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Abstract

Many biological phenomena such as cell proliferation and death are correlated with stress fields within cells. Stress fields
are quantified using computational methods which rely on fundamental assumptions about local mechanical properties.
Most existing methods such as Monolayer Stress Microscopy assume isotropic properties, yet experimental observations
strongly suggest anisotropy. We first model anisotropy in circular cells analytically using Eshelby’s inclusion method. Our
solution reveals that uniform anisotropy cannot exist in cells due to the occurrence of substantial stress concentration in
the central region. A more realistic non-uniform anisotropy model is then introduced based on experimental observations
and implemented numerically which interestingly clears out stress concentration. Stresses within the entire aggregate also
drastically change compared to the isotropic case, resulting in better agreement with observed biomarkers. We provide a
physics-based mechanism to explain the low alignment of stress fibers in the center of cells, which might explain certain
biological phenomena e.g., existence of disrupted rounded cells, and higher apoptosis rate at the center of circular aggregates.
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1 Introduction

Mechanical factors (e.g., force, stress, and strain) gener-
ated within living cells as a result of actomyosin machinery
activity have been found to act as key regulators of the cell
behavior. Cell fate (Liu et al. 2016; Cabezas et al. 2019;
Discher et al. 2009; Vogel and Sheetz 2006), transcriptional
regulators TAZ and YAP (Aragona 2013; Dupont 2011), cell
proliferation and differentiation (Nelson 2005; Li et al. 2009;
Wan 2010), cell polarization and alignment (He 2015), and
cell migration (Ng et al. 2012; Lo et al. 2000), all have been
shown to correlate with mechanical factors. These phenom-
ena play a crucial role in morphogenesis, wound healing,
and tumour metastasis (Trepat 2009; Olson and Sahai 2009).
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Quantifying the mechanical factors helps understand the
relationship between stress and cell behavior. The stress field
in living cells cannot be experimentally measured and can
only be calculated using computational or theoretical meth-
ods. For colonies with highly motile cells, non-continuum
mechanics models such as Cellular Potts model (Graner
and Glazier 1992; Albert and Schwarz 2014) and vertex
model (Honda and Eguchi 1980; Farhadifar et al. 2007;
Schaumann et al. 2018), have been widely used. However,
for single cells and confluent and/or strongly adherent multi-
cellular aggregates that are not highly motile, continuum
models have been able to well describe the mechanical
response of the system (Hur et al. 2009; Nelson 2005). A
continuum model typically considers the single cell or multi-
cellular aggregate as a continuous medium under a contrac-
tion caused by actomyosin contractility (Schaumann et al.
2018). Traction force microscopy is a widely used technique
that uses the continuum model to quantify stress/strain fields
in biological cells (Hazeltine 2012; Huang 2019). In trac-
tion force microscopy, the deformation field is experimen-
tally measured and then the stress field in the cell layer is
calculated using a computational approach. Li et al. con-
sidered aggregated cell islands as a homogeneous isotropic
continuum medium and modelled the contractility using a
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temperature drop to obtain mechanical stress patterns (Li
et al. 2009). They found that certain levels of mechanical
stress affect cell proliferation and differentiation patterns.
He et al. considered the cell layer as a continuum homogene-
ous elastic membrane and observed that the in-plane maxi-
mum shear stress in the cell layer directs the arrangement
and polarization of cells (He 2015). Tambe et al. considered
a monolayer consisting of multiple contiguous cells as a thin
flat sheet and developed the governing equations for mon-
olayer stress microscopy (Tambe 2013).

Previous continuum models have assumed simplifying
assumptions for material properties of the cell layer (Hur
et al. 2009; Nelson 2005; Li et al. 2009; He 2015; Tambe
2013, 2011). One of these simplifications is homogeneity,
whereas many experimental studies have observed hetero-
geneity in the cell layer properties. For example, modulus,
average spread area, and traction force of the cell all have
been shown to vary along the radius of the circular multi-
cellular aggregates (Goldblatt 2020). On the other hand, it
has been found that mechanical-induced biological activi-
ties vary by region within the multi-cellular aggregates. For
example, investigation of the activity of Caspase 3/7 has
shown accumulation of programmed cell death (apoptosis)
within the central region of circular aggregates (Cirka 2016;

Fig. 1 a Reprinted from (Cirka
2016): F-actin alignment
increases from the center

to edge of the aggregate. b
Reprinted from (Cirka 2016):
The activity of Caspase 3/7
[which is an indicator of
programmed cell death (Griit-
ter 2000)] dominates within
central region of aggregates. c,
d Reprinted from (Tee 2015):
Organization of the actin
cytoskeleton system; ¢ showing
a combined radial/circumferen-
tial alignment; and d showing a
microtubule system with higher
intensity at the center

@ Springer

Goldblatt 2020) (Fig. 1). Also, proliferation, polarization,
and alignment of cells are shown to be less at the center
of circular aggregates (Nelson 2005; He 2015). We have
shown that heterogeneous properties of cell layer can invert
the trend of stress field within the cell monolayer when
compared to the trend in the case of homogeneous prop-
erties (Goldblatt 2020). The inverted trend (i.e., low aver-
age stress in central regions and high average stress at the
periphery of the aggregates) was found to be more consistent
with biological bio-markers (Goldblatt 2020).

Another simplification in previous continuum models is
isotropy. Anisotropy has been widely observed in biologi-
cal tissues (Feng et al. 2017; Braeu et al. 2019). In tissues
such as blood vessels and tendons, the stiffness in differ-
ent directions at the same point can be different by as large
as two orders of magnitude (Wilson et al. 2013; Yin and
Elliott 2004). More importantly, anisotropy has been widely
observed in living cells (Crouch et al. 2009; Hu 2003), the
building blocks of tissues. Indentation experiments by Efre-
mov et al. showed strong anisotropy in cells with perinu-
clear actin cap, while cells with disrupted or no actin cap,
like cancerous cells, showed an isotropic behavior (Efre-
mov 2019). They then quantified the measured mechanical
properties and showed that for cell types with anisotropic
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behavior, the modulus in the direction of fiber alignment
can be several orders of magnitude larger than the effec-
tive isotropic modulus, while the modulus in both direc-
tions perpendicular to the fiber alignment can be about fifty
percent smaller than the effective isotropic modulus. It is
believed that this strong anisotropy in living cells occurs
due to the presence and alignment of stress fibers such as
F-actin (Peeters 2004; Hu 2004; Gupta et al. 2019; Crouch
et al. 2009; Fouchard et al. 2011). F-actin fibers are ten-
sional load carrying elements and their alignment increases
the local contractility and stiffness in the direction of align-
ment (Smith et al. 2003; Efremov 2019). For a multi-cellular
aggregate cultured on a circular shape (Fig. 1a), the circum-
ferential fiber alignment is the dominant pattern, with a non-
uniform intensity where the alignment increases from center
to edge along the radius (Cirka 2016). We have previously
shown that the F-actin alignment index, determined by pro-
cessing phalloidin-stained actin images, increases from the
center to the edge of the aggregate [Fig. 2d of Ref. (Gold-
blatt 2020)]. In an independent study, He et al. showed that
the cell polarization and alignment are highest at the edge
of disk/ring patterns, promoting higher contractility in the
alignment (radial) direction [Fig. 2 of Ref. (He 2015)]. For
a single cell cultured on a circular shape (Fig. 1¢), radial and
circumferential F-actin alignments are dominant patterns,
again with a non-uniform intensity where there is almost
no alignment at the center but very intense alignment at the
edge (Tee 2015; Cabezas et al. 2019; Gupta 2015).

In this paper, we hypothesize that anisotropy substan-
tially alters emergent stress fields within circular constrained
aggregates and cells by using a continuum-based combined
theoretical and computational approach. For the sake of
simplicity, hereafter we use the term “cell layer” to refer to
both circular aggregate and single cell, unless specifically
mentioned. We first use the Eshelby’s inclusion method to
obtain a closed-form solution for the stress field within a
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Fig.2 A schematic showing that a cell layer (on the left) having a
cylindrical anisotropy is replaced with an equivalent Eshelby’s inclu-
sion (on the right) having uniform isotropic properties, under an
appropriately selected eigenstrain field and far-field strain

cell layer with general properties. To this end, we model the
effect of anisotropic contractility on the elastic fields by an
appropriate eigenstrain field applied to the inclusion prob-
lem equivalent to the cell layer. It is worth mentioning that
the force induced by the substrate acts as traction stresses
(boundary conditions) on the cell layer. Subsequently elastic
fields of three problems with free boundary conditions are
analytically solved: (i) a multicellular cell layer with actin
fibers dominantly aligned along the circumference; (ii) a
single cell layer with actin fibers dominantly aligned along
the radius; and (iii) a single cell layer with actin fibers domi-
nantly aligned along the circumference. The case of free
boundary condition is more for the purpose of validating the
numerical solution. While this boundary condition is hypo-
thetical, our study shows that this case provides a basis solu-
tion for more realistic boundary conditions. We then build
a thermal-contraction finite-element model to later study
more complex anisotropy models and boundary conditions,
(e.g., cell layer attached to the substrate), for which analyti-
cal solution becomes troublesome. Even though we use the
concept of thermal contraction, the biological response of
cells under temperature change is not the focus of this study.
In this work, the contractility in the cell layer is simulated
by a thermal contraction proportional to the thermal expan-
sion coefficient (He 2015; Nelson 2005). We validate the
finite-element model by comparing the computational and
analytical results for all three problems mentioned above.
Both analytical and computational results, in good agree-
ment, show that stress singularity occurs at the center of the
cell layer for the uniform anisotropy model. Stress singular-
ity is a theoretical/mathematical concept in the context of
elasticity theory, which means that stresses approach infinity.
However, in the realistic case, the singularity shows itself as
stress concentration. Finally, we suggest an experimentally-
based non-uniform anisotropic contractility model (zero
anisotropy at the center and maximum anisotropy at periph-
ery) for a multicellular cell layer. We then extend the ana-
lytical results using the thermal-contraction finite-element
model for the more realistic anisotropy model and boundary
conditions.

2 Materials and methods
2.1 Analytical model

Circularly shaped aggregates that are cultured to confluence
or post-confluence levels, as well as circularly shaped sin-
gle cells, can be considered as a continuous thin cylindrical
layer (Nelson 2005; Li et al. 2009; He 2015). The elasticity
problem for an anisotropic cylindrical body has been formu-
lated by previous researchers; in general, these formulations
result in tedious algebra, therefore the implications have
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been limited to certain symmetry and loading types (Ting
1996; Oral and Anlas 2005). Cylindrical anisotropy refers
to the case where the material property tensor has one axis
of symmetry among cylindrical coordinates (r, 8, z) (Allen
and Farris 1990). The special case of cylindrical anisotropy
with z being the axis of symmetry is relatively simpler and
has been widely studied for different applications (Lu et al.
2016). In the problem of interest in this paper though, we are
dealing with either r or 8 being the axis of symmetry: For
circularly shaped multi-cellular aggregates and single cells,
either circumferential or radial alignment of F-actin fibers
are commonly observed (Tee 2015; Cabezas et al. 2019;
Goldblatt 2020; Cirka 2016); both circumferential and radial
types of cylindrical anisotropy create coupling between
radial and circumferential elastic fields, and therefore lead
to cumbersome formulations (Allen and Farris 1990). Cir-
cumferential F-actin alignment causes higher circumferen-
tial contractility compared to radial and axial (z) directions
(Fig. 1a), whereas radial F-actin alignment causes higher
radial contractility compared to circumferential and axial
directions (Fig. 1c).

Eshelby’s inclusion method formulation can reduce the
complexity of elasticity equations of a general cylindrical
anisotropic body. This method was originally employed
in micromechanics of defects (Mura 2013). However, it is
based on a continuum theory of elasticity with applications
in many areas related to the mechanical behavior of materi-
als such as composites. This approach can be used to analyze
a wide range of mechanical problems by using the concept of
“eigenstrain”. In the context of Eshelby’s inclusion method,
eigenstrain is a general name given to any non-direct elastic
strain such as thermal strain, misfit strain, and pre-strain.
Also, an inclusion by definition is a subdomain C inside
domain M U C where the elastic moduli of C are the same
as those of M, Fig. 2. The eigenstrain €* is zero in M and is
nonzero in C in general (Mura et al. 1996). Since in reality,
cells are surrounded by fluids that exert negligible traction
forces to the cell layer periphery, (due to the lack of the pres-
ence of side focal adhesions), in our analytical model for the
cell layer, we adjust the boundary conditions in a way that
the traction components at the boundary become zero, as if
the domain M does not exist.

Cells generate mechanical forces which arise from acto-
myosin contraction (Ingber 1991; Fouchard et al. 2011). This
contraction can be modeled by a pre-strain, i.e., an eigen-
strain (Nelson 2005; He 2015). The main idea here is to
replace the cell layer having a general cylindrical anisotropy
with an equivalent Eshelby’s inclusion which is an elastic
medium, under a proper choice of eigenstrain, €* defined
over the region C, and far-field strain, Fig. 2. We should
clarify that the infinite medium around the inclusion is a
conceptual medium and is different from the real substrate
that the cell is attached to, but we can use this concept to
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use the Eshelby’s inclusion method formulation. We will
choose the far-field strain of the infinite medium such that
the boundary conditions at the edge of the cell are satisfied
as desired.

We begin with reformulating the equations of linear elas-
ticity in the cylindrical coordinate system. Troublesome
partial differential equations can be simplified to solvable
ordinary differential equations by expansion in terms of an
orthogonal cylindrical basis. The stress, strain, and displace-
ment fields can be expanded as follows:

Z Z ('1 5)('.)61710 xéjirz (13)

i=r,0,z né

u(r,0,z) =

{e(r,0.2),€*(r,0,2),6(r,0,2)}
Z Z{e(ﬂ 5)(’,) e*(ﬂ -f)(r) o.(ﬂ 'é)(r)} PUPILE e e,

ij=r.0,z n,&

(1b)
where 1 is the imaginary unit, and for each integer-pair (1, &)
in the Fourier series expansion, the expansion coefficients
uﬁ” (), 631 9(r), and ai(j”’ 9 (r) are functions of r only.

In order to find an analytical solution, we make the fol-
lowing simplifying assumptions: (i) We consider a thin cell
layer, (i.e., the radius of the cell layer is considerably larger
than the thickness of the cell layer). (ii) we ignore the trac-
tions applied by the substrate. This is equivalent to the case
where cells are not attached to the substrate below them.
While this is a simplified hypothetical boundary condition,
it still serves as a basis solution for more realistic bound-
ary conditions. We will later numerically study the effect of
substrate tractions (i.e., the case where cells are attached to
the substrate below them). Using these assumptions, we can
neglect the variations along the thickness, i.e., & = 0. So the
expansions will be simplified to

2 e e, (2a)

i=r0 n

u(r,0) =

{e(r,0),€*(r,0),6(r,0)}

= Y THameonoin e e, (2b)

ij=r0 n

2.1.1 Strain-displacement relations

Assuming that the cells are not highly motile, small-strain
theory of elasticity, € = % {Vu+ (Vu)"} (Sadd 2009),
where V is the gradient operator, can be used to express the
strain-displacement relation (He 2015). This assumption has
been widely used in previous studies to model the mechani-
cal behavior of living cells (e.g., Tambe et al. used small
strain theory to analytically investigate Monolayer Stress
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Microscopy (Tambe 2013). In another study, He et al. used
small strain theory to quantitatively study the cell layer stress
field (He 2015)). Using the formulation in cylindrical coor-
dinate system and then by expanding u and € based on Eq. 2a
and Eq. 2b, the following strain-displacement relations are
obtained in the cylindrical coordinate system:

du''(r)
n(r) = "
€r.(r) prt

ul(r) uy ()
7 = g
ege(r) " m "
egz(r)=0,

' (r ul(r) du'l(r) 3)
€”(r)=ﬂr()—19 '|'l o )
6 2 r 2 r 2 dr

1 dul(r)
Ny = —
=g
ul(r)
)= 2=
< 2 r

2.1.2 Stress-strain relations

The linear elastic model, which is a simplification of viscoe-
lastic model, has been widely used to theoretically express
the stress-strain relations in living cells (Wei 2020; He 2015;
Tambe 2013). Although the time factor will be neglected,
the linear elastic solution provides a basis for viscoelastic
solution according to the correspondence principle (Hemp
1966; Lim et al. 2006). A linear elastic transversely iso-
tropic material has five independent elastic constants (Sadd
2009). In the general case when the material is also radially
heterogeneous from the origin, the stress-strain relations for
the transversely isotropic material considered here can be
written as

6, =C(Ne, +Cpr) e+ Cia(ne,,
0,9 =2C4u(Ney,

0gp = C1p(r) €, + Cy(r)€gy + Cp(H) €
c, = (Cll(r) - Clz(r)) €,

UZZ = C13(r) €, + Clz(r) €op + Cll(r)e

2z

T’

“

0p, = 2C(r) €y, .

Expanding e(r, #) and 6(r, 0) as in Eq. 2b, stress-strain rela-
tions can be re-written in terms of stress and strain coef-
ficient functions as

ol (r) = Cy1(r) €1.(r) + Cpp(r) €5, (r) + C3(r) €l (r),
0y (1) = Cpa(r) €1(r) + Cor(r) €, (r) + C1p(r) €1.(r),,
ol (r) = Cp3(r) €L (r) + Cpp(r) €5, (r) + C (1) €l (1),
6;70(7') =2 Cyy(r) efe(r) ,

o' (r) = (Cpy(r) = Cpa(r)) €1.(r),

GZZ(V) =2Cu(r) e;’z(r) )

®

For an isotropic homogeneous material, the stress-strain
relations can be further simplified as

ol (r) = Qu+ ) el (r)+ ey, () + A€l (r),

Ope(r) = A€l (r) + 2u + A) €y (r) + A€l (),

ol (r) = A€l (r) + Aeg,(r) + 2u + A) el (r),

(6)

o (1) = 2u el (r).
ol (r) = 2u el (),

0. () =2p €y (1),

in which y is the shear modulus and 4 is the Lame’s constant
which is equal to 2v /(1 — 2v) where v is the Poisson’s ratio.

2.1.3 Inclusion problem

Let us consider a cylindrical inclusion inside an infinite
medium under a given eigenstrain €* defined over the region
C (right side of Fig. 2). The eigenstrain will cause a distur-
bance strain field, €4, both inside and outside of the inclu-
sion (Eshelby 1957; Yu et al. 1994; Shodja et al. 2003):

e = De*, @)

where D is the Eshelby tensor and €* is the eigenstrain. Eq. 7
is valid for all points both inside (¢4©’ = D€€*) and outside
(Y™ = DM¢*) the inclusion. Eshelby tensor for inside the
inclusion (D) is generally different from that outside the
inclusion in the matrix (D¥). It has been shown that com-
ponents of the Eshelby tensor in the Cartesian coordinate
system are constant, whereas, in the cylindrical coordinate
system, components of the Eshelby tensor include logarith-
mic singularity at the origin (Mura 2013). In the case of the
existence of an applied remote strain, €Y, the total strain can
be written as

€=¢€"+ ¢ ®)

Assuming linear theory of elasticity, the elastic strain e in
the subdomain C is

e=ec—c* =€+l — €. 9
The Hooke’s law can be written as

6 =Ce=C(e—e€") = Ce + € — ), (10)
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where C is the elastic moduli tensor. The equilibrium equa-
tion in the absence of body force is

V-o=0. an
By substituting Eqs. 10 in 11 we have
V-C(e) =V - C(e"). 12)

By writing strain field in the left-hand-side of the above
equation in terms of displacement field and also by consid-
ering isotropic material properties, the following equation
is obtained, the left-hand-side of which reminds us of the
well-known Navier equation (Landau and Lifshitz 1959; del
Castillo 2003):

VV-w 1

2 . *
Viu JSE = (e, (13)

where u is the displacement vector. Eq. 13 in the cylindrical
coordinate system includes the following components:

u, 10u, u
or? ror r?
11-2v0%u, 1 1

r

0’uy 13 —4v0u

22-2v 30>  r2-2vordd 122-2v 00
ae:r Vv ae;é’
T oor 1—-v or
v 9 11-2v9€,
1-v or rl—v 00
+1—2v€_;_1—2v@’
1—-v r 1—-v r
(14a)
Puy 104y Uy
or? ror r?
12-2v %,
r21—2v 00?
02 — 4y 0
1.1 Pu, 13-4y, (14b)
rl1—2vordd r21-2v 00
de _ny 0€}
9 r9+12 2v 0€yy
or r1—-2v 06
1 2v 9de, 1 2y O€ €
= += +4-2,
r1—2v 00 rl1—2v 00 r
dzuz ]6214Z 1 0u,
2 TR T o
(14¢)

O 2% 2.

+
or r 00 r '

b}

which are the same as equations that were previously
derived by Shokrolahi-Zadeh and Shodja (2008). Equa-
tions 14 are the governing equations to be solved for a given
eigenstrain €*. We will consider that €* has the following
form in cylindrical coordinates:

@ Springer

€:(r,0) = e;r"e’. (15)

The solution of Egs. 14 corresponding to an e;(r, 0) in the
form of Eq. 15, can be expressed as (Mura 2013)

u(r,0) = u;r"e"’. (16)

For the case of axisymmetric eigenstrain, the solution should
not depend on 6, therefore # = 0. By substituting u;(r, §) in
the form of Eq. 16 in Egs. 14 and setting the right-hand-side
equal to zero, n = +1 is obtained for the general solution to
Eqgs. 14 for the case of n = 0. Since inside the inclusion,
the disturbance displacement should be finite and far away
outside the inclusion, the disturbance displacement should
approach to zero, it can be concluded that n = 1is legitimate
for inside the inclusion and n = —1is legitimate for outside
the inclusion. Therefore, the general solution for the homo-
geneous (denoted by superscript 2 below) part of Egs. 14 is
as follows:

ui’(r) =1, a7
up(r) = c,r, (18)
W'(r) = c3, (19)
for r < R, and

C
h 4
i) = =,

c
ul(r) = 75 (20)
u'(r) = cg,

forr > R, wherec;s (i = 1,2, ..., 6) are constants to be deter-

mined from boundary conditions (Supplementary Eqgs. S8
and S9). Since the disturbance displacement far away from
the inclusion should approach to zero, we can conclude that
¢ = 0. The homogeneous solution is independent from the
eigenstrain. For r > R, the eigenstrain and the right-hand-
side of Eqs. 14 are identically equal to zero. For r < R how-
ever, the eigenstrain is nonzero and non-uniform in general.
For a general form of eigenstrain, obtaining the particular
solution to the non-homogeneous Eqs. 14 can be trouble-
some. However, for the eigenstrain in the form of a poly-
nomial with respect to r, the following expansion can be
considered (15):

ew=2 ,Za € € e @1
n o ij=r,

where €*(r) is also axisymmetric (corresponding to n = 0).
In the context of linear elasticity, the disturbance strain cor-
responding to the eigenstrain, Eq. 21, can be obtained by
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superimposing the solutions for individual terms for each
n. It can be seen that for an integer value of n, the following
form satisfies Eqs. 14 for properly chosen constants, and thus
can be used as a particular (denoted by superscript p below)
solution to Egs. 14:

uf(r) = k;r"(Inr)®,
wy(r) = kyr®(Inr)®, (22)

uf (r) = kyr®(Inr),

where constants a;,a,,...,a, and k,k,,k; need to be
selected for each n such that the governing Eqs. 14 and the
boundary conditions are satisfied. The boundary condi-
tions are based on continuity of displacements across the
boundary of inclusion and matrix as well as continuity of
traction stresses. These boundary conditions are given in
Supplementary Egs. S8 and S9. The rest of the procedure
consisting of finding the particular solution and satisfying
the boundary conditions in addition to an example showing
the steps for deriving the components of Eshelby tensor for
uniform eigenstrain field, are discussed in the SI. As the
result, components of the Eshelby tensor as defined by Eq. 7
for (n,n) = (0, 0) and for the rr component of the eigenstrain
field are obtained as

peon _ 3=4v+2(1-20)In(r/R)

rrrr 4(] — V) ’
peoo _ 1+2(01=2v)In (r/ R), (23)
00rr 4(1 —-v)
DC(O’O) _ DC(O’O) — DC(O,O) — DC(0,0) =0
rlrr rzrr Ozrr zrr ’
YO0 — _phMoo L g/,
rrrer 06rr 41 -v) (24)
DM(O’O) _ DM(O,O) — DM(O,O) — DM(0,0) =0
rorr rarr Ozrr wrr '

Through a similar procedure, for other components (60, r0,
etc.) of the uniform eigenstrain field, components of the
Eshelby tensor are derived and are presented in the SI. Strain
and stress components can be readily obtained by substitu-
tion of the components of the Eshelby tensor in Egs. (7 - 10).

2.1.4 Implementation of the Eshelby’s inclusion for the cell
problem

2.1.4.1 Contractility Having derived expressions for the
Eshelby tensor, we are now ready to tackle the target cell
problem. The numerical study in Supplementary Figs. 2 and
3 of the SI shows that anisotropy in elastic moduli has the
same qualitative effect as anisotropic contractility. There-
fore, here we assume only isotropic elastic moduli tensor for
the cell layer, but either isotropic or anisotropic contractil-
ity. We derive the analytical solution for both isotropic and

uniform anisotropic contractility. We will confirm our ana-
lytical solutions with numerical results later in the Finite
Element Modeling section, where we will further address
non-uniform contractility as well. As was also mentioned
before, eigenstrain is a mathematical concept to model con-
tractility in the material by €*(r,0,z) = aij(r, H,Z)AT(SU in
which AT is the change in temperature and ;; is coefficient
of thermal expansion (with only nonzero components «,,,
g9, and a,;). For the uniform isotropic (a,. = ayy = a,,)
contractility case, €. = €,, = €. Since we assume the cell
problem is axisymmetric (i.e., independent of ), n =0
in Eq. 2. Moreover, for the uniform contractility/eigen-
strain cases, n = 0 in Eq. 15 of the analytical solution. This
means that we need components of the Eshelby tensor for
(n,n) = (0,0) only (which have been derived and presented
in the previous section of this paper as well as the SI).

2.1.4.2 Boundary conditions Cells are attached to the sub-
strate via focal adhesions. Both in single cells and in mul-
ticellular aggregates, focal adhesions are not uniformly dis-
tributed. Focal-adhesion-associated proteins are reported to
exist dominantly in periphery of a single cell and an aggre-
gate (Stolarska and Rammohan 2017; Gallant et al. 2005;
Girard and Nerem 1995; Kilian et al. 2010; Oakes et al.
2014). This suggests that the cell layer is tightly connected
to the substrate around the edge. In our theoretical model, we
consider the cell layer free on top and bottom surfaces, but
it has displacement boundary conditions at the edge r = R.
The challenge however is that, in the Eshelby problem, there
exists a remote strain field applied to an infinite surrounding
medium. This is not the case for the cell problem. In order
to equalize the finite-medium cell problem with the infinite-
medium Eshelby problem, and to figure out the equivalent
far-field strains in the Eshelby problem, we suggest and fol-
low the below algorithm:

1. Numerically model the cell layer with the applied eigen-
strain and the desired displacement boundary conditions
at the edge (as will be discussed in depth in the next
section).

2. Read the resulting six values of stress components at the
edge boundary.

3. Tune the applied far-field strains in the Eshelby problem
so that the resulting analytical stresses at the edge of the
inclusion are consistent with the stress values of numeri-
cal results at Step 2.

In this study, for the analytical solution, we consider a free
cell layer (i.e., cells are not attached to the substrate below
them), for which only one stress component at the edge,
Opol,=g-> 18 unknown and can be taken as an input from
numerical results. We will later show that the behavior of
the resulting stress field for a cell layer with free boundary
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condition and a cell layer that is fixed at the edge are quali-
tatively consistent.

2.2 Finite element modeling
2.2.1 2-D model

We use two-dimensional (2-D) finite-element models to
validate our theoretical model for free single cell and aggre-
gate layers with isotropic and uniform anisotropic cell layer
properties (more realistic contractility and boundary condi-
tions are studied in the next section using a 3-D model). For
this purpose, 2-D models of circular cell layers with radii
of 100 ym and 10 um corresponding to a cell aggregate
and a single cell respectively, are built in the commercial
software Abaqus. The cell layer is modeled as a continu-
ous elastic isotropic layer with Young’s modulus of 40 kPa
and Poisson’s ratio of 0.49 (nearly incompressible). The
properties for the cell layer are taken from Ref. (Goldb-
latt 2020). Standard plane stress quad element with mesh
refinement at the center of the cell layer is used to discretize
the model. A free boundary condition, i.e., the boundary
of the cell layer can deform with no restriction, is consid-
ered consistent with the analytical solution. A pre-strain is

Table 1 Anisotropy ratios used

K K K
in the analytical and numerical A e

analysis 0.5 003 0015 0015
002 002 002

2 0015 003 0015

10 0005 005  0.005

Fig.3 a Heat maps of numeri-
cally predicted radial (left) and
circumferential (right) stress
fields inside a hypothetical
2-D free cell layer (aggregate)

introduced using a temperature drop of 1 K, in which case
€“(r,0,z) = —a,_-,-(r, 0, z)éi]-. In order to study the effect of ani-
sotropic contractility, different anisotropy ratio x = ay,/a,,
are considered consistent with the analytical solution. These
values are tabulated in Table 1. Stress fields for a cell aggre-
gate and a single cell layer for different anisotropy ratios
are presented and compared with the analytical solution in
Figs. 3 and 4.

Note that all figures of this paper only plot ¢, and oy
components of stress. This is because other components are
negligible, as illustrated in the Supplementary Fig. 1 of the
SI for different boundary conditions as well as isotropic and
anisotropic contractility.

2.2.2 3-D model

We use three-dimensional (3-D) finite-element model to
study a more realistic contractility model for multi-cellular
aggregates, based on experimental observations in Fig. la
and (Goldblatt 2020), as well as more realistic boundary
conditions. Based on these experimental observations, non-
uniform contractility is suggested and further implemented
and then compared with the results of isotropic and uniform
contractility. Variation of contractility along the radius for all
three contractility models are depicted in Fig. 5a. For non-
uniform contractility, it is assumed thata,, = ayy = a_, at the
center, consistent with the observation that the fibers are not
aligned in any specific direction at the center. However, ay,
increases radially with maximum value at the edge, consist-
ent with the maximum fiber alignment in the 6 direction at
the edge. We will assume that the increase in a,, from center
to the edge is linear in r, with ayy(r)|,—p/age(")|,=0 = 2.

+7.42E-03

with uniform anisotropy for + -1.64E-02

K = qpy/,, = 2. Predicted

analytical and numerical radial

b and circumferential ¢ stresses

for different anisotropy ratios a -4.03E-02

k = 1,2, 10 inside a hypo-

thetical 2-D free cell layer. In

the numerical finite-element

. R 0.00 0.024

simulations, 40 kPa and 100 ym 0.0 Joppmemmt PO O A

have been used for the Young’s _0'04 ----- : [z

modulus (E,) and radius of the ’ —0.021

cell layer (R) respectively uy ~0:06 analytic, k=1 uf —0.041 analytic, k=1

3 —-0.08 numeric, k=1 \% —0.06 { numeric, k=1
S -0.10 — analytic, k=2 © -0.081 —— analytic, k=2
—-0.12 * numeric, k=2 —0.101 = numeric, k=2
—0.14 = analytic, k=10 _0.121 = analytic, k=10
—0.16 = numeric, k=10 _o.14] = numeric, k=10
0.0 0.2 0.4 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
b r/R c r/R
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0.01

000 —————== /-—-""
-0.01 R P
o - (44
W —0.02 .
~ — Oy, analytic, k=2
© —0.03 —— Ogg,analytic, k=2
* Ogg, NUMeric, k=2
—0.04 .
= O, numeric, k=2
-0.05 —— 0 = Ogg, k=1"
a 0.0 0.2 0.4 0.6 0.8 1.0
r/R
+4.05E-02
+1.65E-02
-7.43E-03
O-T'T'
+7.42E-03
-1.65E-02
-4.05E-02
Orr 966
C

Fig.4 a, b and c Results for a hypothetical 2-D free cell layer (sin-
gle cell) with isotropic and uniform anisotropic contractility. In the
numerical finite-element simulations, 40 kPa and 100 ym have been
used for the Young’s modulus (E,) and radius of the cell layer (R),
respectively. * Numeric and analytic are coinciding for x = 1. a Pre-
dicted analytical and numerical radial and circumferential stresses
for k = 1 (isotropic) versus k = 2 (circumferential fiber alignment). b

The value of this ratio will not qualitatively change the pre-
dicted stress field. Also, since most of the fiber alignment
is observed in the 6 direction, we will assume that,, = «,,
remains constant along radius. To make a fair comparison
between the three cases of isotropic contractility, uniform
anisotropic contractility, and non-uniform anisotropic con-
tractility, we have kept the overall contractility equal. For
this purpose, a values are chosen so that the area under the
contractility-radius curve, /OR(a,r(r) + age(r) + a(r))dr, is
identical for all the three cases.

A 3-D finite-element model of a circular cell layer (radius
100 um corresponding to the aggregate dimension) and
substrate (radius 200 ym to serve as a planar semi-infinite
substrate and avoid the edge effects) was then constructed.
The thickness of the cell and substrate layers are 3.2 and 1
um, respectively, consistent with previous works (Goldb-
latt 2020; He 2015). The cell layer and substrate layer were
modeled as elastic isotropic materials with Young’s moduli
of 40 and 0.4 kPa, respectively [a softening effect caused
by the adhesive bonding layer between the cell layer and
the substrate is considered (Goldblatt 2020)]. Poisson’s
ratios of both the cell and substrate layers were considered
as 0.49. The properties are all taken from Ref. (Goldblatt

= O, analytic, k=0.5
— Ogg, analytic, k=0.5
= Ogg, NumMeric, k=0.5
= Oy, Nnumeric, k=0.5

0.05

0.04

0.03
—— O, = Ogg, k=1"

o/E.

0.02
001 NS
0.00 \-.-........,___
-0.01
00 02 04 06 08 10
r/R

Predicted analytical and numerical radial and circumferential stresses
for k = 1 (isotropic) versus x = (.5 (radial fiber alignment). ¢ Heat
maps of numerically predicted radial and circumferential stress field
for k = 0.5 (top) and ¥ = 2 (bottom). d A schematic representation of
the behavior of the cell layer at the center showing compression for
k > 1and tension fork < 1

2020). Similar to the previous case, a pre-strain is introduced
using a temperature drop of 1 K. The model is then run for
three material models of Fig. 5a: (i) isotropic contractility,
(i1) uniform anisotropic contractility for ¥ = 2, and (iii) lin-
ear non-uniform anisotropic contractility. Each of the cases
above is run for two different boundary conditions and the
stress values are extracted at the bottom of the cell layer: (i)
The periphery of the cell layer is attached to the substrate
and the bottom surface of the substrate is fixed. The results
are shown in Fig. 5b. (ii) The cell layer is uniformly attached
to the substrate and the bottom surface of the substrate is
fixed. The results are shown in Fig. 5c.

3 Results

3.1 Uniform anisotropy results in infeasible stress
concentration

The results of analytical and numerical analysis for a free
two-dimensional cell aggregate layer with a radius equal to
100 um and different values of anisotropy ratio k = ay,/«,,
are shown in Fig. 3. k = 1 is equivalent to the case of
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isotropic contractility

uniform anisotropic contractility

non-uniform anisotropic contractility
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Fig.5 a Representation of isotropic contractility, uniform anisotropic
contractility and non-uniform anisotropic contractility models used in
the 3-D finite-element analysis. b, ¢ Predicted numerical results for a
3-D model of cell layer (aggregate) for realistic boundary conditions
with contractility models shown in a. In the numerical finite-element
simulations, 40 kPa and 100 ym have been used for the Young’s mod-

isotropic contractility (a,, = ay). Kk =2 and k = 10 are
equivalent to the cases where fibers are aligned in the cir-
cumferential direction causing ay, = 2a,, and ayy = 10a,,,
respectively. As it is expected, the radial stress at r = R for
all x values in both numerical and analytical results is zero.
This is because the periphery of the disc is considered free
(zero traction). The circumferential stress at = R is in gen-
eral nonzero as oy, is not a traction component. Also, we
can see that for the isotropic case, k = 0, both radial and
circumferential stress components are zero as we expect for
a freely contracting isotropic circular disk. This shows the
results are verified against intuitive boundary conditions.
In addition, a good agreement is observed between numeri-
cal and analytical results. It is seen that there is no radial
and circumferential stress within the cell layer for isotropic
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ulus (E,) and radius of the cell layer (R), respectively. b Radial (left)
and circumferential (right) stress fields for a cell layer that is fixed at
the periphery only (corresponding to the realistic case where focal
adhesions are present mostly at the edge). ¢ Radial (left) and circum-
ferential (right) stress fields for a cell layer that is uniformly attached
to the substrate

contractility k = 1. For the cases of k = 2 and « = 10, the
radial compressive stress diminishes at the edge (due to free
boundary condition) and increases moving radially toward
the center of the aggregate. The values of circumferential
stress are positive at the periphery of the cell layer and
reduce as moving radially toward the center. An interesting
observation is that a large radial and circumferential com-
pressive stress concentration appears at the center of the cell
layer for the case of the uniform anisotropic contractility
with ¥ = 2 and ¥ = 10 (which does not exist for isotropic
contractility). We will later suggest a simple disk-spring
model and show that compression near the center happens
as long as k > 1, irrespective of its exact value. It is seen
that the change in the stress sign occurs at a distance equal
to around 40% of the cell radius from the center. In other
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words, cells within the interior parts of the aggregate (within
the area r < 0.4R) experience both compressive radial and
compressive circumferential stresses whereas cells outside
this region experience a tensile circumferential stress and a
compressive radial stress.

3.2 Effect of stress fiber alignment

Analytical and numerical results for isotropic as well as ani-
sotropic contractility for a free 2-D single cell layer with a
radius equal to 10 ym are presented in Fig. 4. As opposed
to Fig. 3 which only includes x > 1, here the results for
k =2 and k¥ = 0.5 are presented and compared. k less than
one for single cell layer is inspired by earlier experiments
reported in the literature reprinted in Fig. 1. Specifically,
k = 0.5 here is equivalent to the case that fibers are aligned
in the radial direction causing @y, = 0.5a,,. A good agree-
ment is observed between numerical and experimental
results. Qualitatively consistent with the aggregate cell
layer case, the results show no stress within the cell layer for
k = 1, and a compressive stress concentration at the center
for « = 2 (Fig. 4a, c). However, tensile stress concentration
is observed for k = 0.5 (Fig. 4b, c). In other words, when
k > 1, the stress concentration at the center of the cell is
compressive whereas when x < 1, the stress concentration
at the center of the cell is tensile.

This result might not look intuitive at first glance. In order
to help clarify this phenomenon, a schematic model of a sys-
tem of disks and springs is shown in Fig. 4d to represent the
center of the cell. The top left conformation of disk-spring
system in Fig. 4d represents the initial unstressed condi-
tion. Also, the circumferential contraction is represented
by a decrease in the periphery of the hexagonal disk-spring
system, as shown in the bottom conformation in Fig. 4d for
the extreme case of circumferential contraction and no radial
contraction (k = o0). On the other hand, the radial contrac-
tion is represented by a decrease in the radius of the central
disk, as shown in the right conformation in Fig. 4d for the
extreme case of radial contraction and no circumferential
contraction (k = 0). Interestingly, this simple system sug-
gests that for the case of k¥ = 1, there should be no stress
induced in the system, which is consistent with the results
of the cell system in Fig. 4a, b. Moreover, for k¥ > 1, the sim-
ple disk-spring system suggests compression near the center
(shown with a reduction in the length of central springs), and
for k¥ < 1tension near the center (shown with an increase in
central springs’ length), all consistent with analytical and
numerical results of Figs. 3, 4a, b for the cell system.

3.3 Extending to experimentally-based anisotropic
contractility model with more realistic
boundary conditions

In order to extend this research to more realistic boundary
conditions and contractilities, a numerical study for a 3-D
model of the cell aggregate is next performed for three cases
of contractility: (i) isotropic, (ii) uniform anisotropic, and
(iii) the proposed experimentally-based non-uniform aniso-
tropic contractility. The results are shown in Fig. 5, with the
values of contractility that are used for this analysis being
reported in Fig. 5a. The radial and circumferential stress
fields for a cell layer that is fixed at the periphery only (cor-
responding to the realistic case where focal adhesions are
present mostly at the edge) are shown in Fig. 5b. It is seen
that while the values of radial and circumferential stresses
are different from those of free boundary condition (Fig. 3),
the overall trends are the same. This emphasises the fact that
the proposed simplified hypothetical model serves as a basis
for more complex boundary conditions. The results show
that both o,, and o, take positive values at the edge, with
higher values for both uniform and non-uniform anisotropic
contractility as compared to isotropic contractility. However,
stresses drop moving along the radius toward the center for
the cases of uniform and non-uniform anisotropic contrac-
tility. Eventually, in the central region, the stress values are
much smaller for uniform anisotropic contractility (and to a
less extent for non-uniform anisotropic contractility) as com-
pared to isotropic contractility. Similar to the 2-D case with
free boundary condition, compressive stress concentration is
observed for the case of uniform anisotropic contractility in
the central region of the cell. Interestingly, the more realistic
non-uniform anisotropic contractility model (which is sug-
gested based on the experimentally observed bio-markers)
suppresses the large non-realistic stress concentration at the
cell center. This is consistent with the results of Simon et
al. who showed the necessity of radial variations in the cell
layer material behavior, including cell contraction (Simon
and Humphrey 2012).

Finally, note the difference in stress values between iso-
tropic, non-uniform anisotropic, and uniform anisotropic
contractility; e.g., 44% increase in oy, at the edge for non-
uniform anisotropic as compared to isotropic, and 31% for
uniform anisotropic as compared to isotropic. While most
available techniques (e.g., Traction Force Microscopy)
assume isotropic material property to predict the stress in the
cell layer from measured displacement fields, here we show
that neglecting anisotropy can lead to considerable errors in
the stress predictions. Our results show the importance of
considering more realistic properties for evaluating the stress
fields within the cell layer.

Figure 5c shows stress values for a cell layer that is uni-
formly attached to a substrate. There are similarities and

@ Springer



H. Ashouri Choshali et al.

differences for uniformly-attached boundary condition as
compared to the earlier periphery-fixed boundary condi-
tion. Similar to the periphery-fixed boundary condition, a
stress concentration for both o,, and o, is observed at the
center of the cell layer for uniform anisotropic contractil-
ity, but not for non-uniform anisotropic contractility. Also,
due to larger values and/or changes in a,, as compared to
a,,, (Fig. 5a), the effect of anisotropic contractility model
is more pronounced for 6,, as compared to o,, (left versus
right in Fig. 5c¢).

Dissimilar to the periphery-fixed boundary condition,
o, and oy, increase from edge moving toward the center in
isotropic, uniform anisotropic and non-uniform anisotropic
contractility cases. This increase in the stress values which
occurs mostly at the edge is due to the traction that is applied
by the substrate to the cell layer at the interface (Goldblatt
2020). Moving further toward the center, o,, and o,y show a
plateau and reach their maximum values at the cell center for
the isotropic contractility model. For the uniform anisotropic
contractility model, ¢, and oy, drop sharply at the vicinity
of the center. In the non-uniform anisotropic contractility
model, ¢, and oy, show a gradual decrease after the initial
increase. In other words, a larger portion of the cell layer
will experience the stress drop in the case of non-uniform
anisotropic contractility, whereas a smaller portion of the
cell will feel a much more drastic stress drop in the uniform
anisotropic contractility model.

By comparing Fig. 5b, ¢, we can see that the effect of
anisotropic contractility model is more pronounced for the
periphery-fixed boundary condition as compared to the case
that the cell layer is uniformly attached to the substrate,
e.g., for uniform anisotropy, the stress curve changes from
the blue horizontal line to the nonlinear red curve with the
periphery-fixed boundary condition in Fig. 5b, however with
uniform attachment in Fig. 5c, apart from the center, the
behavior does not change drastically. This higher sensitivity
of the predicted stress field to anisotropic contractility for
the periphery-fixed boundary condition is due to the ease of
deformation in the loosely attached interior cells. Note that
the periphery-fixed and uniform attachment of the cell layer
to the substrate are two extreme cases and the realistic case
is something in between.

Finally, we have previously shown that multiple stress
sensitive biological measures (e.g., a-smooth-muscle-actin-
rich stress fibers), indicate low stress in the center of mul-
ticellular aggregates and high circumferential stress at the
periphery (Goldblatt 2020). This trend is in agreement with
the stress field that resulted from the realistic non-uniform
anisotropic contractility model, Fig. 5b, c, while the stress
field predicted by the isotropic contractility model shows
an inconsistent trend (Fig. 5b) or even an opposite trend
(Fig. 5¢) to the observed stress-related biological measures.
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4 Discussion

In this study we model the circularly shaped aggregates that
are cultured to confluence or post-confluence levels, as well
as circularly shaped single cells, as a continuous thin cylin-
drical layer. We assume that the cells are not highly motile,
so the small-strain theory of elasticity is valid for the model.
Also, we assume linear elastic behavior, which is a simpli-
fication of the viscoelastic model and has been widely used
to theoretically express the stress-strain relationship in liv-
ing cells (Nelson 2005; He 2015; Tambe 2013). One of the
limitations of this model is that the time factor is neglected.
Also, the mechanical behaviors of cells are complex and
can change due to temperature and other environmental
factors which are all topics of interest for future studies.
In conclusion, in this work, using a combined analytical
and computational approach we show that anisotropy has
a major impact on the estimated stress field within living
cells. Our results show: (i) The stress fields obtained for
the non-uniform anisotropic contractility model are more
consistent with experimental biomarkers as compared to
isotropic contractility assumption (Goldblatt 2020; Cirka
2016). (ii) Analytical and computational results are in good
agreement and show an unfeasible stress concentration at the
center of the cell layer for uniform anisotropy model. The
occurrence of stress concentration may explain the scarcity
of fiber alignment at the center of both circular single cells
or multi-cellular aggregates that is observed in experimental
data. (iii) The stress singularity at the center diminishes for
the realistic non-uniform experimentally-based contractility
model. Although implemented in this work for circularly
shaped aggregates and cells, the theory developed here is
general and can be applied to other geometries and applica-
tions that involve anisotropy.

Supplementary information The online version contains sup-
plementary material available at (https://doi.org/10.1007/
$10237-022-01595-0).
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