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Abstract: This paper develops an electromagnet-based position estimation system for a cm-scale robot 

with two degrees of freedom. The orientation of an external electromagnet is actively controlled in real-

time to maximize the magnetic field magnitude at the robot.  This results in a monotonic relationship 

between the magnetic field magnitude and radial distance leading to a simple and robust position estimation 

system.  The radial distance is then estimated using an asymptotically stable nonlinear observer designed 

using a linear matrix inequality. The analytical principles of the estimation system are first presented using 

key technical lemmas and proofs.  Experimental results are then presented on the verification of the 

analytical principles and on the performance of the position estimation system. 
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1. INTRODUCTION 

This paper develops an electromagnet-based two-dimensional 

position estimation system.  Key features of the proposed 

system are active rotational control of an electromagnet to 

highly simplify the position estimation problem and use of a 

nonlinear observer for position estimation. The key analytical 

principles of the position estimation system are presented and 

the performance of the developed system in finding the 

position of a mobile cm-scale robot is evaluated with 

experiments.  

Humans have long used a magnetic compass to find the north 

pole during navigation for hundreds of years (Kreutz,1973).  

Based on the same principle, magnetic sensors are often used 

together with inertial measurement units (IMUs) to find 

“attitude” or 3-dimensional orientation of an object.  The 

accelerometers on the IMU can measure the two static vertical 

angles based on the known downward direction of gravity, and 

the magnetic sensor can estimate the horizontal plane angle 

based on the known direction of earth’s magnetic field, thus 

enabling estimation of all three angles (Markley & Crassidis, 

2014).  A large body of literature exists on estimation 

algorithms that utilize three-axes accelerometers, gyroscopes 

and magnetic sensors to find 3-dimensional orientation of a 

moving object in the presence of sensor bias errors, sensor 

noise and measurement disturbances from translational 

movements. (Crassidis et al, 2007; Zhang et al, 2012; Mahony 

et al, 2008; Wang & Rajamani, 2018; Wie, 2008; Choukroun, 

2003; Wei & Wang, 2013).  

In addition to attitude sensing, magnetic sensors have also 

been used for proximity sensing in many industrial and vehicle 

applications.  For example, a permanent magnet installed on 

the piston is used to detect if a pneumatic actuator has reached 

its end of stroke (Nyce, 2003).  Likewise, hall-effect magnetic 

sensors are used to measure the passing of a spoked wheel to 

measure the rotational speed of a wheel on all modern 

automobiles (Fraden, 2003).  Here it should be noted that 

magnetic fields have mostly been utilized for linear position 

sensing only in the case where the movement between the 

magnet and magnetic sensor is very small (a few mm), using 

either hall-effect (Zhang et al,2016), or eddy current sensors 

(Sadler & Ahn, 2001). While some magnetic sensors, such as 

AMR and TMR sensors, are highly sensitive and can measure 

magnetic fields at large distances from the magnet, there is an 

inherent problem due to the nonlinear and non-monotonic 

nature of the magnetic field ( Madson & Rajamani, 2018).  The 

magnetic field of a magnet varies as a highly nonlinear 

function of position.  Some papers have utilized nonlinear 

estimation techniques, such as the iterated extended Kalman 

Filter or the unscented Kalman filter for position estimation 

over large strokes of motion (Madson & Rajamani, 2018; 

Movahedi et al, 2021).  However, most of these techniques 

have focused only on position measurement during one-

dimensional motion. 

This paper focuses on estimation of two-dimensional position 

of a robot or other object equipped with a magnetic sensor.  

The contributions of the paper include 

1) The presentation of key principles enabling active 

orientation control of an electromagnet so as to 

maximize the real-time magnetic field magnitude at the 

sensor location. 

2) Development of a position sensing system which does 

not rely on complex two-dimensional magnetic models 

but instead relies only on a simple one-variable model 

of magnetic field. 



 

 

The outline of the paper is as follows.  Section II presents the 

formulation of the position sensing problem and the 

configuration of the devices utilized in the position estimation 

system.  Section III presents the fundamental principles and 

analytical results on which the magnetic position estimation 

system is based.  Section IV presents the nonlinear observer 

design for the estimation process. Section V presents 

experimental verification of the analytical sensing principles 

and experimental results on position estimation of a moving 

cm-scale robot using the developed system. Finally, section VI 

presents a discussion of the results and conclusions of the 

paper.  

2. DESCRIPTION OF MEASUREMENT SYSTEM 

A photograph of the experimental robot for which the position 

estimation system is developed is shown in Figure 1. A 

schematic view of the variables in the 2D position estimation 

system is shown in Figure 2. The active measurement system 

consists of an electromagnet mounted on a motor and a small 

2 axes magnetic sensor chip installed on the moving robot. For 

the purposes of this paper, the robot motion will be assumed to 

be limited to a 2D XY plane. The robot is assumed to have two 

degrees of freedom as shown in Figure 2. It can transverse 

along the longitudinal and lateral directions. The 

electromagnet generates an alternating magnetic field at 20 Hz, 

though any other frequency higher than the bandwidth of the 

robot movement can also be used. 

The magnetic field vector, 𝐵⃑  of a dipole at a position vector 𝑟  
is given by: 

 

𝐵⃑ =
𝜇0

4𝜋

(3𝑟 (𝑚⃑⃑ . 𝑟 ) − (𝑟 . 𝑟 )𝑚⃑⃑ )

|𝑟|5
      (1) 

where 𝑚⃑⃑  is the magnetic dipole moment of the electromagnet 

and 𝜇0 is the relative magnetic permeability of the air. The 

variation of the amplitude of the magnetic field along the axial 

radial distance of the electromagnet is illustrated in Figure 3. 

The data in Figure 3 is experimentally obtained and the fitted 

curve is a 9th order polynomial function. As seen, the 

amplitude of the magnetic field is monotonically decreasing 

with radial distance.  

 

 

The 20 Hz alternating current is generated using a signal 

generator and then amplified using an audio amplifier before 

sending the signal to the electromagnet. The frequency of the 

alternating magnetic field should be sufficiently high 

compared to the frequency of motion of the robot. The 

generated magnetic field is sensed along two mutually 

perpendicular axes using two TMR sensors on the robot. The 

analog signal output from the magnetic sensor is amplified 

using an instrumental amplifier chip (INA2126) and the 

amplified signal is acquisitioned at a sampling frequency of 20 

kHz. 

The measured magnetic field at the robot location consists of 

the 20 Hz alternating magnetic field and additional low 

frequency magnetic fields generated by variety of other 

sources like the static earth’s magnetic field, magnetic field 

produced by static ferromagnetic substances in the immediate 

surroundings etc. Hence, the sensed signal is filtered using a 

bandpass filter with cut off frequencies at 10 Hz and 30 Hz. 

Filtering enables the removal of both unwanted noise and bias 

from the measured magnetic field. The low pass corner 

frequency of the filter is high enough to be above of the 

bandwidth of the frequencies at which sensor or disturbing 

ferromagnetic objects move. A pure alternating signal with a 

zero-mean value at this pre-determined frequency is obtained 

after the band pass filtering.  

A robust 1D radial position estimation system is developed 

using the dynamic amplitude of the alternating magnetic signal 

measured on the robot and a nonlinear observer-based position 

estimation algorithm. In polar coordinates, the magnetic field 

at the robot location (𝜌, 𝜃, 𝑧) is a function of  𝜌, 𝜃 and 𝑧 

(Figure 4). The vertical offset, 𝑧 is a known constant parameter 

(≈ 0 cm) in this 2 D estimation problem. The electromagnet is 

mounted on a NEMA 23 stepper motor so that its orientation 

can be controlled in real time. The electromagnet is 

continuously pointed at the magnetic sensor using an active 

control algorithm. Hence, 𝜃 of the position coordinate of the 

robot with respect to the electromagnet will be zero and helps 
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Fig.1. Centimeter-scale robot with the sensor chip 

  

 
 

Fig.2.Schematic diagram of the 2D robot position estimation system 
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Fig.3 Experimental magnetic field measurement function showing 

magnetic field as a function of radial distance (1 V = 0.5 Gauss) 



to remove the 𝜃 dependence of the magnetic field at the robot 

location. Thus, the 2D position estimation problem is reduced 

to a 1 D position estimation problem by using active 

orientation control i.e., the magnetic field at the robot location 

will be a function of just the radial distance, 𝜌. The polar angle, 

𝜃 is estimated from the encoder readings of the stepper motor 

and the radial distance of the robot from the electromagnet, 𝜌 

is estimated from the magnetic field measurements.  

 

3. POSITION ESTIMATION PRINCIPLES 

The components of the magnetic field due to the 

electromagnet, 𝐵𝑥
′  and 𝐵𝑦′ , sensed by the magnetic sensor at 

a position vector 𝑟  (𝑟 = 𝜌 + 𝑧 ) are determined by the 

parameters 𝛼, 𝜃 and 𝛾 shown in Figure 4. Here the variables in 

the figure can be described as follows: 

• 𝑥, 𝑦: Global frame of reference for robot position 

• 𝑥′, 𝑦′: Magnetic sensor frame of reference 

• 𝛼: Angle subtended by the electromagnet to the X axis 

• 𝛾: Angle subtended by the magnetic sensor to the X axis 

• 𝜌  : The position vector of the magnetic sensor with respect 

to the electromagnet in the XY plane 

• 𝜃: Angle subtended by the position vector,  𝜌   to the x axis 

• 𝑚⃑⃑ : Magnetic dipole moment vector of the electromagnet 

The objective of the estimation problem is to estimate 

𝑥, 𝑦 (position coordinates )of the robot using the magnetic 

field sensor. This estimation problem is solved using the 

following lemmas. The lemmas are proved assuming that the 

electromagnet can be modelled using a dipole. However, the 

lemmas are also found to hold experimentally, when evaluated 

using an actual large electromagnet (not just a dipole).  

Lemma 1: The magnitude of the magnetic field at the sensor 

location is maximum when the electromagnet is pointed 

exactly at the sensor. 

Proof: 

Rewrite 𝑚⃑⃑ , the dipole moment vector of the electromagnet, 

and 𝑟 , the position vector of the robot as a function of their 

components along the axes of the global frame of reference.  

Let 𝑖̂, 𝑗̂ and 𝑘̂ be the unit vectors along the x, y and z axes of 

the global frame of reference, respectively. Then 

𝑚⃑⃑ = |𝑚⃑⃑ |(cos(𝛼) 𝑖̂ + sin(𝛼) 𝑗̂)     (2) 

𝑟 = |𝜌 |(cos(𝜃) 𝑖̂ + sin(𝜃) 𝑗̂) + 𝑧 𝑘̂      (3) 

𝜌 = 𝑥𝑖̂ + 𝑦𝑗̂      (4) 

Here 𝑧 is the constant offset distance (≈ 0 cm) between the 

horizontal planes at which the electromagnet resides and the 

robot resides. Substituting (2) and (3) in equation (1) and 

rearranging, 

𝐵⃑ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂      (5) 

𝐵𝑥 =  𝐾
|(3|𝜌 |2cos (𝛼 − 𝜃)(cos(𝜃) − |𝑟 |2 cos(𝛼)) 

|𝑟 |5
           (6) 

𝐵𝑦 =  𝐾
(3|𝜌 |2cos (𝛼 − 𝜃)(sin(𝜃) − |𝑟 |2 sin(𝛼)) 

|𝑟 |5
           (7) 

𝐵𝑧 =  𝐾
3|𝜌 |2cos (𝛼 − 𝜃)𝑧 

|𝑟 |5
           (8) 

where 𝐾 =
𝜇0|𝑚⃑⃑⃑⃑ |

4𝜋
 and 𝜇0 is the relative magnetic permeability 

of the air. Rewrite the magnetic field at the robot location in 

the magnetic sensor frame of reference. Let 𝑖̂′, 𝑗̂′ and 𝑘̂′ be the 

unit vectors along the x, y and z axes of the magnetic sensor 

frame of reference, respectively. Then  

𝐵⃑ = 𝐵𝑥′𝑖̂′ + 𝐵𝑦′𝑗̂′ + 𝐵𝑧′𝑘̂′      (9) 

𝐵𝑥′ = 𝐵𝑥 cos(𝛾) + 𝐵𝑦sin (𝛾)    (10) 

𝐵𝑦′ = −𝐵𝑥 sin(𝛾) + 𝐵𝑦𝑐𝑜𝑠(𝛾)    (11) 

𝐵𝑧′ = 𝐵𝑧      (12) 

Substituting (6) and (7) in the equations (10) and (11) and 

rearranging, 

𝐵𝑥′ = 𝐾
3|𝜌 |2 𝑐𝑜𝑠(𝛼 − 𝜃) cos (𝜃 − 𝛾) − |𝑟 |2𝑐𝑜𝑠(𝛾 − 𝛼)

|𝑟 |5
 (13) 

   𝐵𝑦′ = 𝐾
3|𝜌 |2 𝑐𝑜𝑠(𝛼 − 𝜃) sin(𝜃 − 𝛾) − |𝑟 |2𝑠𝑖𝑛(𝛾 − 𝛼)

|𝑟 |5
 (14) 

The horizontal component of the magnetic field, 𝐵⃑ 𝐻 is: 

𝐵𝐻
⃑⃑⃑⃑  ⃑ = 𝐵𝑥′𝑖̂′ + 𝐵𝑦′𝑗̂′   (15) 

|𝐵𝐻
⃑⃑⃑⃑  ⃑| = √(𝐵𝑥′)2 + (𝐵𝑦′)

2
   (16) 

Substituting (13) and (14) in the equation (15),  

|𝐵𝐻
⃑⃑⃑⃑  ⃑| = √

𝐾2((9|𝜌 |4 + 6|𝜌 |2|𝑟 |2) cos2(𝛼 − 𝜃) + |𝑟 |4)

|𝑟 |10
   (17) 

Thus, |𝐵𝐻
⃑⃑⃑⃑  ⃑|is maximum for any given 𝛾, when 𝛼 = 𝜃. When 

𝛼 = 𝜃, the electromagnet is pointed exactly at the magnetic 

sensor. Hence, the magnitude of the magnetic field at the robot 

is maximum when the electromagnet is pointed to it, which 

implies the magnitude of the magnetic field at a point is 

maximum when the magnetic moment vector 𝑚⃑⃑  is parallel to 

the position vector 𝜌 . 

Lemma 2: When the electromagnet is pointed at the robot 

(sensor), the radial distance of the robot (sensor) from the 

electromagnet can be obtained using a monotonic algebraic 

relationship between the magnetic field and radial distance. 

Proof: 

When the electromagnet is pointed at the robot (sensor), 𝛼 =
𝜃. Substituting 𝛼 = 𝜃 and |𝑟 |2 = |𝜌 |2 + 𝑧2 in the equation 

(17), gives |𝐵𝐻
⃑⃑⃑⃑  ⃑|

𝑚𝑎𝑥
 for a given 𝜌  and 𝑧. 

 
Fig.4. Schematic diagram of the electromagnet and the robot 

showing parameters that influence the magnetic field components 
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|𝐵𝐻
⃑⃑⃑⃑  ⃑|

𝑚𝑎𝑥
= √

𝐾2(9|𝜌 |4 + 6|𝜌 |2(|𝜌 |2 + 𝑧2) + (|𝜌 |2 + 𝑧2)2)

(|𝜌 |2 + 𝑧2)5
   (18) 

We assume 𝑧 as a known constant vertical offset distance 

between the two horizontal planes as explained earlier, hence 

|𝐵𝐻
⃑⃑⃑⃑  ⃑|

𝑚𝑎𝑥
 is a univariate function of |𝜌 |. Further analysis 

enables to identify that |𝐵𝐻
⃑⃑⃑⃑  ⃑|

𝑚𝑎𝑥
is a monotonically decreasing 

function of the radial distance |𝜌 | in the interval |𝜌 | = [
𝑧

2
, ∞) 

(𝑧 ≈ 0 𝑐𝑚 in this estimation process).  

 

4. NONLINEAR OBSERVER DESIGN 

The 2D position estimation problem consists of: 

• Active rotation control of the electromagnet to maximize 

the magnetic field at the robot location 

• Estimation of the radial distance of the robot from the 

electromagnet using a nonlinear observer 

This section discusses the nonlinear observer design for 

estimation of the kinematic states of the robot radial distance. 

The kinematics of the robot can be modelled as a constant 

radial acceleration motion with unknown jerk input in a polar 

coordinate system with the electromagnet at the center. The 

motor with the electromagnet rotates actively to compensate 

for the motion of the robot, hence from the electromagnet 

frame of reference, the electromagnet is always pointing at the 

robot and the robot moves only in the radial direction. The 

system model for radial motion is: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (19) 

where 𝑥 is the vector of kinematic states of the robot i.e 𝑥 =
[𝜌; 𝜌̇, 𝜌̈]𝑇  where 𝜌 is the radial distance of the of the robot from 

the electromagnet and 𝑢 is the unknown jerk noise input, 𝐴 and 

𝐵 are defined as:  

𝐴 =  [
0 1 0
0 0 1
0 0 0

]  𝐵 =  [
0
0
1
]   (20) 

The unknown jerk could be considered to be zero in a 

deterministic estimation framework, or as zero mean Gaussian 

noise in a stochastic framework. It should be noted that the use 

of a zero radial jerk model underlies an assumption that the 

acceleration changes slowly (i.e., its derivative is small). 

The measurement function y is the magnitude of the magnetic 

field generated by the electromagnet at the robot position. It is 

a function of radial distance of the robot position from the 

electromagnet. Hence the measurement function can be 

represented as: 

𝑦 = ℎ(𝐶𝑥)  (21) 

where C = [1 0 0] and ℎ(𝜌) is a monotonic nonlinear model of 

the magnitude of the magnetic field. ℎ(𝜌) is a function of 

radial distance 𝜌 of the robot from the electromagnet and  𝜌 =
𝐶𝑥. The plot in Figure 3 shows the measurement function 

ℎ(𝜌), the magnitude of the magnetic field as a function of 

radial distance 𝜌 from the electromagnet. It can be seen that, 

the measurement function is monotonically decreasing in our 

region of interest (𝜌 = 90 mm to 𝜌 = 215 mm). 

Further, let 𝑀 be the lower bound of the partial derivative of 

ℎ(𝐶𝑥) with respect to radial distance and 𝑁 be the upper bound 

of the same partial derivative: 

𝑀 ≤
𝜕ℎ(𝐶𝑥)

𝜕(𝐶𝑥)
≤ 𝑁 (22) 

Let the observer be given by: 

𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿(ℎ(𝐶𝑥) − ℎ(𝐶𝑥̂))     (23) 

where 𝐿 is the observer gain. Let the estimation error be 𝑥̃ =
𝑥 − 𝑥̂. Then the estimation error dynamics will be: 

𝑥̇̃ = 𝐴𝑥̃ − 𝐿(ℎ(𝐶𝑥) − ℎ(𝐶𝑥̂)) (24) 

Note that the estimation error dynamics (24) are nonlinear. 

Theorem 1 below describes how to choose 𝐿 to stabilize this 

nonlinear system. 

Theorem 1. If an observer gain 𝐿, a diagonal matrix 𝛤 > 0 and 

a symmetric positive definite matrix 𝑃 > 0 that satisfy 

inequality (25) can be obtained, then the observer (23) with 

this observer gain is globally exponentially stable.  

[
 
 
 𝐴𝑇𝑃 + 𝑃𝐴 −

𝐶𝑇𝑀𝑇𝛤 𝑁𝐶 + 𝐶𝑇𝑁𝑇𝛤𝑀𝐶

2
+ 𝜎𝑃  − 𝑃 𝐿 +

𝐶𝑇(𝑀𝑇 + 𝑁𝑇  )𝛤

2
 

−𝐿𝑇𝑃 + 
𝛤(𝑀𝐶 +  𝑁𝐶)

2
                                               − 𝛤 ]

 
 
 

≤ 0     

(25) 

The proof of theorem 1 can be obtained by modification of the 

Corollary 2.1 from the reference (Rajamani, et al, 2020). 

Hence solving the LMI in the equation (25), provides a suitable 

observer gain L, which ensures the exponential stability of the 

observer given in (23). 

 

5. EXPERIMENTAL VERIFICATION OF ESTIMATION 

PRINCIPLES 

This section provides the experimental results for verifying 

Lemma 1 and Lemma 2. Lemma 1 states that the magnetic 

field at the robot is maximum when the electromagnet is 

pointed at the robot. To verify this lemma, the electromagnet 

and the robot are arranged as show in the schematic diagram 

in Figure 5 and the electromagnet angle (𝛼) is changed from 

90 degree to -90 degrees. The electromagnet is positioned at 

an angle of 90 degrees from the magnetic sensor at time, t=0 

as shown in Figure 5.    

The magnitude of the magnetic field at the robot location 

varies with the electromagnet angle, 𝛼 as shown in Figure 6. 

From the graph in Figure 6, it can be concluded that  |𝐵𝐻
⃑⃑⃑⃑  ⃑| is 

maximum when α  reaches zero. At 𝛼 = 0, 𝛼 = 𝜃 and the 

electromagnet points at the robot. Thus, the fact that the 

magnetic field is maximum when the electromagnet is pointed 

at the robot is found to be true for a real-world electromagnet, 

not just a theoretical dipole. This property aids in designing a 

control algorithm which controls the electromagnet angle in 

real-time to point at the magnetic sensor.  

 



 

 

The control algorithm involves a search of the α at which the 

|𝐵𝐻
⃑⃑⃑⃑  ⃑| is maximum, say 𝛼∗ and the 𝛼 is controlled for the 

setpoint 𝛼∗. The plot in Figure 7 shows the control of the 𝛼 for 

pointing the electromagnet at the robot for a random 𝛼 and 𝜃 

initialization. The electromagnet in the experiment is aligned 

such that 𝛼 = 0 and the robot position sensor 𝜌 , subtends an 

angle  𝜃 = 200 with the x axis of the global frame of reference. 

A proportional controller is designed which enables the 

electromagnet angle 𝛼 to converge to the 𝛼∗ value of 200. The 

feedback error term for the proportional controller is the rate 

of change in the magnitude of the magnetic field with respect 

to the change in the electromagnet angle (
𝑑|𝐵𝐻⃑⃑ ⃑⃑ ⃑⃑ |

𝑑𝛼
 ) .  The 

feedback of  
𝑑|𝐵𝐻⃑⃑ ⃑⃑ ⃑⃑ |

𝑑𝛼
 helps to find the direction of change in 𝛼 at 

which |𝐵𝐻
⃑⃑⃑⃑  ⃑| increases by driving |𝐵𝐻

⃑⃑⃑⃑  ⃑| to its maximum value so 

that 
𝑑|𝐵𝐻⃑⃑ ⃑⃑ ⃑⃑ |

𝑑𝛼
 → 0. Thus, the proportional controller manipulates  

𝛼 and converges it to 𝛼∗, the electromagnet angle at which the 

magnitude of the magnetic field |𝐵𝐻
⃑⃑⃑⃑  ⃑|  is maximized. This is 

the principle behind the control algorithm.  The plot in Figure 

7 shows that the control algorithm is able to control the 

electromagnet angle 𝛼, and converges it to 𝛼∗ with an error 

bound of +/- 10. Thus, the angle at which the robot is located 

with respect to the electromagnet position (polar angle) can be 

estimated.  

 

                                                                                

 

 
Fig.11. Electromagnet angle estimation during the radial distance 

estimation of the robot: horizontal lines are 190 and 210 

 

 
Fig.5.Schematic diagram of the electromagnet and the robot 

showing initial electromagnet angle for the electromagnet angular 

variation experiment 
 

  

Electromagnet

Robot

 
Fig.6. Angular relationship between magnetic field at robot and 

pointing angle of the electromagnet 

 
Fig.7. Plot of the 𝛼(electromagnet angle) control: horizontal lines 

are 190 and 210 

  

 
Fig.8. Radial distance estimation experiment schematic diagram  
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Fig.9. Radial distance estimation results 

 

 
Fig.10. Error in the radial distance estimation of the robot: 

horizontal lines are +/- 1 mm 

 

 



Lemma 2 states that the radial distance of the robot from the 

electromagnet can be estimated from the magnetic field using 

a nonlinear observer. Experimental results of the radial 

distance estimation of the robot from the electromagnet is 

provided in Figure 9. In this experiment, the robot is initialized 

at a random position and the robot is moved along the radial 

direction as shown in Figure 8 (the robot is moved from point 

A to point C along the radial direction). The active control 

algorithm enables the electromagnet to continuously point at 

the robot and estimate the radial distance of the robot from the 

electromagnet. The error in the radius estimation is provided 

in Figure 10. The error is computed using a reference distance 

measurement measured by a laser displacement measurement 

sensor (Banner Engineering laser displacement sensor). The 

electromagnet angle (𝛼) is estimated from the encoder 

readings of the motor on which the electromagnet is mounted. 

The electromagnet angle estimation results during the above 

experiment are provided in Figure 11.  

It can be seen that radius estimation is possible with sub 

millimeter accuracy (Figure 10) using the magnetic field and a 

nonlinear observer. As discussed earlier, an active control 

algorithm enables the continuous pointing of the magnet at the 

robot. In the above experiment, the robot is travelling along a 

straight line at an angle (𝜃) of 200 from the origin. The results 

in Figure 11 shows that the active control algorithm is able to 

control the electromagnet angle (𝛼) to continuously point at 

the robot (𝛼 =  𝜃) with an accuracy of +/-10. 

 

6. CONCLUSIONS 

This paper developed an electromagnet based 2 D position 

estimation system for a robot travelling in a 2 D plane. The 

advantages of this estimation technique include low-cost, non-

contacting operation, easy installation, robustness to magnetic 

disturbances and the use of a simple 1 D magnetic field map 

for position estimation instead of a complex 2D magnetic field 

map. In this estimation technique, the electromagnet is 

constantly pointed at the robot using a proportional controller. 

Then the radial position of the robot is estimated using a 

nonlinear observer and the electromagnet angle is estimated 

from the encoder data of the motor on which the electromagnet 

is installed. The radial distance of the robot from the 

electromagnet is shown to be estimated with a submillimeter 

accuracy and the angle at which the robot is positioned with 

respect to the origin is estimated with an accuracy of 10.  
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