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Abstract 
 
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, 

computational methods – ranging from techniques based in classical and quantum mechanics to more recent 

data-enabled models – can complement experimental observations and provide deep physicochemical 

insights into OSC structure–processing–property relationships, offering new capabilities for in silico OSC 

discovery and design. In this Review, we trace the evolution of these computational methods and their 

application to OSC, beginning with early quantum-chemical methods to investigate resonance in benzene 

and building to recent machine learning (ML) techniques and their application to ever more sophisticated 

OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and 

how sophisticated physical and mathematical frameworks have been created to overcome those limitations. 

We conclude by providing an outlook for the future development of computational techniques to discover 

and assess the properties of high-performing OSC with greater accuracy. 

  



5 

Contents 

1 Introduction ......................................................................................................................................... 7 

2 Quantum-chemical approaches ......................................................................................................... 9 

2.1 Semiempirical QC methods .......................................................................................................... 9 
2.1.1 Modeling resonance energy and π-conjugation ...................................................................... 10 
2.1.2 Understanding molecular interactions with light: Excited states ............................................ 12 
2.1.3 Moving to larger systems ........................................................................................................ 13 
2.1.4 Considering all valence electrons ........................................................................................... 14 
2.1.5 Tight-binding methods ............................................................................................................ 16 

2.2 DFT methods .............................................................................................................................. 17 
2.2.1 Emergence of DFT and TDDFT ............................................................................................. 18 
2.2.2 Tamm–Dancoff approximation ............................................................................................... 19 
2.2.3 Long-range corrections to the density functional .................................................................... 20 
2.2.4 Modeling solvent effects ......................................................................................................... 23 
2.2.5 Real-time TDDFT ................................................................................................................... 24 
2.2.6 Visualizing excitations ............................................................................................................ 25 

2.3 Beyond DFT: GW-BSE .............................................................................................................. 26 
2.4 Modeling charge-carrier transport .............................................................................................. 28 

2.4.1 Intermolecular electronic coupling ......................................................................................... 29 
2.4.2 Reorganization energy ............................................................................................................ 31 
2.4.3 Electronic band structures ....................................................................................................... 32 

2.5 Crystal structure–property relationships ..................................................................................... 33 
2.5.1 Crystal structure prediction ..................................................................................................... 33 
2.5.2 Solid-state interactions ............................................................................................................ 35 

3 Classical simulations ......................................................................................................................... 37 

3.1 Theory of fundamental approaches ............................................................................................. 37 
3.1.1 Force field-based atomistic simulations .................................................................................. 37 
3.1.2 MD simulations of OSC: Practical considerations .................................................................. 39 
3.1.3 Coarse-grained MD simulations ............................................................................................. 41 

3.2 Conformational diversity ............................................................................................................ 44 
3.2.1 Enhanced sampling techniques ............................................................................................... 44 
3.2.2 Conformational analysis ......................................................................................................... 46 
3.2.3 Entropy and free energy calculations ...................................................................................... 47 

3.3 Estimation of bulk properties ...................................................................................................... 49 
3.3.1 Aggregation and ordering ....................................................................................................... 49 
3.3.2 Mechanical and thermomechanical properties ........................................................................ 54 
3.3.3 Phonon transport and thermal conductivity ............................................................................ 57 

4 Multiscale modeling approaches ...................................................................................................... 59 

4.1 Connecting optoelectronics to morphology ................................................................................ 59 
4.2 Adding charge-carrier transport .................................................................................................. 62 
4.3 Modeling electron–phonon coupling .......................................................................................... 65 

5 Data-driven methods ........................................................................................................................ 67 

5.1 High-throughput virtual screening .............................................................................................. 67 
5.2 Machine learning ........................................................................................................................ 68 

5.2.1 Property prediction .................................................................................................................. 69 
5.2.2 Inverse design ......................................................................................................................... 71 



6 

5.2.3 Active learning ........................................................................................................................ 72 
5.2.4 ML potentials .......................................................................................................................... 73 

6 Outlook .............................................................................................................................................. 76 

Acknowledgments ..................................................................................................................................... 77 

Author Biography ..................................................................................................................................... 77 

Author Information .................................................................................................................................. 78 

Notes ........................................................................................................................................................... 78 

References .................................................................................................................................................. 79 

 

  



7 

 

1 Introduction 

Organic semiconductors (OSC), composed of π-conjugated molecules, polymers, or combinations thereof, 

offer distinctive tunability of their electrical, optical, and mechanical properties. Modifying these material 

properties begins with the initial design of the molecular and polymer constituents, wherein the synthetic 

chemist can alter the length, dimensionality,1-3 and aromatic (e.g., aromatic, anti-aromatic, quinoid) 

character of the π-conjugated pathways defined by the carbon framework,4-7 introduce heteroatoms (e.g., 

often nitrogen or sulfur) within the carbon backbone,8-10 and append electron accepting groups, electron-

donating groups, and alkyl-based chains of varying length and bulkiness along the periphery.11-18 However, 

these molecular-level designs are only part of the story, as the way these molecular or polymer constituents 

organize in the solid state determines the hierarchical OSC properties, with this organization heavily 

influenced by material processing. A wide variety of processing methods are available to develop OSC, 

including from the vapor phase, solutions of differing complexity, or the melt;19-24 thermal and solvent-

based post-processing techniques allow for further tuning of the OSC building block organization,25, 26 while 

modifications of the chemistry of the surface on which the OSC is deposited can also impact the 

characteristics of the final material.27, 28 Hence, the design space for OSC, when considering the atomic-

scale construction of the building blocks and the macroscale processing conditions and device architectures 

in which the OSC will be used, is, in a word, immense. 

Further, a key feature of OSC, especially when contrasting OSC properties to those of inorganic 

semiconductors, stems from the fact that the molecular and polymer building blocks that comprise OSC 

interact solely through noncovalent (typically exchange repulsion, dispersion, and electrostatics, with some 

minor influence from induction) interactions;29, 30 these noncovalent interactions are considerably weaker 

when compared to the covalent or ionic (or permutations thereof) bonds that form inorganic materials. The 

reliance of the OSC structure, from local molecular-scale packing interactions through longer-range solid-

state morphologies, on noncovalent interactions has limited the advance of a priori OSC design standards 
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and makes the development of precise physicochemical models to understand and govern physicochemical 

properties, at best, difficult.  

The last few decades have witnessed tremendous growth in computational power, including software and 

hardware development, the implementation of ever more complicated mathematical and physical functions, 

and the general development and application of computational approaches (including both theoretical 

development and modeling) in chemistry. This growth, notably, has coincided with the rise in the academic 

and commercial interest in OSC. Hence, the study of OSC has been an intriguing playground in which to 

develop, benchmark, and deploy these approaches to provide a multiscale physicochemical understanding 

of these hierarchical materials.31 

In this Review, we provide an overview of computational methods used to evaluate the properties of organic 

π-conjugated molecules and polymers and OSC and trace their development with the ever more complex 

chemical and physical questions that have been posed for these systems over time. As the fundamental 

theory behind many of these computational methods is well documented and reviewed, we focus more on 

applications to further the chemical and physical understanding of OSC and provide references to the 

published literature that offer a more in-depth discussion of the theory. We begin this Review with an 

overview of quantum-chemical techniques, which evolved from applications of semiempirical 

wavefunction models for increasingly larger systems to the state-of-the-art density functional theory (DFT) 

methods readily implemented today to investigate the electronic, redox, optical, and electrical properties of 

molecular and polymer OSC. We note that, though we generally focus here on the use of semiempirical and 

DFT-based methods, (non-empirical) wavefunction-based methods do play a critical role in the study of 

OSC.32-34 We then move to the description of more classical molecular dynamics and multiscale modeling 

approaches that have grown in use as interest has increased in understanding OSC structure–processing–

function relationships. Due to advancements in computing, modern simulations often include hundreds of 

thousands – if not millions – of atoms. We next move to discussions of data-enabled and machine-learning 

approaches, which offer ever-increasing capacities for machine-informed OSC discovery and design, and 
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highlight novel computer architectures, including quantum computing, that will soon advance the field. 

Today, considerable effort is regularly expended toward increasing the length and time scales of systems 

studied through computational approaches, improving the accuracy with which their properties are 

estimated, and enabling machine-driven exploration of complex materials spaces. Considering these 

factors, we conclude with an outlook for the future of computational approaches in facilitating the 

discovery, design, and deployment of next-generation OSC. 

 
2 Quantum-chemical approaches 

We begin our discussion with quantum-chemical (QC) approaches used to study OSC, as a key driver of 

OSC development has been the push to rationalize the mechanisms governing material electronic, redox, 

optical, and electrical characteristics.31, 35, 36 We begin by reviewing the development and application of 

semiempirical wavefunction methods followed by DFT-based approaches, each of which are used to 

investigate molecular, oligomers (as surrogates of polymers), and solid-state properties. 

2.1 Semiempirical QC methods 

The physical and chemical properties of materials can be exactly modeled by quantum theory by evaluating 

the Schrödinger equation.37 However, the mathematical framework is still prohibitively complex even for 

modern computational resources, necessitating the use of approximate methods to solve the Schrödinger 

equation. In some approaches, termed semiempirical methods, data from experiments or model systems are 

used to estimate values for parameters that are entered into the Schrödinger equation.38, 39 In this section, 

we discuss the origins of semiempirical methods as they relate to the study of π-conjugated systems, starting 

with resonance energy calculations and their subsequent evolution to provide reasonable estimates of 

ground- and excited-state properties. 
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2.1.1 Modeling resonance energy and π-conjugation 

A key feature of OSC relies on distinctive features of the delocalization of π electrons across the π-

conjugated carbon frameworks of the molecular, oligomer, and polymer building blocks. Early 

computational/modeling efforts related to organic, π-conjugated molecules can be traced back to the 

understanding of the resonance structures of benzene. In 1931, Hückel formulated the determination of the 

resonance energy based on two methods.40 Hückel’s first method was based on works by Heitler and 

London,41 Heisenberg,42 Slater,43-45 and Bloch,46 while the second method was inspired by Bloch47 and 

Hartree.48 We now refer to these two methods as valence bond (VB) theory and molecular orbital (MO) 

theory, respectively.49 Building on Hückel, Pauling’s 1933 formulation of the VB method simplified the 

approach, extending it to larger systems and free radicals.50, 51 In the case of benzene, Pauling and coworkers 

assumed that only the interaction between the six electrons in the pure 2p carbon orbitals, projecting at right 

angles to the ring, was sufficient to evaluate the resonance energy. The choice of these orbitals was justified 

as the resulting energy from the in-plane orbitals only changes the arbitrarily chosen zero of energy. 

Moreover, the exchange energy of the chosen 2p orbitals is negative, while that for the in-plane orbital is 

positive. The method ignores the interactions between non-adjacent carbon atoms while computing the 

exchange integrals (α). To compute the resonance energy (W), Pauling and coworkers solved the secular 

equation using Slater’s method, as shown in Figure 1.44 The results revealed that 80% of the resonance 

energy is contributed by the two Kekulé structures52 (benzene models A and B in Figure 1), while 20% 

comes from the three excited-state structures (additional structures shown in Figure 1). 
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Figure 1. (a) The five canonical structures contributing to the ground state of benzene. Recreated from Ref.51 
Copyright 1934 AIP Publishing. (b) The secular equation with Slater valence-bond eigenfunctions for benzene is 
based on the five canonical structures, where Q is the Coulomb integral, W is the resonance energy, and α is the 
exchange integral. 

 

Importantly, the computed resonance energies agreed with experiments that determined the heat of 

combustion. The formulation was then extended to larger systems like biphenyl, terphenyl, and stilbene, 

which enabled the derivation of rules for π-conjugation, such as a phenyl group is 20 to 30% less effective 

in π-conjugation than a double bond.51 This approach also provided a rationale for stable structures based 

on π-conjugation (such as the 4.9 kcal stability of 1,2-dihydronaphthalene over 1,4-dihydronaphthalene). 

Though Pauling and coworkers simplified the VB method, it was still cumbersome to apply to much larger 

systems. Hückel’s MO method was more applicable to such systems, as demonstrated in later works.53, 54 

In this method, instead of establishing VB eigenfunctions, each of the carbon 2p electrons was considered 

to move under the influence of the nuclei and all other 2p electrons. The eigenfunction for such a system is 

represented by the linear combination of atomic orbitals (LCAO), in this case, 2p orbitals. The 

corresponding secular equation for benzene is 
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where β is the resonance integral. This method is less rigorous and fails to account for the Pauli exclusion 

principle, which results in charge pileup in the molecule.55, 56 As a result, the resonance energies determined 

through this approach were inferior to those derived from the VB method, as demonstrated by Wheland.57 

However, the simplicity in implementing the MO method for large molecules resulted in its wide 

application, namely in estimating the electron affinity (EA) of free radicals, the acid strength of 

hydrocarbons, and the basicity of aryl carbinols.  

The methods discussed above use experimental bond dissociation energies and heats of combustion to solve 

the secular equations and are classified as semiempirical. It is worth nothing that both methods only 

considered atomic connectivity, as shown in Figure 1, to formulate the secular equation and derive physical 

insights. However, later works by Mülliken and coworkers improved the MO methods and investigated the 

alteration in bond lengths on going from localized molecular orbitals to delocalized molecular orbitals.58, 59  

 
2.1.2 Understanding molecular interactions with light: Excited states 

The interaction of light with matter ignites several processes, with the absorption of a photon by matter 

being one such process. This process is responsible for the perception of color, the theory or which for 

organic π-conjugated molecules was proposed by Sklar in 1937.60 Sklar analyzed the electronic transition 

in the UV–visible range for benzene by applying the VB method and MO picture with the inclusion of 

antisymmetric LCAO functions.60, 61 The only parameters used to compute the absorption bands were the 

data from the heats of hydrogenation and C–C bond distances. The VB approximation and MO method 

behave differently; the MO treats the bond as covalent, while the other treats it as ionic. Both fail to model 

electron repulsion accurately. Hence, to account for polarization, resonance structures with charges were 
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included. Singlet and triplet energy levels were estimated by incorporating symmetry and polarization. The 

UV bands observed experimentally were assigned with reasonable confidence via both methods. Mülliken 

and coworkers further extended the theory of electronic transitions in molecular spectra to organic 

molecules with double bonds and diene.58, 59, 62  

Until the works of Coulson and coworkers in 1947,63 all theories of π-conjugated systems concentrated on 

applications in hydrocarbons, namely benzene, diene, and heteroatom-containing systems. However, the 

work of Coulson presented a generalized theory for π-conjugated systems based on molecular orbitals. 

Later, terms such as electronic density, bond order, and mutual polarizability were introduced and have 

since played essential roles in determining chemical reactivities, force constants, and other properties.  

 
2.1.3 Moving to larger systems 

The semiempirical MO method is easy to implement in larger systems but lacks the configuration 

interactions (CI) that are accounted for with antisymmetric LCAO eigenfunctions. The antisymmetric 

LCAO method, however, is laborious to extend to larger molecules. The works of Pariser, Parr, and Pople 

in the early 1950s proposed a new implementation of the antisymmetrized LCAO methods that use 

semiempirical quantities to evaluate the electron integrals.64, 65 This method is commonly known as PPP 

(named after its inventors), and several flavors of approximations for evaluating the electron integrals have 

resulted in the methods used in assessing the electronic properties of π-conjugated molecules, namely the 

Mataga–Nishimoto approximation.66  

Even with the Mataga–Nishimoto approximation, the PPP method underestimated the absorption maxima 

of π-conjugated molecules, with the discrepancy increasing with extended π conjugation.67 In 1995, Hiruta 

et al. introduced the concept of chemical softness for π-conjugated systems in computing the electron 

repulsion integral within PPP. With this approach, the calculated excitation energies of polycyclic aromatic 

hydrocarbons (PAH) with up to seven acene rings showed improved agreement with experiments.68, 69 As 

the PPP method includes high-order CI over a large active space, several works have used the PPP method 
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to more recently investigate singlet fission in π-conjugated chromophores.70, 71 Bhattacharyya et al. showed 

that the excitation energy of PAH using the PPP method with CI yields better results than the popular time-

dependent density functional method.72 Because computational limitations in the early 1990s rendered a 

full CI approach with PPP infeasible for large polyacenes beyond anthracene,73 efforts were initiated to 

replace CI with the density matrix renormalization group (DMRG) method,74 which enables the accurate 

calculation of low-lying states for one-dimensional and quasi-one-dimensional systems with reduced 

computational cost compared to a full CI calculation. This approach has been used to explore the optical, 

polaronic, and bipolaronic states of large π-conjugated polymers.75-81 In recent works, Barford and 

coworkers explored the photoexcited-state dynamics of polyenes and carotenoids with DMRG calculation 

of the PPP model to describe the dark singlet states responsible for the non-emissive properties of linear 

polyenes.82, 83 

 
2.1.4 Considering all valence electrons 

All methods discussed in the previous sections, including PPP, consider only a single 2p orbital in 

computing electronic and optical properties. The restriction to 2p orbitals was due to limited experimental 

data to provide empirical parameters and inadequate computational resources to solve complex 

mathematical equations. Hence, these methods did not account for σ interactions while evaluating the 

molecular properties. After three decades of development and validation of Hückel’s methods, Hoffmann 

proposed the extended Hückel method in 1963 that considered all valence electrons independently to 

calculate electronic properties.84 However, the approach did not consider electron-electron interactions, 

similar to Hückel's theory. As an alternative, Pople and coworkers85-87 proposed the neglect of diatomic 

differential overlap (NDDO) approximation, which is similar to the PPP method but considers all valence 

orbitals. Complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap 

(INDO) are common variations of this method. The parameterization for these methods is designed to 

mimic the results of Hartree–Fock calculations with a minimal basis set.88, 89 For spectroscopic applications, 
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these methods were modified to CNDO/S, INDO/S, and ZINDO/S.90 While the estimates of excitation 

energies were improved, these methods produced less reliable ground-state geometries. 

Dewar and coworkers calibrated the parameters against experimental reference data to provide more 

accurate estimates. The method based on INDO was called MNDO/391, and that with NDDO was termed 

MNDO.92 The detailed formalism for the semiempirical techniques discussed here can be found in other 

review articles.93-95 The MNDO method resulted in a poor description of van der Waals interactions that 

was later rectified in the Austin Model 1 (AM1).96  

The methods discussed so far employ parameters derived from experiments. Stewart proposed optimizing 

the parameters by using derivatives of calculated values for properties with respect to adjustable 

parameters.97, 98 This method, called parametric method 3 (PM3), provided better accuracy, as shown in 

Figure 2, and increased the speed of results as only a simple series expression was required to be calculated. 

Later improvements of PM3 include PM6, which parameterized 70 additional elements,99 and PM7, which 

uses experimental data and high-level ab-initio reference data for parametrization.100 The orthogonalization-

corrected methods (OM1,101 OM2,102, 103 and OM3103) include additional interactions, namely, Pauli 

repulsion and core–valence interactions, which improve both ground- and excited-state properties. 

 
Figure 1. Calculated and experimental heats of formation with MNDO, AM1 and PM3 methods. Adapted with 
permission from Ref.98 Copyright 2004 John Wiley & Sons, Inc. 

 



16 

Cornil et al. observed that the C-C bond lengths of poly(p-phenylene vinylene) (PPV) oligomers obtained 

from MNDO-based methods agreed with the X-ray diffraction data.104 The simulated absorption spectrum 

of PPV with INDO/S was also observed to agree well with the experimental absorption spectrum. Hence, 

several studies that followed used AM1 or PM3 for geometry optimizations, followed by INDO/S 

calculations to obtain excitation energies.105-112 Silva-Junior and Thiel compared the performance of OM1, 

OM2, and OM3 with other semiempirical methods (namely, MNDO, AM1, PM3, and INDO) and observed 

that orthogonalization-corrected approaches perform the best for modeling valence excited states of large 

organic chromophores.113 In recent years, the approach of combining CI with the semiempirical 

Hamiltonians has been used to explore vertical excitation energies,114 to optimize excited-state 

geometries,115, 116 and for nonadiabatic dynamics simulations.117-119 The benchmark study by Bruckner and 

Engels shows that the semiempirical methods are on par with the state-of-the-art DFT methods (vide infra) 

in estimating ground- and excited-state properties of organic π-conjugated molecules with reduced 

computational cost.120 

 
2.1.5 Tight-binding methods 

The condensed phase equivalent of semi-empirical quantum methods is the tight-binding (TB) method. The 

TB scheme was first proposed by Bloch in 1929; 42 a simplified version was later presented by Slater and 

Koster.46, 121  The method expresses the eigenstates of the Hamiltonian with an LCAO basis and the exact 

many-body Hamiltonian with a parameterized matrix consisting of element fit to the electronic band 

structure. The early applications were centered on inorganic systems, with Leblanc first using it for 

anthracene crystal to obtain the electronic band structure.122 An improved TB model for π-conjugated 

systems was proposed by André et al. based on valence effective Hamiltonians (VEH).123 Several works 

from Brédas and coworkers use VEH-based approaches to investigate the electronic band structures of π-

conjugated polymers.112, 124-130  
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 In 1985, Siefert and Eschrig demonstrated that the TB method could be fit with parameters derived from 

DFT calculations.131 This development paved the way for the density functional-based tight binding 

(DFTB) method, which consists of Taylor series expansions of the Kohn–Sham DFT total energy.132, 133 

Based on the order of the Taylor series expansion, DFTB1, DFTB2 (SCC-DFTB), and DFTB3 are 

derived.134, 135 Heck et al. have extensively used DFTB in conjunction with other dynamics simulation 

approaches to simulate charge-carrier transport in OSC materials.136, 137 To estimate nonlocal electron-

phonon coupling in molecular crystals, Troisi and coworkers used SCC-DFTB to obtain interatomic 

forces.138 Recently, Gallmetzer et al. used SCC-DFTB to investigate the redox potentials of anthraquinone 

and its derivatives.139 The DFTB methods are highly sensitive to the parameters used to fit the DFT data 

and hence inherit their self-interaction error. A benchmarking study of DFTB methods by Gaus et al. 

showed that either the energy or the vibrational frequencies could be improved by reparameterization, but 

not both.140 Nonetheless, these methods are two-to-three orders of magnitude faster than DFT-based 

methods with medium-sized basis sets. 

 
2.2 DFT methods 

Over the last few decades, DFT-based methods have generally overtaken semiempirical methods as the go-

to approach for evaluating molecular and solid-state electronic, redox, and optical properties. This trend is 

due in large part to advances in computer technology and the development of density functionals that work 

well for molecular systems. DFT is based on Hohenberg and Kohn’s proof that the energy of the system 

can be defined by its electron density;141 the properties of the interacting many-electron system can thus be 

reduced to solving the non-interacting single-particle equation. The DFT formalism incorporates exchange 

and correlation effects and thus produces property estimates close to ab initio wave function methods. As 

the fundamental theory of DFT has already been thoroughly reviewed in earlier works,142-146 here we discuss 

the development of DFT techniques and their application to organic π-conjugated systems. 
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2.2.1 Emergence of DFT and TDDFT 

In 1965, the emergence of DFT from the works of Hohenberg, Kohn, and Sham paved the way for 

computing electronic properties at a reduced computational cost when compared to CI methods but with 

similar accuracy.141, 147 The exact form of the exchange–correlation functional is not known, and 

approximations, namely local density and generalized gradient approximation, are used. Early 

implementations developed around the local density approximation (LDA)148 were used by Albertazzi et 

al. to compute the vibrational frequencies of benzene and octatetracene.149 Bylaska et al. used LDA to 

investigate aromaticity in organic systems as large as a 44-atom ring.150 The generalized gradient 

approximation (GGA), which includes nonlocal correlation, provides an improvement over LDA.151, 152. 

Some of the popular GGA exchange–correlation functionals are PW91,153, 154 PBE,155 BLYP.156-158 Pederson 

and coworkers used GGA to study the polarizability, charge states, and vibrational modes of fullerene.159 

They observed that the GGA framework reproduced the experimental cohesive energies to 0.05-0.1 eV 

while LDA overestimates the C-C bond energies by 7-20%, leading to overestimates in cohesive energy.159, 

160 

In 1984, Harris introduced the adiabatic-connection approach to the Kohn–Sham theory, which allowed for 

linking interacting and non-interacting systems to model inhomogeneous electron systems.161 This paved 

the way for the Hartree–Fock/DFT hybrid scheme first introduced by Becke.156, 157 The hybrid functional 

consists of Hartree–Fock exchange energy that accounts for a fraction of the local or semi-local DFT 

exchange energy. Some popular hybrid DFT functionals include B3LYP,157, 158 PBE0,162, 163 B3PW91,153, 

157, 164 HSE.165 The B3LYP functional gained popularity after benchmark studies indicated that the 

functional yielded low errors for computed geometries, zero-point energies, and formation enthalpies.166, 

167 Recent applications of DFT include electronic and redox properties of molecules and oligomers,168-173 

analysis of molecular crystals,174-176 and OSC interfaces,177-182 to name a few. 

The application of DFT to excited states using the time-dependent DFT (TDDFT) formalism was 

envisioned in 1984 by Runge and Gross.183 While the initial work of Runge and Gross focused on small 
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organic molecules, the TDDFT method was later used for π-conjugated systems like pyridine and 

naphthalene.184 In 2000, Guillaumont and Nakamura used TDDFT for large organic dyes and observed 

reasonable agreement, for most systems, with experimental absorption wavelength, spectral shift, and 

intensity.185 TDDFT is now applied to investigate excited-state phenomena like charge transfer,186-193 singlet 

fission,194-203 and thermally activated delayed fluorescence (TADF)204-209 in π-conjugated molecules, 

crystals, and polymers. 

 
2.2.2 Tamm–Dancoff approximation 

The typical implementation of TDDFT uses Kohn–Sham formalism with an adiabatic approximation.210, 211 

This approximation assumes that the self-consistent field responds instantaneously without any temporal 

change in the charge density.212 With this approximation, Casida’s approach can obtain excited state 

energies, where random phase approximation-like equations are solved.213 However, these implementations 

predict low energies for triplet states, termed the triplet instability, as shown in Figure 3.214, 215 To overcome 

this problem, Head-Gordon and coworkers proposed the Tamm–Dancoff approximation (TDA) to TDDFT, 

a truncated form of Casida’s equations.216 This method improves the predicted excited-state energies and 

reduces the computational cost.212, 215, 217, 218 Brédas and coworkers demonstrated that TDA-TDDFT can be 

used for large complexes of C60 with a π-conjugated molecule/oligomer for investigation of triplet exciton 

formation and for TADF.219-221 
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Figure 3. (Left) Mean errors (ME) and mean absolute errors (MAE) relative to the reference values of Ref.222, for (a) 
57 singlet and (b) 63 triplet vertical excitation energies. Blue bars represent conventional TDDFT errors; green bars 
represent TDA errors. CAM denotes CAM-B3LYP. (Right) The variation of (a) singlet and (b) triplet excitation 
energies in naphthalene as a function of the amount of exact exchange α. The lighter version of the color represents 
the TDDFT results, and the darker version the TDA results. Dashed lines represent reference values. Adapted with 
permission from Ref.223 Copyright 2011 American Chemical Society. 

 
2.2.3 Long-range corrections to the density functional 

The hybrid functionals discussed before fail to produce the correct r-1 decay of the Coulomb operator.224 

This breakdown results in errors in the estimation of ionization potentials (IP), non-linear optical properties, 

polarizabilities of large molecules, and charge-transfer states, to name a few. Savin and coworkers proposed 

that partitioning the Coulomb operator into short-range (SR) and long-range (LR) operators could alleviate 

the problem.225-227 Using the standard error function (erf) and its complement (erfc), the partitioned 

Coulomb operator is represented as 
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1
𝑟𝑟

=
erf(𝜔𝜔𝜔𝜔)

𝑟𝑟
+

erfc(𝜔𝜔𝜔𝜔)
𝑟𝑟

 

where ω is the range separation operator. Savin and coworkers treated the LR with wavefunction methods 

such as configuration interactions and the SR with DFT. Iikura et al. further simplified the scheme using 

the Hartree–Fock theory for SR, significantly reducing the computational time.228  

For the application of the LR correction, the unknown ω must be evaluated. Of the methods developed for 

this aim,229-232 optimizing the range separation parameter for each system of interest is widely used.233-236 

In this approach, the parameter is tuned by enforcing the DFT analog of Koopmans’ theorem,237-239, which 

states that the HOMO is equal and opposite to IP: 

𝜀𝜀𝐻𝐻 = −𝐼𝐼𝐼𝐼 

The optimized ω can be obtained by minimizing the target parameter Δ𝐼𝐼𝐼𝐼: 

Δ𝐼𝐼𝐼𝐼(𝜔𝜔) = �𝜀𝜀𝐻𝐻𝜔𝜔 + 𝐸𝐸𝑔𝑔𝑔𝑔(𝜔𝜔,𝑁𝑁 − 1) − 𝐸𝐸𝑔𝑔𝑔𝑔(𝜔𝜔,𝑁𝑁)� 

This process is called IP tuning of long-range corrected (LRC) functionals. Brédas and coworkers 

demonstrated that the tuned value of ω is dependent on the π-conjugation length in organic π-conjugated 

systems, and ω-1 grows with increasing π conjugation.240 Using the tuning scheme has provided more 

accurate results for polarizability and fundamental gap, as Figure 4 demonstrates.240-242 As shown by Baer 

and coworkers,233 the IP for PTCDA is heavily underestimated to be 6.10 eV and 6.67 eV by PBE and 

B3LYP, respectively, when compared to the experimental value of 8.20 eV. But when the tuned BNL 

functional is used, the estimated value is 8.08 eV, thus yielding better accuracy.  
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Figure 4. (a) Longitudinal polarizabilities of polyacetylene (in a.u): The number along the horizontal axis is the 
number of –C=C– unit. Adapted with permission from Ref.241 Copyright 2007 AIP Publishing. (b) Difference between 
highest occupied molecular orbital (HOMO)and lowest unoccupied molecular orbital (LUMO) eigenvalues from 
Hartree–Fock, standard- and IP-optimized LRC-hybrids, and B3LYP for oligoacenes from benzene (n = 1) to 
hexacene (n = 6) using a cc-pVTZ basis. The reference gap corresponds to differences between the vertical IP and 
vertical EA from CCSD(T)/cc-pv∞Z calculations.243, 244 Adapted with permission from Ref.240 Copyright 2011 AIP 
Publishing. 

 
LR corrections can also be extended to TDDFT. Baer and coworkers showed that charge-transfer 

excitations are more accurately determined with LRC functionals.245, 246 In contrast to IP tuning, the EA 

must also be tuned for charge-transfer excitations; this approach is termed gap tuning.236, 247, 248 Electron–

hole pairs predicted with tuned-LRC hybrid shows more localization than standard hybrid functional, as 

shown in Figure 5. To investigate charge transfer in a system with multiple components like bulk-

heterojunction solar cells, Brédas and coworkers showed that using a screened range-separated hybrid 

functional (SRSH) is more effective, as the SRSH functional has a weak dependence on ω.249 Tozer and 

coworkers observed that singlet energies improved on increasing the amount of the  exchange, but that the 

triplet energies were too low in energy.223 These authors proposed stability analysis with Hartree–Fock (HF) 
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methods to detect the instability. Furthermore, this investigation showed that using TDA could significantly 

alleviate the problem with triplet instabilities in TDDFT calculations, as demonstrated earlier in Figure 3. 

 
Figure 5. Excitation energies of the (a) 1La and (b) 1Lb transitions in the C2+4nH4+2n oligoacene series (n = 2 to n = 6). 
TDDFT data obtained with the BP86 GGA functional (red squares), the B3LYP standard hybrid functional (blue 
diamonds), and the optimally tuned BNL range-separated hybrid functional (green triangles) are compared to 
reference CC2 values, taken from Ref.250 (black X markers). Adapted with permission from Ref.251 Copyright 2011 
American Chemical Society. TDDFT natural transition orbitals for the S0−S1 transition in the tetramer of the low-
band-gap polymer PCDTBT (poly[N-alkyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]) 
determined with (c) B3LYP and (d) gap-tuned ωB97.248 The numbers specify the weight of the respective particle–
hole contributions. The electron−hole pairs predicted from the tuned LRC-hybrid are much more localized than those 
predicted by standard functionals such as B3LYP. Adapted with permission from Ref.252 Copyright 2014 American 
Chemical Society. 

 
2.2.4 Modeling solvent effects 

The absorption spectrum of organic molecules can be highly dependent on the dielectric of the environment. 

Several efforts have been made to model solute-solvent interactions, with many early efforts either being 
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computationally expensive or lacking appropriate statistical treatment.253-256 Tomasi and coworkers 

proposed the continuum solvation approach to alleviate these problems.257, 258 This method determines the 

molecular electrostatic potential at a finite number of points on the molecular surface to evaluate the effects 

of a solvent on the properties. This method, commonly called the polarized continuum model (PCM), is 

widely used to model solvent effects.259-262  

PCM/TDDFT263 provides an approach to model photoexcitation processes for organic molecules that 

includes solvent effects, as the time scale for absorption is faster than nuclear motion.264 In cases of fast 

solvation, Painelli and coworkers proposed an adiabatic approximation to model the system.265 However, 

for analyzing processes on the timescale of nuclear relaxations (e.g., fluorescence and phosphorescence), 

linear response,266 state-specific,267, 268 and vertical excitation269 PCM models have been proposed and yield 

better results than standard PCM. For instance, recent works of Krumland et al. used PCM/TDDFT to 

investigate the effect of solvent and alkyl chains in sexithiophene.270 These authors observe that the torsion 

angles between the adjunct monomers are heavily affected by solvent and alkyl chain, which correlate with 

experimental findings. An alternative to PCM, the COSMO (COnductor-like Screening MOdel)271 model 

for solvation, has also shown improved estimation of excited-state energies. The equilibrium approaches 

mentioned earlier are also available for the COSMO model.272 Efforts are also being made to couple the 

LRC functional tuning procedure discussed in the previous subsection with the solvent model to improve 

the estimates of molecular properties.235, 273, 274 

 
2.2.5 Real-time TDDFT 

Excited-state dynamics can be investigated by evolving the time-dependent quantum electronic system in 

the time domain (see Figure 6). An in-depth discussion on the theory of RT-TDDFT can be found 

elsewhere,275, 276 though we note its development and application here for completeness. The method was 

first proposed in 1999 by Yabana et al.277 and later applied to π-conjugated molecules, namely polyenes, 

retinal, benzene, and C60.277 These authors observed good agreement with experimental results with an error 
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of a few tenths in transition energies and 20% in transition strengths. The works of Van Voorhis and 

coworkers and Lopata et al. improved the efficiency of the method.278, 279 In addition to determining the 

optical spectrum, RT-TDDFT can be applied to study two-photon absorption, Raman scattering, and non-

linear response.280, 281 Recent work by Seiler et al. used RT-TDDFT to understand the structural dynamics 

accompanying the singlet fission process in pentacene crystal.282 

 
Figure 6. (a) Isosurface snapshots of the difference ρ(r,t) - ρ(r,0) between the excited- and ground-state charge 
densities for zinc porphyrin at the B3LYP/6-31G* level of theory (H, C, and N atoms), using the Stuttgart RSC 1997 
effective core potential for Zn. (b) Using a transient cross-polarized laser pulse, the system was excited at its resonance 
of 3.53 eV. (c) The excitation results in charge oscillations along the π-conjugated backbone lasting ~1.2 fs each. 
Adapted with permission from Ref.278 Copyright 2011 American Chemical Society. 

 
2.2.6 Visualizing excitations 

A direct method to visualize excited-state transitions is complicated, as multiple configurations often 

contribute to excitation amplitudes. In 2003, Martin applied the orbital transformation of Amos and Hall283 

to occupied and virtual orbitals to yield natural transition orbitals (NTO).284 NTO have a maximal 

correspondence between the excited particle and the empty hole, with the parameter λ reflecting the 
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importance of a particular particle–hole transition. Analyses with NTO provide physical insights into the 

nature of excitations, as shown in Figure 7. Some example applications of NTO can be seen in the works 

of Tretiak and coworkers, wherein the authors used NTO analyses to understand the donor-acceptor 

strengths and conjugated bridge length impact in the two-photon absorption for dyes,285 localization of 

excitations in conjugated polymers,286 and excitation states in Y6.287 Investigations involving excited triplet 

state phenomena like TADF also use NTO for analysis.288-291  

 
Figure 2. Natural transition orbitals describing the excited states of 2-nitronaphthalene. Adapted with permission from 
Ref.292 Copyright 2018 John Wiley & Sons, Inc. 

 
2.3 Beyond DFT: GW-BSE 

The excited-state properties of solid-state materials can be evaluated with the TDDFT methods discussed 

earlier.293-296 As demonstrated by Spano and coworkers,297-300 as well as by Hoffmann and Soos,301 excited 

states can also be investigated with the Holstein model.302, 303 In this section, we focus our discussion on the 

application of Green’s function formalism of many-body perturbation theory (MBPT) within the GW 

approximation to realize excited-states in crystalline organic π-conjugated materials.304 A detailed overview 

of the theory of the GW method to obtain excited state properties is available in previous reviews.305-308 In 
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brief, Dyson’s equation is first solved with GW approximation to obtain the band structure. As shown in 

Figure 8, this is followed by solving the Bethe–Salpeter equation (BSE) for the two-particle Green’s 

function, which yields the other excited state properties, including the optical spectra.309, 310 

 
Figure 8. Standard workflow for a BSE calculation. Adapted with permission from Ref.311 Copyright 2015 AIP 
Publishing. 

 
In 2003, Tiago et al. first proposed using GW-BSE for organic π-conjugated systems.312 The calculated 

optical excitations for pentacene were in good agreement with the experiment, as shown in Table 1. Using 

the GW-BSE approach, Hummer et al. analyzed the lowest absorption peaks in anthracene crystals.313 The 

authors found that the peaks are generated by strongly bound excitons or free electron–hole pairs, which 

are dictated by the direction of the polarization with respect to the molecular axis. Sharifzadeh et al. later 

proposed the electron–hole correlation function to provide a measure of electron–hole distance and charge 

transfer character (Figure 9), which is beneficial for exploring exciton dissociation and singlet fission in 

organic materials with GW-BSE.307, 314, 315 

Table 1. Comparison between measured and calculated energy position of the main features in the extinction 
coefficient of the vapor-phase crystallized pentacene structure. 

 Energy (eV) 
Experimentala 1.82 1.94 2.11 2.25 

Calculatedb 1.73 1.86 2.13 2.27 
aBased on ellipsometric spectra measured by Park et al.316 
bBased on DFT calculations performed by Tiago et al.312 
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Figure 9. (a) Computed optical absorption spectrum of the pentacene crystal compared with experimental data. The 
computed spectrum was averaged along all three unit cell directions for incident polarizations. The computed energy 
of the first singlet and triplet is indicated by dashed vertical lines. (b,c) Two-dimensional electron–hole correlation 
function, ℱ 

S(r), in the ab plane (left column) and in the ac plane (right column) for the singlet (top row) and triplet 
(bottom row). (d) Bulk crystal structure of pentacene. (e) Projection of the atomic structure onto the ab (left) and ac 
(right) planes. Adapted with permission from Ref.315 Copyright 2013 American Chemical Society. 

 
2.4 Modeling charge-carrier transport 

In 1960, experiments detailing the charge-carrier mobility in anthracene crystals by Kepler and Leblanc 

prompted the development of a theory for the underlying physical process.317, 318 Within the band model, 

the T -1 temperature dependence with 1 < n < 2 for the mobilities in anthracene was modeled with a TB 

approximation that assumed rigid, non-vibrating molecules and neglected molecular overlap.122 Later works 

improved the method by including intermolecular electron exchange and molecular vibrations.319, 320 DFT-

based implementations for the systems were adapted after the success of the method in inorganic systems. 

Later, electron mobility experiments on anthracene showed that mobility increases with increasing 

temperature along the c-axis.321-323 The hopping model was used to describe this behavior of charge-carrier 

hops within the Marcus–Hush model of charge transfer;324-326 non-local electron-phonon couplings were 

neglected. When the thermal motions were included, large fluctuations in intermolecular electronic 

coupling are observed. The proposed transient localization model accounts for these thermal motions, which 
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can could lead to the localization of the charge carrier.327 A generalized model to describe experimentally 

observed temperature dependence of charge-carrier transport (CCT) has not been fully resolved and 

continues to be under development. Hence, materials are usually modeled with one of the available models 

(band, hopping, and transient localization) to reproduce the experimental observations.328 There are 

extensive reviews on the theory of CCT in organic π-conjugated systems;329-337 hence, in this section, we 

provide an overview of the development of QC methods to describe charge-carrier transport within the 

purview of the models. The QC methods discussed here provide a static picture of CCT and need to be 

coupled the models of atomic motion. We describe such multiscale modeling approaches for CCT in 

Section 4 (vide infra). 

 
2.4.1 Intermolecular electronic coupling 

Irrespective of the model for describing CCT in OSC, the intermolecular electronic coupling (also called 

the transfer integral) is a critical parameter. Within the dimer approach, the intermolecular electronic 

coupling is obtained by evaluating the following equation for dimer-level splitting: 

𝐽𝐽𝑛𝑛 =
1
2
�𝐸𝐸𝑛𝑛,1 − 𝐸𝐸𝑛𝑛,2� 

where En,1 and En,2 are the energies for the nth molecular orbital (generally n = HOMO or LUMO) of the 

two molecules in the dimer, and Jn is the electronic coupling. The principal assumption is that the two 

molecules that make the dimer are equivalent. In cases where the molecules are not equivalent (e.g., the 

pentacene dimer), the difference in the site energy is incorporated, and the electronic coupling can be 

obtained using the following equation: 

𝐽𝐽𝑛𝑛 =
1
2
��𝐸𝐸𝑛𝑛,1 − 𝐸𝐸𝑛𝑛,2�

2 − �𝛼𝛼𝑛𝑛,1 − 𝛼𝛼𝑛𝑛,2�
2
 

Here, αn,1 and αn,2 correspond to site energies for a given pair of molecules. Huang and Kertesz observed 

that the intermolecular electronic couplings from semiempirical calculations largely differed from ab initio 
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methods However, the results were consistent for a variety of DFT functionals;338 this work showed a 

dependence on the basis set that can lead to an error >20% for a minimal basis set and <4% for split valence 

basis set like 6-31G*.339 Sutton et al. explored the dependence on HF exchange and observed a twofold 

linear increase in the electronic coupling from 0 to 100% HF exchange.340 Correction to the dimer level 

splitting method was proposed by Valeev et al., wherein polarization effects to the electronic couplings 

were considered.341 This quantum-mechanical electrostatic-based method involved using an orthonormal 

basis that preserved the local character of the monomer orbitals and, thereby, the polarization effects, as 

shown in Figure 10. A more in-depth discussion on the electronic coupling is reviewed elsewhere.342-346 

 
Figure 10. (a) Ethylene 𝜋𝜋-dimer level splittings (2𝛽𝛽 and 2𝛽𝛽∗) calculated at various levels of theory. Adapted with 
permission from Ref.338 Copyright 2005 AIP Publishing. (b) Evolution of the effective electronic coupling (Jeff) the 
dimer energy splitting approach (ΔE12/2) as a function of intermolecular center-to-center distance (R) of the cofacial 
and tilted dimers. Adapted with permission from Ref.347 Copyright 2006 American Chemical Society. (c) Evolution 
of the tABH (filled symbols) and tABL (open symbols) values for rubrene (black circles) and pentacene (blue squares) 
with BαLYP as a function of varying amount of HF exchange. Adapted with permission from Ref.340 Copyright 2013 
American Chemical Society. (d) Electronic coupling matrix elements calculated for six randomly oriented anthracene 
dimers (in meV). For each molecule the closes contact is given. Unscaled |Hab| values are given in brackets. Adapted 
with permission from Ref.344 Copyright 2015 Royal Society of Chemistry. 
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2.4.2 Reorganization energy 

The reorganization energy is required for modeling CCT using the Marcus–Hush equation. The 

reorganization energy contributes to inner-sphere (intramolecular vibrational relaxations) and outer-sphere 

(solvent reorganization) modes. In general, the inner-sphere reorganization energy can be determined from 

single-point QC calculations using the four-point method.348 Engels and coworkers observed that the 

reorganization has a correlation with the IP of the organic system and can show a strong dependence on the 

DFT functional, as demonstrated in Figure 11. As a result, IP-tuned functionals tend to yield reliable 

reorganization energies. From a molecular design perspective, the reorganization energy can be analyzed 

as a sum of contributions from the vibrational modes of the molecule, as shown by Malagoli et al.349 Later 

methods developed by Uejima et al.350 and Lin et al.351 are based on atomic vibronic coupling constants and 

local fragment modes respectively.352 

 
Figure 11. (a) Charge reorganization energy and its decomposition into the neutral reorganization energy and the 
cationic reorganization energy Adapted with permission from Ref.353 Copyright 2015 American Chemical Society. 
(b) Charge reorganization energies in eV for molecular p-type semiconductors calculated with different functionals 
(without IP-tuning). Adapted with permission from Ref.354 Copyright 2016 John Wiley & Sons, Inc. 
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2.4.3 Electronic band structures 

Similar to the other descriptors discussed above, the electronic band structures of crystals derived for π-

conjugated molecules can be evaluated with DFT.355 Microscopic properties such as band gaps, band 

widths, and effective masses can be obtained from these calculations.356-360 Fonari et al. investigated the 

impact of exact exchange on the evaluating band structures (Figure 12).361 This work observed that in 

molecular crystals like pentacene, the bandgap and effective mass increase linearly with an increase in 

exchange. In contrast, for systems like TTF-TCNQ, the bandgap increases linearly, and the effective mass 

shows a marginal variation with an increase in non-local HF exchange. 

 
Figure 12 (a) Left axis: Dependence of the fundamental gap, valence, and conduction bandwidths on the percent HF 
exchange. Right axis: Dependence of the largest hole electronic coupling and smallest hole effective mass on percent 
HF exchange in the crystalline pentacene. (b) Valence and conduction bands of pentacene obtained using the αPBE 
functional with different percent HF. Adapted with permission from Ref.361 Copyright 2014 American Physical 
Society. 

 
Notably, DFT electronic band gaps are often underestimated with respect to experiment due to the inherent 

multi-electron self-interaction error (MESIE).355 Improved agreement with experiments can be obtained 



33 

with first-principles many-body perturbation theory (MBPT).304, 362 Sharifzadeh et al. demonstrated an 

improvement in estimating the electronic band gap using the GW approach.363 The band gap for pentacene, 

for instance, was determined to be 0.75 eV for a DFT-based approach and 2.2 eV with the GW approach, 

which agreed well with experimental value of 2.2 eV. A similar agreement was seen for 3,4,9,10-perylene 

tetracarboxylic dianhydride (PTCDA).362, 363 

 
2.5 Crystal structure–property relationships 

OSC properties, here with a focus on crystalline materials though it is also true for amorphous materials 

and those of varying order (as discussed below), are dependent on the packing arrangements of the 

molecules in the solid state. As discussed in the Introduction, the interactions that govern this packing 

arrangement are non-covalent, making the prediction of solid-state structure from a single molecule a 

challenging and active area of research. This section provides a brief overview of methods that aim to 

predict crystal structures and understand the interactions between the π-conjugated molecules in a crystal. 

 
2.5.1 Crystal structure prediction 

Molecular crystal structure prediction (CSP) is still an overarching challenge.364-366 Detailed reviews on the 

development of computational tools for CSP can be found elsewhere.367-369 In brief, CSP involves three 

stages: (i) conformer exploration of a molecule, (ii) generation of a crystal packing arrangement, and (iii) 

structure ranking with a score or fitness function. In the early application of CSP to organic π-conjugated 

systems, Aspuru-Guzik and coworkers generated crystal structures of fused ring systems.370, 371 Because the 

molecules were rigid, the authors omitted the first step of conformation exploration and used an 

experimental crystal structure template to generate crystal structures of similar molecular cores and crystal 

packing with force field-based MD simulations. The resulting structures were subjected to DFT calculations 

to account for atomic charges and van der Waals effects. This approach agreed reasonably well with 

experimental crystal structures and relative trends in estimated CCT properties. Day and coworkers 

improved the generation of crystal structures by employing a quasi-random search that considered the shape 
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of the molecule to evaluate its crystal packing preference. This quasi-random approach, implemented in 

Global Lattice Energy Explore software, also provides the lattice energy surface of the molecules.372 

Furthermore, to better access candidate molecules for discovery, the authors created molecular energy–

structure–function maps by mapping the properties onto the crystal energy landscape from CSP.373, 374 

Another method to explore the lattice energy landscape was proposed by Marom and coworkers, which 

uses a genetic algorithm, as shown in Figure 13.375, 376 The method was tested on four chemically diverse 

sets of molecules from the sixth blind test,377 and the predicted structures were in agreement with the target 

structures.375  The bottleneck for CSP is the final ranking of the generated crystal structures, which often 

uses DFT methods to estimate the lattice energies. Early lattice energy estimates were reliable to only 10 

kJ/mol, and capturing polymorphs, which are often separated by energies of approximately 1 kJ/mol, was 

challenging. The problem was alleviated by Yang et al., who proposed a highly accurate method to evaluate 

lattice energy based on coupled cluster theory and DMRG.378 With this method, the authors demonstrated 

that the lattice energy of crystalline benzene could be estimated with an error of <1 kJ/mol.  
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Figure 13. (a) Predicted energy–density landscape for the molecule inset. Each point on the landscape corresponds to 
a distinct predicted crystal structure and the predicted global minimum (red open circle) corresponds to the 
experimentally observed crystal structure. Structures on the landscape are color-coded according to their packing type. 
Adapted with permission from Ref.374 Copyright 2018 American Chemical Society. (b) Convergence of the predicted 
benzene lattice energy as a function of the types of interactions included (dimers, trimers, etc.) and relaxation to the 0 
K structure relative to the experimental value of (55.3±2.2) kJ mol−1.378 Adapted with permission from Ref.379 
Copyright 2014 John Wiley & Sons, Inc. (c) The workflow for Genarris 2.0 from Marom and coworkers. Adapted 
with permission from Ref.376  Copyright 2020 Elsevier. (d) Schematic illustration of the workflow of GAtor on a high-
performance computing cluster. In the diagram, N independent GA replicas run on N computing nodes, with K core 
processing units per node. Adapted with permission from Ref.375 Copyright 2018 American Chemical Society. 

 
2.5.2 Solid-state interactions 

Noncovalent interactions dictate the packing arrangement of organic π-conjugated molecules in the crystal. 

Several methods have been developed to better understand the interplay of the noncovalent interactions on 

stability and packing of crystal structures.380-383 Energy decomposition analysis (EDA) deconstructs the 

interaction energy into physically interpretable constituents. Kitaura and Morokuma proposed in 1967 a 

method that partitioned the Hartree–Fock interaction energy into electrostatic, exchange repulsion, 
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polarization, charge transfer, and unassigned interaction components using a variational approach.383 Later 

methods included localized molecular orbitals,384 absolutely localized molecular orbitals,382 and block-

localized,385 to name a few. A more detailed review of EDA can be found elsewhere.386 Lai et al. 

investigated the stacking principles involved in the close packing of naphthalenetetracarboxylic diimide 

(NTCDI) in crystals with EDA.387 These authors used the ETS-NOCV388 implementation of EDA and 

observed that the dispersion interactions played an important role in packing with a substantial contribution 

from NTCDI and alkyl chain interactions.  

Unlike the variational EDA methods, symmetry-adapted perturbation theory (SAPT) computes the 

perturbative expansion of the interaction energy.389, 390 SAPT includes terms describing: (i) electrostatic 

interactions, which arise from dipole-dipole interactions; (ii) dispersion, which accounts for van der Waals-

like interactions; (ii) exchange interaction, which is quantum mechanical in nature and arises as a result of 

Pauli’s exclusion rule; and, (iv) Coulomb interaction due to electron-electron repulsions.391 Of the many 

SAPT variants, SAPT(0) neglects the intermolecular correlation potentials and is often used for π-

conjugated systems. Sherrill and coworkers used SAPT to test the competing hypotheses of Hunter–

Sanders380, 392 and Wheeler–Houk,393 which aim to understand substituent effects of varied stacking 

interactions in benzene dimers.394 The results indicated that both frameworks contributed to the interaction 

energy, but the Wheeler–Houk is more dominant. This was followed by Ryno et al. who used SAPT(0) to 

understand the variation in electrostatic effects in pentacene and TIPS-pentacene that are responsible for 

experimentally observed shifts in ionization energy.168, 395 Several works use SAPT analysis to investigate 

dimer and side chain interactions in experimentally observed polymorphic solid-state structures of organic 

π-conjugated molecules.396-398 The use of SAPT for material design has also been demonstrated by Brédas 

and coworkers.29, 399, 400 In one of the works, these authors explored the effect of chemical substituent on 

the planarity of tetracene core in rubrene.399 The SAPT analysis indicated that the planarity of the tetracene 

core in rubrene is due to the minimization of the Pauli repulsion between the neighboring phenyl cores, 

which can be tuned via chemical modification of the substituents, as shown in Figure 14.  
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Figure 14. SAPT0/jun-cc-pVDZ computed exchange (red), dispersion (royal blue), electrostatic (navy blue), and 
induction (light blue) components for phenyl dimers extracted from fully relaxed twisted and constrained-planar 
geometries of rubrene at the IP-tuned ωB97/cc-pVDZ level of theory. The total SAPT0 interaction energy (black) is 
also shown. Adapted with permission from Ref.399 Copyright 2015 American Chemical Society. 

 
3 Classical simulations 

3.1 Theory of fundamental approaches 

3.1.1 Force field-based atomistic simulations 

Just as QC methods describe the electronic state of a molecular system via an approximate solution to the 

Schrödinger equation, molecular dynamics (MD) describe the time evolution of a collection of molecules 

according to the classical equations of motion. However, the two families of techniques fundamentally 

differ in resolution. QC techniques capture electronic degrees of freedom and thus allow the calculation of 

optoelectronic properties. By contrast, MD simulations and time-independent molecular mechanics (MM) 

calculations usually represent electrons implicitly by assigning fractional charges to individual atoms (e.g., 

through DFT or other QC methods). By sacrificing resolution, MM/MD approaches can access significantly 

larger time and length scales for significantly larger collections of atoms. It is not uncommon in recent 

literature to find MD simulations of hundreds of thousands of atoms for dozens (if not hundreds) of 

nanoseconds, with this performance made possible through nearly seven decades of algorithmic 

improvements in cutting-edge simulation packages and computing power. 
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The earliest implementations of MD simulations arose in the mid-twentieth century, with Alder and 

Wainwright’s 1957 demonstration of simulated phase transitions for hard sphere systems and Rahman’s 

1964 simulations of liquid argon standing as foundational testaments to the potential of the approach.401, 402 

In 1967, Verlet introduced a stable numerical integration scheme for calculating the time dynamics of a 

collection of particles, along with an algorithm for keeping track of the nearby neighbors of a given 

particle,403 both of which are still commonly used today. Indeed, modern atomistic MD simulations broadly 

share the same underpinning conceit as these early works. Through iterative calculations of the classical 

equations of motion, the dynamics of a collection of atoms or molecules are simulated over time, subject 

to a set of constraints defined by the designer of the simulation. 

Almost all modern implementations of MD simulations incorporate a handful of core mechanistic 

features. A set of system-specific input files describe the atomic positions and velocities at a given time, as 

well as the equilibrium geometric features (e.g., bond lengths, bond angles, dihedral angles, etc.) of the 

species in the system. To manage atomic interactions, a force field (FF) selected or designed by the user 

comprises a collection of simple functions that approximately capture the complex shape of a 

multidimensional potential energy surface (PES) defined by contributions from bond stretching, angle 

bending, dihedral torsion, electrostatic, and van der Waals interactions. Finally, system controls defined by 

the user manage the bookkeeping of the simulation; for example, an integrator algorithm calculates atomic 

trajectories by iteratively propagating the interdependent system of atomic positions, velocities, and net 

forces at each time step, while thermostats and barostats maintain a prescribed system temperature or 

pressure. This simple toolkit, which can be augmented with specialized terms to capture more complex 

interactions, offers a means to rationalize the relationships among chemical structure, solution-phase and 

solid-state ordering, and device performance. 

Today, MD simulation packages are sleek and scalable, designed to exploit advances in computing 

capabilities. Through spatial decomposition of the simulation system into a series of subsystems, each 

managed by a different processor, time evolution within the subsystems can be simulated in parallel for 
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greater efficiency. In addition, calculations for nonbonded (and/or bonded) interactions can be offloaded to 

graphical processing units whose architectures are well suited for the calculation of many calculations at 

once.404-406 In 2011, Larsson et al. reviewed some of these advancements, as well as others in software and 

hardware.407 Owing to two-thirds of a century of progress, MD simulations are now a powerful and 

accessible avenue for the intelligent prediction of the properties of OSC materials based on chemical and 

structural insights. 

 
3.1.2 MD simulations of OSC: Practical considerations 

The many contributions comprising MD’s long history have been well documented in 2011 by Beljonne et 

al.408 and in 2022 by Ciccotti et al.,409 with a 2011 review of the fundamental theory and practice presented 

by González et al.410 A review of MD simulations applied to small-molecule OSC thin-film growth 

phenomena was also presented in 2011 by Clancy et al.411 Given the importance of the FF in capturing 

interactions between atoms in the simulation system, considerable attention has been paid to the accuracy 

of the FF itself. Most MD works adapt an initial set of bonded and nonbonded parameters from the OPLS-

AA,412, 413 GAFF,414 GROMOS,415, 416 CHARMM,417, 418 AMBER,419, 420 or MM3 FFs,421-423 often with 

dihedral torsion potentials and partial atomic charges reparameterized according to DFT results.424-426 

Tsourtou et al. recently compared seven atomistic FFs derived from some of these FFs listed above to 

examine the effect of molecular model parameterization on the predicted properties.427 In a similar vein, 

Wolf et al. demonstrated the importance of accurately capturing the functional form of the dihedral torsion 

potentials between repeat units in MD simulations of OSC polymers.428, 429 In their 2021 work, these authors 

weighed the relative merits of a variety of popular FFs for OSCs with a focus on polythiophenes and 

discussed future directions for more efficient parameterization of new species.429 For a comparison of 

specific adaptations of these FFs to OSC systems across roughly two decades (some of which overlap with 

the work of Tsourtou et al.), the reader is directed to Table 1 of that work. 
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Because many relevant optoelectronic, mechanical, and thermomechanical properties for OSC show some 

dependence on polymer molecular weight, the decision of polymer chain length to use in MD simulations 

is of high importance. Several sources offer guidance on this question, but the answer is not clear-cut. 

Rissler’s 2004 work on the effective conjugation length of π-conjugated systems discusses in detail the 

dependence of excitation energy and electron–hole distances on polymer size (i.e., number of repeat 

units).430 Literature suggests that the electronic properties saturate at about 10-20 double bonds along the 

conjugation pathway,431 but longer lengths (up to 24 – 30 double bonds or even more) may be necessary to 

mitigate spurious end effects on the electronic and optical properties.432 The lower bound of the number of 

repeat units to use in simulation is thus evident; chains should be sufficiently longer than the effective 

molecular weight to appropriately capture the semiflexible chain dynamics of OSC polymers. 

Estimating the upper bound is trickier. A 2022 work by Jiang et al. demonstrated for the DPP-based polymer 

PDPPTT-T-10 that chains with only 20 repeat units showed a nearly identical density variation with time 

to those with 40 repeat units.433 In particular, a 2012 study of P3HT by Bhatta et al. suggests that the 

torsional potentials between repeat units and within side chains may even converge by 8 repeat units.434 On 

the other hand, Tsourtou et al. paint a more complicated picture in their 2020 work exploring the effects of 

FF choice and P3HT chain length.427 Comparing chains with 20, 40, 90, and 150 repeat units, the authors 

observe that while density and persistence length is approximately constant beyond 40 repeat units, the 

effective conjugation length increases monotonically with chain length. It is thus a good idea to probe the 

effects of chain molecular weight on a target property (e.g., density) for a given species to gauge the 

dependence of the property on molecular weight. 

The physics of semiflexible OSC homopolymers and donor–acceptor copolymers may motivate the 

development of potential energy functions and FFs specifically designed for this class of materials. 

Additionally, it is common in literature to see reparameterization of dihedral angles that have already been 

parameterized (or calculation of partial atomic charges that have already been calculated) by previous 

authors. While a growing trend of including simulation input files with submissions helps to ameliorate 
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this, the time and effort spent on this task in even recent works underscore a need for better understanding 

across the field of the recent progress in scientific understanding and in methodology. 

 
3.1.3 Coarse-grained MD simulations 

While MD simulations with atomistic resolution can provide valuable insights into OSC morphology, 

sometimes the target system scale is realistically inaccessible due to the computing power available for 

simulations. One strategy for approaching this hurdle is reducing the granularity of the simulation via coarse 

graining (CG). In coarse-grained MD (CGMD) simulations, a mapping is introduced in which groups of 

atoms are combined into new fictitious particle types. The properties of these particles are tuned to 

reproduce features calculated from atomistic MD simulations or measured experimentally, with greater CG 

(lower resolution) indicating a higher number of atoms encoded into a single CG particle. For example, 

three species – P3HT, PC61BM, and chlorobenzene – are shown in Figure 15 at two levels of CG.435 At the 

all-atom level, each species is represented at the full atomistic resolution, with every pair of atoms 

contributing interactions that must be calculated at each time step.  

 
Figure 15. Coarse-grained MD models for P3HT, PC61BM, and chlorobenzene. Adapted with permission from Ref.435 
Copyright 2018 Elsevier.  
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Consider just the chlorobenzene (CB) molecule shown here; one all-atom CB molecule contributes twelve 

atoms. These twelve atoms, in turn, contribute twelve bond stretching interactions, eighteen angle bending 

interactions, and thirty (proper and improper) dihedral torsion interactions. These sixty interactions must 

be calculated for each CB molecule in the system (which could be hundreds or thousands) at each time step 

(which could be hundreds of thousands or millions)! The CG representation, by contrast, has only three 

“bond” stretching interactions and three “angle” bending interactions. By reducing the number of particles 

in the mapping, CG also reduces the number of necessary calculations and greatly increases the accessible 

time and/or length scales. 

CG mappings also fundamentally alter the connectivity of the molecular model. Due to these alterations, 

the FF parameterization must be fully redesigned; since CG particles do not represent individual atoms but 

rather groups of atoms, these particles must possess properties that capture the identity of the group they 

represent. Despite this difference, however, the functional forms of the FF potentials in CG models are 

often similar to those found at the atomistic level, with stretching, bending, and twisting potentials available 

to give individual chemical identities to different particle types. Many implementations of CGMD also 

include potentials like stochastic thermal impetuses and viscous drag-like potentials to satisfy the 

fluctuation–dissipation theorem.436-438 

The fidelity of CG mapping is thus highly important in CGMD simulation design. It can, to some extent, 

be tuned to achieve a balance between accurate recreation of results extracted from atomistic trajectories 

and performance improvement by reducing resolution. This is a careful balance, however; as shown in 2016 

by both Gross et al. and Root et al.,439, 440 CG models of P3HT that map each entire repeat unit to a single 

particle yield worse predictive capabilities of thermomechanical properties than a three-particle model in 

which the side chains are mapped to two particles. Still, the computational savings from reducing the P3HT 

repeat unit from twenty-five atoms to only three particles offer exceptional savings in computational cost. 

In the literature, CG mappings are often chosen manually and through chemical intuition of distinct 

moieties. Nonetheless, in a recent review of applications of CGMD to OSC,441 Jackson discussed modern 
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advancements in the systematic generation of CG mappings based on graph representations of 

molecules,442-447 machine learning,444 and spectral matching of dynamical modes.448 

In addition to the mapping, a CG model requires a set of potentials (i.e., a FF) that characterize the 

interactions between particles, including both “bonded” and “nonbonded” interactions. While these terms 

are perhaps strictly inapplicable to CG methods, practically, they are still convenient shorthand. Many 

methods exist to generate these potentials,449, 450 with the most popular today being Boltzmann inversion 

(BI),451 iterative Boltzmann inversion (IBI),452 inverse Monte Carlo,453, 454 force matching (FM),455-457 and 

relative entropy.458 As noted by Jackson,441 these methods are based on the goal of reproducing specific 

properties of the ensemble – namely, structural correlation functions for BI, IBI, and inverse Monte Carlo; 

potentials of mean force for FM; and the Kullback–Leibler divergence between the atomistic and CG 

representations for relative entropy.459 Each approach has situationally dependent relative merits and 

demerits.441, 449, 450 In 2016, Scherer and Andrienko explored combinations of BI, IBI, and FM applied to a 

three-particle CG mapping to capture bonded and nonbonded interactions;460 in this case, a combination of 

BI for bonded interactions and IBI with pressure correction for nonbonded interactions led to a CG model 

with the best predictive capabilities. 

Owing to the lower computational cost of CG approaches, many works have leveraged these methods for 

accelerated modeling of OSC morphology,280, 435, 443, 461-480 donor/acceptor/solvent miscibility and blend 

ratio,435, 461-464, 466-469, 473, 475, 476, 478, 481 phase transitions and solvent evaporation,435, 440, 466, 468-470, 473-476, 478-480 

diffusion,461, 467, 470, 474 and mechanical properties.440, 478 In a series of 2010-2014 works, Lee et al. developed 

and applied CG models for P3HT:PC61BM mixtures,462, 469 PBTTT:PC61BM,464 and MEH-PPV.280, 463, 465, 

466 Based on these models, they characterized a wide range of properties, including the average domain 

sizes, interface-to-volume ratios, and percolation ratios of P3HT:PC61BM blends at different weight 

ratios;462 bulk heterojunction morphologies, chain conformations, and π-π stacking;280, 462-466, 469 and phase 

transitions and solubility.464, 466, 469 Likewise, in a series of recent publications that focused on the 

P3HT:PC61BM system, Munshi et al. explored the morphological ramifications of preheating and 
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annealing, P3HT molecular weight, blend ratio, and polydispersity.435, 476, 477 In a later work, they also used 

this model to examine the thermal and mechanical properties of P3HT:PC61BM active layers under uniaxial 

tension, demonstrating an anti-plasticizing effect of the PC61BM molecules.478 

 
3.2 Conformational diversity 

3.2.1 Enhanced sampling techniques 

The central role of polymeric materials in organic electronic devices has motivated the development of 

simulation techniques to describe chain conformations accurately. In addition to approaches designed to 

capture the conformational diversity and its contribution to entropy and free energy (discussed in the 

following two sections), a wealth of enhanced sampling techniques exists to accelerate the exploration of 

the system’s energetic landscape. In a comprehensive 2019 perspective, Yang et al. discuss and sort these 

methods depending on their use of collective variables (CV), also called reaction coordinates, to 

parameterize and guide the system evolution.482 A 2020 protein-focused publication by Liao provides 

additional discussion of these two classes of techniques.483 Today, the most widely used CV-based methods 

include metadynamics (MetaD),484, 485 variationally enhanced sampling (VES),486 umbrella sampling,487 

Markov state models (MSMs),488 local elevation,489 and steered MD,490 while the most popular CV-free 

methods include parallel tempering (PT),491 the closely related replica exchange MD (REMD),492 integrated 

tempering sampling (ITS),493 and accelerated and temperature-accelerated MD, 494-496 and multicanonical 

simulations.497 

The general conceit of these methods is to incentivize the system to visit sites on the PES that are otherwise 

unlikely to be sampled (e.g., due to energetic barriers). CV-based methods typically feature a bias potential 

added to the other interatomic potentials, with the bias potential at a given CV based on visitation history 

(local elevation, MetaD),484, 485, 489, 498, 499 potential energy (umbrella sampling),487, 500, 501 Kullback–Leiber 

divergence (VES),459, 486, 502 or an arbitrary CV trajectory (steered MD).490, 503, 504 An exception is the MSM 

approach, in which the system is partitioned into states with fast intrastate transitions but slow interstate 
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transitions, allowing the transition probability between one state and another is dependent only on the first 

state.488, 505-507 These probabilities may then be propagated to model dynamics on longer timescales.508 

CV-free methods are more varied. Like many CV-based methods, the hyperdynamics variant of accelerated 

MD relies on introducing a bias potential to modify the PES and encourage the system to overcome potential 

barriers.509, 510 Temperature-accelerated MD instead elevates the temperature of the system to facilitate 

transitions between states.494, 511 The PT and REMD approaches involve multiple simultaneous low- and 

high-temperature replica simulations, accelerating the exploration of conformational space by periodic 

molecular swap attempts between replicas.491, 492 The ITS method is similar, with Boltzmann-weighted 

contributions to an effective bias potential coming from multiple temperatures and an effectively infinite 

swap attempt frequency;493, 512, 513 however, by avoiding the use of multiple parallel calculations, ITS offers 

higher efficiency than PT and REMD.513 The sampling distribution of the multicanonical method is based 

on the inverse of the density of states, yielding a high sampling efficiency; the canonical ensemble 

properties can then be recovered through reweighting.497, 514-516 Although the multicanonical method 

nominally requires foreknowledge of the density of states, the Wang–Landau algorithm allows the density 

of states to be calculated during the sampling convergence.517 Finally, the simulated annealing approach 

uses an artificial system “temperature” as a parameter to determine the acceptance probability of a new 

system state;518, 519 at lower temperatures, higher-temperatures states become harder to access, so while it 

is possible to access higher-energy states from a given state, the system gradually “cools” as the simulation 

progresses. This makes simulated annealing an efficient technique for guiding a system to a global 

minimum but less effective for thorough exploration of the conformational landscape. 

Despite the computational cost and sophistication of enhanced sampling techniques, works throughout the 

past two decades have studied aggregational order and achieved improved torsional conformation space 

sampling in π-conjugated systems through PT and REMD,439, 479, 520-528 umbrella sampling,280, 465, 529-536 

MetaD,537-539 and MSMs.540, 541 For example, several publications by Janke and coworkers apply PT 

methods to P3HT systems with atomistic MD and CGMD,439, 524 revealing detailed insights into polymer 
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conformations and adsorption onto textured substrates.525, 526 Likewise, de Pablo and coworkers conducted 

a detailed atomistic MD and CGMD investigation of the conformations and morphologies of BDT and 

PTB7 polymer systems through PT and umbrella sampling.479, 530, 532 

 
3.2.2 Conformational analysis 

The versatility of MD simulations makes them excellent tools for elucidating the roles played by backbone 

and side-chain chemistries in regulating chain conformations and, consequently, in modulating CCT. Most 

MD-based conformational analyses follow one or both of two primary approaches: (i) visual 

characterization, categorization of common conformation types, and discussion of the implications of these 

types on CCT;425, 427, 433, 463, 479, 519-521, 542-546 and (ii) dihedral angle probability distributions and variation of 

selected properties with dihedral angle.433, 547-554 However, other approaches to rationalizing conformational 

diversity have also been employed with success.555-557 It is important to note that the predictive capacity of 

the MD simulation is directly and highly influenced by the accuracy of the dihedral angle parameterization 

defined within the FF. For this reason, the torsional potential parameters for dihedral angle rotation between 

repeat units along the main backbone must be carefully validated (e.g., via a dihedral angle scan). 

Polymer chain conformation plays an influential role in modulating CCT, as it affects the tendency of the 

chains toward ordered π-π stacking, effective charge delocalization, and charge carrier mobilities 

throughout the OSC active layer. Atomistic MD and CGMD simulations offer a means to directly observe 

the conformational diversity of polymer chains in vacuum, solution, and bulk phases. Simulations of 

sufficiently large solvated and bulk systems may contain enough individual molecules to sample 

conformational space to a satisfactory extent, but in all three cases, enhanced sampling techniques may be 

employed to accelerate the sampling process. Conformational analyses performed in these fashions have 

been applied to OSC materials extensively in the literature, revealing a wealth of information about the 

effects of monomer chemistry, side chain density, regioregularity, chemical environment, and temperature 

on the predominant chain conformations.425, 427, 433, 463, 479, 519-521, 542-546 Khoshkhoo et al., for instance, 
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presented images of representative conformations of MEH-PPV chains, demonstrating a more extended 

conformation in chloroform than in methanol.544 More recently, Jackson et al. identified archetypical 

conformational classes adopted by a range of fifteen π-conjugated monomer chemistries, using contact 

maps to represent these conformations clearly and effectively.545 

Aside from providing molecular-scale visualization of individual chain conformations, MD simulations are 

also effective tools for quantifying the conformational diversity of an entire ensemble. One popular 

approach is analyzing histograms or population distributions of specified dihedral angles, generally between 

monomer units. For example, Lemaur et al. extensively characterized the populations of PBTTT and IDTBT 

dihedral angles in crystalline (with both interdigitated and non-interdigitated side chains) and amorphous 

phases.552 This idea can also be extended to quantify another measurable property as a function of the 

dihedral angle distributions. Batagin-Neto et al. investigated the variation of the heat of formation of MEH-

PPV and DM-PPV dimers with intermonomer dihedral angle,549 while Karunasena et al. examined the bond 

ellipticity and intermonomer bond length as a function of the intermonomer dihedral angle.554 Finally, using 

the elegant folding and nonplanarity parameters devised by Qin and Troisi,550 Jiang et al. quantitatively 

characterize the conformations of DPP-based donor–acceptor copolymers.433 After extracting sample 

conformations from the bulk phase, they perform TDDFT calculations on 20-mer chains and analyze the 

NTOs of the excited states, demonstrating that while low-energy excitons tend to localize in relatively 

planar and unfolded regions, some excitons can delocalize across conjugation defects. 

 
3.2.3 Entropy and free energy calculations 

It is often desirable to obtain the free energy of a system to calculate an assortment of ensemble properties. 

However, while the enthalpy of an MD simulation system can be readily calculated from the total energy, 

pressure, and volume at a given time, the entropy is significantly more complicated to estimate due to the 

number of microstates increasing sharply with conformational diversity (and thus with the degree of 

polymerization). While enhanced sampling techniques can accelerate the exploration of the PES, enabling 
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the use of microstate counting methods for entropy estimation, there is no guarantee that all regions of the 

conformational landscape will be visited efficiently (or at all). Fortunately, other approaches exist to tackle 

this challenge; these methods can be categorized into those aimed at calculating relative free energy 

differences and those aimed at estimating absolute free energy. As a note, here we regard free energy and 

entropy as interconvertible based on fundamental thermodynamic relations and other system properties 

calculated during the MD simulation. 

Here, we present a high-level overview of free energy calculation techniques; for a more detailed theoretical 

discussion, the reader is directed to a series of publications by Meirovitch.558-560 Methods of calculating the 

system free energy can be categorized based on the goal of estimating relative free energy differences 

between states or absolute free energies. Popular approaches within the former category include microstate 

counting with enhanced sampling,559 the weighted histogram analysis method (WHAM),501, 561 

thermodynamic integration (TI),562-564 free energy perturbation (FEP),565, 566 the adaptive integration 

method,567 energy decomposition based on Jarzynski’s equality,503, 568 and Bennett’s method.569 Each of 

these techniques requires a way of capturing both of the states of comparison. Microstate counting methods 

involve a MD simulation capable of accessing both microstates, hence the utility of enhanced sampling 

methods. The other techniques generally rely on integration along a path that maps the path between the 

two states to a reaction coordinate, such as potential energy or temperature. 

Whereas relative free energy difference calculation methods generally follow an integration path between 

states, absolute free energy calculation methods generally begin with a MD simulation to generate a sample 

morphology. This category of techniques includes the harmonic approximation,570, 571 the quasi-harmonic 

(QH) approximation,572-574 and step-by-step reconstruction approaches (e.g., the local states and 

hypothetical scanning methods).558, 575-577 In the harmonic method, the free energy is calculated based on 

the Hessian matrix of second derivatives of the energy with respect to the atomic coordinates. The QH 

approximation instead uses the covariance of the coordinates, which can be expressed as internal 

coordinates for improved accuracy and higher computational efficiency. However, as the conversion to 
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internal coordinates is not always straightforward, the approximation introduced by Schlitter expresses the 

covariance in Cartesian coordinates.578 By contrast, the step-by-step reconstruction scan conformational 

space by summing or integrating the conformational contributions from a probability function constructed 

from transition probabilities of partial chain reconstructions. 

While techniques to calculate free energy (and entropy) through classical simulations have not been 

extensively applied to OSC, recent works have nonetheless demonstrated their feasibility in studying these 

materials. Guilbert et al. performed MD simulations to generate a BHJ morphology for the P3HT:PC61BM 

system, then built and diagonalized the covariance matrix of the atomic fluctuations.579 Using Schlitter’s 

approximation, they then determined the conformational entropy of the two species, showing that the 

blending-induced vitrification of P3HT and plasticization of PC61BM arise due to entropic changes in the 

two species. In another vein, several works have used MD simulations to decompose the calculated Gibbs 

free energy into contributions from Coulombic interactions, van der Waals interactions, enthalpy, and 

entropy.532, 580-582 Using this method, Reid et al. demonstrated improved π-π stacking in PTB7 chains with 

linear side chains (as opposed to branched).532 Using a similar decomposition strategy, Qian et al. identified 

the role of vibrational and conformational entropy changes in weakening polythiophene substrate 

adhesion.580 Finally, Wu et al. leverage thermodynamic integration and Gibbs free energy decomposition 

to calculate the enthalpies and entropies of the integer charge transfer and partial charge-transfer complex 

polymorphs of doped P3HT, showing that the dominance of the integer charge transfer polymorph observed 

in prior literature can be attributed to its small critical nucleus and the modest activation barrier for 

converting to it from the partial charge-transfer complex polymorph.582 

 
3.3 Estimation of bulk properties  

3.3.1 Aggregation and ordering 

MD simulation methods access length scales on the order of 101-102 nm, making them well-suited to 

characterizing the solvated and bulk-phase morphologies of OSC active layers. Indeed, they have been 
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exploited extensively throughout the past two decades to study the bulk ordering of π-conjugated molecules 

and polymers.426, 433, 468, 470, 471, 474, 582-612 Given the crucial role played by ordered π-π and lamellar stacking 

in modulating CCT in organic electronic devices, it is hardly surprising that the aggregation tendencies of 

π-conjugated species have been widely studied.426, 474, 583, 585, 589-595, 597, 598, 601-607, 609, 611, 612 Poelking et al., for 

example, simulated PBTTT morphology during heating to link changes in the chain stacking distances to 

the evolution of nematic and dynamic order parameters, side chain melting, paracrystallinity, variation in 

site energies, and interchain electronic coupling.594 Likewise, Alberga et al. simulated the bulk 

morphologies of P3HT and PBTTT to examine the relationships between microstructural features such as 

nematic order, π-π stacking stability, and side-chain interdigitation and electronic characteristics such as 

hole mobilities and electronic coupling.598 In a different vein, by varying the donor species in a series of 

DPP-based donor–acceptor copolymers, Reisjalali et al. probed the influence of polymer chemistry on 

aggregation and the stacking of the π-conjugated backbones.609 As shown in Figure 16, the generated 

morphologies highlighted the effects of repeat unit chemistry and side chain density in regulating chain 

rigidity and average aggregate sizes. 

 
Figure 16. Atomistic MD simulation models of three similar DPP-based donor–acceptor copolymer, illustrating 
effects of donor moiety on π-π stacking characteristics. Adapted with permission from Ref.609 Copyright 2021 Royal 
Society of Chemistry. 
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In addition to stacking of the π-conjugated backbones, computational efforts to rationalize the influential 

role of the chemical structure have explored the effects of regioregularity and polymorphism on 

supramolecular order.591, 593, 595 Obata and Shimoi modeled regioregular and regiorandom P3HT systems 

via MD simulations, showing that regioregular chains arrange into ordered lamellae.591 In regiorandom 

P3HT, however, the disordered PES of the alkyl side chains leads to increased disorder in the resultant 

morphology. Likewise, polymorphism in crystalline OSC polymers affects the ability to control device 

morphology with precision. Because the archetypical π-conjugated homopolymer, P3HT, exhibits two well-

known structural polymorphs, several works explore features of these polymorphs through MD 

simulations.426, 582, 595, 605, 606 Poelking et al. examined the transition from the metastable form I′ polymorph 

to the stable form I, linking polymorphism and regioregularity to electronic coupling and charge-carrier 

mobility.595 Casalegno et al. also studied the phase transition between the two polymorphs, identifying three 

main steps: (i) loss of side chain interdigitation, (ii) interruption of stacking order, and (iii) polymer 

reorganization into tighter stacks and larger periodicities.605 These authors also recently revisited the 

polymorphism of the P3HT system in a study comparing the performance of three FFs specifically adapted 

for poly(3-alkylthiophenes).426 Meanwhile, in an investigation of the crystalline polymorphs of P3HT, 

Zhugayevych et al. perform a comprehensive conformational search for two-dimensional π-stacks, 

identifying multiple polymorphs with energy levels below those of both room-temperature amorphous 

structures and optimized experimental models.606 Figure 17 shows a representation of supramolecular 

ordering in P3HT, as well as the energies of a collection of identified polymorphs. The authors observe that 

P3HT is a statistically frustrated system in which microstructural control is limited by the presence of 

multiple competing interactions.606 



52 

 
Figure 17. (a) Stacking and ordering features in P3HT. (b) As evidenced by the number of low-energy structures in 
P3HT, enabling precise morphological control requires a complete understanding of its significant polymorphism. 
Adapted with permission from Ref.606 Copyright 2018 American Chemical Society. 

 

Although the solid-state morphologies of OSC materials have been explored in many simulation studies, 

fewer works have explored the kinetic implications of solvent evaporation on the resultant active-layer 

microstructure. Nonetheless, several works demonstrate the feasibility of investigating this process through 

MD simulations.474, 476, 607, 608 We highlight in Figure 18 images of the morphological evolution during 

solvent evaporation occurring on microsecond time scales from three of these computational studies. The 

first, shown in Figure 18(a), depicts snapshots from a CGMD simulation of a P3HT:PC61BM blend in 

chlorobenzene for approximately 14 μs generated using an assisted solvent evaporation model (i.e., a 

proportion of randomly selected solvent molecules are periodically deleted from the system);474 in this 
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study, Alessandri et al. examined the effects of drying rate, P3HT molecular weight, and annealing on the 

BHJ microstructure, obtaining atomistic resolution from the CGMD model through back-mapping. A 

similar assisted evaporation approach was adopted by Gertsen et al. in an atomistic MD simulation protocol, 

wherein the authors studied IDTBR film drying during chloroform evaporation, as shown in Figure 18(b). 

These works are impressive technological demonstrations of the capability of simulation methods to capture 

evaporative phenomena. However, Alessandri et al. noted that the assisted evaporation scheme leads to an 

artificially uniform distribution of species throughout the system, whereas realistic evaporation occurs at 

the surface of the blend.474 In the third work we highlight, Lee et al. employed an unassisted evaporation 

scheme to examine the evolution of an archetypical blended emissive layer for OLED devices.608 As shown 

in Figure 18(c), the authors observed that solute aggregation initiated near the interface resulting in an 

inhomogeneous distribution of solvent throughout the system, in turn leading to preferential molecular 

alignment and solvent molecules remaining trapped within the film. 

 
Figure 18. (a,b) Assisted simulated evaporation schemes, in which solvent molecules are randomly selected for 
deletion, are common approaches of modeling the evaporation of solvent species from OSC thin film morphologies.  
Reproduced from Ref.474, 607, 608 Copyright 2017 American Chemical Society. Adapted with permission from Ref.474, 

607, 608 Copyright 2020 American Physical Society. (c) However, modern computing power also permits the simulation 
of unassisted simulated evaporation schemes. Adapted with permission from Refs.474, 607, 608 Copyright 2020 American 
Chemical Society. 
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In addition to solvent evaporation, several works have investigated OSC adsorption on both inorganic 

substrates (e.g., silica) and organic substrates of the same or other species. 580, 584, 587, 590, 592, 597, 607, 613 Meredig 

et al., for example, investigated the orientation of P3HT nanocrystallites as a function of the packing 

density, packing order, and end-group functionalization of alkyl-trichlorosilane self-assembled monolayer 

substrates.587 MD simulation results revealed that the edge-on P3HT orientation is encouraged by the 

smoothly varying PES of disordered substrates but hindered by potential energy wells in highly ordered 

substrates; these energetic traps are caused by favorable interactions between the substrate and the side 

chains of the P3HT chains. Similarly, Alberga et al. emphasized the importance of polymer–substrate 

interactions in modulating the ordering in the resultant film, demonstrating that P3HT and PBTTT chains 

display a stronger tendency to aggregate in the proximity of silica substrates, with this tendency enhanced 

after the annealing process.597 

 
3.3.2 Mechanical and thermomechanical properties 

A wide range of device-relevant mechanical and thermomechanical properties can be obtained by analyzing 

the morphologies generated from MD simulations. For example, the thermal stability of BHJ 

microstructures can be examined by analyzing the diffusivity of species at room temperature or elevated 

temperatures,593, 610, 614 while simulated annealing procedures allow the calculation of some phase transitions 

like melting and glass transition temperatures (Tg).440, 478, 602, 604, 609, 610, 615-617 Simulation trajectories also 

readily offer insights into mechanical characteristics like density and elastic modulus.440, 476, 478, 604, 610, 611, 

615-618 Further, developments in computational power have enabled atomistic MD and CGMD simulations 

of polymers with molecular weights large enough to capture entanglement.427, 440, 466, 474, 476, 599, 604, 611, 614, 615, 

618-621 

The thermal characteristics of OSC may be calculated in a relatively straightforward manner from 

simulation trajectories. Analysis of mean squared displacement during isothermal MD simulations gives 

estimates of the diffusivities of individual species; for example, Pani et al. studied the diffusion of C60 and 
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PC61BM through the P3HT morphology as a function of crystallinity and regioregularity.593 They observed 

that while PC61BM aggregates in regioregular P3HT, it intercalates between the side chains of regiorandom 

P3HT, in turn suppressing PC61BM diffusion. 

Thermal transitions may be estimated by instead varying the temperature over the course of an MD 

simulation. For instance, the coefficient of thermal expansion of amorphous polymers varies linearly at 

temperatures sufficiently above or below Tg. A simulated cooling procedure that spans this range thus 

enables estimation of Tg by applying linear fits to the high- and low-temperature regimes of a plot of density 

(or specific volume) vs. temperature.440, 478, 602, 604, 609, 610, 615-617 This technique was applied to donor–acceptor 

copolymer systems in works by Root et al.,604 Reisjalali et al.,609 and Callaway et al.,610 yielding predicted 

Tg values in good agreement with experimental measurements. In a similar fashion, Li et al. demonstrated 

the capability of MD simulations to accurately predict the melting temperatures of anthradithiophene-based 

OSC using slab models separated by vacuum gaps.616 

Mechanical properties such as the elastic modulus are also accessible through MD simulations. The system 

is first extended in one direction at a fixed rate. A moving average of the virial stress tensor is then evaluated 

throughout this window,440, 604 with the elastic modulus computed from the resulting stress–strain curve as 

normal. Many works have successfully modeled the stress–strain behavior of both neat and blended OSC 

active layer morphologies using both atomistic MD and CGMD simulations.440, 478, 599, 604, 617-620 However, 

simulation methods are not limited to the elastic deformation regime. Indeed, several of these works 

additionally investigate the bulk morphology at the onset of fracture at high tensile strain;478, 599, 619, 620 

representative stress–strain curves and high-strain sample morphologies from three of these works are 

shown in Figure 19. In two 2015 publications, for example, Tummala et al. investigated the effects of P3HT 

degree of polymerization and fullerene adduct functionality on the fracture mechanics and amount of chain 

entanglement of neat and BHJ morphologies, as shown in Figure 19(a) and Figure 19(b), respectively.599, 

619 Similarly, Rodriquez et al. observed that while fracture occurred in systems of low molecular-weight 

P3HT 50-mers (N ≈ Ne), as shown in Figure 19(c), the crack formation did not occur in the high molecular-
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weight 300-mer systems (N ≈ 6Ne), with stress instead concentrating within relatively few entangled 

chains.620 

 
Figure 19. (a) Stress–strain curves and representative snapshots of P3HT when deformed at 0.1 nm/ps along the z-
direction via atomistic MD. Adapted with permission from Ref.599 Copyright 2015 John Wiley & Sons, Inc. (b) Stress–
strain curves of P3HT, P3HT:PCBM, and P3HT:ICMA and representative snapshots of P3HT:acceptor blends at 
approximately 300% strain using atomistic MD. Adapted with permission from Ref.619 Copyright 2015 American 
Chemical Society. (c) Stress–strain curves of disentangled (N ≈ Ne) and highly entangled (N ≈ 6Ne) P3HT and 
representative snapshots at approximately 200% strain. Adapted with permission from Ref.620 Copyright 2017 
American Chemical Society. 

 
Finally, as suggested above, chain entanglement is an influential factor in diffusion, fracture toughness, and 

ductility. Atomistic MD and CGMD simulations can help clarify the ways in which chemical structure, 

backbone rigidity, and degree of polymerization affect chain entanglement (in turn, modulating diffusion 

rates and mechanical properties).427, 466, 474, 476, 599, 611, 614, 615, 618, 619, 621 Characterization of the entanglement 
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properties of the system is often performed with primitive path analysis,599, 618, 619 for which the Z1 code 

package is a popular choice.622-625 This approach was demonstrated by Yoshimoto et al., for instance, the 

authors performed stress–strain simulations on P3HT:C60 blends with varying degrees of polymerization 

and blend ratios. Results from the simulations indicated that the elastic modulus is relatively insensitive to 

the amount of chain entanglement, whereas the ultimate tensile strength scales with the number of kinks 

per chain (a metric of chain entanglement).618 

 
3.3.3 Phonon transport and thermal conductivity 

As discussed by Wang et al. in a recent perspective of thermal transport in OSC,626 the bulk transport of 

phonons (i.e., collective atomic vibrations) is of practical interest both to OSC materials, wherein phonon 

transport is a vector of heat transfer and a reflection of thermal stability, and to organic thermoelectric 

materials. As low-frequency acoustic modes are thought to make the most important contribution to thermal 

transport,627 phonon transport is thus often captured through the thermal conductivity (κ) and/or the figure 

of merit ZT for thermoelectrics. Many older exact ab initio and approximate semiclassical techniques model 

κ through the Boltzmann transport equation;628-638 however, these methods require calculating interatomic 

force constants, a computationally expensive task. Other approaches extract the bulk lattice thermal 

conductivity directly from quantities calculated during the course of MD simulation.639-646 In the GK 

relations, κ is calculated from the autocorrelation of microscopic heat currents at equilibrium (i.e., the decay 

rate of thermal fluctuations).639-641 While the slow convergence of the heat current autocorrelation functions 

(ACFs) limited the initial GK formulation, several averaging schemes have been proposed to accelerate 

convergence.647-649 Importantly, κ values show distinct dependence on the heat flux formulation used in the 

GK calculation.650-654 

NEMD and AEMD simulations directly probe the system’s thermal response to applied heat currents, 

avoiding the problem of slow ACF convergence.642, 643, 651 In NEMD, a heat flux is established by increasing 

and decreasing the atomic velocities within hot and cold regions at opposing ends of the system; κ is then 
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extracted from Fourier’s law of conduction based on the thermal gradient arising in response to the imposed 

heat flux.655-658 It is worth noting that long simulation times are often necessary to establish a steady-state 

linear thermal gradient.645, 646, 651 Further, this method exhibits pronounced finite-size effects; however, the 

corrected κ can be extrapolated through a Matthiessen-like equation.646, 651, 659 The limitations of GK and 

NEMD motivated the development of AEMD, wherein the thermal response is measured by establishing a 

stepwise temperature differential between the left and right halves of the system and then observing the 

decay of the thermal gradient (occurring on a timescale ~102 ps) after the boundary is released.644, 645 More 

recently, the first-principles sinusoidal AEMD (SAEMD) variant introduced by Puligheddu et al. imposes 

a sinusoidal thermal profile that varies continuously with position;646 a detailed comparison of the 

computational performance of the GK, NEMD, and SAEMD approaches in that work revealed that the 

equilibrium time in SAEMD was approximately two orders of magnitude faster than the convergence of 

the heat current ACFs in GK or of the thermal gradient in NEMD. 

Several authors have used these methods to explore the effects of chain length, crystallinity, polydispersity, 

and doping level on phonon transport and heat conduction in PEDOT systems.660-665 A 2017 work by Shi 

et al. applied NEMD to model phonon transport in PEDOT fibers, highlighting chain length and crystallinity 

as avenues to control κ.660 In order to improve thermal stability, they showed that rationally designed chain-

oriented PEDOT fibers can exhibit significantly reduced κ and enhanced ZT. Similarly, Genovese et al. 

used GK and AEMD to study the effect of morphology on thermal transport, demonstrating a decrease in 

κ of over two orders of magnitude in nearly amorphous PEDOT compared to the purely crystalline phase.661 

In addition to the degree of crystallinity, κ depends strongly on chain length, as shown by these works and 

by Maeno et al.; in their 2018 NEMD work, they demonstrated that adsorption of toluene sulfonic acid on 

PEDOT reduces κ, with more pronounced effects at longer chain lengths.663 Later, Yu et al. simulated 

thermal transport at different tosylate dopant concentrations with GK, with heavily doped systems 

demonstrating a roughly 50% reduction in κ.664 Thermal transport in this system was demonstrated to occur 
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via a combination of PEDOT:dopant interfacial conduction, PEDOT lattice conduction, and dopant 

convection. 

In a 2014 work, Shi et al. proposed a model to estimate the optimal doping level and peak ZT value based 

on intrinsic carrier mobility, lattice κ, and effective density of states.666 Using NEMD to calculate κ for a 

series of BTBT derivatives, the species were shown to have high charge carrier mobilities, low κ, and high 

Seebeck coefficients. Recently, Gueye et al. studied thermal conduction in two of these BTBT derivatives 

via scanning thermal microscopy, with results supported by AEMD.667 In contrast to the two-dimensional 

CCT characteristics, AEMD simulations revealed appreciable thermal transport along all three crystal axes. 

Finally, these techniques have also been used to study thermal conduction in the archetypical family of 

polythiophenes. Lv et al. performed MD simulations and GK modal analysis to rationalize the contributions 

of individual phonon modes to κ in individual polythiophene chains.668 Results of their approach suggested 

that anomalous divergent thermal conductivity is possible for chains of specific lengths due to low-

frequency transverse vibrations in the plane of the thiophene rings, supporting earlier hypotheses that 

attributed divergent κ values to correlated phonon–phonon scattering. Later, Zheng et al. synthesized a 

series of poly(3-alkylthiophene) copolymers and copolymers of 3-butylthiophene and 3-butoxythiophene, 

comparing experimental characterization against NEMD simulations.669 In the second family of species, 

the authors show that κ is enhanced by reducing steric hindrance and enhancing p-π conjugation. 

 
4 Multiscale modeling approaches 

4.1 Connecting optoelectronics to morphology 

As the preceding sections demonstrate, the predictive scope of QC methods and classical simulation 

approaches includes a wide range of phenomena relevant to organic electronic device performance. 

However, each technique has optimal temporal and spatial scales of applicability; while QC methods can 

resolve electronic phenomena, the lower cost of classical simulation methods is more amenable to modeling 

the evolution of bulk microstructure on nanosecond time scales. At the same time, the distinguishing 
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characteristics of π-conjugated materials rely on the rich interplay between electronic and nuclear dynamics, 

with different relevant processes occurring on time scales of femtoseconds, picoseconds, and nanoseconds. 

A natural conclusion of these observations is that capturing these phenomena accurately requires using a 

multiscale modeling approach leveraging the strengths of each constituent method to capture phenomena 

within its scope of applicability. 

Modern computing allows multiple length scales to be resolved in tandem via combined quantum and 

classical dynamics approaches. These approaches enable the effects of electronic structure to be captured 

explicitly while atomic motion is still propagated classically via integration of the equations of motion; for 

example, this is the basic premise of ab initio MD and the Car–Parrinello MD scheme.670 However, 

multiscale simulation design is more often piecemeal, applying the techniques discussed previously at their 

respective length scales to develop a holistic understanding of the relationships among optoelectronic 

processes, self-assembly, bulk morphology, and (thermo)mechanical properties. For example, after FF 

parameterization, a sample morphology can be generated through classical simulations, optionally using 

coarse-grained MD or enhanced sampling techniques to accelerate the exploration of conformational space. 

After sampling molecular conformations from this morphology, QC methods can be used to calculate 

electronic structure and intermolecular electronic coupling. Additionally, kinetic Monte Carlo (KMC) 

simulations can be performed on the MD-generated morphology to calculate charge carrier mobilities. For 

a theoretical discussion of Monte Carlo and KMC methods, the reader is directed to a comprehensive 

theoretical treatment by Kratzer,671 as well as to MC and KMC reviews by Andersen et al. and Cheimarios 

et al.672, 673 Of particular interest to this work, several works have reviewed KMC simulations of OSC 

materials for modeling CCT, exciton diffusion lengths, charge recombination, and Seebeck coefficients.333, 

674-679 We also highlight a handful of additional works that used KMC methods to characterize a variety of 

phenomena in OSC materials.542, 613, 680-684  

Combining results from these approaches into an aggregate picture thus offers insights into the relationships 

among repeat unit chemistry, exciton delocalization, electronic coupling (and electron–phonon coupling, 
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as discussed below), chain conformations, morphological (dis)order, and CCT. Many works demonstrate 

the utility of this type of piecemeal modeling paradigm in connecting the optical, electronic, 

thermomechanical, and morphological characteristics across length scales in a diverse variety of OSC 

molecules and polymers.327, 370, 439, 471, 472, 543, 547, 548, 550, 553, 554, 586, 589, 590, 600, 685-703 For example, D’Avino et al. 

used a combination of MD simulations, QC calculations, and classical microelectrostatic calculations to 

explore electron–hole separation processes occurring at a prototypical P3HT:PC61BM interface.692 The 

authors demonstrated the energetic favorability of charge separation of about 50% of the interfacial 

electron–hole pairs, which they explain by connecting electronic polarization, the electrostatic landscape, 

and interfacially induced torsional disorder in P3HT chains. Similarly, Olivier et al. leveraged MM/MD 

simulations and QC calculations to examine the supramolecular organization and subsequent charge-carrier 

mobilities of three families of polymers based on P3HT, CDT-BTZ, and P(NDI2OD-T2).695 Through a 

combination of QC and MD methods, the authors succeeded in linking the chemistry, dimensions, and side-

chain density of the monomers comprising the conjugated backbone to the supramolecular organization and 

subsequent charge-carrier mobilities of these species. 

Böckmann et al. demonstrated the effectiveness of interconnected multiscale simulations in a study 

comparing simulated optical absorption spectra of P3HT in solution, thin films, and bulk crystals with those 

obtained from UV/Vis spectroscopy experiments.471 After modeling the thin-film morphology via CGMD, 

the authors used the CG definitions to backmap the resultant morphology to atomistic resolution; 

statistically averaged TDDFT calculations performed on an ensemble of molecules selected from the 

generated morphology yielded optical absorption spectra in good agreement with the experimental spectra. 

From these results, the authors observed that torsion between adjacent thiophene rings dominated 

intermolecular effects in determining the position of the main absorption peak. Most recently, a 2022 

multiscale simulation study from Mombrú et al. combined DFT calculations, MD simulations, and ab initio 

MD simulations to examine mixed ionic–electronic transport in a P3HT crystalline supercell with explicitly 

represented lithium-based dopants and additives,703 a notably rare feature in simulation works. The reported 
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ionic and electronic conductivity values agreed well with experimental values, allowing further exploration 

of the static and dynamic disorder effects arising from the explicit Li dopants. These works highlight the 

many ways that quantum and classical simulation methods complement each other to yield deeper insights 

into the multiscale phenomena governing the performance of these materials in OSC devices. 

 
4.2 Adding charge-carrier transport 

To supplement the techniques discussed above, charge-carrier mobilities can be calculated via Marcus 

theory,704 Miller–Abrahams theory,705 KMC simulations, or charge patching methods. As highlighted in 

several high-level reviews of CCT modeling approaches, this pipeline allows for thorough characterization 

of the CCT characteristics of OSC materials.337, 675, 677, 706-710 For example, a 2009 Account by Nelson et al. 

illustrated a variety of key computational approaches to model molecular packing, charge transfer rates, 

and charge carrier transport.707 The same year, Rühle et al. introduced the versatile object-oriented toolkit 

for coarse-graining applications (VOTCA),709 now a popular modeling package in multiscale studies of 

CCT. The workflow of the interrelated approaches on which the VOTCA package is based is depicted in 

Figure 20.337, 710 
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Figure 20. A flowchart of multiscale approaches connecting relevant optoelectronic properties to computational 
modeling methods. Reproduced from Ref.337, 710 Copyright 2018 American Chemical Society. 

 
In a 2014 review, Shuai et al. discussed a multiscale approach to modeling charge-carrier mobility in OSC 

by combining quantum charge transfer theory, MD simulations, and KMC simulations;675 their work 

extends past the semiclassical Marcus theory by highlighting the quantum nuclear tunneling effect in charge 

transfer. More recently, a 2018 perspective by Gryn’ova et al. distilled insights from these and other works 

into a set of design principles for effective quantum, classical, and multiscale simulations enhanced with 

data-driven analysis. These studies offer extensive insights into the underlying framework of KMC as 

applied to OSC materials. 

Many works have leveraged KMC techniques to extract charge-carrier mobilities from a morphology 

generated through MD approaches.546, 556, 588, 613, 675, 689, 707, 708, 711-721 As early as 2009, Vukmirović and Wang 

developed a multiscale ab initio simulation method combining QC calculation of electronic states, classical 

FF simulations, and KMC simulations.588 Using this method, the authors estimated the mobility of 

disordered P3HT, yielding good agreement with experimental values. Later, a 2017 work by Li and Brédas 

demonstrated that charge-carrier self-interaction errors could result in significant inaccuracies in KMC 

simulations of OSC materials. They proposed two approaches to overcome these errors. The first, the 

“exact” method, takes into account the evolution of the electric potential between the initial and final 

configurations; in the second, the “exclusion” method, the electric potential difference in the absence of the 

hopping carrier is considered in order to evaluate the site-energy difference. By reducing finite-size effects, 

the authors show that improved accuracy can be delivered in KMC simulations at a lower computational 

cost. In 2018, Kaiser et al. developed a generalized KMC framework based on Voronoi tessellation.684 Their 

approach models excitonic processes (including triplet exciton dynamics) in crystalline and amorphous 

domains of OSC materials by performing a weighted average over a set of interaction sites at predefined 

locations around each species. 
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A 2021 publication by Paterson et al. used a swath of experimental characterization techniques in 

conjunction with DFT, MD, and KMC approaches to examine the effects of molecular n-doping on CCT 

in the popular non-fullerene acceptor species O-IDTBR.720 In these explorations, the authors identified a 

previously unreported dopant-induced packing orientation resulting in high electron mobilities in excess of 

1 cm2 V-1 s-1, which was confirmed through computational simulations to be the result of the synergy 

between the n-type doping and morphological changes. More recently, a 2022 multiscale study by Dilmurat 

et al. exploited atomistic MD simulations, QC calculations, and  KMC simulations to show that the density 

and quality of close-contact points between donor–acceptor copolymers modulate the charge-carrier 

mobilities in the amorphous phase.721 Further, the donor block size and the alkyl side-chain density are 

shown to be important factors in determining the quality of close-contact points between chains; the 

elongated and bulky dithiopheneindenofluorene promote a larger number of higher-quality close contacts, 

which subsequently yields improved charge-carrier mobilities. Finally, in 2022, Giannini and Blumberger 

presented a detailed overview of computational techniques, which include multiscale and mixed QC-MD 

techniques like nonadiabatic MD (NAMD) for modeling CCT in OSC materials.330 Figure 21 shows their 

fragment orbital-based surface hopping approach for direct charge propagation in a NAMD framework in 

the context of other theories of charge transport with corresponding ranges of applicability. 
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Figure 21. A complex multiscale framework of CCT regimes in OSC materials. Reproduced from Ref.330 Copyright 
2022 American Chemical Society. 

 
4.3 Modeling electron–phonon coupling 

As the Franck–Condon principle demonstrates, the electronic and nuclear dynamics are fundamentally 

intertwined; the motion of the nuclei over time can cause electronic transitions, while the relaxation of 

excited electronic states can likewise induce vibrational motion in nearby atoms.722-725 Moreover, phonons 

can couple to charge carriers, resulting in energy and momentum transfer, in turn lowering charge-carrier 

mobility and degrading overall device performance. Reflecting the different scales of electronic and nuclear 

dynamics, accurate description of electron–phonon coupling often motivates specific multiscale approaches 

designed to model both electronic and nuclear processes. 

In discussing these approaches, it is useful to break the larger picture of electron–phonon (e-ph) coupling 

into local and nonlocal coupling, which can be understood in the context of the Holstein–Peierls model.302, 

303, 629, 726, 727 The local Holstein-type coupling, also known as diagonal dynamic disorder, represents the 

fluctuation of on-site electronic energies (i.e., Coulomb integrals, corresponding to the EA and IP of the 

site for mobile holes and electrons, respectively728, 729) with the phonon normal modes. The local e-ph 

coupling can be quantified via the polaron binding energy;302, 303 in the framework of Marcus–Hush theory, 

it has been shown that the reorganization energy is approximately twice the polaron binding energy.333, 728, 

729 The Huang–Rhys factor, which can be used to calculate the interchain charge transfer rate, also quantifies 

the strength of the local e-ph coupling. The nonlocal Peierls-type coupling, also known as off-diagonal 

dynamic disorder, represents the fluctuations in intermolecular electronic couplings (often called transfer 

integrals) as a function of the vibrational modes. 

The local and nonlocal e-ph coupling can be determined based on three essential quantities: (i) site energies, 

(ii) electronic couplings, and (iii) phonon normal modes. The site energies and electronic couplings can be 

calculated through QC methods like DFT or the semiempirical valence bond/Hartree–Fock (VB/HF) 

formalism, as discussed in Section 2.4.1 (vide supra). On the other hand, the normal modes can be obtained 
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via QC or classical FF-based methods; although classical simulations naturally allow larger systems to be 

modeled at equal or lower computational cost, thereby reducing finite-size effects, it is important to note 

that QC-based approaches often offer greater flexibility and accuracy in going beyond the Γ-point 

approximation (i.e., including other points within the first Brillouin zone).730-733 Phonon normal-mode 

analysis is generally performed using a software package such as DUSHIN734 or Phonopy.735  

Using these techniques, local and nonlocal e-ph coupling have been extensively investigated in a variety of 

OSC species.704, 736-740 For example, as early as 2006, Troisi and Orlandi presented a mixed quantum–

classical approach in which QC calculations and MD simulations were used to examine the nonlocal 

coupling in pentacene and anthracene, showing that the perturbative treatment of the e-ph coupling is 

invalid due to the large fluctuations in the electronic couplings.327 Their results suggested the dynamic 

electronic disorder as a key factor in limiting the charge mobility of crystalline OSC. In a similar vein, 

Sánchez-Carrera et al. explored the oligoacene crystal series from naphthalene to pentacene.730 Their results 

demonstrated that neither the weak nor the strong electronic coupling limit were adequate for naphthalene 

and anthracene due to the comparable strength of nonlocal e-ph couplings and electronic couplings, 

although the electronic couplings were shown to dominate in tetracene and pentacene. Further, they 

observed a decrease in the nonlocal relaxation energies with increasing molecular size. 

The validity of the Γ-point approximation in calculating the nonlocal e-ph coupling has been explored by 

Yi and coworkers in 2012 and again in 2018; in both cases, they demonstrate that the overall nonlocal e-ph 

couplings are underestimated by considering only the Γ-point approximation.731, 732 These authors observe 

in the latter of these works that, in order to describe the force constants accurately, sufficiently large 

simulation supercells are needed to eliminate the imaginary phonon modes. More recently, Xie et al. 

explored the rigid-body approximation commonly used in the evaluation of the nonlocal e-ph coupling.138 

By allowing the mixing of intra- and intermolecular modes, they revealed moderate to strong contributions 

to the nonlocal coupling from low-frequency modes (i.e., acoustic modes and librations), certain out-of-
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plane modes, and a combination of some C–C stretching modes. The low-frequency (<200 cm-1) acoustic 

modes are shown to be the strongest contributors to the nonlocal coupling. 

5 Data-driven methods 

5.1 High-throughput virtual screening 

While the chemical space of OSC is large, recent advancements in computational hardware and optimized 

computational codes have enabled the computational screening of large OSC libraries to discover 

candidates with desired properties for experimental investigations. In this process, termed high-throughput 

virtual screening (HTVS), a computational funnel approach is used wherein each level yields progressively 

more accurate property estimation at increased computational cost, as shown in Figure 22(a). The HTVS 

approach, which is routinely used in drug discovery,741-743 is growing in popularity in accelerating the 

discovery of new materials.744-747 

 
Figure 22. (a) A computational funnel scheme. The increasingly strict filtering criterion eliminates many molecules 
that are not of interest and identifies the top-performing candidates in a virtual library. Adapted with permission from 
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Ref.748 Copyright 2020 John Wiley & Sons, Inc. (b) Structure and workflow of the Clean Energy Project (CEP). (c) 
The 26 building blocks used for generating the CEP molecular library. The Mg atoms represent chemical handles, i.e., 
the reactive sites in the generation process. We introduce simple links between two moieties (by means of substituting 
two Mg for a single C–C bond) as well as the fusion of two rings. Adapted from Ref.749 Copyright 2011 American 
Chemical Society. 

 
In 2011, Aspuru-Guzik and coworkers presented an approach to discover organic π-conjugated materials 

for application in solar cells using high-throughput screening.749 2.4 million combinatorially generated 

molecules were screened by HTVS workflow, as shown in Figure 22(b). In the initial screening, low 

computational cost cheminformatics descriptors were used, which was followed by semiempirical 

calculations. The molecular geometry of each screened molecule from semiempirical calculation was 

optimized at the BP86/def2-SVP level of theory. Further, 14 DFT single-point calculations were performed 

on the optimized geometry, which provided the eigenvalues of molecular orbitals and other properties, 

including Mülliken populations and bond order analyses. The computational results were correlated to 

experimental observations to provide insights into structure-property relationships and thereby lead 

candidates for organic photovoltaic applications.750 Wilbraham et al. created a library of π-conjugated 

polymers and used a combination of tight binding and DFT methods for HTVS of optoelectronic 

properties.751 The authors then used the data to calibrate a linear model, which provided DFT-level accuracy 

from tight binding data thus reducing the computational cost for further polymer screening.  In the works 

of Oberhofer and coworkers,752 Troisi and coworkers,753, 754 and Ai et al.,755 the authors used HTVS on the 

experimental crystal structures from the Cambridge Structural Database, which contains over 1 million 

structures.756 Their workflows used reorganization energy, electronic coupling, and optical excitation 

energy as properties for screening and proposed few candidate crystals for semiconducting applications. 

 
5.2 Machine learning 

The HTVS approach provides sets of potential target materials with desired properties but the 

computational cost to accurately estimate property for new structure is high. The use of machine learning 

(ML) algorithms aids the computer in learning the relationship between the input (structure) and output 
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(property), thereby predicting the output from new inputs. ML algorithms, including ridge regression,757 

support vector machines,758 decision trees,759 and artificial neural networks,760 provide estimates of output 

in a few seconds. While some of the ML models are black boxes, the implementation of ML in organic π-

conjugated materials is still sought as ML models rapidly predict electronic, redox, and optical properties, 

thereby accelerating discovery.761-763 The data to train the ML model is generally from high-throughput 

calculations or data infrastructures like the Clean Energy Project (CEP),749 OMDB,764 and OCELOT.755 An 

in-depth review of ML can be found elsewhere.765, 766 In this section, we will discuss some notable 

contributions of ML in organic π-conjugated systems. 

 
5.2.1 Property prediction 

The property prediction for organic π-conjugated systems is performed with ML algorithms, including 

support vector machines, random forests, ridge regression, and artificial neural networks. For predicting 

properties like molecular orbitals and low-lying excited states, various methods were explored to transform 

the chemical information into the necessary fixed-size vector input for the ML models.767 Some of the 

vector inputs consist of extended circular fingerprints (ECFP)768, molecular access system (MACCS)769 

fingerprints that are abundantly used in medicinal chemistry or human selected set of descriptors like 

number of rings, number of rotatable bonds. The ML predictions of Pyzer-Knapp et al. on the CEP dataset 

achieved a mean absolute error of 28 meV for HOMO and 32 meV for LUMO.770 In 2015, Duvenaud et 

al.771 proposed using graph fingerprints of a molecule as the input for ML models, as shown in Figure 23. 

These neural graph fingerprints do not require a set of descriptors of fixed-size and are more interpretable 

than the cheminformatics fingerprints discussed earlier.  

With the development of ML model architecture, more sophisticated models are available. The ML models 

usually depend on learning the input representation and reduce the need for a human selection of input 

features.772 The use of SMILES773 string to generate the learned representation from variational 

autoencoders (VAE)774 was proposed by Gómez-Bombarelli et al.775 The HOMO, LUMO, and gap 
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prediction with the VAE for the QM9776 dataset yield similar performance as the graph fingerprints 

discussed earlier but could be improved by hyperparameter tuning. Models like SchNet,777, 778 message 

passing neural networks (MPNN)779, and graph neural networks780-784 are also applied in property prediction 

tasks. The input for these models is the molecular structure with information on atoms and bonds. Lu et al. 

compared the performance of some of these models in predicting molecular orbital energies and gaps and 

singlet excited-state energies and observed that SchNet outperforms other models, as shown in Figure 

23(c).785  

 
Figure 23. (a) A visual representation of the computational graph of both standard circular fingerprints and neural 
graph fingerprints. First, a graph is constructed matching the topology of the molecule being fingerprinted, in which 
nodes represent atoms, and edges represent bonds. At each layer, information flows between neighbors in the graph. 
Finally, each node in the graph turns on one bit in the fixed-length fingerprint vector. A more detailed sketch including 
the bond information used in each operation is shown on right. Adapted from Ref.771 (b) Examining fingerprints 
optimized for predicting insolubility. Shown here are representative examples of molecular fragments (highlighted in 
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blue) which most activate different features of the fingerprint. Adapted from Ref.771 (right panel) Lu et al.785 use 
oligothiophenes (OTs) of varying lengths to test the performance of four state-of-the-art DNNs in predicting various 
optoelectronic properties. Plotted above are the test set mean average errors (MAEs) as a function of the length of 
OTs, and the optoelectronic properties considered here are (c) HOMO energy, (d) LUMO energy, (e) HOMO–LUMO 
gap, and (f) first excited-state energy. Reproduced from Ref.785 Copyright 2020 American Chemical Society. 

 
Materials properties like PCE, crystal packing arrangement, and reorganization energy can be predicted 

from molecular representation. For instance, Ito et al. used neural graph fingerprints of molecules to predict 

molecular packing with an accuracy of 64% for organic crystals.786 Sun et al. developed a model capable 

of predicting PCE with an accuracy of 91%,787 based on chemical structure images input into convolutional 

neural networks (CNN). 788 Atahan-Evrenk et al. trained ML models with kernel ridge regression and deep 

neural networks to predict reorganization energy and observed that deep neural networks yield mean-

absolute as low as 6.5 meV.789 Recent ML models for bandgap790 and electronic coupling791 predictions use 

representation like SOAP kernel792, 793 or Coulomb matrix793 coupled with an artificial neural network or 

SchNet.778 

 
5.2.2 Inverse design 

As in the case of property prediction, SMILES can be used as input to generative models that output a 

molecule with desired target property. Jorgensen et al. developed a grammar VAE that uses SMILES 

representation for monomeric donor-acceptor units of a polymer to learn the mapping to a continuous vector 

representation that is then used to generate new molecules.794 The model generates molecules within the 

61% target range of HOMO, LUMO, and optical gap values. Kim et al. used a recurrent neural network795 

for an inverse design approach to discover blue phosphorescent OLED molecules.796 They employed a 

target condition of T1 > 3.0 eV with SMILES as input to the model. The model generated a distribution of 

molecules with a mean T1 of 3.02 eV, with over 58% of molecules satisfying the target condition, as shown 

in Figure 24. Recent generative models797, 798 are using SELFIES799 instead of SMILES, as the validity of 

SELFIES is always guaranteed but not SMILES. Generative models based on flow,800-802 diffusion,803, and 
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generative adversarial networks (GAN)804-807 are used in molecular design, but their application in the 

discovery of OSC materials is currently limited.  

 
Figure 24. Distribution of simulated T1 (eV) energy levels for blue phosphorescent OLED hosts for the training 
library, the targeted (T1 ≥ 3.00 eV) inverse-designed molecules, and the untargeted inverse-designed molecules. The 
fractions of hosts possessing T1 values greater than 3.00 eV were 36.2%, 58.7%, and 26.9%, respectively. Adapted 
with permission from Ref.796 Copyright 2020 American Chemical Society. 

 
5.2.3 Active learning 

Sampling the whole chemical space of organic π-conjugated systems is unfeasible; hence there is a need to 

sample this space effectively. Active learning (AL) provides the tools necessary for such investigations.808, 

809 The approach generally consists of a Bayesian optimization algorithm that acts as a surrogate model for 

exploring the chemical space. The works of Reuter and coworkers demonstrate the application of AL to 

organic π-conjugated systems.810 From the chemical space of over 65,000 computationally generated 

molecules, these authors optimized the charge-conduction fitness, consisting of the reorganization energy 

and the energy-level alignment of the molecular HOMO and Au work function. The authors observed that 

the AL approach outperformed the convectional computational funnel discussed previously. The AL 

approach is not only limited to the virtual screening of molecules but could be used to generate the data for 
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training the ML models. Smith et al. used an automated AL workflow, shown in Figure 25, to generate new 

samples for training where the ANI ML potential fails to predict the energy accurately.811 

 
Figure 25. (a) Median values Fmedian of molecular fitness F over the prioritized molecules at different learning steps; 
step 0 shows the initial population median. (b) Kernel-density estimated distribution of F over the batch of molecules. 
The number of queries leading to favorable and unfavorable molecules is indicated next to each violin. Examples of 
high-performing molecules at various learning steps. Adapted from Ref.810 (c) Fully automated active learning 
workflow for data generation comprising three main steps of reduction of existing dataset, configurational search, and 
conformational search. Adapted with permission from Ref.811 Copyright 2018 AIP Publishing. 

 
5.2.4 ML potentials 

As discussed in Section 3.1.2, parametrizing the FF for OSC is challenging and time-consuming. ML 

potentials can alleviate many of these problems, providing accurate atomic potential energy surfaces and 

reaction pathways with reduced computational costs. ML potentials are classified as being dedicated or 

transferable. Dedicated ML potentials need quantum-chemical data and can be applied only to a small set 
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of systems, while the transferable ML potentials require no prior quantum-chemical calculations and can 

be applied to many systems. Detailed reviews on ML potentials are provided by Manzhos and Carrington812 

and by Müller and coworkers.813 ANI, an example of transferable ML potentials for small organic 

molecules, was introduced by Roitberg and coworkers.814 The initial ANI model, ANI-1, was trained on 

molecules up to 8 heavy atoms, including four atom types (C, H, N, and O), with subsequent potentials 

ANI-2x including S, F, and Cl.814, 815 The AIMNet816 model, which is based on Bader’s theory of atoms in 

molecules817 and shares some similarities with ANI models, is capable of predicting not only energies but 

also molecular charges and spin multiplicity with error in the range of 2-3 kcal/mol, as shown in Figure 

26.818 While these ML potentials enable rapid exploration of the lowest-energy conformer of small organic 

molecules,819 the application to extended organic π-conjugated molecules/polymers remains less explored. 

 
Figure 26. (a) Structure of the ANI AEVs. The sum of j and k is on all neighbor atoms of selected species/pair of species. R and 
θ are hyperparameters called radial/angular shifts. fc is the cutoff cosine function, defined as for R ≤ Rc and 0 otherwise, where Rc 
is the cutoff radius, a hyperparameter that defines how far to reach when investigating chemical environments. Reproduced from 
Ref.820 Copyright 2020 American Chemical Society. (b) For the anion, colors correspond to spin electron atomic charges or density 
(α − β), while for cation to spin hole density (β − α), with red color corresponding to negative spin-charge. The parameter t 
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corresponds to AIMNet iterative passes. For comparison, DFT (PBE0/ma-def2-SVP) spin-density and charges are also depicted. 
Adapted from Ref.818 (c) Comparison of dihedral potentials computed via the ANI-2x ML potential and via other methods. 
Reproduced from Ref.815 Copyright 2020 American Chemical Society. 
 

 

Figure 27. (a) The number of qubits required to store the wave function of a molecule is shown as a function of the 
number of basis functions for different mappings. For the compact mapping, the qubit requirement also depends on 
the ratio of the number of electrons to basis functions, which is relatively constant for a given basis set; although the 
higher quality cc-pVTZ basis is more economical per basis function, a molecule in this basis uses substantially more 
functions than with the 6-31G* basis. The qubits required for specific molecules and basis sets are also shown. 
Adapted with permission from Ref.821 Copyright 2005 The American Association for the Advancement of Science. 
(b) The Hückel MO energies of the five π-bonding molecular systems obtained by the state vector simulator 
(simulator), the ibm_kawasaki machine with error mitigations (mitigated), and the ibm_kawasaki machine without 
error mitigation (raw). The orbital energy specified by |i⟩ just above the respective subfigures represents the orbital 
energy of the ith excited MO. Adapted with permission from Ref.822 Copyright 2022 AIP Publishing. 
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6 Outlook 

In this Review, we examined several decades of advances in computational materials modeling techniques 

and their application to develop physicochemical insights into π-conjugated molecules and polymers and 

OSC. These systems provide particular challenges for computational study given their size – pushing the 

limits of quantum and classical mechanical techniques – chemical diversity, and disparate properties that 

are highly dependent on the environment in which they are studied or operate. With the advent of exascale 

computing, and the continued development of computational algorithms and mathematical and physical 

frameworks, ever more complex systems are being investigated in silico with increased accuracy.823 

However, we note that many of the methods that are now a few decades old still find wide use given their 

simple nature and capability to provide distinct physical understanding; for instance, a recent work used the 

Hückel MO method to simulate an organic system on emerging quantum computing hardware, as shown in 

Figure 27.822 Further, the emergence of more complex computational workflows will necessitate the need 

to adapt open-source tools (e.g., SEAMM824) to promote easy workflow implementation and 

reproducibility, and the continued democratization of data and computational method utility; for example, 

making it easier to find, access, and implement standardized FF parameterizations for OSC, especially π-

conjugated polymers, would streamline the process of initializing MD simulation systems.  

Computational methods will continue to play critical roles as OSC materials design and discovery evolve 

from Edisonian trial-and-error approaches toward machine-informed and machine-driven design and 

discovery. Advances in ML and artificial intelligence (AI) to drive (semi)autonomous robotic platforms 

require data sets of immense size. Although a wide variety of OSC are regularly explored with 

computational methods, open access to this data abiding by FAIR principles825 is limited. While recent 

efforts have curated small datasets, a dataset for OSC with extensive muti-fidelity data is needed to produce 

reliable ML models. Furthermore, the trained ML models should provide the uncertainty associated with 

predictions and be made accessible to the OSC community, leveraging infrastructure like OCELOT ML.761 

Currently, OSC molecular property prediction methods are being adapted from drug design, while ML 
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and machine-based methods to investigate and predict materials properties. 
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