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Abstract: This paper develops an electromagnet-based position estimation system for a cm-scale robot
with two degrees of freedom. The orientation of an external electromagnet is actively controlled in real-
time to maximize the magnetic field magnitude at the robot. This results in a monotonic relationship
between the magnetic field magnitude and radial distance leading to a simple and robust position estimation
system. The radial distance is then estimated using an asymptotically stable nonlinear observer designed
using a linear matrix inequality. The analytical principles of the estimation system are first presented using

key technical lemmas and proofs.

Experimental results are then presented on the verification of the

analytical principles and on the performance of the position estimation system.
Keywords: position estimation, magnetic position sensing, nonlinear observer, robot position.

1. INTRODUCTION

This paper develops an electromagnet-based two-dimensional
position estimation system. Key features of the proposed
system are active rotational control of an electromagnet to
highly simplify the position estimation problem and use of a
nonlinear observer for position estimation. The key analytical
principles of the position estimation system are presented and
the performance of the developed system in finding the
position of a mobile cm-scale robot is evaluated with
experiments.

Humans have long used a magnetic compass to find the north
pole during navigation for hundreds of years (Kreutz,1973).
Based on the same principle, magnetic sensors are often used
together with inertial measurement units (IMUs) to find
“attitude” or 3-dimensional orientation of an object. The
accelerometers on the IMU can measure the two static vertical
angles based on the known downward direction of gravity, and
the magnetic sensor can estimate the horizontal plane angle
based on the known direction of earth’s magnetic field, thus
enabling estimation of all three angles (Markley & Crassidis,
2014). A large body of literature exists on estimation
algorithms that utilize three-axes accelerometers, gyroscopes
and magnetic sensors to find 3-dimensional orientation of a
moving object in the presence of sensor bias errors, sensor
noise and measurement disturbances from translational
movements. (Crassidis et al, 2007; Zhang et al, 2012; Mahony
et al, 2008; Wang & Rajamani, 2018; Wie, 2008; Choukroun,
2003; Wei & Wang, 2013).

In addition to attitude sensing, magnetic sensors have also
been used for proximity sensing in many industrial and vehicle
applications. For example, a permanent magnet installed on
the piston is used to detect if a pneumatic actuator has reached

its end of stroke (Nyce, 2003). Likewise, hall-effect magnetic
sensors are used to measure the passing of a spoked wheel to
measure the rotational speed of a wheel on all modern
automobiles (Fraden, 2003). Here it should be noted that
magnetic fields have mostly been utilized for linear position
sensing only in the case where the movement between the
magnet and magnetic sensor is very small (a few mm), using
either hall-effect (Zhang et al,2016), or eddy current sensors
(Sadler & Ahn, 2001). While some magnetic sensors, such as
AMR and TMR sensors, are highly sensitive and can measure
magnetic fields at large distances from the magnet, there is an
inherent problem due to the nonlinear and non-monotonic
nature of the magnetic field ( Madson & Rajamani, 2018). The
magnetic field of a magnet varies as a highly nonlinear
function of position. Some papers have utilized nonlinear
estimation techniques, such as the iterated extended Kalman
Filter or the unscented Kalman filter for position estimation
over large strokes of motion (Madson & Rajamani, 2018;
Movahedi et al, 2021). However, most of these techniques
have focused only on position measurement during one-
dimensional motion.

This paper focuses on estimation of two-dimensional position
of a robot or other object equipped with a magnetic sensor.
The contributions of the paper include

1) The presentation of key principles enabling active
orientation control of an electromagnet so as to
maximize the real-time magnetic field magnitude at the
sensor location.

2) Development of a position sensing system which does
not rely on complex two-dimensional magnetic models
but instead relies only on a simple one-variable model
of magnetic field.
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Fig.1. Centimeter-scale robot with the sensor chip
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Fig.2.Schematic diagram of the 2D robot position estimation system

The outline of the paper is as follows. Section II presents the
formulation of the position sensing problem and the
configuration of the devices utilized in the position estimation
system. Section III presents the fundamental principles and
analytical results on which the magnetic position estimation
system is based. Section IV presents the nonlinear observer
design for the estimation process. Section V presents
experimental verification of the analytical sensing principles
and experimental results on position estimation of a moving
cm-scale robot using the developed system. Finally, section VI
presents a discussion of the results and conclusions of the

paper.
2. DESCRIPTION OF MEASUREMENT SYSTEM

A photograph of the experimental robot for which the position
estimation system is developed is shown in Figure 1. A
schematic view of the variables in the 2D position estimation
system is shown in Figure 2. The active measurement system
consists of an electromagnet mounted on a motor and a small
2 axes magnetic sensor chip installed on the moving robot. For
the purposes of this paper, the robot motion will be assumed to
be limited to a 2D XY plane. The robot is assumed to have two
degrees of freedom as shown in Figure 2. It can transverse
along the longitudinal and lateral directions. The
electromagnet generates an alternating magnetic field at 20 Hz,
though any other frequency higher than the bandwidth of the
robot movement can also be used.

The magnetic field vector, Bofa dipole at a position vector 7

is given by:

Br(m.t) — (r.7)m)
BE

= Mo
B =— 1
e (1)

where m is the magnetic dipole moment of the electromagnet
and p, is the relative magnetic permeability of the air. The
variation of the amplitude of the magnetic field along the axial
radial distance of the electromagnet is illustrated in Figure 3.
The data in Figure 3 is experimentally obtained and the fitted
curve is a 9" order polynomial function. As seen, the
amplitude of the magnetic field is monotonically decreasing
with radial distance.

8 T T T T T

* Data Paints
==Fitted Curve

IS @

Magnetic Field (V)

N

0 . ) . . L
80 100 120 140 160 180 200 220
Distance(mm)

Fig.3 Experimental magnetic field measurement function showing
magnetic field as a function of radial distance (1 V = 0.5 Gauss)

The 20 Hz alternating current is generated using a signal
generator and then amplified using an audio amplifier before
sending the signal to the electromagnet. The frequency of the
alternating magnetic field should be sufficiently high
compared to the frequency of motion of the robot. The
generated magnetic field is sensed along two mutually
perpendicular axes using two TMR sensors on the robot. The
analog signal output from the magnetic sensor is amplified
using an instrumental amplifier chip (INA2126) and the
amplified signal is acquisitioned at a sampling frequency of 20
kHz.

The measured magnetic field at the robot location consists of
the 20 Hz alternating magnetic field and additional low
frequency magnetic fields generated by variety of other
sources like the static earth’s magnetic field, magnetic field
produced by static ferromagnetic substances in the immediate
surroundings etc. Hence, the sensed signal is filtered using a
bandpass filter with cut off frequencies at 10 Hz and 30 Hz.
Filtering enables the removal of both unwanted noise and bias
from the measured magnetic field. The low pass corner
frequency of the filter is high enough to be above of the
bandwidth of the frequencies at which sensor or disturbing
ferromagnetic objects move. A pure alternating signal with a
zero-mean value at this pre-determined frequency is obtained
after the band pass filtering.

A robust 1D radial position estimation system is developed
using the dynamic amplitude of the alternating magnetic signal
measured on the robot and a nonlinear observer-based position
estimation algorithm. In polar coordinates, the magnetic field
at the robot location (p,6,z) is a function of p, 6 and z
(Figure 4). The vertical offset, z is a known constant parameter
(= 0 cm) in this 2 D estimation problem. The electromagnet is
mounted on a NEMA 23 stepper motor so that its orientation
can be controlled in real time. The electromagnet is
continuously pointed at the magnetic sensor using an active
control algorithm. Hence, 6 of the position coordinate of the
robot with respect to the electromagnet will be zero and helps



to remove the 6 dependence of the magnetic field at the robot
location. Thus, the 2D position estimation problem is reduced
to a 1 D position estimation problem by using active
orientation control i.e., the magnetic field at the robot location
will be a function of just the radial distance, p. The polar angle,
6 is estimated from the encoder readings of the stepper motor
and the radial distance of the robot from the electromagnet, p
is estimated from the magnetic field measurements.
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Fig.4. Schematic diagram of the electromagnet and the robot
showing parameters that influence the magnetic field components

3. POSITION ESTIMATION PRINCIPLES

The components of the magnetic field due to the
electromagnet, B, and B, , sensed by the magnetic sensor at
a position vector 7 (¥ =p + z) are determined by the
parameters @, 8 and y shown in Figure 4. Here the variables in
the figure can be described as follows:

e x,y: Global frame of reference for robot position

x',y': Magnetic sensor frame of reference

a. Angle subtended by the electromagnet to the X axis

y: Angle subtended by the magnetic sensor to the X axis
p : The position vector of the magnetic sensor with respect
to the electromagnet in the XY plane

e  0: Angle subtended by the position vector, p to the x axis
e m: Magnetic dipole moment vector of the electromagnet
The objective of the estimation problem is to estimate
x,y (position coordinates )of the robot using the magnetic
field sensor. This estimation problem is solved using the
following lemmas. The lemmas are proved assuming that the
electromagnet can be modelled using a dipole. However, the
lemmas are also found to hold experimentally, when evaluated
using an actual large electromagnet (not just a dipole).

Lemma 1: The magnitude of the magnetic field at the sensor
location is maximum when the electromagnet is pointed
exactly at the sensor.

Proof:

Rewrite m, the dipole moment vector of the electromagnet,
and 7, the position vector of the robot as a function of their
components along the axes of the global frame of reference.
Let i, and k be the unit vectors along the X,y and z axes of
the global frame of reference, respectively. Then

m = |m|(cos(a) i + sin(a) J) )
7 =|p|(cos(8)i+sin(@) ) +z k (3)
p=xi+yj 4)

Here z is the constant offset distance (= 0 cm) between the
horizontal planes at which the electromagnet resides and the

robot resides. Substituting (2) and (3) in equation (1) and
rearranging,

B =B,i+B,j+B,k (5)
B, = K |(31p1*cos (a — 9)(|;<|):(9) — I71? cos(a)) ©)
__ @lpl*cos (a — 0)(sin(8) — |7|* sin(a))
B, = K EE @)
3|p|%cos (a — 0)z
B, =K HE 3
where K = 297 and Uo 1s the relative magnetic permeability

4T
of the air. Rewrite the magnetic field at the robot location in

the magnetic sensor frame of reference. Let i/, /" and k' be the
unit vectors along the X,y and z axes of the magnetic sensor
frame of reference, respectively. Then

B =B,i' +B,j + B, k' ©)
B,, = By cos(y) + Bysin (y) (10)
By, = =B, sin(y) + B,cos(y) (11
B, = B, (12)

Substituting (6) and (7) in the equations (10) and (11) and

rearranging,

3|p|? cos(a — 8) cos (8 —y) — |7|?cos(y — a)
715

B, = K 3|p|% cos(a — 6) sin(lilz y) — |7|%sin(y — @) (14)

By =K (13)

The horizontal component of the magnetic field, EH is:

By = B,i' + B,j’ (15)
|By| = / (B.)? + (By')® (16)

Substituting (13) and (14) in the equation (15),

2 A4 ~1217]2 2 _ |4
|BT,|=JK (©151* + 615 |TL|30cos (@=0)+1719) 5,

Thus, |E|is maximum for any given y, when @ = 6. When
a = 6, the electromagnet is pointed exactly at the magnetic
sensor. Hence, the magnitude of the magnetic field at the robot
is maximum when the electromagnet is pointed to it, which
implies the magnitude of the magnetic field at a point is
maximum when the magnetic moment vector m is parallel to
the position vector p.

Lemma 2: When the electromagnet is pointed at the robot
(sensor), the radial distance of the robot (sensor) from the
electromagnet can be obtained using a monotonic algebraic
relationship between the magnetic field and radial distance.

Proof:

When the electromagnet is pointed at the robot (sensor), a =
0. Substituting @ = 8 and |7|? = |p|? + z% in the equation
(17), gives |BH|max for a given p and z.



(18)

— K21pl* + 6lpl*(Ip1* + 22) + (IpI* + 22)?)
|BH | = 512 1 725
max PP +77)

We assume z as a known constant vertical offset distance

between the two horizontal planes as explained earlier, hence

|BT,|max is a univariate function of |p|. Further analysis
enables to identify that |5|maxis a monotonically decreasing

function of the radial distance |p| in the interval |p| = E, 00)

(z = 0 cm in this estimation process).

4. NONLINEAR OBSERVER DESIGN

The 2D position estimation problem consists of:
e  Active rotation control of the electromagnet to maximize
the magnetic field at the robot location
e Estimation of the radial distance of the robot from the
electromagnet using a nonlinear observer
This section discusses the nonlinear observer design for
estimation of the kinematic states of the robot radial distance.
The kinematics of the robot can be modelled as a constant
radial acceleration motion with unknown jerk input in a polar
coordinate system with the electromagnet at the center. The
motor with the electromagnet rotates actively to compensate
for the motion of the robot, hence from the electromagnet
frame of reference, the electromagnet is always pointing at the
robot and the robot moves only in the radial direction. The
system model for radial motion is:

x =Ax + Bu (19)
where x is the vector of kinematic states of the robot i.e x =
[p; p, p]T where p is the radial distance of the of the robot from
the electromagnet and u is the unknown jerk noise input, A and

B are defined as:
010
001| B =

000

A=

Ol
0
1 (20)

The unknown jerk could be considered to be zero in a
deterministic estimation framework, or as zero mean Gaussian
noise in a stochastic framework. It should be noted that the use
of a zero radial jerk model underlies an assumption that the
acceleration changes slowly (i.e., its derivative is small).

The measurement function y is the magnitude of the magnetic
field generated by the electromagnet at the robot position. It is
a function of radial distance of the robot position from the
electromagnet. Hence the measurement function can be
represented as:

y = h(Cx) (21)

where C=[1 0 0] and h(p) is a monotonic nonlinear model of
the magnitude of the magnetic field. h(p) is a function of
radial distance p of the robot from the electromagnet and p =
Cx. The plot in Figure 3 shows the measurement function
h(p), the magnitude of the magnetic field as a function of
radial distance p from the electromagnet. It can be seen that,
the measurement function is monotonically decreasing in our
region of interest (p = 90 mm to p =215 mm).

Further, let M be the lower bound of the partial derivative of
h(Cx) with respect to radial distance and N be the upper bound
of the same partial derivative:

dh(Cx)
22
— a(Cx) ~ (22)
Let the observer be given by:
X = A% + Bu + L(h(Cx) — h(CX)) (23)

where L is the observer gain. Let the estimation error be ¥ =
x — X. Then the estimation error dynamics will be:

% = A% — L(h(Cx) — h(C®)) (24)
Note that the estimation error dynamics (24) are nonlinear.
Theorem 1 below describes how to choose L to stabilize this
nonlinear system.

Theorem 1. If an observer gain L, a diagonal matrix I > 0 and
a symmetric positive definite matrix P > 0 that satisfy
inequality (25) can be obtained, then the observer (23) with
this observer gain is globally exponentially stable.

CTMTT NC + CTNTTMC CT(MT + NT)I
+oP —PL+-— 2
2 2
rMc + NC)
by -r

2
<0

ATP + PA—

(25)

The proof of theorem 1 can be obtained by modification of the
Corollary 2.1 from the reference (Rajamani, et al, 2020).
Hence solving the LMI in the equation (25), provides a suitable
observer gain L, which ensures the exponential stability of the
observer given in (23).

5. EXPERIMENTAL VERIFICATION OF ESTIMATION
PRINCIPLES

This section provides the experimental results for verifying
Lemma 1 and Lemma 2. Lemma 1 states that the magnetic
field at the robot is maximum when the electromagnet is
pointed at the robot. To verify this lemma, the electromagnet
and the robot are arranged as show in the schematic diagram
in Figure 5 and the electromagnet angle («) is changed from
90 degree to -90 degrees. The electromagnet is positioned at
an angle of 90 degrees from the magnetic sensor at time, t=0
as shown in Figure 5.

The magnitude of the magnetic field at the robot location
varies with the electromagnet angle, a as shown in Figure 6.
From the graph in Figure 6, it can be concluded that |BT,| is
maximum when a reaches zero. At «a =0, a = 0 and the
electromagnet points at the robot. Thus, the fact that the
magnetic field is maximum when the electromagnet is pointed
at the robot is found to be true for a real-world electromagnet,
not just a theoretical dipole. This property aids in designing a
control algorithm which controls the electromagnet angle in
real-time to point at the magnetic sensor.
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The control algorithm involves a search of the o at which the
|BT,| is maximum, say a* and the a is controlled for the
setpoint a*. The plot in Figure 7 shows the control of the « for
pointing the electromagnet at the robot for a random a and 6
initialization. The electromagnet in the experiment is aligned
such that @ = 0 and the robot position sensor p, subtends an
angle 8 = 20° with the x axis of the global frame of reference.
A proportional controller is designed which enables the
electromagnet angle a to converge to the a* value of 20°. The
feedback error term for the proportional controller is the rate
of change in the magnitude of the magnetic field with respect

to the change in the electromagnet angle (M) . The

da
feedback of % helps to find the direction of change in « at

which |BH| increases by driving |BH| to its maximum value so

i
that 2281
da

a and converges it to a”, the electromagnet angle at which the
magnitude of the magnetic field |BH| is maximized. This is

the principle behind the control algorithm. The plot in Figure
7 shows that the control algorithm is able to control the

— 0. Thus, the proportional controller manipulates

electromagnet angle «, and converges it to ¢* with an error
bound of +/- 1°. Thus, the angle at which the robot is located
with respect to the electromagnet position (polar angle) can be
estimated.
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Fig.8. Radial distance estimation experiment schematic diagram
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Lemma 2 states that the radial distance of the robot from the
electromagnet can be estimated from the magnetic field using
a nonlinear observer. Experimental results of the radial
distance estimation of the robot from the electromagnet is
provided in Figure 9. In this experiment, the robot is initialized
at a random position and the robot is moved along the radial
direction as shown in Figure 8 (the robot is moved from point
A to point C along the radial direction). The active control
algorithm enables the electromagnet to continuously point at
the robot and estimate the radial distance of the robot from the
electromagnet. The error in the radius estimation is provided
in Figure 10. The error is computed using a reference distance
measurement measured by a laser displacement measurement
sensor (Banner Engineering laser displacement sensor). The
electromagnet angle (a) is estimated from the encoder
readings of the motor on which the electromagnet is mounted.
The electromagnet angle estimation results during the above
experiment are provided in Figure 11.

It can be seen that radius estimation is possible with sub
millimeter accuracy (Figure 10) using the magnetic field and a
nonlinear observer. As discussed earlier, an active control
algorithm enables the continuous pointing of the magnet at the
robot. In the above experiment, the robot is travelling along a
straight line at an angle (8) of 20° from the origin. The results
in Figure 11 shows that the active control algorithm is able to
control the electromagnet angle (a) to continuously point at
the robot (o = @) with an accuracy of +/-1°.

6. CONCLUSIONS

This paper developed an electromagnet based 2 D position
estimation system for a robot travelling in a 2 D plane. The
advantages of this estimation technique include low-cost, non-
contacting operation, easy installation, robustness to magnetic
disturbances and the use of a simple 1 D magnetic field map
for position estimation instead of a complex 2D magnetic field
map. In this estimation technique, the electromagnet is
constantly pointed at the robot using a proportional controller.
Then the radial position of the robot is estimated using a
nonlinear observer and the electromagnet angle is estimated
from the encoder data of the motor on which the electromagnet
is installed. The radial distance of the robot from the
electromagnet is shown to be estimated with a submillimeter
accuracy and the angle at which the robot is positioned with
respect to the origin is estimated with an accuracy of 1°.
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