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ABSTRACT
The use of algorithmic decision making systems in domains which
impact the �nancial, social, and political well-being of people has
created a demand for these to be “fair” under some accepted notion
of equity. This demand has in turn inspired a large body of work
focused on the development of fair learning algorithms which are
then used in lieu of their conventional counterparts. Most anal-
ysis of such fair algorithms proceeds from the assumption that
the people a�ected by the algorithmic decisions are represented as
immutable feature vectors. However, strategic agents may possess
both the ability and the incentive to manipulate this observed fea-
ture vector in order to attain a more favorable outcome. We explore
the impact that strategic agent behavior can have on group-fair
classi�cation. We �nd that in many settings strategic behavior can
lead to fairness reversal, with a conventional classi�er exhibiting
higher fairness than a classi�er trained to satisfy group fairness.
Further, we show that fairness reversal occurs as a result of a group-
fair classi�er becoming more selective, achieving fairness largely
by excluding individuals from the advantaged group. In contrast, if
group fairness is achieved by the classi�er becoming more inclusive,
fairness reversal does not occur.
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1 INTRODUCTION
The increasing deployment of algorithmic decision making systems
in social, political, and economic domains has brought with it a de-
mand that fairness of decisions be a central part of algorithm design.
While the speci�c notion of fairness appropriate to a domain is
often a matter of debate, several have come to be commonly used in
prior literature, such as positive (or selection) rate and false positive
rate. A common goal in the design of fairness-aware (group-fair)
algorithms is to balance predictive e�cacy (such as accuracy) with
achieving near-equality on a chosen fairness measure among demo-
graphic categories, such as race or gender. A question that arises
in many domains where such “fair” algorithms could be used is
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whether they are susceptible to, and create incentives for, manipula-
tion by agents who maymisrepresent themselves in order to achieve
better outcomes. For example, in selection of individuals to receive
assistance from social service programs or selection of individuals
for loans, it may be possible for applicants to misreport the number
of dependents, income, or other self-reported characteristics, and,
in some cases, even the sensitive attribute itself.

We investigate the e�ects of such strategic manipulation of a
binary group-fair classi�er. In the social services example, the clas-
si�er may decide whether an applicant receives assistance, and
the fairness criterion could be approximate equality of selection
rate between male and female applicants. First, we observe that
the ability of individuals to manipulate the features a classi�er
uses can lead to fairness reversal, with the conventional (accuracy-
maximizing) classi�er exhibiting greater fairness than a group-fair
classi�er. We demonstrate this phenomenon on several standard
benchmark datasets commonly used in evaluating group-fair clas-
si�ers. Next, we theoretically investigate conditions under which
fairness reversal occurs. We prove that the key characteristic that
leads to fairness reversal is that the group fair classi�er becomes
more selective, excluding some of the individuals in the advantaged
group from being selected. Moreover, we show that this condition is
su�cient for fairness reversal for several classes of functions mea-
suring feature misreporting costs. In contrast, we experimentally
demonstrate that when a group-fair classi�er exhibits inclusiveness
instead by selecting additional individuals from the disadvantaged
group, fairness reversal does not occur.

Summary of results: We begin by observing empirically the
phenomenon of fairness reversal, exhibited on a number of datasets
commonly used in benchmarking group-fair classi�cation e�cacy.
The key factor that results in fairness reversal is the extent to which
group fairness is achieved through increased selectivity (the fair
classi�er 5� positively classi�es fewer inputs than the conventional
classi�er 5⇠ ) as opposed to increased inclusiveness (5� positively
classi�es more inputs than 5⇠ ). Next, we examine this issue the-
oretically, and prove that selectivity is a su�cient condition for
fairness reversal. Further, we show that, under some additional
conditions, selectivity is also a necessary condition. These results
obtain for two common classes of functions measuring the cost of
misreporting attributes, and explain our empirical observations.

2 RELATEDWORK
Our work is closely related to two major strands in the literature:
algorithmic group-fair learning and adversarial, or strategic, learn-
ing.

The algorithmic fairness literature aims to study the extent to
which algorithmic decisions are perceived as unfair, for example, by
being inequitable to historically disadvantaged groups [2, 4, 5, 10].
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Many approaches have been introduced, particularly in machine
learning, that investigate how to balance fairness and task-related
e�cacy, such as accuracy [1, 8, 16, 20, 24, 27, 43–45]. Many of these
impose hard constraints to ensure that pre-de�ned groups are near-
equitable on some exogenously speci�ed metric, e.g., selection (pos-
itive) rate [1, 24, 44], although alternative means, such as modifying
the data to eliminate disparities, have also been proposed [9, 16].

Within the domain of algorithmic fairness, our work is related
to recent investigations into the e�ects of distribution shift, or data
mismeasurement, on fair learning [17, 33, 37, 38]. These works
asses the e�cacy of fair learning in settings in which data is noisy,
or settings in which training data and testing data are sourced
from separate distributions. This line of research considers worst-
case, or random, distribution shifts, which is distinct from our
setting in which we explicitly consider shifts caused by strategic
agent behavior. Moreover, these works compare model fairness
and performance under distribution shifts or noise with model
fairness and performance under no distribution shifts or noise. This
is contrast to our work which examines fairness and performance
or a particular (fair) model, against an alternate choice of (fairness-
agnostic) model.

The adversarial learning literature, initially motivated by security
considerations, such as malware detection [22, 30, 41], has come to
have a far broader scope, including social applications [3, 6, 12, 19].
In the latter context, this is known as strategic classi�cation, to indi-
cate the concern that individuals impacted by algorithmic decisions
change their features. In most cases, the strategic aspect here is
actual misreporting of features, which is our concern. However, a
related but distinct, line of work considers individuals who actually
change their features (rather than misreport these) to achieve a bet-
ter outcome [7, 25]. A broader related area of performative prediction
considers more general changes in behavior induced by algorithmic
systems [33, 34]. The intersection between strategic classi�cation
and fairness is particularly salient to our work, and has featured
studies that highlight the inequity that results from strategic behav-
ior by individuals [21], as well as social cost disparities resulting
from making classi�ers robust to strategic behavior [32, 43]. Our
goal, however, is quite distinct: we investigate the extent to which
group-fair learning itself leads to greater inequity than non-group-
fair baselines due to strategic manipulation of features. Finally, Liu
et al. [29] consider a closely related issue of fairness reversal that
may result from a population adapting to a classi�er. However,
their analysis is at the population level, assuming known prediction
scores; in contrast, we delve into individual-level manipulation of
features, and build results using popular agency models.

3 PRELIMINARIES
We consider a setting with a population of agents, each character-
ized by a feature vector x 2 X, a group 6 2 ⌧ ⌘ {0, 1} to which
they belong (as is common in much prior literature, we treat groups
as binary), and a (true) binary label ~ 2 Y ⌘ {0, 1}, denoting, for
example, the agent’s quali�cation (for a service, employment, bail,
etc). LetD be the joint distribution over⌧ ⇥X⇥Y. We de�ne ? (x)
as the marginal pdf of x, and assume that ? (x) > 0 for each x 2 X.

Since using the sensitive group membership feature may pose a
legal challenge, we assume that neither the conventional nor the

group-fair classi�er do so at prediction time (but may at training
time); from a analytical perspective group-aware classi�ers (those
that use group membership at prediction time) are equivalent to
group-unaware classi�ers from the perspective of agent manipula-
tions, so long as group membership can be misreported in a similar
fashion to other features. As such we provide a set of empirical
results demonstrating that fairness reversals occur for group aware
classi�ers as well, but defer discussion of group-aware results to
Section E.3 of the Supplement. We denote the conventional clas-
si�er by 5⇠ , while the group-fair classi�er is denoted by 5� , and
both map from the domain of features X to the set of binary labels
Y. Let M(5 ;6) be a measure of e�cacy (e.g., positive rate) of 5
restricted to a group 6, and de�ne

* (5 ;M) =
��M(5 |6 = 1) �M(5 |6 = 0)

��.
We shorten this notation to* (5 ) whereM is clear from context.We
assume that the conventional classi�er aims to maximize accuracy,
i.e., 5⇠ = argmax5 P(x,~)

�
5 (x) = ~

�
, while 5� aims to balance

accuracy and fairness, solving

5� = argmax
5

(1 � U)P(x,~)
�
5 (x) = ~

�
� U* (5 ;M),

where U 2 [0, 1] speci�es the relative weight of accuracy and
fairness terms.

In the literature fairness is sometimes de�ned with hard con-
straints, rather than the soft constraints of U-fairness, for example

5� = argmax
5
P(x,~)

�
5 (x) = ~

�
s.t. * (5 ;M)  V .

In general these two formulations are not equivalent, however in
the cases we study (PR, FPR, and TPR fairness) soft constrained
and hard constrained fairness are equivalent, in the sense that for
any U there exists a V such that the classi�ers produced under
either formulation are equivalent, and viceversa. This is given more
precisely as Lemma A.4 in the Supplement. As such our results hold
for either case; we elect to study the problem through the lens of
U-fairness simply for ease of presentation.

We consider the impact of strategic behavior of agents when
they face a classi�er 5 (whether conventional or group-fair). Specif-
ically, we suppose that each agent with features x can modify these,
transforming them into another feature vector x0 that is reported
to the classi�er. In doing so, the agent incurs a cost, captured by a
manipulation cost function 2 (x, x0) � 0 [18, 19, 30]. Cost functions
are assumed to be bounded 1 over the domain X ⇥ X.

We study two common families of manipulation cost functions:

Feature-monotonic costs: Manipulation cost 2 (x, x0) is mono-
tonic in | |x � x0 | | (larger manipulations are more costly).

Outcome-monotonic costs: Manipulation cost 2 (x, x0) is mono-
tonic in P(~ = 1|x0) � P(~ = 1|x) where 2 (x, x0) = 0 for any x0 such
that P(~ = 1|x) > P(~ = 1|x0) (manipulations leading to better out-
comes are more costly).

1Boundedness of 2 is a rather mild assumption and holds for any continuous function
when X is a closed and bounded set, e.g. [0, 1]3 . This assumption is used primarily
to avoid degenerated settings such as those in which no agents can manipulate, e.g.,
2 (x, x0 ) = 1 for all x < x0 .
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For example, if the problem domain involves lending, feature-monotonic
costs can correspond to the mental and physiological burden of
dishonesty [39], or to the likelihood of failing an authenticity
check [14], while outcome-monotonic costs can correspond to the
required time investment to identify a productive manipulation,
or the likelihood of being audited [15] (applications more likely to
succeed are also more likely to be audited) and incurring associated
penalties.

We de�ne the agent’s utility as

D (x, x0) = 5 (x0) � 5 (x) � 1/⌫ · 2 (x, x0),

where ⌫ is a parameter trading o� costs and bene�ts of manip-
ulation. Following the standard setting in strategic classi�cation
or adversarial machine learning, we assume any misreporting be-
havior would not change the true label ~ associated with x. We
assume that all agents are rational utility maximizers. Thus, since
5 (x0) � 5 (x)  1, the agent will misreport its features only when
2 (x, x0)  ⌫. Additionally, the agent will not misreport if 5 (x) = 1
(they are selected even when truthfully reporting x). Consequently,
we can equivalently view ⌫ as an upper bound on the costs that
agents are willing to incur from misreporting their features, that is,
the manipulation budget.

We next formalize the notion of a fairness reversal in the presence
of strategic agents (i.e., what it means for strategic agent behavior
to lead to 5� becoming less fair than 5⇠ ).

De�nition 3.1. (Fairness Reversal) LetM be a measure of e�cacy,
5� be a classi�er which is group-fair with respect to * (5 ;M) and
5⇠ be a conventional accuracy-maximizing classi�er. Suppose that
* (5� ;M) < * (5⇠ ;M). Let 5 (2,⌫)⇠ , 5 (2,⌫)� be the induced classi�ers
when agents best respond to 5⇠ and 5� respectively with manipulation
cost 2 (x, x0) and budget ⌫. We say that a budget ⌫ leads to fairness
reversal between 5⇠ and 5� if* (5 (2,⌫)� ;M) � * (5 (2,⌫)⇠ ;M).

We will then say that fairness reversal between 5� and 5⇠ occurs
if there is some strategic manipulation budget ⌫ which leads to
fairness reversal, that is, for this budget, 5⇠ becomes more fair than
5� after manipulation. Note that if the budget ⌫ is 0, 5� will be more
fair than 5⇠ by construction, whereas if the budget is in�nite, as
long as any input is classi�ed as the positive class, all individuals
can misreport their features to be this class, and consequently both
classi�ers are fair in the sense that every input is predicted as 1. As
a result, our analysis is focused solely on the intermediate cases
between these extremes.

4 FAIRNESS REVERSAL
Our central goal is to understand the conditions under which fair-
ness reversal occurs in strategic settings, that is, when a fair classi�er
5� becomes less fair than its conventional counterpart 5⇠ if agents
act strategically. Fairness reversal occurs when there is a range of
strategic manipulation budgets ⌫ for which the conventional clas-
si�er 5⇠ exhibits greater fairness than the group-fair model 5� . In
this section, we study this phenomenon empirically, demonstrating
that it is commonly observed for several benchmark datasets.

Datasets and Algorithms. For our empirical study, we use �ve
datasets commonly used as benchmarks for group-fair classi�ca-
tion: Adult: Dataset of working professionals where the goal is
to predict high or low income (protected feature: gender) [13, 26].
Community Crime: Dataset of communities where the objective
is to predict if the community has high crime (protected feature:
race) [13, 36]. Law School: Dataset of law students where the ob-
jective is to predict bar-exam passage (protected feature: race) [42].
Student: Dataset of students where the objective is to predict a
student receiving high math grades (protected feature: race) [11, 13].
Credit: Dataset of people applying for credit where the objective
is to predict creditworthiness (protected feature: age) [13].

All �ve datasets have binary outcomes, and we label the more
desirable outcome for the individuals by ~ = 1 (e.g., having a high
income in the Adult dataset), with the less desirable outcome la-
beled by ~ = 0. Consequently, higher positive rate (PR), true positive
rate (TPR), or false positive rate (FPR) is more desirable for indi-
viduals. Group membership in each dataset is determined by race,
gender, or age which in these datasets corresponds to a binary
feature (as in [23] the age feature is made binary by considering
those older than 25 as Old, and those 25 or younger as Young). A
detailed breakdown of the datasets can be found in Section E.7 of
the Supplement. In all cases, we refer to the “advantaged” group
(e.g. the group with higher PR for PR based fairness) as group 1,
or ⌧1, while the disadvantaged group is referred to as 0 or ⌧0. In
our experiments, we only consider features that can potentially be
manipulated (see Section E.7 of the Supplement for further details).
We use four types of conventional classi�ers for 5⇠ , namely logis-
tic regression (LGR), support vector machines with an RBF kernel
(SVM), neural networks (NN), and gradient boosting trees (GB),
and three group-fair approaches to obtain 5� , Reductions [1], Gerry-
Fair [24], and EqOdds [35]. The �rst two are inprocessing methods
which learn a fair model direction on a given dataset, while the
third remedies unfairness through postprocessing the predictions
of a conventional classi�er. To study strategic manipulation, we use
a mix of local search for categorical features [28, 40] and projected
gradient descent (PGD) for continuous features [31]; further details
are provided in Section E.6 of the Supplement.

Fairness reversals under strategic agent behavior. In Figure 1 we in-
vestigate fairness reversals on three datasets with both Reductions
and EqOdds fairness methods; additional experiments in Section E
of the Supplement show that this illustration is representative in
the sense that although fairness reversals do not occur in all cases,
they are quite common. Consider �rst Figure 1 (top), which exam-
ines settings where predictions do not take the sensitive features
as an input (we call these group-agnostic classi�ers). In these three
plots, the dashed line corresponds to 5⇠ , and the rest are group-fair
classi�ers 5� for di�erent values of U (recall that higher U entails
greater importance of group fairness). What we observe is that in
many cases, particularly when U is not very high, there is a range of
budget values ⌫ for which 5� becomes less fair than 5⇠ . Moreover,
in many cases, this range is considerable. In Figure 1 (bottom plots),
where group-fair classi�ers are group-aware, including the sensi-
tive feature as an input, the fairness reversal phenomenon is even
more dramatic (not that EqOdds attempts to achieve 0 unfairness
between groups, i.e., V = 0 is used in all experiments instead of U)

391



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik

Figure 1: Di�erence in unfairness between groups on several datasets as a function of the manipulation budget ⌫ when
manipulation cost is 2 (x, x0) = kx � x0 k2. The dashed black lines correspond to 5⇠ and colored lines correspond to 5� . Fairness
reversal occurs when one of the colored lines is above the black line. The top row displays results when 5� is learned via the
Reductions algorithm, with fairness de�ned in terms of PR, TPR, or FPR, for several di�erent values of U . The bottom row
displays results when 5� is learned via the EqOdds algorithm, with fairness de�ned in terms of generalized false positive rate
GFPR (i.e. expected FPR: De�nition 1 of [35]). Reductions is group-agnostic, and EqOdds is group-aware.

. In this experiment, when best responding agents are capable of
misreporting their group as if it where a feature in x (fairness is
still computed with true group membership). Due to the particular
nature of EqOdds, speci�cally its handling of agents from di�erent
groups, we observe a sharp change in fairness at ⌫ = 1, the precise
budget for which misreporting group membership is feasible.

Figure 1 exhibits several additional phenomena. Note, in particu-
lar, that in many cases the unfairness (i.e., FPR di�erence between
the groups) initially increases as the budget increases, but in all
cases as budgets ⌫ keep increasing, eventually unfairness vanishes
as a result of strategic behavior by agents. Furthermore, much as
we observe this initial unfairness increase for both 5⇠ and 5� , it
appears ampli�ed for some of the group fair classi�ers 5� .

What causes fairness reversal? As we formally prove below, the
essential condition is selectivity of fair classi�er 5� compared to 5⇠ .
Speci�cally, in binary classi�cation, there are, roughly, two ways
one can improve fairness on a given dataset (that is, without any
consideration of strategic behavior); either through inclusiveness
(positively classifying additional agents from the disadvantaged
group by changing their predicted class to 1), or through selectivity
(negative classifying some of the members of the advantaged group
by changing their predicted class 1 to 0).

Our key observation is that selectivity leads to fairness re-
versals, while inclusiveness does not. Speci�cally, we observe
that as the number of agents positively classi�ed under 5⇠ , but
negatively under 5� , is larger than the number of agents negatively
classi�ed by 5⇠ , but positively under 5� , fairness reversals are more
commons.

We illustrate this in Figure 2, which shows the decision bound-
aries of 5� and 5⇠ (top row), as well as associated fairness as a func-
tion of budget (bottom row) for several combinations of dataset,
classi�er, and fairness de�nition. On the Adult and Crime datasets
(�rst two columns), fairness is achieved predominantly through
selectivity, as the orange region (5⇠ ) includes few additional green
points (disadvantaged group) compared to the blue region (5⇠ ),
but excludes many blue points (advantaged group). This is given
more precisely in terms of the respective group-wise positive rates
for 5⇠ and 5� ; in the �rst two examples the positive rates on both
groups drops when switching from 5⇠ to 5� , while in the third
case the positive rate for both groups increases. This, in turn, leads
to instances of fairness reversal (bottom row �rst column). In the
Law School dataset (third column), in contrast, fairness is achieved
primarily through inclusiveness, and 5� remains more fair than
5⇠ over a broad range of strategic manipulation budgets ⌫. The
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Figure 2: Fairness reversals and selectivity of classi�ers on two ordinal features. The top row shows regions with positive
predictions (blue for 5⇠ and light orange for 5� ) using two features (corresponding to the axes), and dot colors correspond to
the sensitive demographics. The darker orange region corresponds to an overlap between the positive predictions of 5⇠ and
5� . The bottom row shows the relative unfairness between demographic groups (for the classi�ers shown in the top row) as a
function of strategic manipulation budget ⌫ (lower means more fair). In the top row, the fraction of each group being positively
classi�ed under 5⇠ is, Adult: (Male: .63, Female: .45), Crime: (White: .84, None-White: .26), Law: (White: .64: None-White: .35)
alternatively under 5� is, Adult: (Male: .42, Female: .39), Crime: (White: .62, None-White: .23), Law: (White: .62: None-White: .51)

reason that selectivity leads to fairness reversal is that those from
the advantaged group who are excluded tend as a result to be closer
to the decision boundary than those from the disadvantaged group.
In Section E.1 of the Supplement we provide further results linking
selectivity of the fair classi�er to fairness reversals. In this section
we also observe that when strategic agent behavior (for some ma-
nipulation budget) results in a fairness reversal between 5� and 5⇠ ,
the relative accuracy of the classi�ers is also reversed (for some
potentially di�erent manipulation budget), implying a fundamen-
tal relationship between fairness and accuracy when agents are
strategic.

Unfairness of 5� . Lastly we remark on the relationship of the
between the manipulation budge ⌫ and the unfairness of the fair
classi�er 5� . As seen in Figures 2 and 1, the unfairness of 5� is
frequently increasing in ⌫ (for small values of ⌫). To provide in-
sight into this phenomenon we look to the case of single variable
prediction as showing in Figure 3. This �gure shows the error and
unfairness of a single variable classi�er (i.e., a threshold classi�er
with threshold \ ) when using a student’s LSAT score to predict
whether they will pass the bar exam. Since manipulations change
model decisions only in a single direction (negative predictions
become positive), predicting on strategically altered data amounts
to predicting on unaltered data with a lower threshold . As the ma-
nipulation budget ⌫ grows, the corresponding threshold becomes

increasingly smaller. Thus, when 5� is more selective than 5⇠ , i.e.
\� > \⇠ = 0.57, the unfairness of 5� will initially increase as
⌫ increases. In the case of multivariate prediction, the increased
unfairness of 5� stems from a similar

Next, we study fairness and accuracy reversals in strategic clas-
si�cation settings theoretically, demonstrating that selectivity is
indeed a su�cient (and, under some additional quali�cations, nec-
essary) condition for fairness reversal.

5 THEORETICAL ANALYSIS
In this section we provide theoretical explanations of the empirical
observations made in the previous section. We start with single-
variable classi�ers and then proceed to generalize our observations
to multi-feature classi�ers. Our key �nding is that selectivity (de-
�ned next) is in fact a su�cient condition for fairness reversal, pro-
viding a theoretical underpinning for the empirical observations
above. Additionally, we investigate the underlying causes of fair
classi�ers becoming more selective, and provide conditions on the
underlying distribution for this to be the case. In the cases of single
variable classi�ers with feature-monotonic costs and multivariable
classi�ers with outcome-monotonic costs, we further demonstrate
that selectivity also leads to accuracy reversals (strategic behavior
causes the fair classi�er to become more accurate than the conven-
tional model), and outline conditions on the underlying distribution
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such that selectivity is not just su�cient, but also necessary for both
of these phenomena. When strategic agent behavior results in both
a fairness and accuracy reversal, the functionality of both classi�ers
has fundamentally swapped; the accuracy driven (conventional)
model 5⇠ is no longer the most accurate model and the fairness
driven (fair) model 5� is no longer the most fair model. Prior to our
results, we �rst formalize the notion of classi�er selectivity.

De�nition 5.1. LetX5⇠ = {x 2 X : 5⇠ (x) = 1} andX5� = {x 2 X :
5� (x) = 1}. We say that 5� is more selective than 5⇠ if X5� ⇢ X5⇠ .

That is, 5� is more selective than 5⇠ if the set of positively clas-
si�ed examples under 5� is a subset of those positively classi�ed
under 5⇠ . While this de�nition of selectivity is slightly more re-
strictive than the type of selectivity found in our empirical results,
the subset propriety is a driving force behind the fairness reversals
observed in practice. Selectivity can be interpreted as the fair model
5� , achieving fairness by “excluding" additional agents from posi-
tive classi�cation, compared to 5⇠ . As an example, under PR-based
fairness let ⌧0 be the group with lower PR and ⌧1 be the group
with higher PR under 5⇠ (TPR and FPR hold similarly). A model
designer could improve the fairness of 5⇠ by positively classify-
ing more agents in ⌧0 or negatively classifying more agents in ⌧1
(or a combination of both). In the latter case, members of ⌧0 are
“excluded" from positive classi�cation, and the resulting model is
considered to be more selective. Note that this type of exclusion is
precisely the means through which fairness is achieved in Figure 2
(center).

5.1 Single Variable Classi�er
We begin our theoretical exploration of fairness reversals with an
exemplar case: a single variable threshold classi�er. In this setting
agents possess a single ordinal feature G . For simplicity we demon-
strate our results for a continuous feature G 2 [0, 1], but the results
hold for any ordinal feature (discrete or continuous) . Both the
conventional classi�er (selected for maximal accuracy) and fair
classi�er (selected for a weighted combination of accuracy and fair-
ness with respect to a fairness metric") can be expressed as a single
parameter \⇠ , \� 2 [0, 1] respectively where 5 (G) = I[G � \ ].

Our �rst result is that in single-feature classi�cation, higher
selectivity of the group-fair classi�er (i.e. \⇠ < \� ) is su�cient for
fairness reversal.

Theorem 5.2. Suppose fairness is de�ned by PR, TPR, or FPR, 2 (G, G 0)
is monotone in |G 0 � G |, \⇠ is the most accurate, and \� the optimal
U-fair, threshold. If \⇠ < \� , then there exists a budget ⌫ that leads
to fairness reversal between 5� and 5⇠ .

P���� S�����. The full proof is provided in Section B of the
Supplement. Here we provide a proof sketch for continuous 2 , a
similar line of reasoning, with a few additional edge cases, holds
for discontinuous 2 . The unfairness of threshold \ w.r.t. to the dis-
tribution D and fairness metricM 2 {PR,TPR, FPR} is expressed
as,

*D(\ ) =
��MD(\ |6 = 1) �MD(\ |6 = 0)

��,

For a given threshold\ andmanipulation budget⌫ the best response
of an agent with true feature G is

G (⌫)
\

= argmax
G 0

�
I[G 0 � \ ] � I[G � \ ]

�
s.t. 2 (G, G 0)  ⌫,

When agents from D play this optimal response, let the result-
ing distribution be D(2,⌫)

\
. The di�erence in unfairness between

classi�ers when agents are strategic is*D(2,⌫)
\⇠

(\⇠ ) �*D(2,⌫)
\�

(\� ).
Since both 5⇠ and 5� are thresholds, and 2 is feature-monotonic,
the decisions of \⇠ , \� on the modi�ed distribution D(2,⌫)

\
can be

expressed as decisions of modi�ed thresholds \ (2,⌫)⇠ , \ (2,⌫)� on the
original distribution D, i.e.,

*D(2,⌫)
\⇠

(\⇠ ) �*D(2,⌫)
\�

(\� ) = *D(\ (2,⌫)⇠ ) �*D(\ (2,⌫)� )

where

\ (2,⌫)⇠ = argminGG s.t. 2 (G, \⇠ )  ⌫

and

\ (2,⌫)� = argminGG s.t. 2 (G, \� )  ⌫

Given these modi�ed threshold, we see that strategic agent behavior
results in a lowering of each threshold as more agents are now able
to achieve positive classi�cation; this is due to the fact that only
negatively classi�ed agents will behavior strategically, their goal
being to achieve positive classi�cation. Moreover, when considering
\ (2,⌫)⇠ , \ (2,⌫)� as functions of ⌫, both are monotonically decreasing
in ⌫ (due to the the monotonicity of 2), and \ (2,⌫)⇠  \ (2,⌫)� for all
⌫ (due to \⇠ < \� ).

Since fairness is de�ned in terms of PR, FPR, or TPR the constant
function 5 (G) = 1 has unfairness 0 for any distribution. Thus,
\ (2,⌫)⇠ = 0 implies*D(\ (2,⌫)⇠ ) = 0. Let

⌫0 = sup{⌫ 2 R+ : *D(\ (2,⌫)⇠ ) > 0},

Note that⌫0 is guaranteed to exist due to*D(\ (2,0)⇠ ) > *D(\ (2,0)� ) �
0 and the boundedness of 2 (G, G 0). Since *D � 0 and 2 is contin-
uous, there must exist some Y > 0 such that over the interval
⌫ 2 [⌫0 � Y,⌫0] the unfairness*D(\ (2,⌫)⇠ ) is strictly decreasing in
⌫. If

*D(\ (2,⌫
0�Y )

� ) � *D(\ (2,⌫
0�Y )

⇠ ) > 0,
then a fairness reversal has already occurred for budget ⌫0 � Y, so
assume otherwise. Combining the di�erence in relative fairness for
budget ⌫0 � Y with the fact that \ (2,⌫)⇠  \ (2,⌫)� for all ⌫, we get
\ (2,⌫

0�Y )
⇠ < \ (2,⌫

0�Y )
� . Since 2 is monotonic and continuous there

must exist some budget ⌫� > ⌫0 � Y such that \ (2,⌫
0�Y )

⇠ = \ (2,⌫� )
� .

Since ⌫� � ⌫0 � Y, and *D(\ (2,⌫)⇠ ) is decreasing for ⌫ � ⌫0 � Y, it
must be the case that

*D(\ (2,⌫� )
⇠ ) = *D(\ (2,⌫

0�Y )
� )  *D(\ (2,⌫� )

� ),
and a fairness reversal occurs for budget ⌫� . ⇤

We now turn our attention to a complementary observation: fair-
ness reversal is accompanied by accuracy reversal, that is, strategic
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behavior leads to 5� having higher accuracy than 5⇠ . This is pri-
marily due to the fact that 5� becomes more selective and therefore
more resilient to manipulation. Note that the fairness reversal and
accuracy reversal need not occur for the same budget ⌫.

Theorem 5.3. Suppose fairness is de�ned by PR, TPR, or FPR, 2 (G, G 0)
is monotone in |G 0 � G |, \⇠ is the most accurate threshold, and \� the
optimal U-fair threshold. If \⇠ < \� , then there exists a budget ⌫ s.t.
5� is more accurate than 5⇠ .

P���� S�����. We defer the full proof to Section B of the Sup-
plement and again give a proof sketch for continuous 2 . The error
of threshold \ on distribution D is given by

LD(\ ) = P
�
I[G � \ ] = ~

�
By the de�nition of \⇠ , we have

LD(\⇠ )  LD(\ ) for all \ 2 [0, 1],
and therefore LD(\⇠ )  LD(\� ). Similar to the proof of Theorem
5.2, agents strategically responding to threshold classi�ers \⇠ , \�
can be viewed as modi�ed thresholds \ (2,⌫)⇠ , \ (2,⌫)� operating on
the true distribution D. Both \ (2,⌫)⇠ , \ (2,⌫)� are monotonically de-
creasing in ⌫. Moreover, \ (2,⌫)⇠ = 0 implies LD(\ ) = P(~ = 0),
since the threshold classi�es all agents positively.

Let
⌫0 = sup{⌫ : LD(\ (2,⌫)⇠ ) < P(~ = 0)},

i.e. ⌫0 is the “largest" manipulation budget such that the conven-
tional threshold is not a trivial classi�er (i.e., not making constant
predictions) in the presence of strategic agent behavior. In a sim-
ilar line of reasoning to the case of fairness reversals, there must
exist some interval [⌫0 � Y,⌫0] over which LD(\ (2,⌫) ) is strictly
increasing. Again, by the fact that \⇠ < \� , there must exist some
⌫� > ⌫0 � Y such that \ (⌫

0�Y )
⇠ = \ (2,⌫� )

� . Thus,

LD(\ (2,⌫� )
� ) = LD(\ (2,⌫

0�Y )
⇠ ) � LD(\ (2,⌫� )

⇠ ),
implying that an accuracy reversal occurs for budget ⌫� . ⇤

We have showed thus far that selectivity is su�cient for fairness
and accuracy reversals, but under what conditions is it also nec-
essary? Loosely speaking, when a feature G is a good predictor of
both ~ and 6, the error and unfairness of 5⇠ and 5� are unimodal
(de�ned next) with respect to the manipulation budget ⌫.

De�nition 5.4. (Unimodal): A function 6 : [0,1] ! R is nega-
tively unimodal (positively unimodal) on the interval [0,1] if there
exists an in�ection point A 2 [0,1] such that 5 is monotone decreas-
ing (increasing) on [0, A ] and monotone increasing (decreasing) on
[A ,1].
(All convex functions are negatively unimodal and all concave func-
tions are positively unimodal).

Unimodality is relevant to fairness and accuracy reversals as we
will see that when error is negatively unimodal and unfairness is
positively unimodal, both fairness and accuracy reversals occur.
We empirically demonstrate that unimodality of both functions
holds frequently on real data. The condition of unimodal error and
unfairness can be interpreted as both functions possessing a “sweet
spot” which yields best case accuracy (or worst case unfairness). In

the former, G is good predictor of true label ~ and in the latter G is
a good predictor of 6.

As an example, in Figure 3 we see this phenomenon occur on
the Law School dataset when using a student’s LSAT score as the
predictive feature x. Both error and unfairness (in terms of positive
rate di�erence between groups) are both unimodal in the threshold
\ . In this, we observe that LSAT score is a good predictor of both
the target variable (bar passage) and the sensitive feature (race);
this is a well established source of bias within this particular dataset.

We further document this relationship in Section E.4 of the Sup-
plement and �nd that most ordinal features produce threshold clas-
si�ers which have (approximately) unimodal error and unfairness.
In this section we also theoretically outline the precise conditions
under which error and unfairness would be unimodal; these con-
ditions essentially boil down to a correlation between ~ |G and 6|G ,
(which we observe to be the case for most ordinal features across
the datasets we study). When this occurs, the selectivity of 5� is
not only su�cient for fairness and accuracy reversals, but also
necessary. We next formalize this in the following theorem; fur-
ther details on the necessary and su�cient conditions required for
fairness and accuracy reversals are provided in Section B of the
Supplement.

Theorem 5.5. Let \⇠ and \� be the most accurate and optimal fair
classi�ers respectively. Suppose fairness is de�ned by PR, FPR, or TPR,
and 2 (x, x0) is outcome monotonic, and that error (and unfairness)
are negatively (positively) unimodal in \ . Then there exists a budget
⌫ such that strategic agent behavior leads to a fairness reversal if an
only if 5� is more selective than �⇠ .

����� ������. When error LD(\ ) and unfairness *D(\ ) are
both unimodal in \ , the optimal conventional threshold \⇠ and op-
timal U-fair threshold \� can be expressed in terms of the in�ection
points GL and G* of error and unfairness respectively. The most
accurate threshold is then \⇠ = GL , and the most unfair threshold

Figure 3: Error (blue) and PR-based unfairness between
White and Non-White individuals (red) of a single variable
classi�er on the Law School dataset when using the student’s
LSAT score as a single predictive feature. All individuals with
an LSAT score above the threshold \ are predicted positively.
The thresholds \⇠ and \* are the most accurate and least fair
thresholds respectively.
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is then \D = G* . The forward direction, i.e. when \⇠ < \� , follows
a similar of reasoning to the proof of Theorem 5.2, let \ (2,⌫)⇠ and
\ (2,⌫)� be the modi�ed thresholds induced by agents best respond-
ing to either threshold with cost function 2 and budget ⌫. Then,
since \ (2,⌫)⇠ , \ (2,⌫)� are monotonically decreasing in ⌫ and \⇠ < \� ,
there must exist a ⌫0 such that \ (2,⌫

0 )
⇠  \ (2,⌫

0 )
� = \⇠ . Thus

*D(\ (2,⌫
0 )

⇠ )  *D(\⇠ ) = *D(\ (2,⌫
0 )

� )
and

LD(\ (2,⌫
0 )

� ) = LD(\⇠ )  LD(\ (2,⌫
0 )

⇠ ),
implying that a fairness and accuracy reversal occurs for budget
⌫0.

The reverse direction, follows from the relationship between \�
and the two in�ection points \⇠ , \* . Given the assumption that
\� < \⇠ , there are only three possible cases for the relationship
between these points

(1) \� < \⇠  \* ,

(2) \� < \*  \⇠ ,

(3) \* < \� < \⇠

the strict inequalities being due to the fact that\� < \⇠ and\� < \*
by de�nition. In cases (1) and (2), no fairness or accuracy reversal
can occur. Only in case (3) can a fairness or accuracy reversal
occur, however we will show by contradiction that such a case is
impossible.

Beginning with case (1), both error and unfairness are unimodal
in \ (2,⌫)� , \ (2⌫)⇠ , each of which is monotonically increasing in ⌫.
Since unfairness in unimodal, any \  \* and any ⌫ � 0 unfair-
ness * (\ (2,⌫) ) is monotonically decreasing in ⌫. Similarly, since
error is unimodal, for any \  \⇠ , error L(\ (2,⌫) is monotonically
decreasing. Thus if \� < \⇠ , then no accuracy reversal can occur.
Similarly if \� < \⇠  \* , no fairness reversal can occur, i.e. in
case (1), neither reversal can occur.

In case (2) since *D(\� ) < *D(\⇠ ), and *D(\ (2,⌫)⇠ ) is mono-
tonically increasing until \ (2,⌫)⇠ = \* , no fairness reversal will
occur. Similar to case (1), \� < \⇠ , implies that no accuracy rever-
sal occurs either.

Thus it remains only to show that case (3) can never occur. To
see this, note that for any 0 < Y < \⇠ � \� , it must be the case that
both

*D(\� + Y)  *D(\� )
and

LD(\� + Y)  LD(\� )
Which implies that \� is in-fact not the optimal fair threshold. ⇤

Now that we have established the critical role of selectivity in
fairness reversal, we next analyze why that is. As mentioned previ-
ously, there are roughly two ways to achieve fairness: inclusiveness
(classifying more examples as positive) or selectivity (classifying
fewer examples as positive). Which of these will be the predominant
outcome of training 5� depends intimately on the data distribution.
We outline these conditions, as well as conditions for error and
unfairness to be unimodal, via Lemmas B.4, B.5, and Theorem B

in the Supplement. In particular, Theorem B provides conditions
on the underlying distribution such that the optimal fair classi�er
will achieve fairness via selectivity. The condition in this theorem
can be intuitively interpreted as follows. Suppose that ( is the set
of individuals selected (i.e., classi�ed as 1) by 5⇠ , who are also near
the decision boundary of 5⇠ . If the advantaged group (i.e., group
with better average outcomes) is overrepresented in ( , there is a
range of parameters U such that the optimal U-fair classi�er is more
selective than 5⇠ (recall that higher U places greater importance on
group-fairness in learning).

5.2 General Classi�ers
Next we discuss general multi-variate classi�ers, generalizing sev-
eral of the results from Section 5.1. First we show that when 5� is
more selective than 5⇠ , fairness reversal occurs for both feature-
monotonic and outcome-monotonic cost functions. Second, we
give conditions which lead to 5� being more selective than 5⇠ . For
outcome-monotonic costs, we provide two additional results: 1)
greater selectivity of 5� also leads to accuracy reversal, and 2) uni-
modality of each classi�er’s error and unfairness causes selectivity
to be both necessary and su�cient for fairness and accuracy rever-
sal.

Outcome-Monotonic Costs. We begin with the case of outcome-
monotonic costs. As shown by Milli et al. [32], outcome-monotonic
manipulation costs result in the following best response for classi-
�er 5 . Let

x⇤ = argmin
x
P(~ = 1|x)

s.t. 5 (x) = 1.

If 2 (x, x⇤)  ⌫ then the best response is x0 = x⇤ otherwise x0 = x.
With this best response in hand we show that 5� having greater
selectivity than 5⇠ leads to fairness reversal.

Theorem 5.6. Let 5⇠ and 5� be the most accurate and optimal fair
classi�ers respectively. Suppose fairness is de�ned by PR, FPR, or TPR,
and 2 (x, x0) is outcome monotonic. Then if 5� is more selective than
5⇠ , there exists a budget ⌫ such that strategic agent behavior leads to
a fairness reversal.

Herewe provide a proof sketch of this and other results; complete
proofs are deferred to the Supplement (Section C).

P���� ������. For a given classi�er 5 , let

?min = min
x:5 (x)=1

P(~ = 1|x)

and let xmin be the feature associated with ?min (xmin,⇠ , ?min,⇠
and xmin,� , ?min,� correspond to 5⇠ and 5� respectively). When
agents best respond to 5 the resulting manipulated classi�er can be
expressed as a threshold on the underlying probabilities P(~ = 1|x).
More speci�cally, let

x⇤ = argmin
x
P(~ = 1|x)

s.t. 2 (x, xmin)  ⌫.

Then when agents best resound to 5 (inducing classi�er 5 (2,⌫) ) any
agent x with P(~ = 1|x) � P(~ = 1|x⇤) will be positively classi�ed
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under 5 (2,⌫) , i.e.

5 (2,⌫) (x) =
(
1 if P(~ = 1|x) � P(~ = 1|x⇤)
0 otherwise

Thus 5 (2,⌫) can expressed as the threshold P(~ = 1|x⇤) operating
on the conditional distribution P(~ = 1|x).

Since 5� is more selective than 5⇠ , (i.e., for any x 2 X, if 5� (x) = 1
then 5⇠ (x) = 1), and xmin,� is positively classi�ed under 5� , we
have,

5� (xmin,� ) = 1 = 5⇠ (xmin,� ) and therefore ?min,⇠  ?min,�

Therefore the induced conventional and fair thresholds P(~ = 1|x⇤⇠ )
and P(~ = 1|x⇤� ) acting on P(~ = 1|x) have the relationship that
P(~ = 1|x⇤⇠ )  P(~ = 1|x⇤⇠ ). Thus, we see that selectivity of the
fair classi�er in the case of outcome-monotonic costs yields a fair
threshold (on a modi�ed distribution) which is larger than the
induced conventional threshold (operating on the same distribution
as the fair threshold).

While this setting is not entirely equivalent to the single variable
case, the remainder of the proof follows in similar fashion to that
of Theorem 5.2. In particular, the monotonicity of P(~ = 1|x⇤), as a
function of ⌫, implies

P(~ = 1|x⇤⇠ )  P(~ = 1|x⇤� ) for any ⌫,

which in turn implies the existence of a budget interval over which
the unfairness of 5 (2,⌫)⇠ decreases below 5 (2,⌫)� , thus resulting in a
fairness reversal. ⇤

Similar to the single-variable case, selectivity also result in accu-
racy reversal.

Theorem 5.7. Let 5⇠ and 5� be the most accurate and optimal fair
classi�ers respectively. Suppose fairness is de�ned by PR, FPR, or TPR,
and 2 (x, x0) is outcome-monotonic. Then if 5� is more selective than
5⇠ , then there exists a budget ⌫ under which 5� becomes more accurate
than 5⇠ .

P����. The full proof (which follows from a similarly Theorem
5.3, 5.6) is deferred to Section C of the Supplement. ⇤

Before outlining settings in which selectivity is not only su�-
cient but also necessary for fairness and accuracy reversals to occur,
we �rst remark on the connection between selectivity, accuracy,
and fairness. As previously noted, errors caused by strategic agent
behavior are single-directional in the sense that manipulation can
only induce false positive errors. As such, classi�ers which are
more selective are thus more robust to manipulation than their less
selective counterparts. Generally speaking, this implies that for
some range of manipulation budgets, a model that is more selective
than the accuracy-maximizing model 5⇠ will increase in its perfor-
mative ability compared to 5⇠ . As the performative ability of most
classi�ers on biased datasets is naturally tied with unfairness, the
unfairness of the more robust model (more selective model) will
likewise increase. Thus, we see a fundamental, albeit not necessarily
universal, connection between selectivity (which in turn increases
robustness) and model unfairness (which is increasing in model
performance).

We next discuss unimodality in the context of outcome-monotonic
costs. Empiricallywe observe thatwhen costs are outcome-monotonic,

the majority of classi�ers tend to have error and unfairness which is
(approximately) unimodal with respect to the manipulation budget
⌫. When this occurs, selectivity of 5� becomes both necessary and
su�cient.

Theorem 5.8. Let 5⇠ and 5� the optimal conventional and fair
classi�ers respectively. Suppose fairness is de�ned in terms of PR, TPR,
or FPR fairness, and 2 (G, G 0) is outcome-monotonic. When error (and
unfairness) are negatively (positively) unimodal with respect to the
manipulation budget ⌫, a fairness and accuracy reversal will occur
between 5� and 5⇠ if and only if 5� is more selective than 5⇠ (each
reversal may occur at di�erent budgets ⌫) .

P���� S�����. We de�er the full proof to Section C of the Sup-
plement. The intuition for this proof follows similarly to that of
Theorem 5.5. As shown in the proof of Theorem 5.6 when agents
best respond to classi�er 5 , the decisions of 5 can be expressed as
threshold classi�er acting on the conditional probability P(~ = 1|x)
of the original distribution D, namely

5 (2,⌫) (x) =
(
1 if P(~ = 1|x) � P(~ = 1|x⇤)
0 otherwise

where x⇤ is determined by the cost function 2 and budget ⌫. Since
P(~ = 1|x⇤) is monotonically decreasing in ⌫, we recover a setting
similar to 5.5, in which the forward direction of the claim holds
from the fact that,

P(~ = 1|x⇤⇠ )  P(~ = 1|x⇤� ), for all ⌫.

While the reverse direction holds due to the fact that when x⇤�  x⇤⇠ ,
unfairness is monotonically decreasing for both classi�ers. ⇤

Remark 5.9. To better contextualize unimodality of error and un-
fairness with respect to the manipulation budget ⌫, we can view
this condition in terms of the calibration of the score function ⌘ of
the classi�er 5 . As is typical, classi�ers are de�ned via thresholds
on their underlying score functions, i.e. 5 (x) = I[⌘(x) � \ ]. Sup-
pose that ⌘ is reasonably well calibrated, then for every ? 2 [0, 1],
P(~ = 1|⌘(x) = ?) ⇡ ? , i.e. ⌘(x) is a good approximation of the con-
ditional distribution given by P(~ = 1|x). When ⌘ is reasonably well
calibrated, the condition that error and unfairness are unimodal w.r.t.
to the manipulation budget ⌫ is equivalent to the error and unfairness
of 5 being unimodal w.r.t. to the choice of threshold \ . Through this
lens, one can see that the assumption of unimodality is likely to hold
(at least approximately so) in practice as it is typically the case there
is one “good” choice of threshold \ and any deviation (increasing or
decreasing \ ) results in strictly worse performance of 5 .

Feature-Monotonic Costs. Finally, we demonstrate that selectivity
remains su�cient for fairness reversal in general when costs are
feature-monotonic.

Theorem 5.10. Let 5⇠ and 5� be the most accurate and the optimal
U-fair classi�er, respectively. Suppose fairness is de�ned by PR, FPR,
or TPR and 2 (x, x0) is feature-monotonic. If 5� is more selective than
5⇠ , then there exists a budget ⌫ that leads to fairness reversal between
5� and 5⇠ .

P���� S�����. The full proof is deferred to Section D of the
Supplement. The intuition behind this results is that trivial classi-
�ers (i.e., those that predict 5 (x) = 1 for all x) have 0 unfairness
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for PR, FPR, and TPR based fairness. As ⌫ increases, both 5 (2,⌫)⇠

and 5 (2,⌫)� (the classi�ers resulting from agents best responding to
either classi�er with budget ⌫ and cost function 2) will approach
0 unfairness, not necessarily monotonically, as they become more
like trivial classi�ers. At some point prior to reaching trivial clas-
si�cation, the conventional classi�er 5⇠ will be at least as fair as
5� . This can be seen through a combination of the fact that 5� is
more selective than 5⇠ and the way in which manipulations alter
the positively predicted region of a classi�er when costs are feature-
monotonic. In particular, 5� being more selective than 5⇠ implies
that,

{x 2 X : 5� (x) = 1} ⇢ {x 2 X : 5⇠ (x) = 1}.
Feature-monotonic cost functions preserve this subset propriety
under manipulation, i.e., for any ⌫,

{x 2 X : 5 (2,⌫)� (x) = 1} ⇢ {x 2 X : 5 (2,⌫)⇠ (x) = 1}.
Thus 5� is always more selective than 5⇠ , regardless of the manipu-
lation budget ⌫. As such, the positive rate of 5� will never exceed
the positive rate of 5⇠ , implying that 5 (2,⌫)� approaches a trivial clas-
si�er more “slowly” than 5 (2,⌫)⇠ , with respect to ⌫. Moreover, prior
to approaching triviality 5 (2,⌫)� will e�ectively approach 5⇠ , thus
partially absorbing some of the original unfairness of 5⇠ , resulting
in a fairness reversal. ⇤

Next, we provide a condition which leads 5� to be more selective
than 5⇠ . Here, we provide this condition for the PR fairness metric;
analogous results for TPR and FPR are given in Section D of the
Supplement. For this result, we de�ne the following notation

%⌧I = P(6 = I), 6(x) = % (6 = 1|x)
and

X0 = {x 2 X : 6(G) < %⌧1 and P(~ = 1|x) < 1/2}.
The set X0 represents the set of features which are less likely than
chance to correspond to 6 = 0 and ~ = 0.

Theorem 5.11. Let 5⇠ and 5� be the most accurate and optimal
U-fair classi�ers respectively, and fairness de�ned by PR. Then 5� is
more selective than 5⇠ if and only if 0 < U  U⇤, where

U⇤ = min
x2X0

%⌧0%⌧1 (2P(~=1 |x)�1)
6 (x)+%⌧1

�
%⌧1�26 (x)�2%⌧1P(~=1 |x)

� .
P����. Both the conventional and fair objectives can be written

as follows:

5⇠ =argmin5 P(5 (x) < ~)
5� =argmin5 (1 � U)P(5 (x) < ~)

+ U
��P(5 (x) = 1|6 = 1) � P(5 (G) = 1|6 = 0)

��
Assuming the optimal 5� has higher positive rate for group 1 (the
group 0 holds symmetrically), the fair objective function can be
simpli�ed to,

(1 � U)
’
x2X

�
(1 � 5 (x))P(~ = 1|x) + 5 (x)P(~ = 0|x)

�
P(x)

+ U
’
x2X

5 (x)
✓
P(6 = 1|x)
P(6 = 1) � P(6 = 0|x)

P(6 = 0)

◆
P(x)

Thus 5� (x) = 1 is optimal if

U
(P(6 = 1|x) + (P(6 = 1) � 2)P(6 = 1))

(1 � P(6 = 1))P(6 = 1) (1)

� (1 � U)2P(~ = 1|x) + 1 � 0

and 5⇠ (x) = 1 is optimal if P(~ = 1|x) � P(~ = 1). Thus, the
only case in which 5� positively classi�es an example x, which is
negatively classi�ed by 5⇠ (i.e., 55 (x) = 1 < 5⇠ (X) = 0), is when
the left-hand side of Inequality 1 is nonnegative and P(~ = 1|x) �
P(~ = 1). Simplifying the condition in Equation ?? yields U⇤. ⇤

The key observation from Theorem 5.11 is that fairness reversal
is a small-U phenomenon. This may seem surprising, since 5� is
likely to be most similar to 5⇠ for smaller values of U (in particular,
the two are identical when U = 0). However, when U is high, the
fairness term is su�ciently dominant that reversals are unlikely.
Consequently, it is precisely the intermediate values of U , where we
aspire to preserve high accuracy while improving group-fairness
that are most susceptible to fairness reversal. This is indeed consis-
tent with our empirical observations in Section 4, which indicate
that for intermediate values of U fairness reversals are not only
more common, but occur with greater magnitude. Lastly, note that
for some distributions, U⇤  0, which means that fairness reversals
are luckily not guaranteed.

Remark 5.12. For some classi�ers and agent distributions, fairness
reversals are straightforward to prevent. We outline several of these
cases in Section D.1 of the supplement.

6 CONCLUSION
We demonstrate a fairness-reversal phenomenon, where a trained-
to-be fair classi�er exhibits more unfairness than the conventional
accuracy-maximizing one if human agents can strategically respond
to a classi�er. We show that a su�cient condition for observing
fairness reversal is “selectivity”, that is, a group-fair classi�er mak-
ing fewer positive predictions than its conventional counterpart.
Additionally, we demonstrated that this condition of “selectivity”
also results in an accuracy reversal. The aggregate of these results
indicates that when fairness is achieved through an overall decrease
in positive rate (compared to the conventional classi�er), strategic
agent behavior can lead to a reversal of the core functionality of
both models (i.e., the performance based model becomes less accu-
rate than the fair model, and the fair model becomes less fair than
the fairness-agnostic model).

We view these results not as a critique of fair-learning, but rather
as a caution towards the expectation of fairness guarantees when a
fair classi�er sees real-world deployment. The successful deploy-
ment of fair-learning models requires the consideration of many
nuanced factors, strategic agent response to model choice being on
such consideration. While we have outlined several necessary and
su�cient conditions regarding both classi�er selectivity as well
as fairness reversals, a deeper investigation into when fair classi-
�ers may su�er from such problems in cases where the classi�er s
designed to anticipate strategic behavior. Mitigating fairness and
accuracy reversals is an important direction for future work.
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