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Abstract
Many biological phenomena such as cell proliferation and death are correlated with stress fields within cells. Stress fields 
are quantified using computational methods which rely on fundamental assumptions about local mechanical properties. 
Most existing methods such as Monolayer Stress Microscopy assume isotropic properties, yet experimental observations 
strongly suggest anisotropy. We first model anisotropy in circular cells analytically using Eshelby’s inclusion method. Our 
solution reveals that uniform anisotropy cannot exist in cells due to the occurrence of substantial stress concentration in 
the central region. A more realistic non-uniform anisotropy model is then introduced based on experimental observations 
and implemented numerically which interestingly clears out stress concentration. Stresses within the entire aggregate also 
drastically change compared to the isotropic case, resulting in better agreement with observed biomarkers. We provide a 
physics-based mechanism to explain the low alignment of stress fibers in the center of cells, which might explain certain 
biological phenomena e.g., existence of disrupted rounded cells, and higher apoptosis rate at the center of circular aggregates.
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1  Introduction

Mechanical factors (e.g., force, stress, and strain) gener-
ated within living cells as a result of actomyosin machinery 
activity have been found to act as key regulators of the cell 
behavior. Cell fate (Liu et al. 2016; Cabezas et al. 2019; 
Discher et al. 2009; Vogel and Sheetz 2006), transcriptional 
regulators TAZ and YAP (Aragona 2013; Dupont 2011), cell 
proliferation and differentiation (Nelson 2005; Li et al. 2009; 
Wan 2010), cell polarization and alignment (He 2015), and 
cell migration (Ng et al. 2012; Lo et al. 2000), all have been 
shown to correlate with mechanical factors. These phenom-
ena play a crucial role in morphogenesis, wound healing, 
and tumour metastasis (Trepat 2009; Olson and Sahai 2009).

Quantifying the mechanical factors helps understand the 
relationship between stress and cell behavior. The stress field 
in living cells cannot be experimentally measured and can 
only be calculated using computational or theoretical meth-
ods. For colonies with highly motile cells, non-continuum 
mechanics models such as Cellular Potts model (Graner 
and Glazier 1992; Albert and Schwarz 2014) and vertex 
model (Honda and Eguchi 1980; Farhadifar et al. 2007; 
Schaumann et al. 2018), have been widely used. However, 
for single cells and confluent and/or strongly adherent multi-
cellular aggregates that are not highly motile, continuum 
models have been able to well describe the mechanical 
response of the system (Hur et al. 2009; Nelson 2005). A 
continuum model typically considers the single cell or multi-
cellular aggregate as a continuous medium under a contrac-
tion caused by actomyosin contractility (Schaumann et al. 
2018). Traction force microscopy is a widely used technique 
that uses the continuum model to quantify stress/strain fields 
in biological cells (Hazeltine 2012; Huang 2019). In trac-
tion force microscopy, the deformation field is experimen-
tally measured and then the stress field in the cell layer is 
calculated using a computational approach. Li et al. con-
sidered aggregated cell islands as a homogeneous isotropic 
continuum medium and modelled the contractility using a 
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temperature drop to obtain mechanical stress patterns (Li 
et al. 2009). They found that certain levels of mechanical 
stress affect cell proliferation and differentiation patterns. 
He et al. considered the cell layer as a continuum homogene-
ous elastic membrane and observed that the in-plane maxi-
mum shear stress in the cell layer directs the arrangement 
and polarization of cells (He 2015). Tambe et al. considered 
a monolayer consisting of multiple contiguous cells as a thin 
flat sheet and developed the governing equations for mon-
olayer stress microscopy (Tambe 2013).

Previous continuum models have assumed simplifying 
assumptions for material properties of the cell layer (Hur 
et al. 2009; Nelson 2005; Li et al. 2009; He 2015; Tambe 
2013, 2011). One of these simplifications is homogeneity, 
whereas many experimental studies have observed hetero-
geneity in the cell layer properties. For example, modulus, 
average spread area, and traction force of the cell all have 
been shown to vary along the radius of the circular multi-
cellular aggregates (Goldblatt 2020). On the other hand, it 
has been found that mechanical-induced biological activi-
ties vary by region within the multi-cellular aggregates. For 
example, investigation of the activity of Caspase 3/7 has 
shown accumulation of programmed cell death (apoptosis) 
within the central region of circular aggregates (Cirka 2016; 

Goldblatt 2020) (Fig. 1). Also, proliferation, polarization, 
and alignment of cells are shown to be less at the center 
of circular aggregates (Nelson 2005; He 2015). We have 
shown that heterogeneous properties of cell layer can invert 
the trend of stress field within the cell monolayer when 
compared to the trend in the case of homogeneous prop-
erties (Goldblatt 2020). The inverted trend (i.e., low aver-
age stress in central regions and high average stress at the 
periphery of the aggregates) was found to be more consistent 
with biological bio-markers (Goldblatt 2020).

Another simplification in previous continuum models is 
isotropy. Anisotropy has been widely observed in biologi-
cal tissues (Feng et al. 2017; Braeu et al. 2019). In tissues 
such as blood vessels and tendons, the stiffness in differ-
ent directions at the same point can be different by as large 
as two orders of magnitude (Wilson et al. 2013; Yin and 
Elliott 2004). More importantly, anisotropy has been widely 
observed in living cells (Crouch et al. 2009; Hu 2003), the 
building blocks of tissues. Indentation experiments by Efre-
mov et al. showed strong anisotropy in cells with perinu-
clear actin cap, while cells with disrupted or no actin cap, 
like cancerous cells, showed an isotropic behavior (Efre-
mov 2019). They then quantified the measured mechanical 
properties and showed that for cell types with anisotropic 

Fig. 1   a Reprinted from (Cirka 
2016): F-actin alignment 
increases from the center 
to edge of the aggregate. b 
Reprinted from (Cirka 2016): 
The activity of Caspase 3/7 
[which is an indicator of 
programmed cell death (Grüt-
ter 2000)] dominates within 
central region of aggregates. c, 
d Reprinted from (Tee 2015): 
Organization of the actin 
cytoskeleton system; c showing 
a combined radial/circumferen-
tial alignment; and d showing a 
microtubule system with higher 
intensity at the center
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behavior, the modulus in the direction of fiber alignment 
can be several orders of magnitude larger than the effec-
tive isotropic modulus, while the modulus in both direc-
tions perpendicular to the fiber alignment can be about fifty 
percent smaller than the effective isotropic modulus. It is 
believed that this strong anisotropy in living cells occurs 
due to the presence and alignment of stress fibers such as 
F-actin (Peeters 2004; Hu 2004; Gupta et al. 2019; Crouch 
et al. 2009; Fouchard et al. 2011). F-actin fibers are ten-
sional load carrying elements and their alignment increases 
the local contractility and stiffness in the direction of align-
ment (Smith et al. 2003; Efremov 2019). For a multi-cellular 
aggregate cultured on a circular shape (Fig. 1a), the circum-
ferential fiber alignment is the dominant pattern, with a non-
uniform intensity where the alignment increases from center 
to edge along the radius (Cirka 2016). We have previously 
shown that the F-actin alignment index, determined by pro-
cessing phalloidin-stained actin images, increases from the 
center to the edge of the aggregate [Fig. 2d of Ref. (Gold-
blatt 2020)]. In an independent study, He et al. showed that 
the cell polarization and alignment are highest at the edge 
of disk/ring patterns, promoting higher contractility in the 
alignment (radial) direction [Fig. 2 of Ref. (He 2015)]. For 
a single cell cultured on a circular shape (Fig. 1c), radial and 
circumferential F-actin alignments are dominant patterns, 
again with a non-uniform intensity where there is almost 
no alignment at the center but very intense alignment at the 
edge (Tee 2015; Cabezas et al. 2019; Gupta 2015).

In this paper, we hypothesize that anisotropy substan-
tially alters emergent stress fields within circular constrained 
aggregates and cells by using a continuum-based combined 
theoretical and computational approach. For the sake of 
simplicity, hereafter we use the term “cell layer” to refer to 
both circular aggregate and single cell, unless specifically 
mentioned. We first use the Eshelby’s inclusion method to 
obtain a closed-form solution for the stress field within a 

cell layer with general properties. To this end, we model the 
effect of anisotropic contractility on the elastic fields by an 
appropriate eigenstrain field applied to the inclusion prob-
lem equivalent to the cell layer. It is worth mentioning that 
the force induced by the substrate acts as traction stresses 
(boundary conditions) on the cell layer. Subsequently elastic 
fields of three problems with free boundary conditions are 
analytically solved: (i) a multicellular cell layer with actin 
fibers dominantly aligned along the circumference; (ii) a 
single cell layer with actin fibers dominantly aligned along 
the radius; and (iii) a single cell layer with actin fibers domi-
nantly aligned along the circumference. The case of free 
boundary condition is more for the purpose of validating the 
numerical solution. While this boundary condition is hypo-
thetical, our study shows that this case provides a basis solu-
tion for more realistic boundary conditions. We then build 
a thermal-contraction finite-element model to later study 
more complex anisotropy models and boundary conditions, 
(e.g., cell layer attached to the substrate), for which analyti-
cal solution becomes troublesome. Even though we use the 
concept of thermal contraction, the biological response of 
cells under temperature change is not the focus of this study. 
In this work, the contractility in the cell layer is simulated 
by a thermal contraction proportional to the thermal expan-
sion coefficient (He 2015; Nelson 2005). We validate the 
finite-element model by comparing the computational and 
analytical results for all three problems mentioned above. 
Both analytical and computational results, in good agree-
ment, show that stress singularity occurs at the center of the 
cell layer for the uniform anisotropy model. Stress singular-
ity is a theoretical/mathematical concept in the context of 
elasticity theory, which means that stresses approach infinity. 
However, in the realistic case, the singularity shows itself as 
stress concentration. Finally, we suggest an experimentally-
based non-uniform anisotropic contractility model (zero 
anisotropy at the center and maximum anisotropy at periph-
ery) for a multicellular cell layer. We then extend the ana-
lytical results using the thermal-contraction finite-element 
model for the more realistic anisotropy model and boundary 
conditions.

2 � Materials and methods

2.1 � Analytical model

Circularly shaped aggregates that are cultured to confluence 
or post-confluence levels, as well as circularly shaped sin-
gle cells, can be considered as a continuous thin cylindrical 
layer (Nelson 2005; Li et al. 2009; He 2015). The elasticity 
problem for an anisotropic cylindrical body has been formu-
lated by previous researchers; in general, these formulations 
result in tedious algebra, therefore the implications have 

∗

 

 

 
 

cell layer 

 

Fig. 2   A schematic showing that a cell layer (on the left) having a 
cylindrical anisotropy is replaced with an equivalent Eshelby’s inclu-
sion (on the right) having uniform isotropic properties, under an 
appropriately selected eigenstrain field and far-field strain
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been limited to certain symmetry and loading types (Ting 
1996; Oral and Anlas 2005). Cylindrical anisotropy refers 
to the case where the material property tensor has one axis 
of symmetry among cylindrical coordinates (r, �, z) (Allen 
and Farris 1990). The special case of cylindrical anisotropy 
with z being the axis of symmetry is relatively simpler and 
has been widely studied for different applications (Lu et al. 
2016). In the problem of interest in this paper though, we are 
dealing with either r or � being the axis of symmetry: For 
circularly shaped multi-cellular aggregates and single cells, 
either circumferential or radial alignment of F-actin fibers 
are commonly observed (Tee 2015; Cabezas et al. 2019; 
Goldblatt 2020; Cirka 2016); both circumferential and radial 
types of cylindrical anisotropy create coupling between 
radial and circumferential elastic fields, and therefore lead 
to cumbersome formulations (Allen and Farris 1990). Cir-
cumferential F-actin alignment causes higher circumferen-
tial contractility compared to radial and axial (z) directions 
(Fig. 1a), whereas radial F-actin alignment causes higher 
radial contractility compared to circumferential and axial 
directions (Fig. 1c).

Eshelby’s inclusion method formulation can reduce the 
complexity of elasticity equations of a general cylindrical 
anisotropic body. This method was originally employed 
in micromechanics of defects (Mura 2013). However, it is 
based on a continuum theory of elasticity with applications 
in many areas related to the mechanical behavior of materi-
als such as composites. This approach can be used to analyze 
a wide range of mechanical problems by using the concept of 
“eigenstrain”. In the context of Eshelby’s inclusion method, 
eigenstrain is a general name given to any non-direct elastic 
strain such as thermal strain, misfit strain, and pre-strain. 
Also, an inclusion by definition is a subdomain C inside 
domain M ∪ C where the elastic moduli of C are the same 
as those of M, Fig. 2. The eigenstrain �∗ is zero in M and is 
nonzero in C in general (Mura et al. 1996). Since in reality, 
cells are surrounded by fluids that exert negligible traction 
forces to the cell layer periphery, (due to the lack of the pres-
ence of side focal adhesions), in our analytical model for the 
cell layer, we adjust the boundary conditions in a way that 
the traction components at the boundary become zero, as if 
the domain M does not exist.

Cells generate mechanical forces which arise from acto-
myosin contraction (Ingber 1991; Fouchard et al. 2011). This 
contraction can be modeled by a pre-strain, i.e., an eigen-
strain (Nelson 2005; He 2015). The main idea here is to 
replace the cell layer having a general cylindrical anisotropy 
with an equivalent Eshelby’s inclusion which is an elastic 
medium, under a proper choice of eigenstrain, �∗ defined 
over the region C, and far-field strain, Fig. 2. We should 
clarify that the infinite medium around the inclusion is a 
conceptual medium and is different from the real substrate 
that the cell is attached to, but we can use this concept to 

use the Eshelby’s inclusion method formulation. We will 
choose the far-field strain of the infinite medium such that 
the boundary conditions at the edge of the cell are satisfied 
as desired.

We begin with reformulating the equations of linear elas-
ticity in the cylindrical coordinate system. Troublesome 
partial differential equations can be simplified to solvable 
ordinary differential equations by expansion in terms of an 
orthogonal cylindrical basis. The stress, strain, and displace-
ment fields can be expanded as follows: 

 where � is the imaginary unit, and for each integer-pair (�, �) 
in the Fourier series expansion, the expansion coefficients 
u
(�, �)

i
(r) , �(�, �)

ij
(r) , and �(�, �)

ij
(r) are functions of r only.

In order to find an analytical solution, we make the fol-
lowing simplifying assumptions: (i) We consider a thin cell 
layer, (i.e., the radius of the cell layer is considerably larger 
than the thickness of the cell layer). (ii) we ignore the trac-
tions applied by the substrate. This is equivalent to the case 
where cells are not attached to the substrate below them. 
While this is a simplified hypothetical boundary condition, 
it still serves as a basis solution for more realistic bound-
ary conditions. We will later numerically study the effect of 
substrate tractions (i.e., the case where cells are attached to 
the substrate below them). Using these assumptions, we can 
neglect the variations along the thickness, i.e., � = 0 . So the 
expansions will be simplified to 

2.1.1 � Strain‑displacement relations

Assuming that the cells are not highly motile, small-strain 
theory of elasticity, � =

1

2

{

�� + (��)T
}

  (Sadd 2009), 
where � is the gradient operator, can be used to express the 
strain-displacement relation (He 2015). This assumption has 
been widely used in previous studies to model the mechani-
cal behavior of living cells (e.g., Tambe et al. used small 
strain theory to analytically investigate Monolayer Stress 
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Microscopy (Tambe 2013). In another study, He et al. used 
small strain theory to quantitatively study the cell layer stress 
field  (He 2015)). Using the formulation in cylindrical coor-
dinate system and then by expanding � and � based on Eq. 2a 
and Eq. 2b, the following strain-displacement relations are 
obtained in the cylindrical coordinate system:

2.1.2 � Stress–strain relations

The linear elastic model, which is a simplification of viscoe-
lastic model, has been widely used to theoretically express 
the stress-strain relations in living cells (Wei 2020; He 2015; 
Tambe 2013). Although the time factor will be neglected, 
the linear elastic solution provides a basis for viscoelastic 
solution according to the correspondence principle (Hemp 
1966; Lim et al. 2006). A linear elastic transversely iso-
tropic material has five independent elastic constants (Sadd 
2009). In the general case when the material is also radially 
heterogeneous from the origin, the stress-strain relations for 
the transversely isotropic material considered here can be 
written as

Expanding �(r, �) and �(r, �) as in Eq. 2b, stress-strain rela-
tions can be re-written in terms of stress and strain coef-
ficient functions as
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(4)

�rr = C11(r) �rr + C12(r) ��� + C13(r) �zz ,

�r� = 2C44(r) �r� ,
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��z = 2C44(r) ��z .

For an isotropic homogeneous material, the stress-strain 
relations can be further simplified as

in which � is the shear modulus and � is the Lame’s constant 
which is equal to 2��∕(1 − 2�) where � is the Poisson’s ratio.

2.1.3 � Inclusion problem

Let us consider a cylindrical inclusion inside an infinite 
medium under a given eigenstrain �∗ defined over the region 
C (right side of Fig. 2). The eigenstrain will cause a distur-
bance strain field, �d , both inside and outside of the inclu-
sion (Eshelby 1957; Yu et al. 1994; Shodja et al. 2003):

where � is the Eshelby tensor and �∗ is the eigenstrain. Eq. 7 
is valid for all points both inside ( �d(C) = �

C
�
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( �d(M) = �
M
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∗ ) the inclusion. Eshelby tensor for inside the 

inclusion ( �C ) is generally different from that outside the 
inclusion in the matrix ( �M ). It has been shown that com-
ponents of the Eshelby tensor in the Cartesian coordinate 
system are constant, whereas, in the cylindrical coordinate 
system, components of the Eshelby tensor include logarith-
mic singularity at the origin (Mura 2013). In the case of the 
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where � is the elastic moduli tensor. The equilibrium equa-
tion in the absence of body force is

By substituting Eqs. 10 in 11 we have

By writing strain field in the left-hand-side of the above 
equation in terms of displacement field and also by consid-
ering isotropic material properties, the following equation 
is obtained, the left-hand-side of which reminds us of the 
well-known Navier equation (Landau and Lifshitz 1959; del 
Castillo 2003):

where � is the displacement vector. Eq. 13 in the cylindrical 
coordinate system includes the following components: 

 which are the same as equations that were previously 
derived by Shokrolahi-Zadeh and Shodja (2008). Equa-
tions 14 are the governing equations to be solved for a given 
eigenstrain �∗ . We will consider that �∗ has the following 
form in cylindrical coordinates:
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The solution of Eqs. 14 corresponding to an �∗
ij
(r, �) in the 

form of Eq. 15, can be expressed as (Mura 2013)

For the case of axisymmetric eigenstrain, the solution should 
not depend on � , therefore � = 0 . By substituting ui(r, �) in 
the form of Eq. 16 in Eqs. 14 and setting the right-hand-side 
equal to zero, n = ±1 is obtained for the general solution to 
Eqs. 14 for the case of � = 0 . Since inside the inclusion, 
the disturbance displacement should be finite and far away 
outside the inclusion, the disturbance displacement should 
approach to zero, it can be concluded that n = 1 is legitimate 
for inside the inclusion and n = −1 is legitimate for outside 
the inclusion. Therefore, the general solution for the homo-
geneous (denoted by superscript h below) part of Eqs. 14 is 
as follows:

for r < R , and

for r > R , where ci s ( i = 1, 2,… , 6 ) are constants to be deter-
mined from boundary conditions (Supplementary Eqs. S8 
and S9). Since the disturbance displacement far away from 
the inclusion should approach to zero, we can conclude that 
c6 = 0 . The homogeneous solution is independent from the 
eigenstrain. For r > R , the eigenstrain and the right-hand-
side of Eqs. 14 are identically equal to zero. For r < R how-
ever, the eigenstrain is nonzero and non-uniform in general. 
For a general form of eigenstrain, obtaining the particular 
solution to the non-homogeneous Eqs. 14 can be trouble-
some. However, for the eigenstrain in the form of a poly-
nomial with respect to r, the following expansion can be 
considered (15):

where �∗(r) is also axisymmetric (corresponding to � = 0 ). 
In the context of linear elasticity, the disturbance strain cor-
responding to the eigenstrain, Eq. 21, can be obtained by 

(15)�∗
ij
(r, �) = �∗

ij
rne��� .

(16)ui(r, �) = uir
ne��� .

(17)uh
r
(r) = c1r,

(18)uh
�
(r) = c2r,

(19)uh
z
(r) = c3,

(20)

uh
r
(r) =

c4

r
,

uh
�
(r) =

c5

r
,

uh
z
(r) = c6,

(21)�
∗(r) =

∑

n

∑

i,j=r,�

�∗
ij
rn �i �j,
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superimposing the solutions for individual terms for each 
n. It can be seen that for an integer value of n, the following 
form satisfies Eqs. 14 for properly chosen constants, and thus 
can be used as a particular (denoted by superscript p below) 
solution to Eqs. 14:

where constants a1, a2,… , a6 and k1, k2, k3 need to be 
selected for each n such that the governing Eqs. 14 and the 
boundary conditions are satisfied. The boundary condi-
tions are based on continuity of displacements across the 
boundary of inclusion and matrix as well as continuity of 
traction stresses. These boundary conditions are given in 
Supplementary Eqs. S8 and S9. The rest of the procedure 
consisting of finding the particular solution and satisfying 
the boundary conditions in addition to an example showing 
the steps for deriving the components of Eshelby tensor for 
uniform eigenstrain field, are discussed in the SI. As the 
result, components of the Eshelby tensor as defined by Eq. 7 
for ( �, n ) = (0, 0) and for the rr component of the eigenstrain 
field are obtained as

Through a similar procedure, for other components ( ��, r� , 
etc.) of the uniform eigenstrain field, components of the 
Eshelby tensor are derived and are presented in the SI. Strain 
and stress components can be readily obtained by substitu-
tion of the components of the Eshelby tensor in Eqs. (7 - 10).

2.1.4 � Implementation of the Eshelby’s inclusion for the cell 
problem

2.1.4.1  Contractility  Having derived expressions for the 
Eshelby tensor, we are now ready to tackle the target cell 
problem. The numerical study in Supplementary Figs. 2 and 
3 of the SI shows that anisotropy in elastic moduli has the 
same qualitative effect as anisotropic contractility. There-
fore, here we assume only isotropic elastic moduli tensor for 
the cell layer, but either isotropic or anisotropic contractil-
ity. We derive the analytical solution for both isotropic and 

(22)

up
r
(r) = k1r

a1(ln r)a2 ,

u
p

�
(r) = k2r

a3(ln r)a4 ,

up
z
(r) = k3r

a5(ln r)a6 ,

(23)

DC(0,0)
rrrr

=
3 − 4� + 2(1 − 2�) ln (r∕R)

4(1 − �)
,

D
C(0,0)

��rr
=

1 + 2(1 − 2�) ln (r∕R)

4(1 − �)
,

D
C(0,0)

r�rr
= DC(0,0)

rzrr
= D

C(0,0)

�zrr
= DC(0,0)

zzrr
= 0,

(24)
DM(0,0)

rrrr
= −D

M(0,0)

��rr
= −

1

4(1 − �)
(R∕r)2,

D
M(0,0)

r�rr
= DM(0,0)

rzrr
= D

M(0,0)

�zrr
= DM(0,0)

zzrr
= 0.

uniform anisotropic contractility. We will confirm our ana-
lytical solutions with numerical results later in the Finite 
Element Modeling section, where we will further address 
non-uniform contractility as well. As was also mentioned 
before, eigenstrain is a mathematical concept to model con-
tractility in the material by �∗(r, �, z) = �ij(r, �, z)ΔT�ij in 
which ΔT  is the change in temperature and �ij is coefficient 
of thermal expansion (with only nonzero components �rr , 
��� , and �zz ). For the uniform isotropic ( �rr = ��� = �zz ) 
contractility case, �∗

rr
= �∗

��
= �∗

zz
 . Since we assume the cell 

problem is axisymmetric (i.e., independent of � ), � = 0 
in Eq.  2. Moreover, for the uniform contractility/eigen-
strain cases, n = 0 in Eq. 15 of the analytical solution. This 
means that we need components of the Eshelby tensor for 
(�, n) = (0, 0) only (which have been derived and presented 
in the previous section of this paper as well as the SI).

2.1.4.2  Boundary conditions  Cells are attached to the sub-
strate via focal adhesions. Both in single cells and in mul-
ticellular aggregates, focal adhesions are not uniformly dis-
tributed. Focal-adhesion-associated proteins are reported to 
exist dominantly in periphery of a single cell and an aggre-
gate  (Stolarska and Rammohan 2017; Gallant et al. 2005; 
Girard and Nerem 1995; Kilian et  al. 2010; Oakes et  al. 
2014). This suggests that the cell layer is tightly connected 
to the substrate around the edge. In our theoretical model, we 
consider the cell layer free on top and bottom surfaces, but 
it has displacement boundary conditions at the edge r = R . 
The challenge however is that, in the Eshelby problem, there 
exists a remote strain field applied to an infinite surrounding 
medium. This is not the case for the cell problem. In order 
to equalize the finite-medium cell problem with the infinite-
medium Eshelby problem, and to figure out the equivalent 
far-field strains in the Eshelby problem, we suggest and fol-
low the below algorithm: 

1.	 Numerically model the cell layer with the applied eigen-
strain and the desired displacement boundary conditions 
at the edge (as will be discussed in depth in the next 
section).

2.	 Read the resulting six values of stress components at the 
edge boundary.

3.	 Tune the applied far-field strains in the Eshelby problem 
so that the resulting analytical stresses at the edge of the 
inclusion are consistent with the stress values of numeri-
cal results at Step 2.

In this study, for the analytical solution, we consider a free 
cell layer (i.e., cells are not attached to the substrate below 
them), for which only one stress component at the edge, 
���|r=R , is unknown and can be taken as an input from 
numerical results. We will later show that the behavior of 
the resulting stress field for a cell layer with free boundary 
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condition and a cell layer that is fixed at the edge are quali-
tatively consistent.

2.2 � Finite element modeling

2.2.1 � 2‑D model

We use two-dimensional (2-D) finite-element models to 
validate our theoretical model for free single cell and aggre-
gate layers with isotropic and uniform anisotropic cell layer 
properties (more realistic contractility and boundary condi-
tions are studied in the next section using a 3-D model). For 
this purpose, 2-D models of circular cell layers with radii 
of 100 � m and 10 � m corresponding to a cell aggregate 
and a single cell respectively, are built in the commercial 
software Abaqus. The cell layer is modeled as a continu-
ous elastic isotropic layer with Young’s modulus of 40 kPa 
and Poisson’s ratio of 0.49 (nearly incompressible). The 
properties for the cell layer are taken from Ref. (Goldb-
latt 2020). Standard plane stress quad element with mesh 
refinement at the center of the cell layer is used to discretize 
the model. A free boundary condition, i.e., the boundary 
of the cell layer can deform with no restriction, is consid-
ered consistent with the analytical solution. A pre-strain is 

introduced using a temperature drop of 1 K, in which case 
�
∗(r, �, z) = −�ij(r, �, z)�ij . In order to study the effect of ani-

sotropic contractility, different anisotropy ratio � = ���∕�rr 
are considered consistent with the analytical solution. These 
values are tabulated in Table 1. Stress fields for a cell aggre-
gate and a single cell layer for different anisotropy ratios 
are presented and compared with the analytical solution in 
Figs. 3 and 4.

Note that all figures of this paper only plot �rr and ��� 
components of stress. This is because other components are 
negligible, as illustrated in the Supplementary Fig. 1 of the 
SI for different boundary conditions as well as isotropic and 
anisotropic contractility.

2.2.2 � 3‑D model

We use three-dimensional (3-D) finite-element model to 
study a more realistic contractility model for multi-cellular 
aggregates, based on experimental observations in Fig. 1a 
and (Goldblatt 2020), as well as more realistic boundary 
conditions. Based on these experimental observations, non-
uniform contractility is suggested and further implemented 
and then compared with the results of isotropic and uniform 
contractility. Variation of contractility along the radius for all 
three contractility models are depicted in Fig. 5a. For non-
uniform contractility, it is assumed that �rr = ��� = �zz at the 
center, consistent with the observation that the fibers are not 
aligned in any specific direction at the center. However, ��� 
increases radially with maximum value at the edge, consist-
ent with the maximum fiber alignment in the � direction at 
the edge. We will assume that the increase in ��� from center 
to the edge is linear in r, with ���(r)|r=R∕���(r)|r=0 = 2 . 

Table 1   Anisotropy ratios used 
in the analytical and numerical 
analysis

� �
r
(K−1) ��(K

−1) �
z
(K−1)

0.5 0.03 0.015 0.015
1 0.02 0.02 0.02
2 0.015 0.03 0.015
10 0.005 0.05 0.005

Fig. 3   a Heat maps of numeri-
cally predicted radial (left) and 
circumferential (right) stress 
fields inside a hypothetical 
2-D free cell layer (aggregate) 
with uniform anisotropy for 
� = ���∕�rr = 2 . Predicted 
analytical and numerical radial 
b and circumferential c stresses 
for different anisotropy ratios 
� = 1, 2, 10 inside a hypo-
thetical 2-D free cell layer. In 
the numerical finite-element 
simulations, 40 kPa and 100 � m 
have been used for the Young’s 
modulus ( E

c
 ) and radius of the 

cell layer (R) respectively
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The value of this ratio will not qualitatively change the pre-
dicted stress field. Also, since most of the fiber alignment 
is observed in the � direction, we will assume that �rr = �zz 
remains constant along radius. To make a fair comparison 
between the three cases of isotropic contractility, uniform 
anisotropic contractility, and non-uniform anisotropic con-
tractility, we have kept the overall contractility equal. For 
this purpose, � values are chosen so that the area under the 
contractility-radius curve, ∫ R

0
(�rr(r) + ���(r) + �zz(r))dr , is 

identical for all the three cases.
A 3-D finite-element model of a circular cell layer (radius 

100 � m corresponding to the aggregate dimension) and 
substrate (radius 200 � m to serve as a planar semi-infinite 
substrate and avoid the edge effects) was then constructed. 
The thickness of the cell and substrate layers are 3.2 and 1 
� m, respectively, consistent with previous works (Goldb-
latt 2020; He 2015). The cell layer and substrate layer were 
modeled as elastic isotropic materials with Young’s moduli 
of 40 and 0.4 kPa, respectively [a softening effect caused 
by the adhesive bonding layer between the cell layer and 
the substrate is considered  (Goldblatt 2020)]. Poisson’s 
ratios of both the cell and substrate layers were considered 
as 0.49. The properties are all taken from Ref. (Goldblatt 

2020). Similar to the previous case, a pre-strain is introduced 
using a temperature drop of 1 K. The model is then run for 
three material models of Fig. 5a: (i) isotropic contractility, 
(ii) uniform anisotropic contractility for � = 2 , and (iii) lin-
ear non-uniform anisotropic contractility. Each of the cases 
above is run for two different boundary conditions and the 
stress values are extracted at the bottom of the cell layer: (i) 
The periphery of the cell layer is attached to the substrate 
and the bottom surface of the substrate is fixed. The results 
are shown in Fig. 5b. (ii) The cell layer is uniformly attached 
to the substrate and the bottom surface of the substrate is 
fixed. The results are shown in Fig. 5c.

3 � Results

3.1 � Uniform anisotropy results in infeasible stress 
concentration

The results of analytical and numerical analysis for a free 
two-dimensional cell aggregate layer with a radius equal to 
100 � m and different values of anisotropy ratio � = ���∕�rr 
are shown in Fig.  3. � = 1 is equivalent to the case of 

a b

c d

Fig. 4   a, b and c Results for a hypothetical 2-D free cell layer (sin-
gle cell) with isotropic and uniform anisotropic contractility. In the 
numerical finite-element simulations, 40 kPa and 100 � m have been 
used for the Young’s modulus ( E

c
 ) and radius of the cell layer (R), 

respectively. ∗ Numeric and analytic are coinciding for � = 1 . a Pre-
dicted analytical and numerical radial and circumferential stresses 
for � = 1 (isotropic) versus � = 2 (circumferential fiber alignment). b 

Predicted analytical and numerical radial and circumferential stresses 
for � = 1 (isotropic) versus � = 0.5 (radial fiber alignment). c Heat 
maps of numerically predicted radial and circumferential stress field 
for � = 0.5 (top) and � = 2 (bottom). d A schematic representation of 
the behavior of the cell layer at the center showing compression for 
𝜅 > 1 and tension for 𝜅 < 1
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isotropic contractility ( �rr = ��� ). � = 2 and � = 10 are 
equivalent to the cases where fibers are aligned in the cir-
cumferential direction causing ��� = 2�rr and ��� = 10�rr , 
respectively. As it is expected, the radial stress at r = R for 
all � values in both numerical and analytical results is zero. 
This is because the periphery of the disc is considered free 
(zero traction). The circumferential stress at r = R is in gen-
eral nonzero as ��� is not a traction component. Also, we 
can see that for the isotropic case, � = 0 , both radial and 
circumferential stress components are zero as we expect for 
a freely contracting isotropic circular disk. This shows the 
results are verified against intuitive boundary conditions. 
In addition, a good agreement is observed between numeri-
cal and analytical results. It is seen that there is no radial 
and circumferential stress within the cell layer for isotropic 

contractility � = 1 . For the cases of � = 2 and � = 10 , the 
radial compressive stress diminishes at the edge (due to free 
boundary condition) and increases moving radially toward 
the center of the aggregate. The values of circumferential 
stress are positive at the periphery of the cell layer and 
reduce as moving radially toward the center. An interesting 
observation is that a large radial and circumferential com-
pressive stress concentration appears at the center of the cell 
layer for the case of the uniform anisotropic contractility 
with � = 2 and � = 10 (which does not exist for isotropic 
contractility). We will later suggest a simple disk-spring 
model and show that compression near the center happens 
as long as 𝜅 > 1 , irrespective of its exact value. It is seen 
that the change in the stress sign occurs at a distance equal 
to around 40% of the cell radius from the center. In other 
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Fig. 5   a Representation of isotropic contractility, uniform anisotropic 
contractility and non-uniform anisotropic contractility models used in 
the 3-D finite-element analysis. b, c Predicted numerical results for a 
3-D model of cell layer (aggregate) for realistic boundary conditions 
with contractility models shown in a. In the numerical finite-element 
simulations, 40 kPa and 100 � m have been used for the Young’s mod-

ulus ( E
c
 ) and radius of the cell layer (R), respectively. b Radial (left) 

and circumferential (right) stress fields for a cell layer that is fixed at 
the periphery only (corresponding to the realistic case where focal 
adhesions are present mostly at the edge). c Radial (left) and circum-
ferential (right) stress fields for a cell layer that is uniformly attached 
to the substrate
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words, cells within the interior parts of the aggregate (within 
the area r ≲ 0.4R ) experience both compressive radial and 
compressive circumferential stresses whereas cells outside 
this region experience a tensile circumferential stress and a 
compressive radial stress.

3.2 � Effect of stress fiber alignment

Analytical and numerical results for isotropic as well as ani-
sotropic contractility for a free 2-D single cell layer with a 
radius equal to 10 � m are presented in Fig. 4. As opposed 
to Fig. 3 which only includes � ≥ 1 , here the results for 
� = 2 and � = 0.5 are presented and compared. � less than 
one for single cell layer is inspired by earlier experiments 
reported in the literature reprinted in Fig. 1. Specifically, 
� = 0.5 here is equivalent to the case that fibers are aligned 
in the radial direction causing ��� = 0.5�rr . A good agree-
ment is observed between numerical and experimental 
results. Qualitatively consistent with the aggregate cell 
layer case, the results show no stress within the cell layer for 
� = 1 , and a compressive stress concentration at the center 
for � = 2 (Fig. 4a, c). However, tensile stress concentration 
is observed for � = 0.5 (Fig. 4b, c). In other words, when 
𝜅 > 1 , the stress concentration at the center of the cell is 
compressive whereas when 𝜅 < 1 , the stress concentration 
at the center of the cell is tensile.

This result might not look intuitive at first glance. In order 
to help clarify this phenomenon, a schematic model of a sys-
tem of disks and springs is shown in Fig. 4d to represent the 
center of the cell. The top left conformation of disk-spring 
system in Fig. 4d represents the initial unstressed condi-
tion. Also, the circumferential contraction is represented 
by a decrease in the periphery of the hexagonal disk-spring 
system, as shown in the bottom conformation in Fig. 4d for 
the extreme case of circumferential contraction and no radial 
contraction ( � = ∞ ). On the other hand, the radial contrac-
tion is represented by a decrease in the radius of the central 
disk, as shown in the right conformation in Fig. 4d for the 
extreme case of radial contraction and no circumferential 
contraction ( � = 0 ). Interestingly, this simple system sug-
gests that for the case of � = 1 , there should be no stress 
induced in the system, which is consistent with the results 
of the cell system in Fig. 4a, b. Moreover, for 𝜅 > 1 , the sim-
ple disk-spring system suggests compression near the center 
(shown with a reduction in the length of central springs), and 
for 𝜅 < 1 tension near the center (shown with an increase in 
central springs’ length), all consistent with analytical and 
numerical results of Figs. 3, 4a, b for the cell system.

3.3 � Extending to experimentally‑based anisotropic 
contractility model with more realistic 
boundary conditions

In order to extend this research to more realistic boundary 
conditions and contractilities, a numerical study for a 3-D 
model of the cell aggregate is next performed for three cases 
of contractility: (i) isotropic, (ii) uniform anisotropic, and 
(iii) the proposed experimentally-based non-uniform aniso-
tropic contractility. The results are shown in Fig. 5, with the 
values of contractility that are used for this analysis being 
reported in Fig. 5a. The radial and circumferential stress 
fields for a cell layer that is fixed at the periphery only (cor-
responding to the realistic case where focal adhesions are 
present mostly at the edge) are shown in Fig. 5b. It is seen 
that while the values of radial and circumferential stresses 
are different from those of free boundary condition (Fig. 3), 
the overall trends are the same. This emphasises the fact that 
the proposed simplified hypothetical model serves as a basis 
for more complex boundary conditions. The results show 
that both �rr and ��� take positive values at the edge, with 
higher values for both uniform and non-uniform anisotropic 
contractility as compared to isotropic contractility. However, 
stresses drop moving along the radius toward the center for 
the cases of uniform and non-uniform anisotropic contrac-
tility. Eventually, in the central region, the stress values are 
much smaller for uniform anisotropic contractility (and to a 
less extent for non-uniform anisotropic contractility) as com-
pared to isotropic contractility. Similar to the 2-D case with 
free boundary condition, compressive stress concentration is 
observed for the case of uniform anisotropic contractility in 
the central region of the cell. Interestingly, the more realistic 
non-uniform anisotropic contractility model (which is sug-
gested based on the experimentally observed bio-markers) 
suppresses the large non-realistic stress concentration at the 
cell center. This is consistent with the results of Simon et 
al. who showed the necessity of radial variations in the cell 
layer material behavior, including cell contraction (Simon 
and Humphrey 2012).

Finally, note the difference in stress values between iso-
tropic, non-uniform anisotropic, and uniform anisotropic 
contractility; e.g., 44% increase in ��� at the edge for non-
uniform anisotropic as compared to isotropic, and 31% for 
uniform anisotropic as compared to isotropic. While most 
available techniques (e.g., Traction Force Microscopy) 
assume isotropic material property to predict the stress in the 
cell layer from measured displacement fields, here we show 
that neglecting anisotropy can lead to considerable errors in 
the stress predictions. Our results show the importance of 
considering more realistic properties for evaluating the stress 
fields within the cell layer.

Figure 5c shows stress values for a cell layer that is uni-
formly attached to a substrate. There are similarities and 
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differences for uniformly-attached boundary condition as 
compared to the earlier periphery-fixed boundary condi-
tion. Similar to the periphery-fixed boundary condition, a 
stress concentration for both �rr and ��� is observed at the 
center of the cell layer for uniform anisotropic contractil-
ity, but not for non-uniform anisotropic contractility. Also, 
due to larger values and/or changes in ��� as compared to 
�rr , (Fig. 5a), the effect of anisotropic contractility model 
is more pronounced for ��� as compared to �rr (left versus 
right in Fig. 5c).

Dissimilar to the periphery-fixed boundary condition, 
�rr and ��� increase from edge moving toward the center in 
isotropic, uniform anisotropic and non-uniform anisotropic 
contractility cases. This increase in the stress values which 
occurs mostly at the edge is due to the traction that is applied 
by the substrate to the cell layer at the interface (Goldblatt 
2020). Moving further toward the center, �rr and ��� show a 
plateau and reach their maximum values at the cell center for 
the isotropic contractility model. For the uniform anisotropic 
contractility model, �rr and ��� drop sharply at the vicinity 
of the center. In the non-uniform anisotropic contractility 
model, �rr and ��� show a gradual decrease after the initial 
increase. In other words, a larger portion of the cell layer 
will experience the stress drop in the case of non-uniform 
anisotropic contractility, whereas a smaller portion of the 
cell will feel a much more drastic stress drop in the uniform 
anisotropic contractility model.

By comparing Fig. 5b, c, we can see that the effect of 
anisotropic contractility model is more pronounced for the 
periphery-fixed boundary condition as compared to the case 
that the cell layer is uniformly attached to the substrate, 
e.g., for uniform anisotropy, the stress curve changes from 
the blue horizontal line to the nonlinear red curve with the 
periphery-fixed boundary condition in Fig. 5b, however with 
uniform attachment in Fig. 5c, apart from the center, the 
behavior does not change drastically. This higher sensitivity 
of the predicted stress field to anisotropic contractility for 
the periphery-fixed boundary condition is due to the ease of 
deformation in the loosely attached interior cells. Note that 
the periphery-fixed and uniform attachment of the cell layer 
to the substrate are two extreme cases and the realistic case 
is something in between.

Finally, we have previously shown that multiple stress 
sensitive biological measures (e.g., �-smooth-muscle-actin-
rich stress fibers), indicate low stress in the center of mul-
ticellular aggregates and high circumferential stress at the 
periphery (Goldblatt 2020). This trend is in agreement with 
the stress field that resulted from the realistic non-uniform 
anisotropic contractility model, Fig. 5b, c, while the stress 
field predicted by the isotropic contractility model shows 
an inconsistent trend (Fig. 5b) or even an opposite trend 
(Fig. 5c) to the observed stress-related biological measures.

4 � Discussion

In this study we model the circularly shaped aggregates that 
are cultured to confluence or post-confluence levels, as well 
as circularly shaped single cells, as a continuous thin cylin-
drical layer. We assume that the cells are not highly motile, 
so the small-strain theory of elasticity is valid for the model. 
Also, we assume linear elastic behavior, which is a simpli-
fication of the viscoelastic model and has been widely used 
to theoretically express the stress-strain relationship in liv-
ing cells (Nelson 2005; He 2015; Tambe 2013). One of the 
limitations of this model is that the time factor is neglected. 
Also, the mechanical behaviors of cells are complex and 
can change due to temperature and other environmental 
factors which are all topics of interest for future studies. 
In conclusion, in this work, using a combined analytical 
and computational approach we show that anisotropy has 
a major impact on the estimated stress field within living 
cells. Our results show: (i) The stress fields obtained for 
the non-uniform anisotropic contractility model are more 
consistent with experimental biomarkers as compared to 
isotropic contractility assumption (Goldblatt 2020; Cirka 
2016). (ii) Analytical and computational results are in good 
agreement and show an unfeasible stress concentration at the 
center of the cell layer for uniform anisotropy model. The 
occurrence of stress concentration may explain the scarcity 
of fiber alignment at the center of both circular single cells 
or multi-cellular aggregates that is observed in experimental 
data. (iii) The stress singularity at the center diminishes for 
the realistic non-uniform experimentally-based contractility 
model. Although implemented in this work for circularly 
shaped aggregates and cells, the theory developed here is 
general and can be applied to other geometries and applica-
tions that involve anisotropy.
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