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ABSTRACT

Social networks arise as a result of complex interactions among
people, and homophily plays an important role in this process. If
we view homophily as a dominant force in network formation
and associate each node with a collection of features, this process
gives rise to spatial networks, with likelihood of an edge an increas-
ing function of feature similarity among its incident nodes. A link
prediction problem in such spatial networks then amounts to deter-
mining whether the pair of nodes are sufficiently close according
to this edge likelihood function. We undertake the first algorithmic
study of the adversarial side of this problem in which the adversary
manipulates features of a subset of nodes on the network to pre-
vent predicting target edges. We show that this problem is NP-hard,
even if the edge likelihood function is convex. On the other hand,
if this function is convex, we show that the problem can be solved
with convex programming when the set of nodes that the adversary
needs to manipulate is fixed. Furthermore, if the edge likelihood
function is linear, we present approximation algorithms for the case
when the features are binary, and we wish to hide only a single
edge, and for the case when the features are real-valued but we
need to hide an arbitrary collection of edges.
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1 INTRODUCTION

Homophily [16]—the property that relationships are more likely
among more similar individuals—is an important social driver of
network emergence. In the abstract, a natural way to capture ho-
mophily is by embedding nodes in a metric space. Distance between
nodes so embedded, and associated links, can then capture a variety
of phenomena, such as spatial proximity (with friendships more
likely to emerge through frequent contact), the similarity of opin-
ions (where individuals who are in greater overall agreement more
likely to establish long-term relationships), cultural similarity, and
SO on.
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Such similarities are not considered by traditional network anal-
ysis that typically focuses on the graph structure representing ob-
served relationships. However, when we have access not only to the
network structure but also node features, this additional informa-
tion can be further leveraged for network analysis tasks [1, 11]. Let
us take as an example the task of link prediction, in which we are
particularly interested in this paper. The aim of this fundamental
problem in social network analysis is to anticipate the existence
of connections that are missing from the data or that are yet to
be created [14]. Various applications, such as detecting concealed
relationships in organized crime, have motivated consideration of
adversarial vulnerabilities of link prediction algorithms [5, 8, 26, 27].
This line of research is focused predominantly on vulnerabilities
of similarity metrics that solely use the network topology, such as
the set of common neighbors. However, if link prediction leverages
node attributes rather than, or in addition to, observed edges, per-
turbing these attributes becomes an essential means of an attack
that has scarcely been analysed in the literature.

Against this background, we propose to study adversarial link
prediction in spatial networks (Adversarial LPSN) where the proba-
bility of a link is a function of the attributes (features) of the nodes
incident to it. In our model, the adversary aims to hide a collection
of target links by selecting a subset of nodes on the graph and per-
turbing their features subject to a perturbation budget constraint.
We begin by considering real-valued features. We first show that
this problem is NP-Hard and, indeed, hard to approximate to arbi-
trary precision, even if the edge likelihood function is convex. On
the other hand, we give an algorithm for this problem that yields
a 2-approximation. Furthermore, we show that if we first fix the
set of nodes that the adversary may manipulate, the problem can
be solved using convex programming. Next, we consider binary
features and show that the problem is NP-hard, even if we wish
to hide a single edge. However, we also give a 2-approximation
algorithm for this problem.

In summary, we make the following contributions:

(1) We present a novel model of adversarial perturbations to
link prediction in spatial networks.

(2) We show that the adversarial problem we define is inapprox-
imable in general. Moreover, it remains NP-hard if features
are binary, even if the link likelihood function is convex.

(3) We give a convex programming solution to a special case
when the set of nodes that can be adversarially perturbed
is fixed, the link likelihood function is convex, and features
are real-valued.

(4) We provide a polynomial algorithm with a 2-approximation
guarantee if features are binary, only a single node is per-
turbed, and the link likelihood function is linear.

(5) Finally, we provide a polynomial time algorithm with a 2-
approximation guarantee if features are real-valued.
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2 RELATED WORK

Various evasion techniques against several social network analysis
tools have been investigated in the literature with a typical goal of
privacy protection. Unfortunately, it was shown that social network
analysis tools could be used to infer even undisclosed information
about social media users, including their sexual orientation or other
sensitive characteristics [17].Given this, Waniek et al. [24] studied
how to avoid identification by community detection algorithms.
Another sample research line of this literature are the papers that
analyse manipulating centrality measures [4, 23, 25].

Our model is also closely related to decision-time (or adversar-
ial perturbation) attacks in adversarial machine learning (see, e.g.,
[2, 9, 22]), particularly if we view link prediction as binary clas-
sification. A decision-time attack on a binary classifier involves
an adversary adding a (typically norm-bounded) perturbation to
inputs in order to cause these to be misclassified by the model.
However, there are several crucial differences between our model
and this literature. First, in our model, features of nodes enter the
predictions indirectly via the weighted distance calculation; for ex-
ample, even if the classifier is linear in inputs, it is non-linear in
perturbations. Second, and more significant, is the fact that in our
model, the adversary may select and perturb a subset of nodes on
the network, and the goal is to impact predictions for a collection of
links, adding an important combinatorial dimension to the problem.

Models, in which an underlying geometry is present, are actu-
ally natural for applications in data science and network analysis
(we can think of network nodes as being represented by a feature
vector in some d-dimensional vector space, with the nodes that
share similar features being the neighbors of a given node). The
spatial constraints imposed on the graph are also relevant for the
geometric graph theory, especially for the studies of random geo-
metric graphs. Our model is related to the recent investigations
from [12], where the authors investigate the problem of distin-
guishing an Erdés-Renyi (standard) random graph G(n, p) from a
random geometric graph Geog(n, p), where n vertices of the graph
are identified with an independently and uniformly sampled vector
from the d-dimensional unit sphere, and the pairs of vertices are
connected by an edge if the vectors are sufficiently close to each
other, so that that the marginal probability of an edge existence is
equal to p. As the authors note, geometric random graphs, both
in the high-dimensional setting as studied in the aforementioned
paper, as well as in the more familiar setting of low-dimensional
geometric graphs (as studied e.g. in the classic monograph [19])
could be a widely applicable benchmark for some computational
methods used in the so-called semi-random setting. Here, we focus
on spatial networks representable in a finite-dimensional normed
space that are generated stochastically, which may be seen as a
working case of the geometric random graph model described.

3 BACKGROUND

We consider link prediction in the so-called spatial networks, rep-
resented by graphs where nodes correspond to points in RP. For-
mally, a spatial network is a graph G = (V, Eg) where the nodes
Vg c RP correspond to a finite subset of RP and each edge
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(x,y) € E connecting a pair of nodes x, y € Vg is generated stochas-
tically as follows. Let

z(x,y) = (Ix1 —w1l?,.... Ixp — yplP)

for a fixed p > 1. We will refer to this function as a p-vector
function. We assume that the probability of an edge is determined
by a function f(z(x,y)) for any pair of nodes (x, y). We refer to f
as the edge likelihood function.

In a link prediction setting, we observe a graph with the entire
set of nodes V, but only a subset of existing edges E C E, and our
goal is to identify whether particular other edges in the graph exist
or not. A natural link prediction algorithm in such spatial networks
would first learn f (e.g., f can be a logistic regression) based on the
observed edges in the network (using attributes of their incident
nodes), and then use f to predict unobserved links. Note that this
process makes use of the observed network structure in learning the
function f, but once f is given, this structure is no longer required
in link prediction.

A special type of spatial networks that we will consider here and
an example that allows illustrating the idea behind them are the
two-dimensional Euclidean graphs. In these graphs, the nodes are
identified with points in the Euclidean two-dimensional plane, and
to each link between any two points, we assign lengths equal to
the Euclidean distance between those points. It is perhaps worth
noting that the class of spatial graphs we investigate in this paper is
not identical with the class of the so-called planar networks, where
it is required that the nodes are embedded in the two-dimensional
plane in such a way that the links do not intersect each other.

Formally, a two-dimensional Euclidean network is a graph G =
(V,E) such that each node in V is associated with a point in the
Euclidean two-dimensional plane, i.e., each v € V is represented by
a point x, € R2. Furthermore, with each link e = {v,w} € E, we
associate a distance 6(v, w) that is equal to the Euclidean metric.

Clearly, all norms and the metrics induced by these norms can be
considered in their weighted versions, where computing the norm
involves, additionally, a multiplication by a particular function (or
constant) referred to as the weight.

4 ATTACK MODEL

Suppose that an Attacker is a malicious agent who aims to hide
some of the links (for example, relationships among particular
malicious nodes). In our context, hiding a link entails ensuring that
the edge likelihood function f is erroneously perceived as small for
the target pair of nodes {x, y}. We suppose that the Attacker can
modify the perceived value of f by adding adversarial perturbations
 to a subset of nodes on the network A C V; (potentially including
nodes x and y). We assume that both the network G observed by the
Analyst and the edge likelihood function f (including the function
z(x,y)) are known to the Attacker, but the Attacker is limited in
the extent to which the features of any node can be perturbed, for
example, to avoid becoming highly suspicious. We capture this
constraint formally as follows. Let u € A be a node in the spatial
network for which original features u are changed by the adversary
into u’, and define § = u’ — u. We constrain that any perturbation §
to any node u € A satisfies ||| < € where € > 0 is an exogenously
specified limit on how much the Attacker can perturb any node,
and || - || is an £, norm with p > 1.
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We begin by considering a simplified version of the Attacker
problem in which the Attacker aims to hide a link between a single
pair of nodes x and y and can only add perturbation § to one of
them—say, y, without loss of generality (i.e., the subset of nodes
being attacked is A = {y}). In this special setting, we formally
define the following adversarial optimization problem in which the
goal of the adversary is to modify a node y adjacent to a target
link {x, y} so as to minimize the perceived likelihood of this link
by the Analyst, that is, to minimize f(z(x,y + J)) over feasible
perturbations § to y.

Problem 1. Given a positive real number €, a spatial graph G =
(Vg, Eg) defined on RP and a pair of nodes x,y € Vg such that

{x,y} ¢ Eg find
i Ly +90)), L. S|l <e.
neun fz(x,y+9)), s [16]] <€

A natural variation of this problem is the following formulation,
in which we instead minimize the magnitude of the adversarial
perturbation that enables us to hide the target link by ensuring that
the resulting perceived link likelihood f(z(x,y + §)) is below an
exogenously specified threshold 6.

Problem 2. Given a real number 6 € [0, 1], a spatial graph G =
(Vg, Eg) defined on RP and a pair of nodes x,y € Vg such that
{x,y} ¢ Eg find

min |[8]], st f(z(x,y+J)) < 6.

In this formulation, the threshold parameter 0 represents the
threshold used by the Analyst in link prediction, so that whenever
f is below the threshold, the Analyst is expected to predict that the
target pair of nodes are not connected. This variation, therefore,
requires the Attacker to also know the threshold 6 used by the
Analyst or at least have a conservative bound on this threshold.

Both problem formulations above are conceptually similar to the
general class of decision-time attacks on classifiers in the adversarial
machine learning literature [22]. The principal difference is that
the impact of modifications on the target function f is indirect,
mediated by z(x,y). This is inconsequential if features are real-
valued and we use gradient-based methods (such as PGD [15]) to
heuristically solve Problems 1 and 2, but it becomes important
if features are binary and we wish to take advantage of special
structure of f, such as linearity: even if f is linear in z, it is non-
linear in y.

A decision-theoretic version of the problems above, which we
refer to as Adversarial Link Prediction in Spatial Networks or ALPSN,
simply imposes both the constraint that perturbations § are bounded
and that the attack succeeds.

Problem 3 (Adversarial Link Prediction in Spatial Networks (ALPSN)).

Given real numbers 6 € [0,1] and € > 0, a spatial graph G =
(V. Eg) defined on RP, and a pair of nodes x,y € Vg such that
{x,y} ¢ Eg, decide if there exists a D-vectory’ = (y1, ..., yp,) with
lly — 4’|l < € such that f(z(x,y")) < 6.

One might ask: why should the information induced by the
(weighted) distances, even if implicit in the p-vector function z, be
taken into account while analyzing the mere link prediction task?
The answer is that the relations of the (tuples of) features of the
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nodes in the network are important from the learning-theoretic
point of view. Consider the likelihood function f and the problem
of learning it. Access to the metric structure of the features of the
nodes in the network (features that correspond to coordinates of
the nodes in this space) can enable learning a more fine-grained
and precise link prediction function f. Then, if the algorithms
realizing this learning task can use the information contained in the
geometric structure of the network (information available thanks
to the spatiality of the network, i.e., of its embedding into some
metric space), i.e., if learning the function f can be dependent on
the z-function (induced by the distances in the abstract metric space
the network is embedded into), then can become a point of attack
of the adversary. Therefore, attacking the learning process of the
spatial likelihood function used for link prediction might consist
in introducing perturbation directly to the features of the nodes,
i.e., to their locations in the abstract metric space the network is
embedded into.

Next, we consider a natural generalization of the problem in
which the adversary chooses a subset of nodes A, as well as modifies
the features of all of these nodes as above. The key additional
aspect of this problem is that we impose a cardinality constraint
that |A| < k for an exogenously specified k. Note, however, that the
problem remains non-trivial even if k = |V|. This general variant
is a substantive departure from conventional adversarial machine
learning approaches.

Problem 4 (Set Adversarial Link Prediction in Spatial Networks
(SALPSN)). Given real numbers 0 € [0,1] and ¢ > 0, a spatial
graph G = (Vg,Eg) defined on RP, a positive integer k < |Vg|, a
subset S C Vg of vectors from the set of nodes of G, and a target
set H C Vg X Vg of pairs of nodes such that for each {x,y} € H it
holds that {x,y} & Eg, decide if there is a set A C S of at most k
vectorsv” = (vy,...,0,) with |[o — 0’|| < € such that in the graph
G’ = (VL Eg), whereV}, = Vg \AU{v" : v € A}, foreach {x,y} € H
it holds that f(z(x,y)) < 6. An instance of the problem is a tuple
(G,S,0,¢,H, k).

The two distinguished special cases of the problem are for the set S
being (a) Vg, or (b) Vi \ dom(H), where for H C Vg X Vg:

dom(H)={veVg:IweV5:(v,w) € H V (w,0) € H}.

The set A in the definition of SALPSN will be referred to as the
displacement set of an instance of the problem. Observe that, in
general, nothing prevents the nodes x or y from being in the set
A. This is an inconsequential issue: whether x, y are allowed to be
elements of A does not alter the results below.

The final variant of the problem we consider fixes the set A of
nodes that can be displaced.

Problem 5 (Fixed-SALPSN). Given a tuple (G, 6, ¢, H, A), where
F C Vg is a fixed subset of nodes, decide if there exists a set F' of
vectors F’ = {v’ : v € A} with ||v — 0’|| < € such that in the graph
G’ = (VL Eg), where V), = Vg \AU{v" : v € A}, foreach {x,y} € H
it holds that f(z(x,y)) < 6.

5 COMPLEXITY ANALYSIS

For the complexity analysis of these problems, we use specific geo-
metric tools from algorithmic graph theory. In particular, we will
employ the so-called penny graphs, machinery that very recently
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Figure 1: Construction of a penny graph from a planar graph
of degree at most three, so that each link is replaced by in-
termediate nodes whose number is a multiple of four.

has been successfully applied for complexity analysis in computa-
tional social choice theory [7]. A penny graph is defined by a set of
unit disks, i.e., balls of diameter one in R2, such that no two disks
overlap (but they can touch). Each disk corresponds to a node, and
two nodes are connected by a link if their disks touch (i.e., if their
centers are precisely at a distance of 1). A graph is a penny graph
if it has such a representation by unit disks (the name comes from
the analogy between the disks and pennies laying on a flat surface).

Obviously, all penny graphs are planar. In our construction, we
are using penny graphs of degree three obtained via the following
result of [21].

LEMMA 1. [21]. There is a polynomial-time algorithm that, given
a planar graph with maximum degree of at most 4, computes its
embedding on the two-dimensional Euclidean real space so that its
nodes are at integer coordinates, and its links are represented by
vertical and horizontal line segments.

Recall that in the Vertex Cover problem (VC) we are given a
graph G = (X, E) and a positive integer r. We ask if there exists a
vertex cover of G—i.e., a subset of nodes U C X of size at most r
such that each link {x, y} € E has an end in U, i.e., at least one of
the nodes x, y is in U. It is known that the problem is NP-hard for
cubic planar graphs [18, Theorem 4.1(a)]. Given an instance (G, r)
of VC, where G is a cubic planar graph, we can construct an instance
of VC for penny graphs as follows (we use the construction of [3,
Theorem 1.2]; we repeat it here as we need its specific properties).

First, we use Lemma 1 to obtain a planar representation of G,
where the nodes are at integer coordinates and the links consist
of vertical and horizontal line segments (see the left-hand side of
Figure 1; note that in this figure the nodes have degrees at most
three, and not exactly three). Second, we multiply node coordinates
by four, ensuring that the lengths of the line segments forming the
links also are multiples of four. Third, for each node v, we put a
unit disk centered at the position of v, and we replace all the line
segments forming the links by sequences of consecutive unit disks
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(located on the integral points within these lines; see the center of
Figure 1). This way, each link becomes a sequence of 4t — 1 disks,
where ¢ is an integer (possibly different for each link). Finally, for
each link we introduce a single local displacement, which consists of
replacing the second disc that lies on the link with two tangent disks
(it does not matter from which end we start counting the disks);
these two disks are also tangent to the disks on the two sides of the
disk that we replaced (see the right-hand side of Figure 1). Local
displacements ensure that disks on the links come in multiples of
four. All in all, we obtain a penny graph.

Let G’ be the penny graph that we constructed. Each node of
G’ has either two or three adjacent nodes. The nodes with two
neighbors correspond to disks put on the links, and we refer to them
as intermediate. We call a node locally displaced if it corresponds
to a disk that was introduced as a result of a local displacement.
Let L be the total number of intermediate nodes. One can easily
verify that G has a vertex cover of size r if and only if G’ has an
independent set of size r’ = r + L/2 (this follows from the work of
[3]). We refer to the penny graphs obtained by this construction as
almost integral, and we use the fact that VC is NP-hard for them.

Let 6 € [0,1] be any real number in the unit interval. A real-
valued function RP — R is 6-sensitive if there exists a non-negative
real number p such that the following equivalence holds for any
x € RP:

Fx) = 0 |Ixl| < p.

Theorem 1. The problem SALPSN is NP-hard for any 0-sensitive
function f : RP — R In particular, the problem is NP-hard for D = 2.

Proor. We will actually prove a somewhat stronger hardness
result. Namely, we will demonstrate that, already for the Euclidean
metric on a two-dimensional plane, it is NP-hard to decide if we
can displace at most k nodes in order to hide the links by reducing
the edge likelihood functions.

The proof goes by a reduction from Vertex Cover for almost
integral penny graphs. Let I = (G, k) be an instance of the Vertex
Cover problem for almost integral penny graphs, where G = (X, E’),
andlet n = |X|,and m = |E’|. We construct an instance J of SALPSN
with the network being represented by a graph in the real plane
with Euclidean metric such that there exists a vertex cover of size at
most k in I iff there exists a displacement set of size at most k in J.
First, we define the spatial network G’ = (Vz/, Eg/). For each node
x € X of the graph G construct a node of the network vy € Vg
located in the same point as x, i.e., let Vir = {vx : x € X}. Further
let Eg/ be any set of pairs not containing any of the links from the
penny graph G, i.e. let

Eg € (Vo' xVa) \ E'.

Let the target set of pairs H in J contain all the pairs that have
been elements of the target set from the graph G, i.e., let H = E’.
In what follows we actually demonstrate that our reduction works
also for an arbitrary instance of SALPSN, where the target set is
a superset of the set of edges from the penny graph, i.e., even
if H 2 E’, the reduction will be correct. By assumptions, for a
fixed 6, the edge likelihood functions is 8-sensitive. Without loss
of generality, put p from the definition of 8-sensitivity to be equal
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Figure 2: Estimating the distance between points — case 1:
Xy and Xz are orthogonal. Even if the Attacker decides to
displace the nodes vy and vy, in a direction that makes them
closer to each other than before the displacement took place,
even if the pair {ux, vy} was in the target set, then the distance
between them remains above p so that the edge-likelihood 6
threshold is still not exceeded. Observe how, in this case, the
nodes u and w, neighboring v, and v, correspondingly, are
also made distant from these nodes, allowing for the edge
likelihood function to drop below 6 for {u,v,}, and w, v, }.

7’ ~ e ~ ' ~
7’ N 7 N o7 Y
1 \V} \Y} \
rXj 1 1 Xp

A X; M U
\ /N AN 7
A 7’ ~ 4 ~ 7’
~__~- ~d- ~o_~-
/’ ~
’ A}
1 \
1 1
\ Xt I'
~ 7’

Figure 3: Case 5: The node x; in the vertex cover is one of
the vertex points of the penny graph that has three neigh-
bors, one of which, say x;, is connected to x; along the line
segment perpendicular to the line segment on which two of
the other neighbors of x; lie. Then we move v; by a vector
;i (of length €) along the line connecting v; to v, in the di-
rection further away from v;. Observe that the fragment of
the picture consisting of the balls around the nodes xj, x;,
and x;, adequately depicts the case 1, i.e. such that node x; in
the vertex cover is an intermediate node that has not been
subject to local displacement in the process of constructing
the almost integral penny graph, neither of its neighbors has
been locally displaced, and x; and both of its neighbors are
colinear. Then we move the node v; by §; (of length €) verti-
cally or horizontally, along the line that is perpendicular to
the line segment on which the node v; and its neighbors lie.

to 1, i.e., let it be that:

f (\/(Ux,l - Uy,l)z + (vx2 — Uy,Z)2 >0

if and only if

\/(Ux,l —0y1)? + (02 —0y2)? < 1,
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for any vy, vy € RZ.

Let € > 0 be any positive real number less or equal to Z_Tﬁ X
0.29. The exact value of € will directly follow from the estimations
in the correctness proof below.

Finally, let k” be equal to k, i.e., we require that the maximal size
of the displacement set in the constructed instance of SALPSN is
equal to the maximal size of the vertex cover in the given penny
graph. Observe that for each edge (x;, xj) € X’ of the penny graph
the distance between x; and x; is equal to 1. This ends the descrip-
tion of the reduction, now we will demonstrate its correctness. First,
assume there exists a vertex cover of I of size at most k. Let it be
denoted by

U={x1,....x},
and let the set of corresponding nodes of the network G’ in J be
denoted by

U = {Ul, .. .,Z)k}‘
Then, it is possible to displace each of the nodes v; by a vector ; of
norm € in such a way that the distance between each pair of nodes
corresponding to the links in the penny graph will be grater than
1. The way we obtain these displacements depends exactly on the
relative position of the corresponding nodes in the penny graph:

(1) Node x; in the vertex cover is an intermediate node that
has not been subject to local displacement in the process
of constructing the almost integral penny graph, neither of
its neighbors has been locally displaced, and x; and both of
its neighbors are colinear. Then we move the node v; by J;
(of length €) vertically or horizontally, along the line that is
perpendicular to the line segment on which the node v; and
its neighbors lie.

Node x; in the vertex cover is an intermediate node that
has not been subject to local displacement in the process
of constructing the almost integral penny graph, neither
of its neighbors has been locally displaced, but the lines
connecting x; to its neighbors are perpendicular. Then we
move the node v; by J; (of length €) along the line that is
within the angle of Z w.r.t. the lines on which the neighbors
of v;. lie.

Node x;j in the vertex cover is an intermediate node that
has not been subject to local displacement in the process of
constructing the almost integral penny graph, but one of its
neighbors has been locally displaced. Denote its non-locally
displaced neighbor by u, and its locally displaced neighbor
by w. Then move the node v; by the vector §; (of length €)
along the line perpendicular to the line segment on which
both v; and u lie.

Node x; in the vertex cover is a locally displaced intermediate
node of the penny graph. Then x; is one of the nodes of the
parallelogram x;, x;, x¢, x¢, as depicted in Figure 4. We then
move the node v; by the vector d; (of length €) along the line
of the diagonal of the parallelogram in the direction outside
of the parallelogram.

Node x; in the vertex cover is one of the vertex points of the
penny graph that has 3 neighbors, one of which, say u, is
connected to x; along the line segment perpendicular to the
line segment on which two of the other neighbors of x; lie.
Then we move v; by a vector §; (of length €) along the line

—~
N
=
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Figure 4: The disks at x; and x; form a local displacement.
Observe that moving node v; to v] keeps the distances be-
tween o] and v; and between 0] and o, above threshold p = 1.
The distance a between the nodes v, and v; is unaffected by
manipulating the node v; and strictly greater than 1. This
picture illustrates the displacement that can be made in the
cases 3 and 4 in the description of the reduction.

connecting v; to vy, in the direction further away from v, as
depcited in Figure 3.

In case 1, it is clear that the distance between the nodes on the

line is equal to V1 + €2 > 1. In case 2, the distance of the displaced
node from its neighbors is:

\/(1 +eV2/2)2 + (eV2/2)2 > 1.

In cases 3 and 4, the distance from the displaced node and its neigh-
bors is again equal to V1 + €% and:

\/(1 +eV2/2)2 + (eV2[2)2.

In case 5, additionally, the distance from v’ to v; is equal simply
to 1+ e. If the target set of pairs contains more pairs than merely
the set of links of the input almost integral penny graph, there is a
problematic case we need to consider. It occurs when the vertex x;
corresponds to one of the original nodes from the planar graph, and
by the grid structure of the penny graph G resulting from Valiant’s
lemma makes the lines |x;, xj| and |x;, x¢| orthogonal to each other.
In such a case the distance between v;. and o] is easily seen to be:

d=(p-eV2
where € is the distance of v; from the v;. and the distance of v; from
vy. It is immediate to check that d > p for:

V2

€<p-
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‘/75 ~ 0.292 which is greater than #
Hence, requiring the points o’ to be within distance € < # is
clearly sufficient for the distances between corresponding agents
in the network to be kept sufficiently large.

Observe that the above actually proves the correctness of the
reduction - if I is a positive instance of the VC problem for almost
integral penny graphs, the displacement described above gives the
solution to the instance J SALPSN, and if I is a negative instance
of VC, then at least one pair in the target set of links in J has to
stay unsolved, as the corresponding link in I is uncovered. O

which for p = 1is 1 -

It is sometimes the case that geometric computational problems
that are hard when stated for vector spaces of arbitrary finite di-
mension are polynomial-time solvable when the dimension is fixed.
The result above, however, gives us a hardness phenomenon that
is stronger than such fixed-parameter tractability with respect to
the dimension. Since the theorem states NP-hardness for functions
f defined on R?, it immediately follows that deciding SALPSN is
NP-hard in general, i.e., the following holds:

Corollary 1. The problem SALPSN is NP-hard for the Euclidean
metric any O-sensitive function f : RP — R, where D is any natural
number greater or equal than 2. In particular, the problem is NP-hard
even if the dimension D is fixed.

Observe that the reduction used in the proof actually gives us
an alternative, simpler proof of a couple of general graph-theoretic
results relevant for the study of link or sign prediction in social
networks. In particular in the problem of Eliminating Similarity,
studied, e.g., by [5], the input consists of a graph, a set of targeted
pair of nodes, a set C of links that can be removed, and the max-
imum number k of links that can be deleted. In this problem, we
are asked to compute if there exist at most k links in C such that
removing them results in every pair of nodes from the target set
having a disjoint neighborhood. Assuming that we deal with spatial
networks and nodes can be only connected by a link if their dis-
tance does not exceed a given threshold, our reduction immediately
gives:

Corollary 2. The problem of Eliminating Similarity is NP-hard even
for spatial networks.

Further, we can notice that the reduction is approximation-
preserving. This means that inapproximability properties of Vertex
Cover transfer to the SALPSN. In particular, since the construc-
tion of (almost integral) penny graphs is performed on the planar
graphs of bounded degree, it follows that our reduction preserves
inapproximability results for (planar) graphs with bounded de-
gree. For specific results, one can consult the work by [10]. To be
more specific, recall that an NP-optimization problem has an effi-
cient polynomial-time approximation scheme (EPTAS) if it admits a
polynomial-time approximation scheme whose time complexity is
bounded by O(f(1/¢)|x|¢), where f is a computable function and ¢
is a constant. The class SNP (Strict NP) consists of the NP-problems
that can be defined by a second-order formula 3SVxy (%, S), where
¥ is quantifier-free. It is commonly believed that it is unlikely that
all problems in SNP are solvable in subexponential time. Together
with Theorem 2 from the paper by [10], our reduction implies the
following:
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Theorem 2. The SALPSN problem has no EPTAS of running time

20(‘/%) no(l), where ¢ > 0 is the given error bound, unless all SNP
problems are solvable in subexponential time.

In the next section, we will demonstrate positive approximation
results for versions of the problem. Before that, however, we need
to note that

Theorem 3. The problem ALPSN is NP-hard, if the features of the
vectors x,y € RP are binary, even if the edge likelihood function f is
convex.

Proor. The proof goes by a reduction from the Subset Sum
problem. Fix a set of integers S = {s1, ..., s,} and an integer ¢ that
constitute an instance of the Subset Sum problem. Given even a
linear function f, we can easily transform the integers into a binary
vector x in an obvious way such that setting the threshold of the
function f to t, and scaling it if necessary gives us an equivalence
between a solution to the original problem and the solution to
ALPSN. O

Let us end this section with a comment. It might be meaningfully
asked if it is the number of nodes participating in the target set of
links that is, in some sense, the source of hardness for the Attacker.

In the case of general graphs (as opposed to spatial ones), the
following is true: if the likelihood function predicting links is in-
creasing with the set of common neighbors and one targets all
links connecting a group U of nodes (i.e., the target is actually a
group of nodes U and that the target link set is the collection of
edges between each pair of nodes in U, i.e., the target set of links
is H = {{x,y} : x,y € U}), the problem of hiding these links is in
P [6, 26]. This can be seen via a greedy algorithm (formalized in
terms of relevant matrices or induced subgraph matchings) and
follows directly from results in the literature (see the results by
[26] (Proposition 3.9) and by [6] (Theorem 3.4, independently)). The
results do not directly transfer to the setting of spatial networks
with the likelihood function based on the distance between nodes,
but we conjecture that for some classes of geometric graphs (in-
cluding geometric random graphs) the problem is also in P. We
base the conjecture on the fact that, e.g., for the so-called geometric
random graphs it is more likely for a pair {x,y} to have a large
common neighborhood, if the nodes x and y are closer to each other
in Euclidean distance.

6 ALGORITHMIC RESULTS

So far, the results we have presented, were mostly negative. Now
we demonstrate that if the edge likelihood function is convex, the
problem can be solved with convex programming if we first fix the
set of nodes that the adversary needs to manipulate. Furthermore,
if this function is linear, we present approximation algorithms for:
o the case when the features are binary and we wish to hide
only a single edge, and
o the case when the features are real-valued but we need to
hide an arbitrary collection of edges.
Observe that convexity of f is a natural property: it means that f
decreases at a slower rate as nodes grow farther apart.
Most importantly, in contrast to the hardness result for SALPSN,
we demonstrate that, if we fix the set of nodes that the Attacker
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can manipulate to hide links between all the pairs of nodes in the
target set, then we obtain a feasible solution:

Theorem 4. The problem Fixed-SALPSN can be solved by convex
programming, provided the edge likelihood function f is convex.

PRroOF. Recall, that in this problem, for a fixed p, and a convex p-
vector edge likelihood function, we are given a tuple (G, 6, ¢, H, F),
where F C V; is a fixed subset of nodes v which we are able to
manipulate in the sense of moving them to some vectors v’ with a
constraint that for each point v € F it has to be the case that

[lo—0'|| <e.

We are asked to decide if there exists a set F’ of such vectors
{0’}yeF such that in the graph G’ = (V/, Eg), where:

Vi=Ve\FU{o :0€F}
for each {x,y} € H it holds that

flz(x,y) < 0.

It is clear that, if we denote by dom(H) the domain of the target set
of pairs, i.e., the set:

dom(H)={x € Vg :3dh € Hx € e},
then it is only reasonable to search for the set of nodes to displace
inside dom(H). That is, the task is to decide whether there exists
the a set:
W ={x{,...,xp,} Sdom(H) N F
such that, for each i < m, it holds that:
llxi —x{l| <€
with the property that in the graph G’ with
VC';:VG\WU{x':xEW}

(with x” replacing x also in the domain of the target set) for each
pair {x,y} € H we have that

flxi=yilP,.... lxp - yplP) < 6.

But then, by the choice of W and convexity of the edge likelihood
function f, it is clear that the optimization version of the problem
can be solved by the ellipsoid method for convex programming.
Recall that in the optimization form, we are given a positive real
number ¢, a spatial graph G = (Vg, Eg) defined on RP, a target set
H of pairs of nodes x,y € Vg such that {x,y} ¢ Eg, and we are
asked to find

min f(z(x,y+9)), st |[|d]| <e
S€RP

for each pair (x,y) € H from the target set. We can do this itera-
tively, by solving a version of the problem for each pair (x,y) € H.
Without loss of generality, we may assume that the set F is con-
tained in the domain of H. We assume that, for each pair (x,y) € H,
we are given a convex set Ky over which we minimize. We assume
that each Ky is a superset of a ball of radius r and at every step
of the search of the basic ellipsoid algorithm the algorithm works
with an appropriate choice of the inner ball parameter. We also
assume that all the values of f over K lie in the interval [L{, R} ].
The details are presented in the pseudocode of the Algorithm 1.
By the general properties of the Ellipsoid algorithm (for convex
optimization with constraints), i.e. that the access to the values
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Algorithm 1 ALPS algorithm for convex f using the Ellipsoid
algorithm

Input: a real number € > 0, a spatial graph G = (Vg, Eg) defined
on R, a pair of nodes x,y € Vg such that {x,y} ¢ Eg
for (x,y) € H do
L:=L§ and R := R}
while R—L > § do
0= LR
2

A re
" 2(Ro—Lo)
Apply the Ellipsoid algorithm to the set

Kl ={zeK: f(z) <0}

with parameter r’

1:
2
3
4:
5 r
6

7: if Ellipsoid returns YES then

8: u:=0

9: Setz e Kf as the point returned by Ellipsoid
10: else
1 L:=6

Return the point 7 for which Z is the value of the function
z applied to the pair (x, y).

and the gradients of f is sufficient for the choice of r’ to make the
binary search algorithm to give correct answers, it follows that the
above is the correct algorithm. O

Furthermore, there exist algorithms for some other restricted
variants of ALPSN and SALPSN.

Theorem 5. There exists a 2-approximation polynomial time algo-
rithm solving the problem of ALPSN, if the features of the vectors are
binary and if the edge likelihood function f is linear.

Proor. Recall that we are given a real number 6 € [0,1], and
a spatial graph G = (Vg, Eg) defined on RP, and a pair of nodes
x,y € Vg such that {x,y} ¢ Eg, and we are asked to compute
a D-vector y’ = (y;, ..., yp) with ||y — y’|| minimized such that
f(z(x,y”)) < 0. If the features of the vectors are binary, then the
result follows from Theorem 5.4 of [13] on ACRE-learnability. The
reason the Lowd & Meek algorithm works is that ALPSN with the
conditions as above is indeed an adversarial linear classification
problem. Since the features of the vectors are binary, the Attacker
wishes to switch some of these binary values, thus dislocating
the vectors themselves, so as the linear function f outputs values
bounded by 6. The fact that f is linear amounts to being expressible

as
Z wilzi — 27|

i<D
for some base instance z¢ = (z;);<p and numbers w;. This serves
as an ideal minimum-cost instance and gives us the opportunity to
use the property that linear functions define the loss of an instance
as a weighted sum of differences in features, relative to the base
instance. Let v be a D-vector and denote by Cj, the set of features
that have different values between z¢ and v. Since f is linear, it
is sufficient to consider the loss or cost of the D-vector v as the
cardinality of the set Cy,. The algorithm begins with an arbitrary
instance y”’ (i.e., such that f(z(x,y”")) < 6.) The goal now is to find
subsequent replacements of y”’ that keep the value of the likelihood
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function f(z(x,y"’)) below the threshold, while minimizing the
norm of x — y”/, up to the point where any swap in some value
of any feature y; would result in f(z(x,y’’)) surpass 6. Since, by
Theorem 5.4 of [13], Boolean linear classifiers are ACRE (adversarial
classifier reverse engineering) 2-learnable (i.e., where costs are
within a constant factor of 2 of the so-called minimal adversarial
cost) under uniform linear cost functions. O

Theorem 6. There exists a 2-approximation polynomial time algo-
rithm solving the problem of SALPSN, if the features are real-valued.

Proor. If the features of the vectors are real-valued, then the
result follows by the use of a box-constrained L-BFGS to perform
a line-search of approximation, along the lines of applying the
algorithm from Section 4.1 in [20]. Recall that we are given a real
number 6 € [0, 1], a spatial graph G = (Vg, Eg) defined on RP, a
positive integer k < |V|, a subset S C V5 of vectors from the set of
nodes of G, and a target set H C V5 X V5 of pairs of nodes such that
for each {x,y} € H it holds that {x,y} ¢ Eg. We are now asked to
compute the set A C S of at most k vectors v’ = (0], . ..,07,) with
minimal |[o — ¢’|| such that in the graph G’ = (V/, Eg), where

VG’=VG\AU{U/ZU€A},

for each {x,y} € H it holds that f(z(x,y)) < 6. We can assume that
f has an associated continuous loss function, denoted as usual by
loss¢. The task amounts to solving the following box-constrained
optimization problem:

e for all the vectors in A minimize ||[v — v”|| subject to:

(1) f(z(x,y)) <6, and
(2) 1Al < k.

Let D(v, 0) denote any function attaining an appropriate single
minimizing vector o’. As the exact computation of D(v, 0) is hard,
one can apply a box-constrained L-BFGS in order to approximate
the minimizers. We therefore greedily find the least £ > 0 such that

&llo” —o|| +lossy (o', 6%)

is minimized for each v € A, where 6* < 0. If f was convex and
k =1, then we could get an exact solution, but in the general case,
we get a 2-approximation. m]

7 CONCLUSION

We presented the first systematic study of adversarial link pre-
diction in spatial networks, where the likelihood of a link is an
increasing function of weighted distance between attribute vectors
associated with the incident nodes. In this problem, the adversary
aims to prevent positive identification of a set of links by manipulat-
ing the attributes of a subset of nodes on the network. We showed
that this problem is NP-hard (and inapproximable) in general, and
when features are binary, it is NP-hard even if there is a single tar-
get link that the adversary wishes to hide. However, if the features
are real-valued and we fix the set of nodes that the adversary can
manipulate, the problem can be solved using convex programming.
Furthermore, the single-target-link case with binary features ad-
mits a 2-approximation in polynomial time, as does the general
case with real-valued features.
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