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Abstract

While a complete understanding of organic semiconductor (OSC) design principles remains elusive,
computational methods — ranging from techniques based in classical and quantum mechanics to more recent
data-enabled models — can complement experimental observations and provide deep physicochemical
insights into OSC structure—processing—property relationships, offering new capabilities for in silico OSC
discovery and design. In this Review, we trace the evolution of these computational methods and their
application to OSC, beginning with early quantum-chemical methods to investigate resonance in benzene
and building to recent machine learning (ML) techniques and their application to ever more sophisticated
OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and
how sophisticated physical and mathematical frameworks have been created to overcome those limitations.
We conclude by providing an outlook for the future development of computational techniques to discover

and assess the properties of high-performing OSC with greater accuracy.
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1 Introduction

Organic semiconductors (OSC), composed of m-conjugated molecules, polymers, or combinations thereof,
offer distinctive tunability of their electrical, optical, and mechanical properties. Modifying these material
properties begins with the initial design of the molecular and polymer constituents, wherein the synthetic

chemist can alter the length, dimensionality,'”

and aromatic (e.g., aromatic, anti-aromatic, quinoid)
character of the n-conjugated pathways defined by the carbon framework,"” introduce heteroatoms (e.g.,
often nitrogen or sulfur) within the carbon backbone,*'’ and append electron accepting groups, electron-
donating groups, and alkyl-based chains of varying length and bulkiness along the periphery.'""® However,
these molecular-level designs are only part of the story, as the way these molecular or polymer constituents
organize in the solid state determines the hierarchical OSC properties, with this organization heavily
influenced by material processing. A wide variety of processing methods are available to develop OSC,

19-24

including from the vapor phase, solutions of differing complexity, or the melt; thermal and solvent-

5:26 while

based post-processing techniques allow for further tuning of the OSC building block organization,
modifications of the chemistry of the surface on which the OSC is deposited can also impact the
characteristics of the final material.”> *® Hence, the design space for OSC, when considering the atomic-

scale construction of the building blocks and the macroscale processing conditions and device architectures

in which the OSC will be used, is, in a word, immense.

Further, a key feature of OSC, especially when contrasting OSC properties to those of inorganic
semiconductors, stems from the fact that the molecular and polymer building blocks that comprise OSC
interact solely through noncovalent (typically exchange repulsion, dispersion, and electrostatics, with some
minor influence from induction) interactions;* *° these noncovalent interactions are considerably weaker
when compared to the covalent or ionic (or permutations thereof) bonds that form inorganic materials. The

reliance of the OSC structure, from local molecular-scale packing interactions through longer-range solid-

state morphologies, on noncovalent interactions has limited the advance of a priori OSC design standards



and makes the development of precise physicochemical models to understand and govern physicochemical

properties, at best, difficult.

The last few decades have witnessed tremendous growth in computational power, including software and
hardware development, the implementation of ever more complicated mathematical and physical functions,
and the general development and application of computational approaches (including both theoretical
development and modeling) in chemistry. This growth, notably, has coincided with the rise in the academic
and commercial interest in OSC. Hence, the study of OSC has been an intriguing playground in which to
develop, benchmark, and deploy these approaches to provide a multiscale physicochemical understanding

of these hierarchical materials.>'

In this Review, we provide an overview of computational methods used to evaluate the properties of organic
n-conjugated molecules and polymers and OSC and trace their development with the ever more complex
chemical and physical questions that have been posed for these systems over time. As the fundamental
theory behind many of these computational methods is well documented and reviewed, we focus more on
applications to further the chemical and physical understanding of OSC and provide references to the
published literature that offer a more in-depth discussion of the theory. We begin this Review with an
overview of quantum-chemical techniques, which evolved from applications of semiempirical
wavefunction models for increasingly larger systems to the state-of-the-art density functional theory (DFT)
methods readily implemented today to investigate the electronic, redox, optical, and electrical properties of
molecular and polymer OSC. We note that, though we generally focus here on the use of semiempirical and
DFT-based methods, (non-empirical) wavefunction-based methods do play a critical role in the study of
OSC.**3* We then move to the description of more classical molecular dynamics and multiscale modeling
approaches that have grown in use as interest has increased in understanding OSC structure—processing—
function relationships. Due to advancements in computing, modern simulations often include hundreds of
thousands — if not millions — of atoms. We next move to discussions of data-enabled and machine-learning

approaches, which offer ever-increasing capacities for machine-informed OSC discovery and design, and



highlight novel computer architectures, including quantum computing, that will soon advance the field.
Today, considerable effort is regularly expended toward increasing the length and time scales of systems
studied through computational approaches, improving the accuracy with which their properties are
estimated, and enabling machine-driven exploration of complex materials spaces. Considering these
factors, we conclude with an outlook for the future of computational approaches in facilitating the

discovery, design, and deployment of next-generation OSC.

2 Quantum-chemical approaches

We begin our discussion with quantum-chemical (QC) approaches used to study OSC, as a key driver of
OSC development has been the push to rationalize the mechanisms governing material electronic, redox,
optical, and electrical characteristics.* %> *® We begin by reviewing the development and application of
semiempirical wavefunction methods followed by DFT-based approaches, each of which are used to

investigate molecular, oligomers (as surrogates of polymers), and solid-state properties.

2.1 Semiempirical QC methods

The physical and chemical properties of materials can be exactly modeled by quantum theory by evaluating
the Schrodinger equation.’” However, the mathematical framework is still prohibitively complex even for
modern computational resources, necessitating the use of approximate methods to solve the Schrédinger
equation. In some approaches, termed semiempirical methods, data from experiments or model systems are
used to estimate values for parameters that are entered into the Schrodinger equation.*® * In this section,
we discuss the origins of semiempirical methods as they relate to the study of n-conjugated systems, starting
with resonance energy calculations and their subsequent evolution to provide reasonable estimates of

ground- and excited-state properties.



2.1.1 Modeling resonance energy and n-conjugation

A key feature of OSC relies on distinctive features of the delocalization of & electrons across the m-
conjugated carbon frameworks of the molecular, oligomer, and polymer building blocks. Early
computational/modeling efforts related to organic, m-conjugated molecules can be traced back to the
understanding of the resonance structures of benzene. In 1931, Hiickel formulated the determination of the
resonance energy based on two methods.*’ Hiickel’s first method was based on works by Heitler and
London,*' Heisenberg,* Slater,** and Bloch,* while the second method was inspired by Bloch*’ and
Hartree.*® We now refer to these two methods as valence bond (VB) theory and molecular orbital (MO)
theory, respectively.*’ Building on Hiickel, Pauling’s 1933 formulation of the VB method simplified the
approach, extending it to larger systems and free radicals.’®*! In the case of benzene, Pauling and coworkers
assumed that only the interaction between the six electrons in the pure 2p carbon orbitals, projecting at right
angles to the ring, was sufficient to evaluate the resonance energy. The choice of these orbitals was justified
as the resulting energy from the in-plane orbitals only changes the arbitrarily chosen zero of energy.
Moreover, the exchange energy of the chosen 2p orbitals is negative, while that for the in-plane orbital is
positive. The method ignores the interactions between non-adjacent carbon atoms while computing the
exchange integrals (o). To compute the resonance energy (#), Pauling and coworkers solved the secular
equation using Slater’s method, as shown in Figure 1.** The results revealed that 80% of the resonance
energy is contributed by the two Kekulé structures™ (benzene models A and B in Figure 1), while 20%

comes from the three excited-state structures (additional structures shown in Figure 1).
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HQ-W)+3a/2 (Q-W)+3a/2 HQ-W)+3a/2 HQ-W)+3a/2 2(Q—-W)+3a/2
Q-W)+3a/2 2(Q-W)+3a/2 Q-w) HQ-W)+3a/2 JQ-W)+3a/2|=0
2Q-W)+3a/2 L(Q-W)+3a/2 HQ-W)+3a/2 Q—-w) HQ—W)+3a/2
2Q-W)+3a/2 2(Q-W)+3a/2 HQ-W)+3a/2 HQ-W)+3a/2 Q-w)

Figure 1. (a) The five canonical structures contributing to the ground state of benzene. Recreated from Ref.’!
Copyright 1934 AIP Publishing. (b) The secular equation with Slater valence-bond eigenfunctions for benzene is
based on the five canonical structures, where Q is the Coulomb integral, ¥ is the resonance energy, and a is the
exchange integral.

Importantly, the computed resonance energies agreed with experiments that determined the heat of
combustion. The formulation was then extended to larger systems like biphenyl, terphenyl, and stilbene,
which enabled the derivation of rules for m-conjugation, such as a phenyl group is 20 to 30% less effective
in m-conjugation than a double bond.’' This approach also provided a rationale for stable structures based

on m-conjugation (such as the 4.9 kcal stability of 1,2-dihydronaphthalene over 1,4-dihydronaphthalene).

Though Pauling and coworkers simplified the VB method, it was still cumbersome to apply to much larger
systems. Hiickel’s MO method was more applicable to such systems, as demonstrated in later works.>> >
In this method, instead of establishing VB eigenfunctions, each of the carbon 2p electrons was considered
to move under the influence of the nuclei and all other 2p electrons. The eigenfunction for such a system is

represented by the linear combination of atomic orbitals (LCAO), in this case, 2p orbitals. The

corresponding secular equation for benzene is
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where £ is the resonance integral. This method is less rigorous and fails to account for the Pauli exclusion
principle, which results in charge pileup in the molecule.” > As a result, the resonance energies determined
through this approach were inferior to those derived from the VB method, as demonstrated by Wheland.”’
However, the simplicity in implementing the MO method for large molecules resulted in its wide
application, namely in estimating the electron affinity (EA) of free radicals, the acid strength of

hydrocarbons, and the basicity of aryl carbinols.

The methods discussed above use experimental bond dissociation energies and heats of combustion to solve
the secular equations and are classified as semiempirical. It is worth nothing that both methods only
considered atomic connectivity, as shown in Figure 1, to formulate the secular equation and derive physical
insights. However, later works by Miilliken and coworkers improved the MO methods and investigated the

alteration in bond lengths on going from localized molecular orbitals to delocalized molecular orbitals.*™ *°

2.1.2 Understanding molecular interactions with light: Excited states

The interaction of light with matter ignites several processes, with the absorption of a photon by matter
being one such process. This process is responsible for the perception of color, the theory or which for
organic m-conjugated molecules was proposed by Sklar in 1937.%° Sklar analyzed the electronic transition
in the UV—visible range for benzene by applying the VB method and MO picture with the inclusion of
antisymmetric LCAO functions.®”®! The only parameters used to compute the absorption bands were the
data from the heats of hydrogenation and C—C bond distances. The VB approximation and MO method
behave differently; the MO treats the bond as covalent, while the other treats it as ionic. Both fail to model

electron repulsion accurately. Hence, to account for polarization, resonance structures with charges were

12



included. Singlet and triplet energy levels were estimated by incorporating symmetry and polarization. The
UV bands observed experimentally were assigned with reasonable confidence via both methods. Miilliken
and coworkers further extended the theory of electronic transitions in molecular spectra to organic

molecules with double bonds and diene.>® > 62

Until the works of Coulson and coworkers in 1947,% all theories of n-conjugated systems concentrated on
applications in hydrocarbons, namely benzene, diene, and heteroatom-containing systems. However, the
work of Coulson presented a generalized theory for n-conjugated systems based on molecular orbitals.
Later, terms such as electronic density, bond order, and mutual polarizability were introduced and have

since played essential roles in determining chemical reactivities, force constants, and other properties.

2.1.3 Moving to larger systems

The semiempirical MO method is easy to implement in larger systems but lacks the configuration
interactions (CI) that are accounted for with antisymmetric LCAO eigenfunctions. The antisymmetric
LCAO method, however, is laborious to extend to larger molecules. The works of Pariser, Parr, and Pople
in the early 1950s proposed a new implementation of the antisymmetrized LCAO methods that use
semiempirical quantities to evaluate the electron integrals.®* ® This method is commonly known as PPP
(named after its inventors), and several flavors of approximations for evaluating the electron integrals have
resulted in the methods used in assessing the electronic properties of n-conjugated molecules, namely the

Mataga—Nishimoto approximation.®®

Even with the Mataga—Nishimoto approximation, the PPP method underestimated the absorption maxima
of m-conjugated molecules, with the discrepancy increasing with extended m conjugation.®” In 1995, Hiruta
et al. introduced the concept of chemical softness for m-conjugated systems in computing the electron
repulsion integral within PPP. With this approach, the calculated excitation energies of polycyclic aromatic
hydrocarbons (PAH) with up to seven acene rings showed improved agreement with experiments.®® ® As

the PPP method includes high-order CI over a large active space, several works have used the PPP method
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to more recently investigate singlet fission in m-conjugated chromophores.” "' Bhattacharyya et al. showed
that the excitation energy of PAH using the PPP method with CI yields better results than the popular time-
dependent density functional method.” Because computational limitations in the early 1990s rendered a
full CI approach with PPP infeasible for large polyacenes beyond anthracene,” efforts were initiated to
replace CI with the density matrix renormalization group (DMRG) method,”* which enables the accurate
calculation of low-lying states for one-dimensional and quasi-one-dimensional systems with reduced
computational cost compared to a full CI calculation. This approach has been used to explore the optical,
polaronic, and bipolaronic states of large m-conjugated polymers.””®" In recent works, Barford and
coworkers explored the photoexcited-state dynamics of polyenes and carotenoids with DMRG calculation
of the PPP model to describe the dark singlet states responsible for the non-emissive properties of linear

polyenes.®* ¥

2.1.4 Considering all valence electrons

All methods discussed in the previous sections, including PPP, consider only a single 2p orbital in
computing electronic and optical properties. The restriction to 2p orbitals was due to limited experimental
data to provide empirical parameters and inadequate computational resources to solve complex
mathematical equations. Hence, these methods did not account for ¢ interactions while evaluating the
molecular properties. After three decades of development and validation of Hiickel’s methods, Hoffmann
proposed the extended Hiickel method in 1963 that considered all valence electrons independently to
calculate electronic properties.** However, the approach did not consider electron-electron interactions,

similar to Hiickel's theory. As an alternative, Pople and coworkers®>*’

proposed the neglect of diatomic
differential overlap (NDDO) approximation, which is similar to the PPP method but considers all valence
orbitals. Complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap

(INDO) are common variations of this method. The parameterization for these methods is designed to

mimic the results of Hartree—Fock calculations with a minimal basis set.*®* For spectroscopic applications,
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these methods were modified to CNDO/S, INDO/S, and ZINDO/S.”® While the estimates of excitation

energies were improved, these methods produced less reliable ground-state geometries.

Dewar and coworkers calibrated the parameters against experimental reference data to provide more
accurate estimates. The method based on INDO was called MNDO/3°!, and that with NDDO was termed
MNDO.” The detailed formalism for the semiempirical techniques discussed here can be found in other
review articles.”® The MNDO method resulted in a poor description of van der Waals interactions that

was later rectified in the Austin Model 1 (AM1).%

The methods discussed so far employ parameters derived from experiments. Stewart proposed optimizing
the parameters by using derivatives of calculated values for properties with respect to adjustable
parameters.”” *® This method, called parametric method 3 (PM3), provided better accuracy, as shown in
Figure 2, and increased the speed of results as only a simple series expression was required to be calculated.
Later improvements of PM3 include PM6, which parameterized 70 additional elements,” and PM7, which
uses experimental data and high-level ab-initio reference data for parametrization.'® The orthogonalization-
corrected methods (OM1,'"" OM2,'%% 1% and OM3'*®) include additional interactions, namely, Pauli

repulsion and core—valence interactions, which improve both ground- and excited-state properties.
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Figure 1. Calculated and experimental heats of formation with MNDO, AM1 and PM3 methods. Adapted with
permission from Ref.”® Copyright 2004 John Wiley & Sons, Inc.
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Cornil et al. observed that the C-C bond lengths of poly(p-phenylene vinylene) (PPV) oligomers obtained
from MNDO-based methods agreed with the X-ray diffraction data.'® The simulated absorption spectrum
of PPV with INDO/S was also observed to agree well with the experimental absorption spectrum. Hence,
several studies that followed used AM1 or PM3 for geometry optimizations, followed by INDO/S
calculations to obtain excitation energies.'®''? Silva-Junior and Thiel compared the performance of OMI,
OM2, and OM3 with other semiempirical methods (namely, MNDO, AM1, PM3, and INDO) and observed
that orthogonalization-corrected approaches perform the best for modeling valence excited states of large
organic chromophores.'”® In recent years, the approach of combining CI with the semiempirical

114

Hamiltonians has been used to explore vertical excitation energies, = to optimize excited-state

115.11¢ and for nonadiabatic dynamics simulations.!'”'"” The benchmark study by Bruckner and

geometries,
Engels shows that the semiempirical methods are on par with the state-of-the-art DFT methods (vide infra)
in estimating ground- and excited-state properties of organic m-conjugated molecules with reduced

computational cost.'?

2.1.5 Tight-binding methods

The condensed phase equivalent of semi-empirical quantum methods is the tight-binding (TB) method. The
TB scheme was first proposed by Bloch in 1929;** a simplified version was later presented by Slater and
Koster.** '?! The method expresses the eigenstates of the Hamiltonian with an LCAO basis and the exact
many-body Hamiltonian with a parameterized matrix consisting of element fit to the electronic band
structure. The early applications were centered on inorganic systems, with Leblanc first using it for
anthracene crystal to obtain the electronic band structure.'” An improved TB model for n-conjugated
systems was proposed by André et al. based on valence effective Hamiltonians (VEH).'** Several works
from Brédas and coworkers use VEH-based approaches to investigate the electronic band structures of -

conjugated polymers. ' 124130
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In 1985, Siefert and Eschrig demonstrated that the TB method could be fit with parameters derived from
DFT calculations.”®! This development paved the way for the density functional-based tight binding
(DFTB) method, which consists of Taylor series expansions of the Kohn—Sham DFT total energy.'** '**
Based on the order of the Taylor series expansion, DFTB1, DFTB2 (SCC-DFTB), and DFTB3 are
derived.”** '3 Heck et al. have extensively used DFTB in conjunction with other dynamics simulation
approaches to simulate charge-carrier transport in OSC materials."*® *7 To estimate nonlocal electron-
phonon coupling in molecular crystals, Troisi and coworkers used SCC-DFTB to obtain interatomic
forces."*® Recently, Gallmetzer et al. used SCC-DFTB to investigate the redox potentials of anthraquinone
and its derivatives.'*’ The DFTB methods are highly sensitive to the parameters used to fit the DFT data
and hence inherit their self-interaction error. A benchmarking study of DFTB methods by Gaus et al.
showed that either the energy or the vibrational frequencies could be improved by reparameterization, but

not both."” Nonetheless, these methods are two-to-three orders of magnitude faster than DFT-based

methods with medium-sized basis sets.

2.2 DFT methods

Over the last few decades, DFT-based methods have generally overtaken semiempirical methods as the go-
to approach for evaluating molecular and solid-state electronic, redox, and optical properties. This trend is
due in large part to advances in computer technology and the development of density functionals that work
well for molecular systems. DFT is based on Hohenberg and Kohn’s proof that the energy of the system
can be defined by its electron density;'*' the properties of the interacting many-electron system can thus be
reduced to solving the non-interacting single-particle equation. The DFT formalism incorporates exchange
and correlation effects and thus produces property estimates close to ab initio wave function methods. As
the fundamental theory of DFT has already been thoroughly reviewed in earlier works,'**""* here we discuss

the development of DFT techniques and their application to organic m-conjugated systems.
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2.2.1 Emergence of DFT and TDDFT

In 1965, the emergence of DFT from the works of Hohenberg, Kohn, and Sham paved the way for
computing electronic properties at a reduced computational cost when compared to CI methods but with
similar accuracy.'*" '¥" The exact form of the exchange—correlation functional is not known, and
approximations, namely local density and generalized gradient approximation, are used. Early

implementations developed around the local density approximation (LDA)'*®

were used by Albertazzi et
al. to compute the vibrational frequencies of benzene and octatetracene.'®’ Bylaska et al. used LDA to
investigate aromaticity in organic systems as large as a 44-atom ring." The generalized gradient
approximation (GGA), which includes nonlocal correlation, provides an improvement over LDA."3" 152,
Some of the popular GGA exchange—correlation functionals are PW91,'%% 13 PBE, > BLYP.!*%18 Pederson
and coworkers used GGA to study the polarizability, charge states, and vibrational modes of fullerene.'*’

They observed that the GGA framework reproduced the experimental cohesive energies to 0.05-0.1 eV

while LDA overestimates the C-C bond energies by 7-20%, leading to overestimates in cohesive energy.'””:

160

In 1984, Harris introduced the adiabatic-connection approach to the Kohn—Sham theory, which allowed for
linking interacting and non-interacting systems to model inhomogeneous electron systems.'®' This paved
the way for the Hartree—Fock/DFT hybrid scheme first introduced by Becke.'*®'*” The hybrid functional
consists of Hartree—-Fock exchange energy that accounts for a fraction of the local or semi-local DFT
exchange energy. Some popular hybrid DFT functionals include B3LYP,'””- 158 PBE0,!¢> 1 B3PW91,!5%
157. 164 HSE.'®> The B3LYP functional gained popularity after benchmark studies indicated that the
functional yielded low errors for computed geometries, zero-point energies, and formation enthalpies.'*®
168-173

167 Recent applications of DFT include electronic and redox properties of molecules and oligomers,

analysis of molecular crystals,'”*'"® and OSC interfaces,'”"'® to name a few.

The application of DFT to excited states using the time-dependent DFT (TDDFT) formalism was
envisioned in 1984 by Runge and Gross.'® While the initial work of Runge and Gross focused on small
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organic molecules, the TDDFT method was later used for m-conjugated systems like pyridine and
naphthalene.'® In 2000, Guillaumont and Nakamura used TDDFT for large organic dyes and observed
reasonable agreement, for most systems, with experimental absorption wavelength, spectral shift, and

186-193 singlet

intensity.'®> TDDFT is now applied to investigate excited-state phenomena like charge transfer,
fission,'”*?” and thermally activated delayed fluorescence (TADF)**?% in m-conjugated molecules,

crystals, and polymers.

2.2.2 Tamm-Dancoff approximation
The typical implementation of TDDFT uses Kohn—Sham formalism with an adiabatic approximation.?'®-2!!
This approximation assumes that the self-consistent field responds instantaneously without any temporal

change in the charge density.*!?

With this approximation, Casida’s approach can obtain excited state
energies, where random phase approximation-like equations are solved.?"* However, these implementations
predict low energies for triplet states, termed the triplet instability, as shown in Figure 3.2'*2'> To overcome
this problem, Head-Gordon and coworkers proposed the Tamm—Dancoff approximation (TDA) to TDDFT,
a truncated form of Casida’s equations.?'® This method improves the predicted excited-state energies and
reduces the computational cost.?'*?!>217-218 Brédas and coworkers demonstrated that TDA-TDDFT can be

used for large complexes of Cso With a m-conjugated molecule/oligomer for investigation of triplet exciton

formation and for TADF.2!%-%2!
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2.2.3 Long-range corrections to the density functional

The hybrid functionals discussed before fail to produce the correct ' decay of the Coulomb operator.”**
This breakdown results in errors in the estimation of ionization potentials (IP), non-linear optical properties,
polarizabilities of large molecules, and charge-transfer states, to name a few. Savin and coworkers proposed
that partitioning the Coulomb operator into short-range (SR) and long-range (LR) operators could alleviate

the problem.”??’ Using the standard error function (erf) and its complement (erfc), the partitioned

Coulomb operator is represented as
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1  erf(wr) N erfc(wr)

rr r
where w is the range separation operator. Savin and coworkers treated the LR with wavefunction methods
such as configuration interactions and the SR with DFT. likura et al. further simplified the scheme using

the Hartree—Fock theory for SR, significantly reducing the computational time.?**

For the application of the LR correction, the unknown « must be evaluated. Of the methods developed for

229-232 d 233-236

this aim, optimizing the range separation parameter for each system of interest is widely use
In this approach, the parameter is tuned by enforcing the DFT analog of Koopmans’ theorem,””?*, which

states that the HOMO is equal and opposite to IP:
ey = —IP
The optimized @ can be obtained by minimizing the target parameter A;p:
Arp(@) = |ef + Egs(w,N — 1) — Egg(w, N)|

This process is called IP tuning of long-range corrected (LRC) functionals. Brédas and coworkers
demonstrated that the tuned value of w is dependent on the n-conjugation length in organic m-conjugated
systems, and ™' grows with increasing m conjugation.?* Using the tuning scheme has provided more
accurate results for polarizability and fundamental gap, as Figure 4 demonstrates.”**?** As shown by Baer
and coworkers,”** the IP for PTCDA is heavily underestimated to be 6.10 eV and 6.67 eV by PBE and
B3LYP, respectively, when compared to the experimental value of 8.20 eV. But when the tuned BNL

functional is used, the estimated value is 8.08 eV, thus yielding better accuracy.
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number of -C=C— unit. Adapted with permission from Ref.?*! Copyright 2007 AIP Publishing. (b) Difference between
highest occupied molecular orbital (HOMO)and lowest unoccupied molecular orbital (LUMO) eigenvalues from
Hartree—Fock, standard- and IP-optimized LRC-hybrids, and B3LYP for oligoacenes from benzene (n = 1) to
hexacene (n = 6) using a cc-pVTZ basis. The reference gap corresponds to differences between the vertical IP and
vertical EA from CCSD(T)/cc-pveoZ calculations.?* 24 Adapted with permission from Ref.?4* Copyright 2011 AIP
Publishing.

LR corrections can also be extended to TDDFT. Baer and coworkers showed that charge-transfer
excitations are more accurately determined with LRC functionals.?*>?% In contrast to IP tuning, the EA
must also be tuned for charge-transfer excitations; this approach is termed gap tuning.**® **”-*® Electron—
hole pairs predicted with tuned-LRC hybrid shows more localization than standard hybrid functional, as
shown in Figure 5. To investigate charge transfer in a system with multiple components like bulk-
heterojunction solar cells, Brédas and coworkers showed that using a screened range-separated hybrid
functional (SRSH) is more effective, as the SRSH functional has a weak dependence on ©.?*’ Tozer and
coworkers observed that singlet energies improved on increasing the amount of the exchange, but that the

triplet energies were too low in energy.””® These authors proposed stability analysis with Hartree—Fock (HF)
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methods to detect the instability. Furthermore, this investigation showed that using TDA could significantly

alleviate the problem with triplet instabilities in TDDFT calculations, as demonstrated earlier in Figure 3.
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Figure 5. Excitation energies of the (a) 'L, and (b) 'Ly, transitions in the Ca+4,Hs+2, oligoacene series (n = 2 to n = 6).
TDDFT data obtained with the BP86 GGA functional (red squares), the B3LYP standard hybrid functional (blue
diamonds), and the optimally tuned BNL range-separated hybrid functional (green triangles) are compared to
reference CC2 values, taken from Ref.2*° (black X markers). Adapted with permission from Ref.23! Copyright 2011
American Chemical Society. TDDFT natural transition orbitals for the Sy—S; transition in the tetramer of the low-
band-gap polymer PCDTBT (poly[N-alkyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)])
determined with (c) B3LYP and (d) gap-tuned ®B97.2*® The numbers specify the weight of the respective particle—
hole contributions. The electron—hole pairs predicted from the tuned LRC-hybrid are much more localized than those

predicted by standard functionals such as B3LYP. Adapted with permission from Ref.?*> Copyright 2014 American
Chemical Society.

2.2.4 Modeling solvent effects

The absorption spectrum of organic molecules can be highly dependent on the dielectric of the environment.

Several efforts have been made to model solute-solvent interactions, with many early efforts either being
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computationally expensive or lacking appropriate statistical treatment.”*?* Tomasi and coworkers
proposed the continuum solvation approach to alleviate these problems.?”*>® This method determines the
molecular electrostatic potential at a finite number of points on the molecular surface to evaluate the effects
of a solvent on the properties. This method, commonly called the polarized continuum model (PCM), is

widely used to model solvent effects.?**2%

PCM/TDDFT?*® provides an approach to model photoexcitation processes for organic molecules that
includes solvent effects, as the time scale for absorption is faster than nuclear motion.”** In cases of fast
solvation, Painelli and coworkers proposed an adiabatic approximation to model the system.?®> However,

for analyzing processes on the timescale of nuclear relaxations (e.g., fluorescence and phosphorescence),

266 267,268

linear response, state-specific, and vertical excitation’® PCM models have been proposed and yield
better results than standard PCM. For instance, recent works of Krumland et al. used PCM/TDDEFT to
investigate the effect of solvent and alkyl chains in sexithiophene.?’’ These authors observe that the torsion
angles between the adjunct monomers are heavily affected by solvent and alkyl chain, which correlate with
experimental findings. An alternative to PCM, the COSMO (COnductor-like Screening MOdel)*”' model
for solvation, has also shown improved estimation of excited-state energies. The equilibrium approaches
mentioned earlier are also available for the COSMO model.?’? Efforts are also being made to couple the
LRC functional tuning procedure discussed in the previous subsection with the solvent model to improve

the estimates of molecular properties.? 2727

2.2.5 Real-time TDDFT
Excited-state dynamics can be investigated by evolving the time-dependent quantum electronic system in
the time domain (see Figure 6). An in-depth discussion on the theory of RT-TDDFT can be found

elsewhere, >’ 276

though we note its development and application here for completeness. The method was
first proposed in 1999 by Yabana et al.””” and later applied to m-conjugated molecules, namely polyenes,

retinal, benzene, and Cg.>”” These authors observed good agreement with experimental results with an error
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of a few tenths in transition energies and 20% in transition strengths. The works of Van Voorhis and
coworkers and Lopata et al. improved the efficiency of the method.?”® ?”® In addition to determining the
optical spectrum, RT-TDDFT can be applied to study two-photon absorption, Raman scattering, and non-
linear response.”®* 2! Recent work by Seiler et al. used RT-TDDFT to understand the structural dynamics

accompanying the singlet fission process in pentacene crystal.?*

G

Abs. [arb. units]

(=]
(5]

oooooo
2
o

00

02 486 810
Energy [eV]

06t
0.0
06}

02r
0.0
0.2f

0 5 10 15
Time [fs]

H(t) [D] Ex(t) [107* Ha]

10.0fs 103 fs

\ vy

Figure 6. (a) Isosurface snapshots of the difference p(r,f) - p(r,0) between the excited- and ground-state charge
densities for zinc porphyrin at the B3LYP/6-31G* level of theory (H, C, and N atoms), using the Stuttgart RSC 1997
effective core potential for Zn. (b) Using a transient cross-polarized laser pulse, the system was excited at its resonance
of 3.53 eV. (c) The excitation results in charge oscillations along the n-conjugated backbone lasting ~1.2 fs each.
Adapted with permission from Ref.?’® Copyright 2011 American Chemical Society.

2.2.6 Visualizing excitations

A direct method to visualize excited-state transitions is complicated, as multiple configurations often
contribute to excitation amplitudes. In 2003, Martin applied the orbital transformation of Amos and Hall***
to occupied and virtual orbitals to yield natural transition orbitals (NTO).*** NTO have a maximal

correspondence between the excited particle and the empty hole, with the parameter A reflecting the
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importance of a particular particle-hole transition. Analyses with NTO provide physical insights into the
nature of excitations, as shown in Figure 7. Some example applications of NTO can be seen in the works
of Tretiak and coworkers, wherein the authors used NTO analyses to understand the donor-acceptor
strengths and conjugated bridge length impact in the two-photon absorption for dyes,”® localization of
excitations in conjugated polymers,?*® and excitation states in Y6.**’ Investigations involving excited triplet

state phenomena like TADF also use NTO for analysis.?***!
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Figure 2. Natural transition orbitals describing the excited states of 2-nitronaphthalene. Adapted with permission from
Ref.?? Copyright 2018 John Wiley & Sons, Inc.

2.3 Beyond DFT: GW-BSE
The excited-state properties of solid-state materials can be evaluated with the TDDFT methods discussed

297300 a5 well as by Hoffmann and Soos,*! excited

earlier.?”>**® As demonstrated by Spano and coworkers,
states can also be investigated with the Holstein model.***** In this section, we focus our discussion on the
application of Green’s function formalism of many-body perturbation theory (MBPT) within the GW
approximation to realize excited-states in crystalline organic m-conjugated materials.’* A detailed overview

of the theory of the GW method to obtain excited state properties is available in previous reviews.>*>% In
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brief, Dyson’s equation is first solved with GW approximation to obtain the band structure. As shown in

Figure 8, this is followed by solving the Bethe—Salpeter equation (BSE) for the two-particle Green’s

function, which yields the other excited state properties, including the optical spectra.’® 1
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Figure 8. Standard workflow for a BSE calculation. Adapted with permission from Ref.3!! Copyright 2015 AIP
Publishing.

In 2003, Tiago et al. first proposed using GW-BSE for organic n-conjugated systems.*'? The calculated
optical excitations for pentacene were in good agreement with the experiment, as shown in Table 1. Using
the GW-BSE approach, Hummer et al. analyzed the lowest absorption peaks in anthracene crystals.*'* The
authors found that the peaks are generated by strongly bound excitons or free electron—hole pairs, which
are dictated by the direction of the polarization with respect to the molecular axis. Sharifzadeh et al. later
proposed the electron—hole correlation function to provide a measure of electron—hole distance and charge
transfer character (Figure 9), which is beneficial for exploring exciton dissociation and singlet fission in

organic materials with GW-BSE 37314315

Table 1. Comparison between measured and calculated energy position of the main features in the extinction
coefficient of the vapor-phase crystallized pentacene structure.

Energy (eV)
Experimental® 1.82 1.94 2.11 2.25
Calculated® 1.73 1.86 2.13 2.27
aBased on ellipsometric spectra measured by Park et al.3'®
"Based on DFT calculations performed by Tiago et al.>
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Figure 9. (a) Computed optical absorption spectrum of the pentacene crystal compared with experimental data. The
computed spectrum was averaged along all three unit cell directions for incident polarizations. The computed energy
of the first singlet and triplet is indicated by dashed vertical lines. (b,c) Two-dimensional electron—hole correlation
function, Z(r), in the ab plane (left column) and in the ac plane (right column) for the singlet (fop row) and triplet
(bottom row). (d) Bulk crystal structure of pentacene. (e) Projection of the atomic structure onto the ab (leff) and ac
(right) planes. Adapted with permission from Ref.3!> Copyright 2013 American Chemical Society.

2.4  Modeling charge-carrier transport

In 1960, experiments detailing the charge-carrier mobility in anthracene crystals by Kepler and Leblanc
prompted the development of a theory for the underlying physical process.’'”*'® Within the band model,
the 7' temperature dependence with 1 < n < 2 for the mobilities in anthracene was modeled with a TB
approximation that assumed rigid, non-vibrating molecules and neglected molecular overlap.'? Later works
improved the method by including intermolecular electron exchange and molecular vibrations.*'**** DFT-
based implementations for the systems were adapted after the success of the method in inorganic systems.
Later, electron mobility experiments on anthracene showed that mobility increases with increasing
temperature along the c-axis.**'*** The hopping model was used to describe this behavior of charge-carrier

hops within the Marcus—Hush model of charge transfer;***32

non-local electron-phonon couplings were
neglected. When the thermal motions were included, large fluctuations in intermolecular electronic

coupling are observed. The proposed transient localization model accounts for these thermal motions, which
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can could lead to the localization of the charge carrier.**” A generalized model to describe experimentally
observed temperature dependence of charge-carrier transport (CCT) has not been fully resolved and
continues to be under development. Hence, materials are usually modeled with one of the available models
(band, hopping, and transient localization) to reproduce the experimental observations.**® There are
extensive reviews on the theory of CCT in organic n-conjugated systems;****” hence, in this section, we
provide an overview of the development of QC methods to describe charge-carrier transport within the
purview of the models. The QC methods discussed here provide a static picture of CCT and need to be
coupled the models of atomic motion. We describe such multiscale modeling approaches for CCT in

Section 4 (vide infra).

2.4.1 Intermolecular electronic coupling
Irrespective of the model for describing CCT in OSC, the intermolecular electronic coupling (also called
the transfer integral) is a critical parameter. Within the dimer approach, the intermolecular electronic

coupling is obtained by evaluating the following equation for dimer-level splitting:

1
Jn = E |En,1 - En,2|

where E,; and E, are the energies for the n™ molecular orbital (generally » = HOMO or LUMO) of the
two molecules in the dimer, and J, is the electronic coupling. The principal assumption is that the two
molecules that make the dimer are equivalent. In cases where the molecules are not equivalent (e.g., the
pentacene dimer), the difference in the site energy is incorporated, and the electronic coupling can be

obtained using the following equation:

1
Jn = E\/(En,l - En,Z)Z - (an,l - an,z)z

Here, a1 and a;,» correspond to site energies for a given pair of molecules. Huang and Kertesz observed
that the intermolecular electronic couplings from semiempirical calculations largely differed from ab initio
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methods However, the results were consistent for a variety of DFT functionals;**® this work showed a
dependence on the basis set that can lead to an error >20% for a minimal basis set and <4% for split valence
basis set like 6-31G*.3*? Sutton et al. explored the dependence on HF exchange and observed a twofold
linear increase in the electronic coupling from 0 to 100% HF exchange.*** Correction to the dimer level
splitting method was proposed by Valeev et al., wherein polarization effects to the electronic couplings
were considered.’®' This quantum-mechanical electrostatic-based method involved using an orthonormal

basis that preserved the local character of the monomer orbitals and, thereby, the polarization effects, as

shown in Figure 10. A more in-depth discussion on the electronic coupling is reviewed elsewhere. 2%
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Figure 10. (a) Ethylene m-dimer level splittings (25 and 2f5*) calculated at various levels of theory. Adapted with
permission from Ref.33® Copyright 2005 AIP Publishing. (b) Evolution of the effective electronic coupling (Jesr) the
dimer energy splitting approach (AE»/2) as a function of intermolecular center-to-center distance (R) of the cofacial
and tilted dimers. Adapted with permission from Ref.34” Copyright 2006 American Chemical Society. (¢) Evolution
of the tABH (filled symbols) and tABL (open symbols) values for rubrene (black circles) and pentacene (blue squares)
with BaLYP as a function of varying amount of HF exchange. Adapted with permission from Ref.3*° Copyright 2013
American Chemical Society. (d) Electronic coupling matrix elements calculated for six randomly oriented anthracene
dimers (in meV). For each molecule the closes contact is given. Unscaled |H,p| values are given in brackets. Adapted
with permission from Ref.>** Copyright 2015 Royal Society of Chemistry.
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2.4.2 Reorganization energy

The reorganization energy is required for modeling CCT using the Marcus—Hush equation. The
reorganization energy contributes to inner-sphere (intramolecular vibrational relaxations) and outer-sphere
(solvent reorganization) modes. In general, the inner-sphere reorganization energy can be determined from
single-point QC calculations using the four-point method.**® Engels and coworkers observed that the
reorganization has a correlation with the IP of the organic system and can show a strong dependence on the
DFT functional, as demonstrated in Figure 11. As a result, IP-tuned functionals tend to yield reliable
reorganization energies. From a molecular design perspective, the reorganization energy can be analyzed
as a sum of contributions from the vibrational modes of the molecule, as shown by Malagoli et al.**’ Later

methods developed by Uejima et al.*** and Lin et al.**! are based on atomic vibronic coupling constants and

local fragment modes respectively.*>
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Figure 11. (a) Charge reorganization energy and its decomposition into the neutral reorganization energy and the
cationic reorganization energy Adapted with permission from Ref.*>* Copyright 2015 American Chemical Society.
(b) Charge reorganization energies in eV for molecular p-type semiconductors calculated with different functionals
(without IP-tuning). Adapted with permission from Ref.33* Copyright 2016 John Wiley & Sons, Inc.
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2.4.3 Electronic band structures

Similar to the other descriptors discussed above, the electronic band structures of crystals derived for @-
conjugated molecules can be evaluated with DFT.* Microscopic properties such as band gaps, band
widths, and effective masses can be obtained from these calculations.>**** Fonari et al. investigated the
impact of exact exchange on the evaluating band structures (Figure 12).*°' This work observed that in
molecular crystals like pentacene, the bandgap and effective mass increase linearly with an increase in
exchange. In contrast, for systems like TTF-TCNQ, the bandgap increases linearly, and the effective mass

shows a marginal variation with an increase in non-local HF exchange.
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Figure 12 (a) Left axis: Dependence of the fundamental gap, valence, and conduction bandwidths on the percent HF
exchange. Right axis: Dependence of the largest hole electronic coupling and smallest hole effective mass on percent
HF exchange in the crystalline pentacene. (b) Valence and conduction bands of pentacene obtained using the aPBE

functional with different percent HF. Adapted with permission from Ref.3¢! Copyright 2014 American Physical
Society.

Notably, DFT electronic band gaps are often underestimated with respect to experiment due to the inherent
multi-electron self-interaction error (MESIE).**® Improved agreement with experiments can be obtained
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with first-principles many-body perturbation theory (MBPT).** % Sharifzadeh et al. demonstrated an
improvement in estimating the electronic band gap using the GW approach.?® The band gap for pentacene,
for instance, was determined to be 0.75 eV for a DFT-based approach and 2.2 ¢V with the GW approach,
which agreed well with experimental value of 2.2 eV. A similar agreement was seen for 3,4,9,10-perylene

tetracarboxylic dianhydride (PTCDA).*%*3%

2.5 Crystal structure—property relationships

OSC properties, here with a focus on crystalline materials though it is also true for amorphous materials
and those of varying order (as discussed below), are dependent on the packing arrangements of the
molecules in the solid state. As discussed in the Introduction, the interactions that govern this packing
arrangement are non-covalent, making the prediction of solid-state structure from a single molecule a
challenging and active area of research. This section provides a brief overview of methods that aim to

predict crystal structures and understand the interactions between the m-conjugated molecules in a crystal.

2.5.1 Crystal structure prediction

Molecular crystal structure prediction (CSP) is still an overarching challenge.****% Detailed reviews on the
development of computational tools for CSP can be found elsewhere.**”*% In brief, CSP involves three
stages: (i) conformer exploration of a molecule, (ii) generation of a crystal packing arrangement, and (iii)
structure ranking with a score or fitness function. In the early application of CSP to organic n-conjugated
systems, Aspuru-Guzik and coworkers generated crystal structures of fused ring systems.*’%3’! Because the
molecules were rigid, the authors omitted the first step of conformation exploration and used an
experimental crystal structure template to generate crystal structures of similar molecular cores and crystal
packing with force field-based MD simulations. The resulting structures were subjected to DFT calculations
to account for atomic charges and van der Waals effects. This approach agreed reasonably well with
experimental crystal structures and relative trends in estimated CCT properties. Day and coworkers

improved the generation of crystal structures by employing a quasi-random search that considered the shape

33



of the molecule to evaluate its crystal packing preference. This quasi-random approach, implemented in
Global Lattice Energy Explore software, also provides the lattice energy surface of the molecules.’’
Furthermore, to better access candidate molecules for discovery, the authors created molecular energy—
structure—function maps by mapping the properties onto the crystal energy landscape from CSP.*7* 3"
Another method to explore the lattice energy landscape was proposed by Marom and coworkers, which
uses a genetic algorithm, as shown in Figure 13.>”>37® The method was tested on four chemically diverse

sets of molecules from the sixth blind test,>”’

and the predicted structures were in agreement with the target
structures.’”> The bottleneck for CSP is the final ranking of the generated crystal structures, which often
uses DFT methods to estimate the lattice energies. Early lattice energy estimates were reliable to only 10
kJ/mol, and capturing polymorphs, which are often separated by energies of approximately 1 kJ/mol, was
challenging. The problem was alleviated by Yang et al., who proposed a highly accurate method to evaluate

lattice energy based on coupled cluster theory and DMRG.*”® With this method, the authors demonstrated

that the lattice energy of crystalline benzene could be estimated with an error of <1 kJ/mol.
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Figure 13. (a) Predicted energy—density landscape for the molecule inset. Each point on the landscape corresponds to
a distinct predicted crystal structure and the predicted global minimum (red open circle) corresponds to the
experimentally observed crystal structure. Structures on the landscape are color-coded according to their packing type.
Adapted with permission from Ref.3”* Copyright 2018 American Chemical Society. (b) Convergence of the predicted
benzene lattice energy as a function of the types of interactions included (dimers, trimers, etc.) and relaxation to the 0
K structure relative to the experimental value of (55.3+2.2) kJ mol™'.3’® Adapted with permission from Ref.’”
Copyright 2014 John Wiley & Sons, Inc. (c) The workflow for Genarris 2.0 from Marom and coworkers. Adapted
with permission from Ref.3”® Copyright 2020 Elsevier. (d) Schematic illustration of the workflow of GAtor on a high-
performance computing cluster. In the diagram, N independent GA replicas run on N computing nodes, with K core
processing units per node. Adapted with permission from Ref.*”> Copyright 2018 American Chemical Society.

2.5.2 Solid-state interactions

Noncovalent interactions dictate the packing arrangement of organic n-conjugated molecules in the crystal.
Several methods have been developed to better understand the interplay of the noncovalent interactions on
stability and packing of crystal structures.***** Energy decomposition analysis (EDA) deconstructs the
interaction energy into physically interpretable constituents. Kitaura and Morokuma proposed in 1967 a

method that partitioned the Hartree—Fock interaction energy into electrostatic, exchange repulsion,
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polarization, charge transfer, and unassigned interaction components using a variational approach.*®® Later

3% absolutely localized molecular orbitals,*® and block-

methods included localized molecular orbitals,
localized,®® to name a few. A more detailed review of EDA can be found elsewhere.’®® Lai et al.
investigated the stacking principles involved in the close packing of naphthalenetetracarboxylic diimide
(NTCDI) in crystals with EDA.*” These authors used the ETS-NOCV?**® implementation of EDA and

observed that the dispersion interactions played an important role in packing with a substantial contribution

from NTCDI and alkyl chain interactions.

Unlike the variational EDA methods, symmetry-adapted perturbation theory (SAPT) computes the
perturbative expansion of the interaction energy.’® **® SAPT includes terms describing: (i) electrostatic
interactions, which arise from dipole-dipole interactions; (ii) dispersion, which accounts for van der Waals-
like interactions; (ii) exchange interaction, which is quantum mechanical in nature and arises as a result of
Pauli’s exclusion rule; and, (iv) Coulomb interaction due to electron-electron repulsions.**! Of the many
SAPT variants, SAPT(0) neglects the intermolecular correlation potentials and is often used for =-
conjugated systems. Sherrill and coworkers used SAPT to test the competing hypotheses of Hunter—
Sanders®*® *** and Wheeler—Houk,*”> which aim to understand substituent effects of varied stacking
interactions in benzene dimers.*** The results indicated that both frameworks contributed to the interaction
energy, but the Wheeler—Houk is more dominant. This was followed by Ryno et al. who used SAPT(0) to
understand the variation in electrostatic effects in pentacene and TIPS-pentacene that are responsible for
experimentally observed shifts in ionization energy.'*®3* Several works use SAPT analysis to investigate
dimer and side chain interactions in experimentally observed polymorphic solid-state structures of organic
n-conjugated molecules.****% The use of SAPT for material design has also been demonstrated by Brédas
and coworkers.? **4% In one of the works, these authors explored the effect of chemical substituent on
the planarity of tetracene core in rubrene.*®” The SAPT analysis indicated that the planarity of the tetracene
core in rubrene is due to the minimization of the Pauli repulsion between the neighboring phenyl cores,

which can be tuned via chemical modification of the substituents, as shown in Figure 14.
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Figure 14. SAPTO0/jun-cc-pVDZ computed exchange (red), dispersion (royal blue), electrostatic (navy blue), and
induction (light blue) components for phenyl dimers extracted from fully relaxed twisted and constrained-planar
geometries of rubrene at the IP-tuned ®B97/cc-pVDZ level of theory. The total SAPTO interaction energy (black) is
also shown. Adapted with permission from Ref.3*® Copyright 2015 American Chemical Society.

3 Classical simulations

3.1 Theory of fundamental approaches

3.1.1 Force field-based atomistic simulations

Just as QC methods describe the electronic state of a molecular system via an approximate solution to the
Schrodinger equation, molecular dynamics (MD) describe the time evolution of a collection of molecules
according to the classical equations of motion. However, the two families of techniques fundamentally
differ in resolution. QC techniques capture electronic degrees of freedom and thus allow the calculation of
optoelectronic properties. By contrast, MD simulations and time-independent molecular mechanics (MM)
calculations usually represent electrons implicitly by assigning fractional charges to individual atoms (e.g.,
through DFT or other QC methods). By sacrificing resolution, MM/MD approaches can access significantly
larger time and length scales for significantly larger collections of atoms. It is not uncommon in recent
literature to find MD simulations of hundreds of thousands of atoms for dozens (if not hundreds) of
nanoseconds, with this performance made possible through nearly seven decades of algorithmic

improvements in cutting-edge simulation packages and computing power.
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The earliest implementations of MD simulations arose in the mid-twentieth century, with Alder and
Wainwright’s 1957 demonstration of simulated phase transitions for hard sphere systems and Rahman’s
1964 simulations of liquid argon standing as foundational testaments to the potential of the approach.*’!4*
In 1967, Verlet introduced a stable numerical integration scheme for calculating the time dynamics of a
collection of particles, along with an algorithm for keeping track of the nearby neighbors of a given
particle,*” both of which are still commonly used today. Indeed, modern atomistic MD simulations broadly
share the same underpinning conceit as these early works. Through iterative calculations of the classical
equations of motion, the dynamics of a collection of atoms or molecules are simulated over time, subject

to a set of constraints defined by the designer of the simulation.

Almost all modern implementations of MD simulations incorporate a handful of core mechanistic
features. A set of system-specific input files describe the atomic positions and velocities at a given time, as
well as the equilibrium geometric features (e.g., bond lengths, bond angles, dihedral angles, etc.) of the
species in the system. To manage atomic interactions, a force field (FF) selected or designed by the user
comprises a collection of simple functions that approximately capture the complex shape of a
multidimensional potential energy surface (PES) defined by contributions from bond stretching, angle
bending, dihedral torsion, electrostatic, and van der Waals interactions. Finally, system controls defined by
the user manage the bookkeeping of the simulation; for example, an integrator algorithm calculates atomic
trajectories by iteratively propagating the interdependent system of atomic positions, velocities, and net
forces at each time step, while thermostats and barostats maintain a prescribed system temperature or
pressure. This simple toolkit, which can be augmented with specialized terms to capture more complex
interactions, offers a means to rationalize the relationships among chemical structure, solution-phase and

solid-state ordering, and device performance.

Today, MD simulation packages are sleek and scalable, designed to exploit advances in computing
capabilities. Through spatial decomposition of the simulation system into a series of subsystems, each

managed by a different processor, time evolution within the subsystems can be simulated in parallel for
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greater efficiency. In addition, calculations for nonbonded (and/or bonded) interactions can be offloaded to
graphical processing units whose architectures are well suited for the calculation of many calculations at
once.**4% 1 2011, Larsson et al. reviewed some of these advancements, as well as others in software and
hardware.*”” Owing to two-thirds of a century of progress, MD simulations are now a powerful and
accessible avenue for the intelligent prediction of the properties of OSC materials based on chemical and

structural insights.

3.1.2 MD simulations of OSC: Practical considerations

The many contributions comprising MD’s long history have been well documented in 2011 by Beljonne et
al.**® and in 2022 by Ciccotti et al.,*” with a 2011 review of the fundamental theory and practice presented
by Gonzalez et al.*'® A review of MD simulations applied to small-molecule OSC thin-film growth

phenomena was also presented in 2011 by Clancy et al.*!!

Given the importance of the FF in capturing
interactions between atoms in the simulation system, considerable attention has been paid to the accuracy
of the FF itself. Most MD works adapt an initial set of bonded and nonbonded parameters from the OPLS-
AAM>*5 GAFF,*'* GROMOS,*™ #'®* CHARMM,*'” *'® AMBER,** *** or MM3 FFs,”'** often with
dihedral torsion potentials and partial atomic charges reparameterized according to DFT results.*****
Tsourtou et al. recently compared seven atomistic FFs derived from some of these FFs listed above to
examine the effect of molecular model parameterization on the predicted properties.*” In a similar vein,
Wolf et al. demonstrated the importance of accurately capturing the functional form of the dihedral torsion
potentials between repeat units in MD simulations of OSC polymers.***-*? In their 2021 work, these authors
weighed the relative merits of a variety of popular FFs for OSCs with a focus on polythiophenes and
discussed future directions for more efficient parameterization of new species.*”’ For a comparison of

specific adaptations of these FFs to OSC systems across roughly two decades (some of which overlap with

the work of Tsourtou et al.), the reader is directed to Table 1 of that work.
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Because many relevant optoelectronic, mechanical, and thermomechanical properties for OSC show some
dependence on polymer molecular weight, the decision of polymer chain length to use in MD simulations
is of high importance. Several sources offer guidance on this question, but the answer is not clear-cut.
Rissler’s 2004 work on the effective conjugation length of n-conjugated systems discusses in detail the
dependence of excitation energy and electron—hole distances on polymer size (i.e., number of repeat
units).*" Literature suggests that the electronic properties saturate at about 10-20 double bonds along the
conjugation pathway,*' but longer lengths (up to 24 — 30 double bonds or even more) may be necessary to
mitigate spurious end effects on the electronic and optical properties.*> The lower bound of the number of
repeat units to use in simulation is thus evident; chains should be sufficiently longer than the effective

molecular weight to appropriately capture the semiflexible chain dynamics of OSC polymers.

Estimating the upper bound is trickier. A 2022 work by Jiang et al. demonstrated for the DPP-based polymer
PDPPTT-T-10 that chains with only 20 repeat units showed a nearly identical density variation with time
to those with 40 repeat units.*** In particular, a 2012 study of P3HT by Bhatta et al. suggests that the
torsional potentials between repeat units and within side chains may even converge by 8 repeat units.*** On
the other hand, Tsourtou et al. paint a more complicated picture in their 2020 work exploring the effects of
FF choice and P3HT chain length.*?” Comparing chains with 20, 40, 90, and 150 repeat units, the authors
observe that while density and persistence length is approximately constant beyond 40 repeat units, the
effective conjugation length increases monotonically with chain length. It is thus a good idea to probe the
effects of chain molecular weight on a target property (e.g., density) for a given species to gauge the

dependence of the property on molecular weight.

The physics of semiflexible OSC homopolymers and donor—acceptor copolymers may motivate the
development of potential energy functions and FFs specifically designed for this class of materials.
Additionally, it is common in literature to see reparameterization of dihedral angles that have already been
parameterized (or calculation of partial atomic charges that have already been calculated) by previous

authors. While a growing trend of including simulation input files with submissions helps to ameliorate
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this, the time and effort spent on this task in even recent works underscore a need for better understanding

across the field of the recent progress in scientific understanding and in methodology.

3.1.3 Coarse-grained MD simulations

While MD simulations with atomistic resolution can provide valuable insights into OSC morphology,
sometimes the target system scale is realistically inaccessible due to the computing power available for
simulations. One strategy for approaching this hurdle is reducing the granularity of the simulation via coarse
graining (CG). In coarse-grained MD (CGMD) simulations, a mapping is introduced in which groups of
atoms are combined into new fictitious particle types. The properties of these particles are tuned to
reproduce features calculated from atomistic MD simulations or measured experimentally, with greater CG
(lower resolution) indicating a higher number of atoms encoded into a single CG particle. For example,
three species — P3HT, PCs;1BM, and chlorobenzene — are shown in Figure 15 at two levels of CG.** At the
all-atom level, each species is represented at the full atomistic resolution, with every pair of atoms

contributing interactions that must be calculated at each time step.
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Figure 15. Coarse-grained MD models for P3HT, PCs;BM, and chlorobenzene. Adapted with permission from Re
Copyright 2018 Elsevier.
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Consider just the chlorobenzene (CB) molecule shown here; one all-atom CB molecule contributes twelve
atoms. These twelve atoms, in turn, contribute twelve bond stretching interactions, eighteen angle bending
interactions, and thirty (proper and improper) dihedral torsion interactions. These sixty interactions must
be calculated for each CB molecule in the system (which could be hundreds or thousands) at each time step
(which could be hundreds of thousands or millions)! The CG representation, by contrast, has only three
“bond” stretching interactions and three “angle” bending interactions. By reducing the number of particles
in the mapping, CG also reduces the number of necessary calculations and greatly increases the accessible

time and/or length scales.

CG mappings also fundamentally alter the connectivity of the molecular model. Due to these alterations,
the FF parameterization must be fully redesigned; since CG particles do not represent individual atoms but
rather groups of atoms, these particles must possess properties that capture the identity of the group they
represent. Despite this difference, however, the functional forms of the FF potentials in CG models are
often similar to those found at the atomistic level, with stretching, bending, and twisting potentials available
to give individual chemical identities to different particle types. Many implementations of CGMD also
include potentials like stochastic thermal impetuses and viscous drag-like potentials to satisfy the

fluctuation—dissipation theorem.*****

The fidelity of CG mapping is thus highly important in CGMD simulation design. It can, to some extent,
be tuned to achieve a balance between accurate recreation of results extracted from atomistic trajectories
and performance improvement by reducing resolution. This is a careful balance, however; as shown in 2016
by both Gross et al. and Root et al.,*** ** CG models of P3HT that map each entire repeat unit to a single
particle yield worse predictive capabilities of thermomechanical properties than a three-particle model in
which the side chains are mapped to two particles. Still, the computational savings from reducing the P3HT
repeat unit from twenty-five atoms to only three particles offer exceptional savings in computational cost.
In the literature, CG mappings are often chosen manually and through chemical intuition of distinct

moieties. Nonetheless, in a recent review of applications of CGMD to OSC,*' Jackson discussed modern
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advancements in the systematic generation of CG mappings based on graph representations of

442-447

molecules, machine learning,*** and spectral matching of dynamical modes.**®

In addition to the mapping, a CG model requires a set of potentials (i.e., a FF) that characterize the
interactions between particles, including both “bonded” and “nonbonded” interactions. While these terms
are perhaps strictly inapplicable to CG methods, practically, they are still convenient shorthand. Many

methods exist to generate these potentials,*** **°

with the most popular today being Boltzmann inversion
(BI),*! iterative Boltzmann inversion (IBI),** inverse Monte Carlo,**** force matching (FM),**>*’ and
relative entropy.**® As noted by Jackson,*' these methods are based on the goal of reproducing specific
properties of the ensemble — namely, structural correlation functions for BI, IBI, and inverse Monte Carlo;
potentials of mean force for FM; and the Kullback—Leibler divergence between the atomistic and CG
representations for relative entropy.*”” Each approach has situationally dependent relative merits and
demerits.**!**¥ 4% In 2016, Scherer and Andrienko explored combinations of BI, IBI, and FM applied to a
three-particle CG mapping to capture bonded and nonbonded interactions;*® in this case, a combination of

BI for bonded interactions and IBI with pressure correction for nonbonded interactions led to a CG model

with the best predictive capabilities.

Owing to the lower computational cost of CG approaches, many works have leveraged these methods for

accelerated modeling of OSC morphology,?*% 43 443 461480 qonor/acceptor/solvent miscibility and blend

435, 461-464, 466-469, 473, 475, 476, 478, 481 435, 440, 466, 468-470, 473-476, 478-430

ratio, phase transitions and solvent evaporation,

461,467.470.474 and mechanical properties.*** 7% In a series of 2010-2014 works, Lee et al. developed

diffusion,
and applied CG models for P3HT:PCs;BM mixtures,** * PBTTT:PC4BM,*** and MEH-PPV 280. 463. 465.
4 Based on these models, they characterized a wide range of properties, including the average domain
sizes, interface-to-volume ratios, and percolation ratios of P3HT:PCsBM blends at different weight
ratios;** bulk heterojunction morphologies, chain conformations, and m-m stacking; " 62-466-4¢ and phase

transitions and solubility.*** 4% 4% T jkewise, in a series of recent publications that focused on the

P3HT:PCsBM system, Munshi et al. explored the morphological ramifications of preheating and
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annealing, P3HT molecular weight, blend ratio, and polydispersity.**> 474" In a later work, they also used
this model to examine the thermal and mechanical properties of P3HT:PCs;BM active layers under uniaxial

tension, demonstrating an anti-plasticizing effect of the PCs;BM molecules.*’®

3.2 Conformational diversity

3.2.1 Enhanced sampling techniques

The central role of polymeric materials in organic electronic devices has motivated the development of
simulation techniques to describe chain conformations accurately. In addition to approaches designed to
capture the conformational diversity and its contribution to entropy and free energy (discussed in the
following two sections), a wealth of enhanced sampling techniques exists to accelerate the exploration of
the system’s energetic landscape. In a comprehensive 2019 perspective, Yang et al. discuss and sort these
methods depending on their use of collective variables (CV), also called reaction coordinates, to
parameterize and guide the system evolution.”®> A 2020 protein-focused publication by Liao provides
additional discussion of these two classes of techniques.*** Today, the most widely used CV-based methods
include metadynamics (MetaD),*** **5 variationally enhanced sampling (VES),**¢ umbrella sampling,**’
Markov state models (MSMs),**® local elevation,*® and steered MD,*° while the most popular CV-free

methods include parallel tempering (PT),*! the closely related replica exchange MD (REMD),*” integrated

493 D 494-496
b

tempering sampling (ITS),”” and accelerated and temperature-accelerated M and multicanonical

simulations.*’

The general conceit of these methods is to incentivize the system to visit sites on the PES that are otherwise
unlikely to be sampled (e.g., due to energetic barriers). CV-based methods typically feature a bias potential
added to the other interatomic potentials, with the bias potential at a given CV based on visitation history

484, 485,489, 498. 499 potential energy (umbrella sampling),*” 3% 3! Kullback—Leiber

(local elevation, MetaD),
divergence (VES),*% 486392 or an arbitrary CV trajectory (steered MD).** 395" Ap exception is the MSM

approach, in which the system is partitioned into states with fast intrastate transitions but slow interstate
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transitions, allowing the transition probability between one state and another is dependent only on the first

state. 99397 These probabilities may then be propagated to model dynamics on longer timescales.’*®

CV-free methods are more varied. Like many CV-based methods, the hyperdynamics variant of accelerated
MD relies on introducing a bias potential to modify the PES and encourage the system to overcome potential
barriers.’*” *'° Temperature-accelerated MD instead elevates the temperature of the system to facilitate
transitions between states.*** *'' The PT and REMD approaches involve multiple simultaneous low- and
high-temperature replica simulations, accelerating the exploration of conformational space by periodic
molecular swap attempts between replicas.”" **> The ITS method is similar, with Boltzmann-weighted
contributions to an effective bias potential coming from multiple temperatures and an effectively infinite
swap attempt frequency;**> >'%3'3 however, by avoiding the use of multiple parallel calculations, ITS offers
higher efficiency than PT and REMD.*"* The sampling distribution of the multicanonical method is based
on the inverse of the density of states, yielding a high sampling efficiency; the canonical ensemble
properties can then be recovered through reweighting.*” !4 Although the multicanonical method
nominally requires foreknowledge of the density of states, the Wang—Landau algorithm allows the density
of states to be calculated during the sampling convergence.’!” Finally, the simulated annealing approach
uses an artificial system “temperature” as a parameter to determine the acceptance probability of a new

system state;'® 1

at lower temperatures, higher-temperatures states become harder to access, so while it
is possible to access higher-energy states from a given state, the system gradually “cools” as the simulation

progresses. This makes simulated annealing an efficient technique for guiding a system to a global

minimum but less effective for thorough exploration of the conformational landscape.

Despite the computational cost and sophistication of enhanced sampling techniques, works throughout the
past two decades have studied aggregational order and achieved improved torsional conformation space
sampling in m-conjugated systems through PT and REMD,** 47 320328 ymbrella sampling, - 46 329-33¢

MetaD,> ¥ and MSMs.** **! For example, several publications by Janke and coworkers apply PT

methods to P3HT systems with atomistic MD and CGMD,*? 3 revealing detailed insights into polymer
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conformations and adsorption onto textured substrates.’>>>2® Likewise, de Pablo and coworkers conducted
a detailed atomistic MD and CGMD investigation of the conformations and morphologies of BDT and

PTB7 polymer systems through PT and umbrella sampling.*’-33% 532

3.2.2 Conformational analysis

The versatility of MD simulations makes them excellent tools for elucidating the roles played by backbone
and side-chain chemistries in regulating chain conformations and, consequently, in modulating CCT. Most
MD-based conformational analyses follow one or both of two primary approaches: (i) visual
characterization, categorization of common conformation types, and discussion of the implications of these
types on CCT;*2- 427433, 463, 479, 519-521. 542546 a0 (i) dihedral angle probability distributions and variation of
selected properties with dihedral angle.***-3** However, other approaches to rationalizing conformational

diversity have also been employed with success.”> > It is

important to note that the predictive capacity of
the MD simulation is directly and highly influenced by the accuracy of the dihedral angle parameterization

defined within the FF. For this reason, the torsional potential parameters for dihedral angle rotation between

repeat units along the main backbone must be carefully validated (e.g., via a dihedral angle scan).

Polymer chain conformation plays an influential role in modulating CCT, as it affects the tendency of the
chains toward ordered m-m stacking, effective charge delocalization, and charge carrier mobilities
throughout the OSC active layer. Atomistic MD and CGMD simulations offer a means to directly observe
the conformational diversity of polymer chains in vacuum, solution, and bulk phases. Simulations of
sufficiently large solvated and bulk systems may contain enough individual molecules to sample
conformational space to a satisfactory extent, but in all three cases, enhanced sampling techniques may be
employed to accelerate the sampling process. Conformational analyses performed in these fashions have
been applied to OSC materials extensively in the literature, revealing a wealth of information about the
effects of monomer chemistry, side chain density, regioregularity, chemical environment, and temperature

on the predominant chain conformations.*?> 427 433 463, 479, 519-521, 342546 Khoshkhoo et al., for instance,
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presented images of representative conformations of MEH-PPV chains, demonstrating a more extended
conformation in chloroform than in methanol.** More recently, Jackson et al. identified archetypical
conformational classes adopted by a range of fifteen n-conjugated monomer chemistries, using contact

maps to represent these conformations clearly and effectively.’®

Aside from providing molecular-scale visualization of individual chain conformations, MD simulations are
also effective tools for quantifying the conformational diversity of an entire ensemble. One popular
approach is analyzing histograms or population distributions of specified dihedral angles, generally between
monomer units. For example, Lemaur et al. extensively characterized the populations of PBTTT and IDTBT
dihedral angles in crystalline (with both interdigitated and non-interdigitated side chains) and amorphous
phases.’** This idea can also be extended to quantify another measurable property as a function of the
dihedral angle distributions. Batagin-Neto et al. investigated the variation of the heat of formation of MEH-
PPV and DM-PPV dimers with intermonomer dihedral angle,** while Karunasena et al. examined the bond
ellipticity and intermonomer bond length as a function of the intermonomer dihedral angle.’* Finally, using
the elegant folding and nonplanarity parameters devised by Qin and Troisi,”* Jiang et al. quantitatively
characterize the conformations of DPP-based donor—acceptor copolymers.*® After extracting sample
conformations from the bulk phase, they perform TDDFT calculations on 20-mer chains and analyze the
NTOs of the excited states, demonstrating that while low-energy excitons tend to localize in relatively

planar and unfolded regions, some excitons can delocalize across conjugation defects.

3.2.3 Entropy and free energy calculations

It is often desirable to obtain the free energy of a system to calculate an assortment of ensemble properties.
However, while the enthalpy of an MD simulation system can be readily calculated from the total energy,
pressure, and volume at a given time, the entropy is significantly more complicated to estimate due to the
number of microstates increasing sharply with conformational diversity (and thus with the degree of

polymerization). While enhanced sampling techniques can accelerate the exploration of the PES, enabling
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the use of microstate counting methods for entropy estimation, there is no guarantee that all regions of the
conformational landscape will be visited efficiently (or at all). Fortunately, other approaches exist to tackle
this challenge; these methods can be categorized into those aimed at calculating relative free energy
differences and those aimed at estimating absolute free energy. As a note, here we regard free energy and
entropy as interconvertible based on fundamental thermodynamic relations and other system properties

calculated during the MD simulation.

Here, we present a high-level overview of free energy calculation techniques; for a more detailed theoretical
discussion, the reader is directed to a series of publications by Meirovitch.*** Methods of calculating the
system free energy can be categorized based on the goal of estimating relative free energy differences
between states or absolute free energies. Popular approaches within the former category include microstate
counting with enhanced sampling,” the weighted histogram analysis method (WHAM),*" !
thermodynamic integration (TI),****** free energy perturbation (FEP),**> *® the adaptive integration
method,*’ energy decomposition based on Jarzynski’s equality,® **® and Bennett’s method.’® Each of
these techniques requires a way of capturing both of the states of comparison. Microstate counting methods
involve a MD simulation capable of accessing both microstates, hence the utility of enhanced sampling

methods. The other techniques generally rely on integration along a path that maps the path between the

two states to a reaction coordinate, such as potential energy or temperature.

Whereas relative free energy difference calculation methods generally follow an integration path between
states, absolute free energy calculation methods generally begin with a MD simulation to generate a sample

570, 571

morphology. This category of techniques includes the harmonic approximation, the quasi-harmonic

(QH) approximation,”*>7*

and step-by-step reconstruction approaches (e.g., the local states and
hypothetical scanning methods).”® *">*"" In the harmonic method, the free energy is calculated based on
the Hessian matrix of second derivatives of the energy with respect to the atomic coordinates. The QH

approximation instead uses the covariance of the coordinates, which can be expressed as internal

coordinates for improved accuracy and higher computational efficiency. However, as the conversion to
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internal coordinates is not always straightforward, the approximation introduced by Schlitter expresses the
covariance in Cartesian coordinates.”” By contrast, the step-by-step reconstruction scan conformational
space by summing or integrating the conformational contributions from a probability function constructed

from transition probabilities of partial chain reconstructions.

While techniques to calculate free energy (and entropy) through classical simulations have not been
extensively applied to OSC, recent works have nonetheless demonstrated their feasibility in studying these
materials. Guilbert et al. performed MD simulations to generate a BHJ morphology for the P3HT:PCs;BM
system, then built and diagonalized the covariance matrix of the atomic fluctuations.”” Using Schlitter’s
approximation, they then determined the conformational entropy of the two species, showing that the
blending-induced vitrification of P3HT and plasticization of PCsBM arise due to entropic changes in the
two species. In another vein, several works have used MD simulations to decompose the calculated Gibbs
free energy into contributions from Coulombic interactions, van der Waals interactions, enthalpy, and
entropy.>** %82 Using this method, Reid et al. demonstrated improved n- stacking in PTB7 chains with
linear side chains (as opposed to branched).”** Using a similar decomposition strategy, Qian et al. identified
the role of vibrational and conformational entropy changes in weakening polythiophene substrate
adhesion.”® Finally, Wu et al. leverage thermodynamic integration and Gibbs free energy decomposition
to calculate the enthalpies and entropies of the integer charge transfer and partial charge-transfer complex
polymorphs of doped P3HT, showing that the dominance of the integer charge transfer polymorph observed
in prior literature can be attributed to its small critical nucleus and the modest activation barrier for

converting to it from the partial charge-transfer complex polymorph.>*

3.3 Estimation of bulk properties
3.3.1 Aggregation and ordering
MD simulation methods access length scales on the order of 10'-10? nm, making them well-suited to

characterizing the solvated and bulk-phase morphologies of OSC active layers. Indeed, they have been
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exploited extensively throughout the past two decades to study the bulk ordering of m-conjugated molecules
and polymers,*26: 433. 468, 470. 471, 474. 582612 Gjyen the crucial role played by ordered n-m and lamellar stacking
in modulating CCT in organic electronic devices, it is hardly surprising that the aggregation tendencies of
n-conjugated species have been widely studied. > 474 583, 385, 589-395. 597, 598, 601-607. 609, 611, 612 poye|king et al., for
example, simulated PBTTT morphology during heating to link changes in the chain stacking distances to
the evolution of nematic and dynamic order parameters, side chain melting, paracrystallinity, variation in
site energies, and interchain electronic coupling.® Likewise, Alberga et al. simulated the bulk
morphologies of P3HT and PBTTT to examine the relationships between microstructural features such as
nematic order, n-m stacking stability, and side-chain interdigitation and electronic characteristics such as
hole mobilities and electronic coupling.”® In a different vein, by varying the donor species in a series of
DPP-based donor—acceptor copolymers, Reisjalali et al. probed the influence of polymer chemistry on
aggregation and the stacking of the m-conjugated backbones.®” As shown in Figure 16, the generated
morphologies highlighted the effects of repeat unit chemistry and side chain density in regulating chain

rigidity and average aggregate sizes.
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Figure 16. Atomistic MD simulation models of three similar DPP-based donor—acceptor copolymer, illustrating
effects of donor moiety on n-w stacking characteristics. Adapted with permission from Ref.%” Copyright 2021 Royal
Society of Chemistry.
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In addition to stacking of the n-conjugated backbones, computational efforts to rationalize the influential
role of the chemical structure have explored the effects of regioregularity and polymorphism on
supramolecular order.’®!%%*%% Obata and Shimoi modeled regioregular and regiorandom P3HT systems
via MD simulations, showing that regioregular chains arrange into ordered lamellae.”' In regiorandom
P3HT, however, the disordered PES of the alkyl side chains leads to increased disorder in the resultant
morphology. Likewise, polymorphism in crystalline OSC polymers affects the ability to control device
morphology with precision. Because the archetypical n-conjugated homopolymer, P3HT, exhibits two well-
known structural polymorphs, several works explore features of these polymorphs through MD
simulations,*26- 382 393.€03.606 poe|king et al. examined the transition from the metastable form I' polymorph
to the stable form I, linking polymorphism and regioregularity to electronic coupling and charge-carrier
mobility.”” Casalegno et al. also studied the phase transition between the two polymorphs, identifying three
main steps: (i) loss of side chain interdigitation, (ii) interruption of stacking order, and (iii) polymer
reorganization into tighter stacks and larger periodicities.”> These authors also recently revisited the
polymorphism of the P3HT system in a study comparing the performance of three FFs specifically adapted

for poly(3-alkylthiophenes).**

Meanwhile, in an investigation of the crystalline polymorphs of P3HT,
Zhugayevych et al. perform a comprehensive conformational search for two-dimensional m-stacks,
identifying multiple polymorphs with energy levels below those of both room-temperature amorphous
structures and optimized experimental models.®”® Figure 17 shows a representation of supramolecular
ordering in P3HT, as well as the energies of a collection of identified polymorphs. The authors observe that

P3HT is a statistically frustrated system in which microstructural control is limited by the presence of

multiple competing interactions.*®
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Figure 17. (a) Stacking and ordering features in P3HT. (b) As evidenced by the number of low-energy structures in
P3HT, enabling precise morphological control requires a complete understanding of its significant polymorphism.
Adapted with permission from Ref %% Copyright 2018 American Chemical Society.

Although the solid-state morphologies of OSC materials have been explored in many simulation studies,
fewer works have explored the kinetic implications of solvent evaporation on the resultant active-layer
microstructure. Nonetheless, several works demonstrate the feasibility of investigating this process through
MD simulations.** 476 607 €88 ‘Wwe highlight in Figure 18 images of the morphological evolution during
solvent evaporation occurring on microsecond time scales from three of these computational studies. The
first, shown in Figure 18(a), depicts snapshots from a CGMD simulation of a P3HT:PCs;BM blend in
chlorobenzene for approximately 14 us generated using an assisted solvent evaporation model (i.e., a

);*™ in this

proportion of randomly selected solvent molecules are periodically deleted from the system
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study, Alessandri et al. examined the effects of drying rate, P3HT molecular weight, and annealing on the
BHJ microstructure, obtaining atomistic resolution from the CGMD model through back-mapping. A
similar assisted evaporation approach was adopted by Gertsen et al. in an atomistic MD simulation protocol,
wherein the authors studied IDTBR film drying during chloroform evaporation, as shown in Figure 18(b).
These works are impressive technological demonstrations of the capability of simulation methods to capture
evaporative phenomena. However, Alessandri et al. noted that the assisted evaporation scheme leads to an
artificially uniform distribution of species throughout the system, whereas realistic evaporation occurs at
the surface of the blend.*’* In the third work we highlight, Lee et al. employed an unassisted evaporation
scheme to examine the evolution of an archetypical blended emissive layer for OLED devices.*”® As shown
in Figure 18(c), the authors observed that solute aggregation initiated near the interface resulting in an
inhomogeneous distribution of solvent throughout the system, in turn leading to preferential molecular

alignment and solvent molecules remaining trapped within the film.

0.00 ps 0.16 ps 0.31 s 0.47 ps 0.67 ps 0.77 s t=0ps 02ps 04ps 06ps 08ps 1.0us
Figure 18. (a,b) Assisted simulated evaporation schemes, in which solvent molecules are randomly selected for
deletion, are common approaches of modeling the evaporation of solvent species from OSC thin film morphologies.
Reproduced from Ref .47+ 607: 608 Copyright 2017 American Chemical Society. Adapted with permission from Ref.4*
607,608 Copyright 2020 American Physical Society. (c) However, modern computing power also permits the simulation
of unassisted simulated evaporation schemes. Adapted with permission from Refs.47# 607-608 Copyright 2020 American
Chemical Society.
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In addition to solvent evaporation, several works have investigated OSC adsorption on both inorganic
substrates (e.g., silica) and organic substrates of the same or other species, 8384587590592, 597.607.613 \ fere dig
et al., for example, investigated the orientation of P3HT nanocrystallites as a function of the packing
density, packing order, and end-group functionalization of alkyl-trichlorosilane self-assembled monolayer
substrates.™®” MD simulation results revealed that the edge-on P3HT orientation is encouraged by the
smoothly varying PES of disordered substrates but hindered by potential energy wells in highly ordered
substrates; these energetic traps are caused by favorable interactions between the substrate and the side
chains of the P3HT chains. Similarly, Alberga et al. emphasized the importance of polymer—substrate
interactions in modulating the ordering in the resultant film, demonstrating that P3HT and PBTTT chains

display a stronger tendency to aggregate in the proximity of silica substrates, with this tendency enhanced

after the annealing process.>’

3.3.2 Mechanical and thermomechanical properties

A wide range of device-relevant mechanical and thermomechanical properties can be obtained by analyzing
the morphologies generated from MD simulations. For example, the thermal stability of BHJ
microstructures can be examined by analyzing the diffusivity of species at room temperature or elevated

593,610,614

temperatures, while simulated annealing procedures allow the calculation of some phase transitions

like melting and glass transition temperatures (7j).**% 478 602 604. 609, 610. 615-617 Qinyylation trajectories also
readily offer insights into mechanical characteristics like density and elastic modulus,*- 476 478. 604. 610. 611,
615618 Eyrther, developments in computational power have enabled atomistic MD and CGMD simulations

of polymers with molecular weights large enough to capture entanglement,*?”: #40: 466. 474,476, 59, 604, 611, 614, 615,

618-621

The thermal characteristics of OSC may be calculated in a relatively straightforward manner from
simulation trajectories. Analysis of mean squared displacement during isothermal MD simulations gives

estimates of the diffusivities of individual species; for example, Pani et al. studied the diffusion of Cep and
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PCs:BM through the P3HT morphology as a function of crystallinity and regioregularity.’”> They observed
that while PCs;BM aggregates in regioregular P3HT, it intercalates between the side chains of regiorandom

P3HT, in turn suppressing PCs;BM diffusion.

Thermal transitions may be estimated by instead varying the temperature over the course of an MD
simulation. For instance, the coefficient of thermal expansion of amorphous polymers varies linearly at
temperatures sufficiently above or below 7, A simulated cooling procedure that spans this range thus
enables estimation of T, by applying linear fits to the high- and low-temperature regimes of a plot of density
(or specific volume) vs. temperature, *% 478 602,604,609, 610.615-617 Thjs technique was applied to donor—acceptor

copolymer systems in works by Root et al.,*** Reisjalali et al.,*”” and Callaway et al.,*'°

yielding predicted
T, values in good agreement with experimental measurements. In a similar fashion, Li et al. demonstrated

the capability of MD simulations to accurately predict the melting temperatures of anthradithiophene-based

OSC using slab models separated by vacuum gaps.®'°

Mechanical properties such as the elastic modulus are also accessible through MD simulations. The system
is first extended in one direction at a fixed rate. A moving average of the virial stress tensor is then evaluated

440, 604

throughout this window, with the elastic modulus computed from the resulting stress—strain curve as

normal. Many works have successfully modeled the stress—strain behavior of both neat and blended OSC
active layer morphologies using both atomistic MD and CGMD simulations.*?: #78: 399 604. 617-620 However,
simulation methods are not limited to the elastic deformation regime. Indeed, several of these works
additionally investigate the bulk morphology at the onset of fracture at high tensile strain;*’ % 619 620
representative stress—strain curves and high-strain sample morphologies from three of these works are
shown in Figure 19. In two 2015 publications, for example, Tummala et al. investigated the effects of P3HT
degree of polymerization and fullerene adduct functionality on the fracture mechanics and amount of chain
entanglement of neat and BHJ morphologies, as shown in Figure 19(a) and Figure 19(b), respectively.**”

619 Similarly, Rodriquez et al. observed that while fracture occurred in systems of low molecular-weight

P3HT 50-mers (N = N.), as shown in Figure 19(c), the crack formation did not occur in the high molecular-
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weight 300-mer systems (N = 6N.), with stress instead concentrating within relatively few entangled

chains.%%°
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Figure 19. (a) Stress—strain curves and representative snapshots of P3HT when deformed at 0.1 nm/ps along the z-
direction via atomistic MD. Adapted with permission from Ref.>*® Copyright 2015 John Wiley & Sons, Inc. (b) Stress—
strain curves of P3HT, P3HT:PCBM, and P3HT:ICMA and representative snapshots of P3HT:acceptor blends at
approximately 300% strain using atomistic MD. Adapted with permission from Ref.®'® Copyright 2015 American
Chemical Society. (c) Stress—strain curves of disentangled (N = N,) and highly entangled (N = 6N,) P3HT and
representative snapshots at approximately 200% strain. Adapted with permission from Ref.®*° Copyright 2017
American Chemical Society.

Finally, as suggested above, chain entanglement is an influential factor in diffusion, fracture toughness, and
ductility. Atomistic MD and CGMD simulations can help clarify the ways in which chemical structure,
backbone rigidity, and degree of polymerization affect chain entanglement (in turn, modulating diffusion

rates and mechanical properties).*?’- 466 474. 476. 39, 611, 614, 615, 618, 619. 621 Characterization of the entanglement
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properties of the system is often performed with primitive path analysis,”” % ¢! for which the Z1 code
package is a popular choice.®”>** This approach was demonstrated by Yoshimoto et al., for instance, the
authors performed stress—strain simulations on P3HT:Cs blends with varying degrees of polymerization
and blend ratios. Results from the simulations indicated that the elastic modulus is relatively insensitive to
the amount of chain entanglement, whereas the ultimate tensile strength scales with the number of kinks

per chain (a metric of chain entanglement).®'®

3.3.3 Phonon transport and thermal conductivity

As discussed by Wang et al. in a recent perspective of thermal transport in OSC,%*® the bulk transport of
phonons (i.e., collective atomic vibrations) is of practical interest both to OSC materials, wherein phonon
transport is a vector of heat transfer and a reflection of thermal stability, and to organic thermoelectric
materials. As low-frequency acoustic modes are thought to make the most important contribution to thermal
transport,®”’ phonon transport is thus often captured through the thermal conductivity (x) and/or the figure
of merit ZT for thermoelectrics. Many older exact ab initio and approximate semiclassical techniques model
x through the Boltzmann transport equation;***%* however, these methods require calculating interatomic
force constants, a computationally expensive task. Other approaches extract the bulk lattice thermal
conductivity directly from quantities calculated during the course of MD simulation.®*%* In the GK
relations, « is calculated from the autocorrelation of microscopic heat currents at equilibrium (i.e., the decay
rate of thermal fluctuations).®****! While the slow convergence of the heat current autocorrelation functions
(ACFs) limited the initial GK formulation, several averaging schemes have been proposed to accelerate
convergence.**”** Importantly, x values show distinct dependence on the heat flux formulation used in the

GK calculation.53%-6%

NEMD and AEMD simulations directly probe the system’s thermal response to applied heat currents,
avoiding the problem of slow ACF convergence.®** %! [n NEMD, a heat flux is established by increasing

and decreasing the atomic velocities within hot and cold regions at opposing ends of the system; « is then
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extracted from Fourier’s law of conduction based on the thermal gradient arising in response to the imposed
heat flux.®>>%°% It is worth noting that long simulation times are often necessary to establish a steady-state
linear thermal gradient.®** %% 65! Further, this method exhibits pronounced finite-size effects; however, the
corrected x can be extrapolated through a Matthiessen-like equation.®*® ®*": 6% The limitations of GK and
NEMD motivated the development of AEMD, wherein the thermal response is measured by establishing a
stepwise temperature differential between the left and right halves of the system and then observing the
decay of the thermal gradient (occurring on a timescale ~10* ps) after the boundary is released.®** ®** More
recently, the first-principles sinusoidal AEMD (SAEMD) variant introduced by Puligheddu et al. imposes

% a detailed comparison of the

a sinusoidal thermal profile that varies continuously with position;*
computational performance of the GK, NEMD, and SAEMD approaches in that work revealed that the

equilibrium time in SAEMD was approximately two orders of magnitude faster than the convergence of

the heat current ACFs in GK or of the thermal gradient in NEMD.

Several authors have used these methods to explore the effects of chain length, crystallinity, polydispersity,
and doping level on phonon transport and heat conduction in PEDOT systems.®*% A 2017 work by Shi
et al. applied NEMD to model phonon transport in PEDOT fibers, highlighting chain length and crystallinity
as avenues to control .°” In order to improve thermal stability, they showed that rationally designed chain-
oriented PEDOT fibers can exhibit significantly reduced x and enhanced Z7. Similarly, Genovese et al.
used GK and AEMD to study the effect of morphology on thermal transport, demonstrating a decrease in
x of over two orders of magnitude in nearly amorphous PEDOT compared to the purely crystalline phase.®'
In addition to the degree of crystallinity, ¥ depends strongly on chain length, as shown by these works and
by Maeno et al.; in their 2018 NEMD work, they demonstrated that adsorption of toluene sulfonic acid on
PEDOT reduces x, with more pronounced effects at longer chain lengths.®®® Later, Yu et al. simulated
thermal transport at different tosylate dopant concentrations with GK, with heavily doped systems

demonstrating a roughly 50% reduction in x.°** Thermal transport in this system was demonstrated to occur
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via a combination of PEDOT:dopant interfacial conduction, PEDOT lattice conduction, and dopant

convection.

In a 2014 work, Shi et al. proposed a model to estimate the optimal doping level and peak Z7T value based
on intrinsic carrier mobility, lattice «, and effective density of states.®*® Using NEMD to calculate « for a
series of BTBT derivatives, the species were shown to have high charge carrier mobilities, low x, and high
Seebeck coefficients. Recently, Gueye et al. studied thermal conduction in two of these BTBT derivatives
via scanning thermal microscopy, with results supported by AEMD.* In contrast to the two-dimensional

CCT characteristics, AEMD simulations revealed appreciable thermal transport along all three crystal axes.

Finally, these techniques have also been used to study thermal conduction in the archetypical family of
polythiophenes. Lv et al. performed MD simulations and GK modal analysis to rationalize the contributions
of individual phonon modes to x in individual polythiophene chains.’® Results of their approach suggested
that anomalous divergent thermal conductivity is possible for chains of specific lengths due to low-
frequency transverse vibrations in the plane of the thiophene rings, supporting earlier hypotheses that
attributed divergent x values to correlated phonon—phonon scattering. Later, Zheng et al. synthesized a
series of poly(3-alkylthiophene) copolymers and copolymers of 3-butylthiophene and 3-butoxythiophene,
comparing experimental characterization against NEMD simulations.*” In the second family of species,

the authors show that x is enhanced by reducing steric hindrance and enhancing p-m conjugation.

4  Multiscale modeling approaches

4.1 Connecting optoelectronics to morphology

As the preceding sections demonstrate, the predictive scope of QC methods and classical simulation
approaches includes a wide range of phenomena relevant to organic electronic device performance.
However, each technique has optimal temporal and spatial scales of applicability; while QC methods can
resolve electronic phenomena, the lower cost of classical simulation methods is more amenable to modeling

the evolution of bulk microstructure on nanosecond time scales. At the same time, the distinguishing
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characteristics of m-conjugated materials rely on the rich interplay between electronic and nuclear dynamics,
with different relevant processes occurring on time scales of femtoseconds, picoseconds, and nanoseconds.
A natural conclusion of these observations is that capturing these phenomena accurately requires using a
multiscale modeling approach leveraging the strengths of each constituent method to capture phenomena

within its scope of applicability.

Modern computing allows multiple length scales to be resolved in tandem via combined quantum and
classical dynamics approaches. These approaches enable the effects of electronic structure to be captured
explicitly while atomic motion is still propagated classically via integration of the equations of motion; for

example, this is the basic premise of ab initio MD and the Car—Parrinello MD scheme.®”

However,
multiscale simulation design is more often piecemeal, applying the techniques discussed previously at their
respective length scales to develop a holistic understanding of the relationships among optoelectronic
processes, self-assembly, bulk morphology, and (thermo)mechanical properties. For example, after FF
parameterization, a sample morphology can be generated through classical simulations, optionally using
coarse-grained MD or enhanced sampling techniques to accelerate the exploration of conformational space.
After sampling molecular conformations from this morphology, QC methods can be used to calculate
electronic structure and intermolecular electronic coupling. Additionally, kinetic Monte Carlo (KMC)
simulations can be performed on the MD-generated morphology to calculate charge carrier mobilities. For
a theoretical discussion of Monte Carlo and KMC methods, the reader is directed to a comprehensive
theoretical treatment by Kratzer,””' as well as to MC and KMC reviews by Andersen et al. and Cheimarios
et al.®”> 973 Of particular interest to this work, several works have reviewed KMC simulations of OSC
materials for modeling CCT, exciton diffusion lengths, charge recombination, and Seebeck coefficients.’**
674679 We also highlight a handful of additional works that used KMC methods to characterize a variety of

phenomena in OSC materials,>** 13 680-684

Combining results from these approaches into an aggregate picture thus offers insights into the relationships

among repeat unit chemistry, exciton delocalization, electronic coupling (and electron—phonon coupling,
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as discussed below), chain conformations, morphological (dis)order, and CCT. Many works demonstrate
the utility of this type of piecemeal modeling paradigm in connecting the optical, electronic,
thermomechanical, and morphological characteristics across length scales in a diverse variety of OSC
molecules and polymers. 327370439, 471, 472, 543, 547, 548, 550, 553, 554, 586, 589, 590, 600, 685703 Eor- example, D Avino et al.
used a combination of MD simulations, QC calculations, and classical microelectrostatic calculations to
explore electron-hole separation processes occurring at a prototypical P3HT:PCe;BM interface.®”* The
authors demonstrated the energetic favorability of charge separation of about 50% of the interfacial
electron—hole pairs, which they explain by connecting electronic polarization, the electrostatic landscape,
and interfacially induced torsional disorder in P3HT chains. Similarly, Olivier et al. leveraged MM/MD
simulations and QC calculations to examine the supramolecular organization and subsequent charge-carrier
mobilities of three families of polymers based on P3HT, CDT-BTZ, and P(NDI20D-T2).°” Through a
combination of QC and MD methods, the authors succeeded in linking the chemistry, dimensions, and side-

chain density of the monomers comprising the conjugated backbone to the supramolecular organization and

subsequent charge-carrier mobilities of these species.

Bockmann et al. demonstrated the effectiveness of interconnected multiscale simulations in a study
comparing simulated optical absorption spectra of P3HT in solution, thin films, and bulk crystals with those
obtained from UV/Vis spectroscopy experiments.*’" After modeling the thin-film morphology via CGMD,
the authors used the CG definitions to backmap the resultant morphology to atomistic resolution;
statistically averaged TDDFT calculations performed on an ensemble of molecules selected from the
generated morphology yielded optical absorption spectra in good agreement with the experimental spectra.
From these results, the authors observed that torsion between adjacent thiophene rings dominated
intermolecular effects in determining the position of the main absorption peak. Most recently, a 2022
multiscale simulation study from Mombrt et al. combined DFT calculations, MD simulations, and ab initio
MD simulations to examine mixed ionic—electronic transport in a P3HT crystalline supercell with explicitly

represented lithium-based dopants and additives,’” a notably rare feature in simulation works. The reported
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ionic and electronic conductivity values agreed well with experimental values, allowing further exploration
of the static and dynamic disorder effects arising from the explicit Li dopants. These works highlight the
many ways that quantum and classical simulation methods complement each other to yield deeper insights

into the multiscale phenomena governing the performance of these materials in OSC devices.

4.2  Adding charge-carrier transport

To supplement the techniques discussed above, charge-carrier mobilities can be calculated via Marcus
theory,”™ Miller-Abrahams theory,’®> KMC simulations, or charge patching methods. As highlighted in
several high-level reviews of CCT modeling approaches, this pipeline allows for thorough characterization
of the CCT characteristics of OSC materials.**” 7% ¢77- 706710 Eor example, a 2009 Account by Nelson et al.
illustrated a variety of key computational approaches to model molecular packing, charge transfer rates,
and charge carrier transport.””” The same year, Riihle et al. introduced the versatile object-oriented toolkit

709

for coarse-graining applications (VOTCA),”™ now a popular modeling package in multiscale studies of

CCT. The workflow of the interrelated approaches on which the VOTCA package is based is depicted in
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Figure 20. A flowchart of multiscale approaches connecting relevant optoelectronic properties to computational
modeling methods. Reproduced from Ref.3*” 7% Copyright 2018 American Chemical Society.

In a 2014 review, Shuai et al. discussed a multiscale approach to modeling charge-carrier mobility in OSC

75 their work

by combining quantum charge transfer theory, MD simulations, and KMC simulations;
extends past the semiclassical Marcus theory by highlighting the quantum nuclear tunneling effect in charge
transfer. More recently, a 2018 perspective by Gryn’ova et al. distilled insights from these and other works
into a set of design principles for effective quantum, classical, and multiscale simulations enhanced with

data-driven analysis. These studies offer extensive insights into the underlying framework of KMC as

applied to OSC materials.

Many works have leveraged KMC techniques to extract charge-carrier mobilities from a morphology
generated through MD approaches, 346336 388.613.675. 689, 707. 708, 711-721 A g early as 2009, Vukmirovi¢ and Wang
developed a multiscale ab initio simulation method combining QC calculation of electronic states, classical
FF simulations, and KMC simulations.’®® Using this method, the authors estimated the mobility of
disordered P3HT, yielding good agreement with experimental values. Later, a 2017 work by Li and Brédas
demonstrated that charge-carrier self-interaction errors could result in significant inaccuracies in KMC
simulations of OSC materials. They proposed two approaches to overcome these errors. The first, the
“exact” method, takes into account the evolution of the electric potential between the initial and final
configurations; in the second, the “exclusion” method, the electric potential difference in the absence of the
hopping carrier is considered in order to evaluate the site-energy difference. By reducing finite-size effects,
the authors show that improved accuracy can be delivered in KMC simulations at a lower computational
cost. In 2018, Kaiser et al. developed a generalized KMC framework based on Voronoi tessellation.®** Their
approach models excitonic processes (including triplet exciton dynamics) in crystalline and amorphous
domains of OSC materials by performing a weighted average over a set of interaction sites at predefined

locations around each species.
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A 2021 publication by Paterson et al. used a swath of experimental characterization techniques in
conjunction with DFT, MD, and KMC approaches to examine the effects of molecular n-doping on CCT
in the popular non-fullerene acceptor species O-IDTBR.” In these explorations, the authors identified a
previously unreported dopant-induced packing orientation resulting in high electron mobilities in excess of
1 ecm? V' 57!, which was confirmed through computational simulations to be the result of the synergy
between the n-type doping and morphological changes. More recently, a 2022 multiscale study by Dilmurat
et al. exploited atomistic MD simulations, QC calculations, and KMC simulations to show that the density
and quality of close-contact points between donor—acceptor copolymers modulate the charge-carrier
mobilities in the amorphous phase.”' Further, the donor block size and the alkyl side-chain density are
shown to be important factors in determining the quality of close-contact points between chains; the
elongated and bulky dithiopheneindenofluorene promote a larger number of higher-quality close contacts,
which subsequently yields improved charge-carrier mobilities. Finally, in 2022, Giannini and Blumberger
presented a detailed overview of computational techniques, which include multiscale and mixed QC-MD
techniques like nonadiabatic MD (NAMD) for modeling CCT in OSC materials.*** Figure 21 shows their
fragment orbital-based surface hopping approach for direct charge propagation in a NAMD framework in

the context of other theories of charge transport with corresponding ranges of applicability.
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Figure 21. A complex multiscale framework of CCT regimes in OSC materials. Reproduced from Ref.3*° Copyright
2022 American Chemical Society.

4.3 Modeling electron—phonon coupling

As the Franck—Condon principle demonstrates, the electronic and nuclear dynamics are fundamentally
intertwined; the motion of the nuclei over time can cause electronic transitions, while the relaxation of
excited electronic states can likewise induce vibrational motion in nearby atoms.””*’?* Moreover, phonons
can couple to charge carriers, resulting in energy and momentum transfer, in turn lowering charge-carrier
mobility and degrading overall device performance. Reflecting the different scales of electronic and nuclear
dynamics, accurate description of electron—phonon coupling often motivates specific multiscale approaches

designed to model both electronic and nuclear processes.

In discussing these approaches, it is useful to break the larger picture of electron—phonon (e-ph) coupling
into local and nonlocal coupling, which can be understood in the context of the Holstein—Peierls model.***
303, 629.726. 727 The Jocal Holstein-type coupling, also known as diagonal dynamic disorder, represents the
fluctuation of on-site electronic energies (i.e., Coulomb integrals, corresponding to the EA and IP of the
site for mobile holes and electrons, respectively’”® ’*) with the phonon normal modes. The local e-ph

coupling can be quantified via the polaron binding energy;****% in the framework of Marcus—Hush theory,

it has been shown that the reorganization energy is approximately twice the polaron binding energy.*** 7*
2 The Huang—Rhys factor, which can be used to calculate the interchain charge transfer rate, also quantifies
the strength of the local e-ph coupling. The nonlocal Peierls-type coupling, also known as off-diagonal

dynamic disorder, represents the fluctuations in intermolecular electronic couplings (often called transfer

integrals) as a function of the vibrational modes.

The local and nonlocal e-ph coupling can be determined based on three essential quantities: (i) site energies,
(i1) electronic couplings, and (iii) phonon normal modes. The site energies and electronic couplings can be
calculated through QC methods like DFT or the semiempirical valence bond/Hartree—Fock (VB/HF)

formalism, as discussed in Section 2.4.1 (vide supra). On the other hand, the normal modes can be obtained
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via QC or classical FF-based methods; although classical simulations naturally allow larger systems to be
modeled at equal or lower computational cost, thereby reducing finite-size effects, it is important to note
that QC-based approaches often offer greater flexibility and accuracy in going beyond the I'-point
approximation (i.e., including other points within the first Brillouin zone).”*** Phonon normal-mode

analysis is generally performed using a software package such as DUSHIN”** or Phonopy.”*’

Using these techniques, local and nonlocal e-ph coupling have been extensively investigated in a variety of
OSC species.”™ 770 For example, as early as 2006, Troisi and Orlandi presented a mixed quantum—
classical approach in which QC calculations and MD simulations were used to examine the nonlocal
coupling in pentacene and anthracene, showing that the perturbative treatment of the e-ph coupling is
invalid due to the large fluctuations in the electronic couplings.**’ Their results suggested the dynamic
electronic disorder as a key factor in limiting the charge mobility of crystalline OSC. In a similar vein,
Sanchez-Carrera et al. explored the oligoacene crystal series from naphthalene to pentacene.”*” Their results
demonstrated that neither the weak nor the strong electronic coupling limit were adequate for naphthalene
and anthracene due to the comparable strength of nonlocal e-ph couplings and electronic couplings,
although the electronic couplings were shown to dominate in tetracene and pentacene. Further, they

observed a decrease in the nonlocal relaxation energies with increasing molecular size.

The validity of the I'-point approximation in calculating the nonlocal e-ph coupling has been explored by
Yi and coworkers in 2012 and again in 2018; in both cases, they demonstrate that the overall nonlocal e-ph
couplings are underestimated by considering only the I'-point approximation.”*"- > These authors observe
in the latter of these works that, in order to describe the force constants accurately, sufficiently large
simulation supercells are needed to eliminate the imaginary phonon modes. More recently, Xie et al.
explored the rigid-body approximation commonly used in the evaluation of the nonlocal e-ph coupling.'*®
By allowing the mixing of intra- and intermolecular modes, they revealed moderate to strong contributions

to the nonlocal coupling from low-frequency modes (i.e., acoustic modes and librations), certain out-of-
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plane modes, and a combination of some C—C stretching modes. The low-frequency (<200 cm™) acoustic

modes are shown to be the strongest contributors to the nonlocal coupling.

5 Data-driven methods

5.1 High-throughput virtual screening

While the chemical space of OSC is large, recent advancements in computational hardware and optimized
computational codes have enabled the computational screening of large OSC libraries to discover
candidates with desired properties for experimental investigations. In this process, termed high-throughput
virtual screening (HTVS), a computational funnel approach is used wherein each level yields progressively
more accurate property estimation at increased computational cost, as shown in Figure 22(a). The HTVS

approach, which is routinely used in drug discovery,”!”™* is growing in popularity in accelerating the
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Figure 22. (a) A computational funnel scheme. The increasingly strict filtering criterion eliminates many molecules
that are not of interest and identifies the top-performing candidates in a virtual library. Adapted with permission from
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Ref.™® Copyright 2020 John Wiley & Sons, Inc. (b) Structure and workflow of the Clean Energy Project (CEP). (c)
The 26 building blocks used for generating the CEP molecular library. The Mg atoms represent chemical handles, i.e.,
the reactive sites in the generation process. We introduce simple links between two moieties (by means of substituting
two Mg for a single C-C bond) as well as the fusion of two rings. Adapted from Ref.”* Copyright 2011 American
Chemical Society.

In 2011, Aspuru-Guzik and coworkers presented an approach to discover organic n-conjugated materials
for application in solar cells using high-throughput screening.”® 2.4 million combinatorially generated
molecules were screened by HTVS workflow, as shown in Figure 22(b). In the initial screening, low
computational cost cheminformatics descriptors were used, which was followed by semiempirical
calculations. The molecular geometry of each screened molecule from semiempirical calculation was
optimized at the BP86/def2-SVP level of theory. Further, 14 DFT single-point calculations were performed
on the optimized geometry, which provided the eigenvalues of molecular orbitals and other properties,
including Miilliken populations and bond order analyses. The computational results were correlated to
experimental observations to provide insights into structure-property relationships and thereby lead
candidates for organic photovoltaic applications.””® Wilbraham et al. created a library of m-conjugated
polymers and used a combination of tight binding and DFT methods for HTVS of optoelectronic
properties.”' The authors then used the data to calibrate a linear model, which provided DFT-level accuracy
from tight binding data thus reducing the computational cost for further polymer screening. In the works
of Oberhofer and coworkers,”*? Troisi and coworkers,”>> 7>* and Ai et al.,” the authors used HTVS on the
experimental crystal structures from the Cambridge Structural Database, which contains over 1 million
structures.””® Their workflows used reorganization energy, electronic coupling, and optical excitation

energy as properties for screening and proposed few candidate crystals for semiconducting applications.

5.2 Machine learning
The HTVS approach provides sets of potential target materials with desired properties but the
computational cost to accurately estimate property for new structure is high. The use of machine learning

(ML) algorithms aids the computer in learning the relationship between the input (structure) and output
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(property), thereby predicting the output from new inputs. ML algorithms, including ridge regression,”’

760 provide estimates of output

support vector machines,””® decision trees,” and artificial neural networks,
in a few seconds. While some of the ML models are black boxes, the implementation of ML in organic n-
conjugated materials is still sought as ML models rapidly predict electronic, redox, and optical properties,
thereby accelerating discovery.”®'”® The data to train the ML model is generally from high-throughput
calculations or data infrastructures like the Clean Energy Project (CEP),’** OMDB,’® and OCELOT."** An

in-depth review of ML can be found elsewhere.”®> 7 In this section, we will discuss some notable

contributions of ML in organic m-conjugated systems.

5.2.1 Property prediction

The property prediction for organic m-conjugated systems is performed with ML algorithms, including
support vector machines, random forests, ridge regression, and artificial neural networks. For predicting
properties like molecular orbitals and low-lying excited states, various methods were explored to transform
the chemical information into the necessary fixed-size vector input for the ML models.”®” Some of the
vector inputs consist of extended circular fingerprints (ECFP)’*®, molecular access system (MACCS)’®
fingerprints that are abundantly used in medicinal chemistry or human selected set of descriptors like
number of rings, number of rotatable bonds. The ML predictions of Pyzer-Knapp et al. on the CEP dataset
achieved a mean absolute error of 28 meV for HOMO and 32 meV for LUMO.”” In 2015, Duvenaud et
al.””! proposed using graph fingerprints of a molecule as the input for ML models, as shown in Figure 23.
These neural graph fingerprints do not require a set of descriptors of fixed-size and are more interpretable

than the cheminformatics fingerprints discussed earlier.

With the development of ML model architecture, more sophisticated models are available. The ML models
usually depend on learning the input representation and reduce the need for a human selection of input
features.””” The use of SMILES’” string to generate the learned representation from variational

autoencoders (VAE)"™* was proposed by Gomez-Bombarelli et al.””> The HOMO, LUMO, and gap
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prediction with the VAE for the QM97’® dataset yield similar performance as the graph fingerprints

t,777’ 778

discussed earlier but could be improved by hyperparameter tuning. Models like SchNe message

)779 780-784

passing neural networks (MPNN)'”, and graph neural networks are also applied in property prediction
tasks. The input for these models is the molecular structure with information on atoms and bonds. Lu et al.
compared the performance of some of these models in predicting molecular orbital energies and gaps and
singlet excited-state energies and observed that SchNet outperforms other models, as shown in Figure

23(c).”®
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Figure 23. (a) A visual representation of the computational graph of both standard circular fingerprints and neural
graph fingerprints. First, a graph is constructed matching the topology of the molecule being fingerprinted, in which
nodes represent atoms, and edges represent bonds. At each layer, information flows between neighbors in the graph.
Finally, each node in the graph turns on one bit in the fixed-length fingerprint vector. A more detailed sketch including
the bond information used in each operation is shown on right. Adapted from Ref.””! (b) Examining fingerprints
optimized for predicting insolubility. Shown here are representative examples of molecular fragments (highlighted in

70



blue) which most activate different features of the fingerprint. Adapted from Ref.”’! (right panel) Lu et al.”®° use
oligothiophenes (OTs) of varying lengths to test the performance of four state-of-the-art DNNs in predicting various
optoelectronic properties. Plotted above are the test set mean average errors (MAEs) as a function of the length of
OTs, and the optoelectronic properties considered here are (¢c) HOMO energy, (d) LUMO energy, (¢) HOMO-LUMO
gap, and (f) first excited-state energy. Reproduced from Ref.”®> Copyright 2020 American Chemical Society.

Materials properties like PCE, crystal packing arrangement, and reorganization energy can be predicted
from molecular representation. For instance, Ito et al. used neural graph fingerprints of molecules to predict
molecular packing with an accuracy of 64% for organic crystals.”*® Sun et al. developed a model capable
of predicting PCE with an accuracy of 91%,”®’ based on chemical structure images input into convolutional
neural networks (CNN). 7*® Atahan-Evrenk et al. trained ML models with kernel ridge regression and deep
neural networks to predict reorganization energy and observed that deep neural networks yield mean-
absolute as low as 6.5 meV.” Recent ML models for bandgap’®® and electronic coupling’' predictions use
representation like SOAP kernel”* ™* or Coulomb matrix’®* coupled with an artificial neural network or

SchNet.””®

5.2.2 Inverse design

As in the case of property prediction, SMILES can be used as input to generative models that output a
molecule with desired target property. Jorgensen et al. developed a grammar VAE that uses SMILES
representation for monomeric donor-acceptor units of a polymer to learn the mapping to a continuous vector
representation that is then used to generate new molecules.””* The model generates molecules within the
61% target range of HOMO, LUMO, and optical gap values. Kim et al. used a recurrent neural network’*>
for an inverse design approach to discover blue phosphorescent OLED molecules.””® They employed a
target condition of T1 > 3.0 eV with SMILES as input to the model. The model generated a distribution of
molecules with a mean T1 of 3.02 eV, with over 58% of molecules satisfying the target condition, as shown
in Figure 24. Recent generative models™” 7" are using SELFIES™ instead of SMILES, as the validity of

SELFIES is always guaranteed but not SMILES. Generative models based on flow,***%* diffusion,*”*: and
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generative adversarial networks (GAN)***%7 are used in molecular design, but their application in the

discovery of OSC materials is currently limited.

60% -

50%

40%

molecules

30%

Y
o]
S 20%

1

10% -

Fract

0% +—r—t————————N—r

24 26 28 30 32 34 36
T, (eV)

Training library

-------- Targeted inverse design
(T <300 eV)

— =+ Untargeted inverse design

Figure 24. Distribution of simulated T1 (eV) energy levels for blue phosphorescent OLED hosts for the training
library, the targeted (T1 > 3.00 eV) inverse-designed molecules, and the untargeted inverse-designed molecules. The
fractions of hosts possessing T1 values greater than 3.00 eV were 36.2%, 58.7%, and 26.9%, respectively. Adapted
with permission from Ref.”® Copyright 2020 American Chemical Society.

5.2.3 Active learning

Sampling the whole chemical space of organic m-conjugated systems is unfeasible; hence there is a need to
sample this space effectively. Active learning (AL) provides the tools necessary for such investigations.**®
809 The approach generally consists of a Bayesian optimization algorithm that acts as a surrogate model for
exploring the chemical space. The works of Reuter and coworkers demonstrate the application of AL to
organic m-conjugated systems.®'’ From the chemical space of over 65,000 computationally generated
molecules, these authors optimized the charge-conduction fitness, consisting of the reorganization energy
and the energy-level alignment of the molecular HOMO and Au work function. The authors observed that
the AL approach outperformed the convectional computational funnel discussed previously. The AL

approach is not only limited to the virtual screening of molecules but could be used to generate the data for

72



training the ML models. Smith et al. used an automated AL workflow, shown in Figure 25, to generate new

samples for training where the ANI ML potential fails to predict the energy accurately.®!!

( a) 0.00 0.00 (b Best-performing molecules at
S e selected learning steps
& =U. w -0, .I}
& 00 040 SR 5.5
0805 5 10 15 080 1357 9111315 Inlol Btep
Learning step Learning step A =127 meV An=101 meV

£homo = -5.22 eV Eromo = -5.09 eV Eromo = -D.16 eV

i{mmww@%

Step 7 Step 9 Step 11 Step 13 Step 15
Ay = 83 meV A =76 meV An = 54 meV A =59 meV Ay =57 meV
Euomo =-5.12eV gm0 =-5.09 eV Euomo = =5.09 eV Evomo = -5.16 eV Evove = =5.09 eV Evome = =5.12 eV

(C) Initialize with Reduce initial Search for new Search for new

ANI-1 data set configurations conformations

Start: Terminate: Start: End cycle:

Restart
configuration §f{Conformers with

Initialize Begin active Initialize with
training set % learning reduced
Wi 2% ANI-1 Train ANI cycles training set
potential on
training set

Train 5 ANI
models on |,
training set

sampling pi < p less than
|5% of sampled?

Generate new

Train 5 ANI

Samplenow ' - conformers
" (iallcﬂ§te o Reduced N() o\ amount configurations [§ Conformer [Add p<pto from CSS mtl::ii:: tos :gtaw
tor the remaining REEERERN | (<2 ¥ith (ChEMBL21, || sampling X PL | to conformer g
se . | "
| non-training dEi<0.1 GDB, etc.) | set(CSS) sampling set

Rt keal/mol?

Add 2% of
data where
dE < 0.1
keal/mol

Calculate Addp <pto
| p=olE) /N training set

Calculate

pi=o(E) /YN

|

Figure 25. (a) Median values Fiedian Of molecular fitness F' over the prioritized molecules at different learning steps;
step 0 shows the initial population median. (b) Kernel-density estimated distribution of F” over the batch of molecules.
The number of queries leading to favorable and unfavorable molecules is indicated next to each violin. Examples of
high-performing molecules at various learning steps. Adapted from Ref.®'® (¢) Fully automated active learning
workflow for data generation comprising three main steps of reduction of existing dataset, configurational search, and
conformational search. Adapted with permission from Ref.3!! Copyright 2018 AIP Publishing.

5.2.4 ML potentials

As discussed in Section 3.1.2, parametrizing the FF for OSC is challenging and time-consuming. ML
potentials can alleviate many of these problems, providing accurate atomic potential energy surfaces and
reaction pathways with reduced computational costs. ML potentials are classified as being dedicated or

transferable. Dedicated ML potentials need quantum-chemical data and can be applied only to a small set
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of systems, while the transferable ML potentials require no prior quantum-chemical calculations and can
be applied to many systems. Detailed reviews on ML potentials are provided by Manzhos and Carrington®'?
and by Miiller and coworkers.®®> ANI, an example of transferable ML potentials for small organic
molecules, was introduced by Roitberg and coworkers.®'* The initial ANI model, ANI-1, was trained on
molecules up to 8 heavy atoms, including four atom types (C, H, N, and O), with subsequent potentials
ANI-2x including S, F, and C1.814.315 The AIMNet®!'® model, which is based on Bader’s theory of atoms in
molecules®!” and shares some similarities with ANI models, is capable of predicting not only energies but
also molecular charges and spin multiplicity with error in the range of 2-3 kcal/mol, as shown in Figure
26.8"® While these ML potentials enable rapid exploration of the lowest-energy conformer of small organic

819

molecules,”” the application to extended organic m-conjugated molecules/polymers remains less explored.
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corresponds to AIMNet iterative passes. For comparison, DFT (PBE0O/ma-def2-SVP) spin-density and charges are also depicted.
Adapted from Ref.3!® (¢) Comparison of dihedral potentials computed via the ANI-2x ML potential and via other methods.
Reproduced from Ref.13 Copyright 2020 American Chemical Society.
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Figure 27. (a) The number of

(Orbital energy)/|B|

qubits required to store the wave function of a molecule is shown as a function of the

number of basis functions for different mappings. For the compact mapping, the qubit requirement also depends on
the ratio of the number of electrons to basis functions, which is relatively constant for a given basis set; although the

higher quality cc-pVTZ basis i

s more economical per basis function, a molecule in this basis uses substantially more

functions than with the 6-31G* basis. The qubits required for specific molecules and basis sets are also shown.
Adapted with permission from Ref.32! Copyright 2005 The American Association for the Advancement of Science.
(b) The Hiickel MO energies of the five m-bonding molecular systems obtained by the state vector simulator

(simulator), the ibm_kawasaki

machine with error mitigations (mitigated), and the ibm kawasaki machine without

error mitigation (raw). The orbital energy specified by [i) just above the respective subfigures represents the orbital
energy of the ith excited MO. Adapted with permission from Ref.%?> Copyright 2022 AIP Publishing.

75



6  Outlook

In this Review, we examined several decades of advances in computational materials modeling techniques
and their application to develop physicochemical insights into m-conjugated molecules and polymers and
OSC. These systems provide particular challenges for computational study given their size — pushing the
limits of quantum and classical mechanical techniques — chemical diversity, and disparate properties that
are highly dependent on the environment in which they are studied or operate. With the advent of exascale
computing, and the continued development of computational algorithms and mathematical and physical
frameworks, ever more complex systems are being investigated in silico with increased accuracy.®”
However, we note that many of the methods that are now a few decades old still find wide use given their
simple nature and capability to provide distinct physical understanding; for instance, a recent work used the
Hiickel MO method to simulate an organic system on emerging quantum computing hardware, as shown in
Figure 27.%%? Further, the emergence of more complex computational workflows will necessitate the need
to adapt open-source tools (e.g., SEAMM?®**) to promote easy workflow implementation and
reproducibility, and the continued democratization of data and computational method utility; for example,
making it easier to find, access, and implement standardized FF parameterizations for OSC, especially n-

conjugated polymers, would streamline the process of initializing MD simulation systems.

Computational methods will continue to play critical roles as OSC materials design and discovery evolve
from Edisonian trial-and-error approaches toward machine-informed and machine-driven design and
discovery. Advances in ML and artificial intelligence (Al) to drive (semi)autonomous robotic platforms
require data sets of immense size. Although a wide variety of OSC are regularly explored with
computational methods, open access to this data abiding by FAIR principles®® is limited. While recent
efforts have curated small datasets, a dataset for OSC with extensive muti-fidelity data is needed to produce
reliable ML models. Furthermore, the trained ML models should provide the uncertainty associated with
predictions and be made accessible to the OSC community, leveraging infrastructure like OCELOT ML."®!

Currently, OSC molecular property prediction methods are being adapted from drug design, while ML
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models for material properties prediction from the solid-state structure are still scarce. Such a situation calls

for future method development focused on the data-driven design of next-generation OSC materials.
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