Appendix G. Sampling and gradient clipping

We use the Metropolis-Hastings algorithm to sample electron configurations from the distribution defined by �(X). We 
use a gaussian proposal function with an isotropic step width, which we dynamically update throughout the optimization 
in order to keep the average acceptance ratio near a target value, for which we use 0.5. We maintain this ratio through the 
same simple scheme implemented in the JAX branch of the FermiNet repository [27], which increases the step width by 
a small amount if the acceptance ratio strays too far above the target, and similarly decreases it by a small amount if the 
ratio strays too far below the target. We perform such updates every 100 moves, averaging the acceptance ratio over the 
previous hundred steps in order to avoid overzealously updating the step width due to noise in the acceptance ratio.

In order to reduce the amount of correlation between the samples used for subsequent parameter updates, we take 10
walker steps between each gradient calculation and parameter update. While skipping steps theoretically does not produce 
a higher effective sample size than simply using every step, it is practically beneficial to skip steps because the local 
energy calculation required for a parameter update is significantly more computationally expensive than the wave function 
amplitude calculation required for each move. This means we can take a number of intermediate steps in order to produce 
significantly less correlated samples with a small computational overhead.

As is common in quantum Monte Carlo [64], in order to reduce the noise in the training process, we additionally clip 
the local energies calculated in each batch of samples to be closer to some estimator of the energy intended to reduce the 
effect of outliers in the gradient. Specifically, given a batch of local energies E1, E2, . . . , En , we calculate the median local 
energy EM and then calculate the average deviation from the median (total variation) as

T V = 1

n

∑
i

|Ei − EM | . (G.1)

We then replace Ei with EM whenever |Ei − EM | > 5 · T V . In practice, we have found that this produces a less noisy 
and more effective optimization process than including all of the unclipped local energies. During the final Monte Carlo 
evaluation of the energy after training, no local energy clipping is performed in order to avoid bias in the energy esti-
mate.
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Appendix H. Factorized antisymmetry versus FermiNet

We record the numerical results comparing FermiNet-FA-K to the standard K -determinant FermiNet in Table 6, also 
shown in Fig. 6. Due to the limits of our computational resources, we did not compute the K = 3, 4 results for FA-K with 
the backflow-based Jastrow.

Appendix I. Stretched nitrogen molecule

We record the numerical results comparing various FermiNet architectures on the nitrogen molecule with bond length 
4.0 Bohr in Table 7. These results are also depicted in Fig. 13. For the nitrogen molecule, as we did not implement Hartree-
Fock-based pretraining in VMCNet, we ported parameters from pretraining runs on the FermiNet repository, as we found that 
this increased the overall stability of the training procedure. As noted in Appendix A, we use 4000 walkers. The UCCSD(T) 
and Pfau et al. results were extracted from Figure 5 in [9].

References

[1] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355 (2017) 602–606.
[2] Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Restricted Boltzmann machine learning for solving strongly correlated quantum systems, Phys. Rev. B 

96 (2017) 205152.
[3] K. Choo, G. Carleo, N. Regnault, T. Neupert, Symmetries and many-body excitations with neural-network quantum states, Phys. Rev. Lett. 121 (2018) 

167204.
[4] A. Nagy, V. Savona, Variational quantum Monte Carlo method with a neural-network ansatz for open quantum systems, Phys. Rev. Lett. 122 (2019) 

250501.
[5] D. Luo, B.K. Clark, Backflow transformations via neural networks for quantum many-body wave functions, Phys. Rev. Lett. 122 (2019) 226401.
[6] J. Han, L. Zhang, W. E, Solving many-electron Schrödinger equation using deep neural networks, J. Comput. Phys. 399 (2019) 108929.
[7] L. Yang, Z. Leng, G. Yu, A. Patel, W.-J. Hu, H. Pu, Deep learning-enhanced variational Monte Carlo method for quantum many-body physics, Phys. Rev. 

Res. 2 (2020), https://doi .org /10 .1103 /physrevresearch .2 .012039.
[8] J. Hermann, Z. Schätzle, F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem. 12 (2020) 891–897.
[9] D. Pfau, J.S. Spencer, A.G.D.G. Matthews, W.M.C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks, 

Phys. Rev. Res. 2 (2020), https://doi .org /10 .1103 /physrevresearch .2 .033429.
[10] K. Choo, A. Mezzacapo, G. Carleo, Fermionic neural-network states for ab-initio electronic structure, Nat. Commun. 11 (2020) 2368.
[11] J. Stokes, J.R. Moreno, E.A. Pnevmatikakis, G. Carleo, Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network 

quantum states, Phys. Rev. B 102 (2020) 205122.
[12] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, New York, 1989.
[13] R.P. Feynman, M. Cohen, Energy spectrum of the excitations in liquid helium, Phys. Rev. 102 (1956) 1189.
[14] L.F. Tocchio, F. Becca, A. Parola, S. Sorella, Role of backflow correlations for the nonmagnetic phase of the t–t′ Hubbard model, Phys. Rev. B 78 (2008) 

041101.
[15] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73 (2001) 33.
[16] J. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo Methods, Cambridge Univ. Press, 2016.
[17] J. Toulouse, R. Assaraf, C.J. Umrigar, Chapter fifteen - introduction to the variational and diffusion Monte Carlo methods, in: P.E. Hoggan, T. Ozdogan 

(Eds.), Electron Correlation in Molecules – Ab Initio Beyond Gaussian Quantum Chemistry, Advances in Quantum Chemistry, vol. 73, Academic Press, 
2016, pp. 285–314.

[18] F. Becca, S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems, Cambridge University Press, 2017.
[19] J.S. Spencer, D. Pfau, A. Botev, W.M.C. Foulkes, Better, faster fermionic neural networks, arXiv:2011.07125 [physics .comp -ph], 2020.
[20] J. Han, Y. Li, L. Lin, J. Lu, J. Zhang, L. Zhang, Universal approximation of symmetric and anti-symmetric functions, arXiv:1912 .01765, 2019.
[21] A. Sannai, Y. Takai, M. Cordonnier, Universal approximations of permutation invariant/equivariant functions by deep neural networks, arXiv:1903 .01939, 

2019.
[22] N. Keriven, G. Peyré, Universal invariant and equivariant graph neural networks, Adv. Neural Inf. Process. Syst. 32 (2019) 7092.
[23] M. Hutter, On Representing (Anti)Symmetric Functions, Tech. Rep., DeepMind, London, UK, 2020, arXiv:2007.15298.
[24] M. Bachmayr, G. Dusson, C. Ortner, Polynomial approximation of symmetric functions, arXiv:2109 .14771, 2021.
[25] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov, A.J. Smola, Deep sets, in: Advances in Neural Information Processing Systems, 

vol. 30, 2017, pp. 3391–3401.
[26] J. Kessler, F. Calcavecchia, T.D. Kühne, Artificial neural networks as trial wave functions for quantum Monte Carlo, Adv. Theory Simulations 4 (2021) 

2000269.
[27] J.S. Spencer, D. Pfau, W.M.C. Foulkes, Ferminet: fermionic neural networks, https://github .com /deepmind /ferminet, 2020, commit, 27f90b.
[28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2016, pp. 770–778.
[29] T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Commun. Pure Appl. Math. 10 (1957) 151.
[30] A.R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn. 14 (1994) 115.
[31] A. Pinkus, Approximation theory of the mlp model in neural networks, Acta Numer. 8 (1999) 143–195.
[32] D. Rolnick, M. Tegmark, The power of deeper networks for expressing natural functions, in: International Conference on Learning Representations, 

2018.
[33] D. Elbrächter, D. Perekrestenko, P. Grohs, H. Bölcskei, Deep neural network approximation theory, arXiv:1901.02220 [cs .LG], 2021.
[34] H.W. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning work so well?, J. Stat. Phys. 168 (2017) 1223–1247.
[35] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv:1606 .08415 [cs .LG], 2016.
[36] D. Bressanini, P.J. Reynolds, Between classical and quantum Monte Carlo methods: “variational” qmc, in: Advances in Chemical Physics, John Wiley & 

Sons, Ltd, 1999, pp. 37–64, https://onlinelibrary.wiley.com /doi /pdf /10 .1002 /9780470141649 .ch3.
[37] R.L. Coldwell, Zero Monte Carlo error or quantum mechanics is easier, Int. J. Quant. Chem. 12 (1977) 215, https://onlinelibrary.wiley.com /doi /pdf /10 .

1002 /qua .560120826.
[38] C.J. Umrigar, K.G. Wilson, J.W. Wilkins, Optimized trial wave functions for quantum Monte Carlo calculations, Phys. Rev. Lett. 60 (1988) 1719.
25

http://refhub.elsevier.com/S0021-9991(22)00828-2/bibDEA9BE6A4FF2AF3FA7ED63C47965F373s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib6AAD822A000B7DF5EB390CB06107D9F5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib6AAD822A000B7DF5EB390CB06107D9F5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib51F2730D4EED35C633000D5F6773DB09s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib51F2730D4EED35C633000D5F6773DB09s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib08D0A0E327CD775509CB27128E86562Fs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib08D0A0E327CD775509CB27128E86562Fs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib6F74FB0D67C0F8237E5B320AD369EF9Ds1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibC928E4A7673FE2D3DBC2B6DC988E9012s1
https://doi.org/10.1103/physrevresearch.2.012039
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib65637180BDC25A869ED0E4CEB19A0AC8s1
https://doi.org/10.1103/physrevresearch.2.033429
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib83E51DC7120E6F11F8638CFE30CC644Ds1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib51BD8D93C9717E215E2CECE72E16363Cs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib51BD8D93C9717E215E2CECE72E16363Cs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibEA80E83E36C5D5CF2C3AF7E049138E7Cs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib3D75224937AE6A571F0C67C2759CEC2As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib68B0BF1D873B2B75228F5628DBBB4EC5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib68B0BF1D873B2B75228F5628DBBB4EC5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib0FAFBE5DC087ECB5BE7F0A332C5AD27Fs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibD35372BF9DC4AE5847FEE98168922BAEs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibF969CBFDB9B4FD26E3D4E5C9DE1D5979s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibF969CBFDB9B4FD26E3D4E5C9DE1D5979s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibF969CBFDB9B4FD26E3D4E5C9DE1D5979s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibB3DEE6B116D1C82BFCE3D7581EBB64F3s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibBFB0E63526CA9392EDA91605E57A1837s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibA57D0B9CB70B99867B720A4ED45B8EA3s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib66A51E8F5346588F64F8E6FBF1CCF858s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib66A51E8F5346588F64F8E6FBF1CCF858s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2FE95BB60134AABCD965A2E8607261FFs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib61E6AEC9935273D243EE996CE891A7F2s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibCAE41624C521BC8C91698245DB6E95F1s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib05BEB80B65B6005A276035AF4ED7E515s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib05BEB80B65B6005A276035AF4ED7E515s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFA88DDA459EBFCC883F8FB8C827067CEs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFA88DDA459EBFCC883F8FB8C827067CEs1
https://github.com/deepmind/ferminet
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2E64EE10C27FD2570A376E4C9C12BD88s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2E64EE10C27FD2570A376E4C9C12BD88s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib43F7815481231DFAA1D730DE5C0473F8s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibB30CF096868B148A55B8CBA869CB87ACs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibCBE33700328207D4C98256592B98F89As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFE783F17D3B21DF9E68EC4B9A5A95730s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFE783F17D3B21DF9E68EC4B9A5A95730s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibB6C82FDAEC059E28424A0C7F2FD701A2s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib6E869FBF48ADA74DEDB27B22AEBF19A0s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibD7B98FC8065438164EDEDAC5A9A28F5Cs1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470141649.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.560120826
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.560120826
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibF497776260AFB8D4B64934CCABA6B428s1


J. Lin, G. Goldshlager and L. Lin Journal of Computational Physics 474 (2023) 111765
[39] P.R.C. Kent, R.J. Needs, G. Rajagopal, Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions, Phys. Rev. B 
59 (1999) 12344.

[40] C.J. Umrigar, C. Filippi, Energy and variance optimization of many-body wave functions, Phys. Rev. Lett. 94 (2005) 150201.
[41] E. Neuscamman, C. Umrigar, G.K.-L. Chan, Optimizing large parameter sets in variational quantum Monte Carlo, Phys. Rev. B 85 (2012) 045103.
[42] L. Otis, E. Neuscamman, Complementary first and second derivative methods for ansatz optimization in variational Monte Carlo, Phys. Chem. Chem. 

Phys. 21 (2019) 14491.
[43] I. Sabzevari, A. Mahajan, S. Sharma, An accelerated linear method for optimizing non-linear wavefunctions in variational Monte Carlo, J. Chem. Phys. 

152 (2020) 024111.
[44] J. Martens, R. Grosse, Optimizing neural networks with Kronecker-factored approximate curvature, in: Proceedings of the 32nd International Conference 

on Machine Learning, Proceedings of Machine Learning Research, vol. 37, PMLR, Lille, France, 2015, pp. 2408–2417.
[45] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: International Conference on Learning Representations, 2015.
[46] S.-i. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (1998) 251.
[47] S.-i. Amari, H. Nagaoka, Methods of Information Geometry, Oxford University Press, 2000.
[48] J. Stokes, J. Izaac, N. Killoran, G. Carleo, Quantum natural gradient, Quantum 4 (2020) 269.
[49] J. Lin, G. Goldshlager, L. Lin, VMCNet: Flexible, General-Purpose VMC Framework, Built on JAX, 2021.
[50] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: 

Composable Transformations of Python+NumPy Programs, 2018.
[51] https://github .com /deepmind /deepmind -research /tree /master /kfac _ferminet _alpha.
[52] S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parpia, C.F. p Fischer, Ground-state correlation energies for atomic ions with 3 to 18 electrons, Phys. 

Rev. A 47 (1993) 3649.
[53] K. Jankowski, J. Paldus, Applicability of coupled-pair theories to quasidegenerate electronic states: a model study, Int. J. Quant. Chem. 18 (1980) 1243.
[54] D.M. Ceperley, Fermion nodes, J. Stat. Phys. 63 (1991) 1237.
[55] https://youtu .be /67SQXEUCYyY.
[56] R.J. Le Roy, Y. Huang, C. Jary, An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data, J. 

Chem. Phys. 125 (2006) 164310.
[57] R.J. Gdanitz, Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (R12-)mr-ci: the ground state 

potential energy curve of N2, Chem. Phys. Lett. 283 (1998) 253.
[58] W. Ren, W. Fu, J. Chen, Towards the ground state of molecules via diffusion Monte Carlo on neural networks, 2022.
[59] G. Cassella, H. Sutterud, S. Azadi, N.D. Drummond, D. Pfau, J.S. Spencer, W.M.C. Foulkes, Discovering quantum phase transitions with fermionic neural 

networks, 2022.
[60] J.W. Negele, H. Orland, Quantum Many-Particle Systems, Westview, 1988.
[61] Q. Sun, T.C. Berkelbach, N.S. Blunt, G.H. Booth, S. Guo, Z. Li, J. Liu, J.D. McClain, E.R. Sayfutyarova, S. Sharma, S. Wouters, G.K.-L. Chan, Pyscf: the 

python-based simulations of chemistry framework, WIREs Comput. Mol. Sci. 8 (2018) e1340.
[62] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N.S. Blunt, N.A. Bogdanov, G.H. Booth, J. Chen, Z.-H. Cui, J.J. Eriksen, Y. Gao, S. Guo, J. Hermann, M.R. 

Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J.D. McClain, M. Motta, B. Mussard, H.Q. Pham, A. Pulkin, W. Purwanto, P.J. Robinson, 
E. Ronca, E.R. Sayfutyarova, M. Scheurer, H.F. Schurkus, J.E.T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L.K. Wagner, X. Wang, A. White, J.D. Whitfield, 
M.J. Williamson, S. Wouters, J. Yang, J.M. Yu, T. Zhu, T.C. Berkelbach, S. Sharma, A.Y. Sokolov, G.K.-L. Chan, Recent developments in the pyscf program 
package, J. Chem. Phys. 153 (2020) 024109.

[63] M. Reed, B. Simon II, Fourier Analysis, Self-Adjointness, Methods of Modern Mathematical Physics, vol. 2, Academic Press, 1975.
[64] C.J. Umrigar, M.P. Nightingale, K.J. Runge, A diffusion Monte Carlo algorithm with very small time-step errors, J. Chem. Phys. 99 (1993) 2865.
26

http://refhub.elsevier.com/S0021-9991(22)00828-2/bib49BB861ADCA69CF7CCD9560B45441F8Bs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib49BB861ADCA69CF7CCD9560B45441F8Bs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib15D7E85B0B8C9981AB899075AED4FD0As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2E1E740FF0C967611D2B5894B5A94A98s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFBAE435A2D8930B355EA5F96AF63E4F5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibFBAE435A2D8930B355EA5F96AF63E4F5s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib936269398383C1BA6C636976039D52BBs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib936269398383C1BA6C636976039D52BBs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibDE64984377EEC5117838B79FF6B072F1s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibDE64984377EEC5117838B79FF6B072F1s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibB7E73A4F6608D8D0294F7AB31B9FB09Bs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib344799A0F3B9CEE0A408FA0AD90878B4s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib9F87BC2E590238B3FC30F2D84A74F944s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibCFD61B24074ED8F3AEC778547A46ABC3s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibB742F12412A01682D5415566BD505DF6s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib61636E0DCB99127B2FBBB886E4EA08CEs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib61636E0DCB99127B2FBBB886E4EA08CEs1
https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib81A8A654E1974FF2E55C79801DA1BCE9s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib81A8A654E1974FF2E55C79801DA1BCE9s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib3B2405BF5109D1B22EDA5D9B8483810Bs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibCD7F38439430C8C95F4D7D7CC087F62Fs1
https://youtu.be/67SQXEUCYyY
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibC43B3BEED1AD6C7470DB191F96730EE8s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bibC43B3BEED1AD6C7470DB191F96730EE8s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2BFB6A523DBA525F93EF21325C32F580s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2BFB6A523DBA525F93EF21325C32F580s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib940853BFBBD8596EFEBFB57C47E0F706s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib9AEA743D77D58D66BFF6D37728432D81s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib9AEA743D77D58D66BFF6D37728432D81s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib2A9A17AB90465B9AB1D57F05BD05D59Bs1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib636D47CACCC6F2518B19941729FC4B06s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib636D47CACCC6F2518B19941729FC4B06s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib1B87288AC83CDCBFACEE6CD0EEB5333As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib1B87288AC83CDCBFACEE6CD0EEB5333As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib1B87288AC83CDCBFACEE6CD0EEB5333As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib1B87288AC83CDCBFACEE6CD0EEB5333As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib1B87288AC83CDCBFACEE6CD0EEB5333As1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib197E6EA43E734AA343C5C60A0B8A5072s1
http://refhub.elsevier.com/S0021-9991(22)00828-2/bib44949722905E8332A8A390A6F9ECCC41s1

	Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation
	1 Introduction
	2 Preliminaries
	2.1 Many-body electron problem
	2.2 Variational Monte Carlo

	3 Architectures
	3.1 Permutation equivariant features in FermiNet
	3.2 Antisymmetric layer in FermiNet
	3.3 Generic antisymmetric neural network layer
	3.4 Factorized antisymmetric neural network layer
	3.5 Jastrow factors
	3.6 Full determinant FermiNet

	4 Optimization
	4.1 Gradient calculation
	4.2 Optimizer

	5 Numerical experiments
	5.1 Performance: atomic systems
	5.2 Performance: square H4 model
	5.3 Comparison of nodal surfaces
	5.4 Nitrogen molecule: performance of the full determinant FermiNet

	6 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Hyperparameters
	Appendix B Code benchmarking
	Appendix C Numerical stability and computational cost of the antisymmetric layer
	Appendix D Run-to-run variance
	Appendix E Basis set extrapolation for the square H4 model
	Appendix F Gradient calculation
	Appendix G Sampling and gradient clipping
	Appendix H Factorized antisymmetry versus FermiNet
	Appendix I Stretched nitrogen molecule
	References


