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1 Introduction

The BCS to unitarity transition for ultracold gaseous fermions has been inves-
tigated intensely both experimentally and theoretically since this transition
was first achieved in the laboratory[1—9]. Theoretical methods typically assume
that the atomic fermions form Cooper pairs to explain the emergence of
superfluid behavior[10—16]. When a Feshbach resonance is tuned to weak inter-
actions, the neutral atoms bind into loosely-bound pairs whose size decreases
as the interparticle interaction strength increases toward unitarity. Eventually
diatomic molecules are produced that condense in the BEC regime. In materi-
als that support superconductivity, the binding of electrons into Cooper pairs
at long distances is thought to be mediated by phonon interactions in the
underlying material producing a weak attraction[10—14].

The ability of normal modes to describe superfluidity in the strongly inter-
acting unitary regime has previously been investigated for ultracold Fermi
gases[17, 18], obtaining results for ground state energies comparable to bench-
mark results[17] and thermodynamic quantities in excellent agreement with
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experiment[18]. The current study tests this normal mode picture away from
unitarity. A preliminary study was completed that looked at the behavior
of the N -body analytic normal mode frequencies from the BCS regime to
unitarity[19]. This study confirmed behavior seen in the laboratory with the
emergence of excitation gaps that increased from extremely small gaps deep in
the BCS regime to a maximum at unitarity. The microscopic dynamics respon-
sible for the emergence of these gaps was investigated using the analytic forms
of the normal mode functions and a microscopic basis for universal behavior
at unitarity was proposed.

In this paper, I now explore the ability of these normal modes to describe
observables away from the strongly interacting unitary regime including
ground state energies, thermodynamic entropies, critical temperatures, and the
breathing excitation frequency. This approach models the physics by assuming
many-body pairing manifested through normal modes, i.e. coherent, collision-
less motion of the fermions that minimizes interparticle interactions and makes
two-body pairing irrelevant since it is impossible to discern which fermion is
paired with another fermion. Normal mode functions naturally provide simple,
coherent macroscopic wave functions that maintain phase coherence over the
whole ensemble, and give rise to “quasiparticles” defined by the excitations
between the modes.

Normal mode motions exist at all scales in our universe from vibrating
crystals[20] to oscillating black holes[21]. The particles in a normal mode move
in synchrony with the same frequency and phase, allowing a description of the
complex, simultaneous motions of many interacting particles in terms of collec-
tive behavior. These modes are a manifestation of the widespread appearance
of vibrational motions that occur in nature in diverse media and across many
orders of magnitude[20—32]. When higher-order effects are small, vibrational
behavior couples into stable collective motion, thus incorporating the many-
body effects of large ensembles into simple dynamic motions. These collective
motions correspond to the eigenfunctions of an approximate Hamiltonian and
thus possess some stability over time. Normal modes reflect the symmetry
that is present in this approximate Hamiltonian and can offer beyond-mean-
field analytic many-body solutions and physical intuition into the microscopic
dynamics responsible for diverse phenomena.

2 Symmetry-Invariant Perturbation Theory: A
Group Theoretic and Graphical Approach

2.1 Background

The formalism used to obtain these normal modes is called symmetry-invariant
perturbation theory (SPT), a first-principle, non-numerical method that uses
group theoretic and graphical techniques to solve many-body problems[33—38].
This method, which has no adjustable parameters, uses the inverse dimension-
ality of space as the perturbation parameter. The study of physical systems
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using 1/D or 1/N expansions was originally developed in quantum chromo-
dynamics by t'Hooft[39], and was subsequently used in condensed matter
by Wilson[40] to determine critical exponents for D = 3 phase transitions
starting from exact values at D = 4. Dimensional expansion techniques are
now found in many areas of physics including atomic[41—47] and molecular
physics[41—43, 48—59], Bose gases[60—62], as well as Fermi gases in the uni-
tary regime[63—66], relativistic quantum systems[67—71], nuclear physics[72,
73], quantum field theory[74—80], condensed matter physics[40, 81-83], and
statistical physics[84, 85] among others.

The SPT formalism used in the current study was developed to handle
the large systems of particles being studied in the atomic physics/condensed
matter communities at ultracold temperatures, initially applied to bosonic
systems[33—36, 62] and more recently to ultracold Fermi gases[17, 18] requiring
the enforcement of the Pauli principle[17, 18, 86, 87]. The current version has
been formulated through first order for L = 0, three-dimensional systems with
completely general interaction potentials and spherically-symmetric confining
potentials. Unlike conventional methods for which the resources for an exact
solution of the quantum N -body wave function scale exponentially with N,
typically doubling for every particle added[88, 89], the SPT approach employs
symmetry to attack the N -scaling problem[33—35]. This is accomplished by
formulating a perturbation series about a large-dimension configuration whose
point group is isomorphic to the symmetric group Sy, and then evaluating
the series for D = 3. The perturbation terms are evaluated for large dimension
where the structure has maximum symmetry yielding terms that are invariant
under the N ! operations of the Sy point group. This strategy produces a prob-
lem order-by-order that no longer scales with N [90, 91], and in principle, can
be solved exactly, analytically using symmetry. Although extremely challeng-
ing, the mathematical work at each order can be saved[92] and used to study
a problem with a new interaction potential significantly reducing numerical
demands.

Even at the lowest perturbation order, the SPT method includes beyond-
mean-field effects that underlie the excellent results achieved at first order
using this SPT method[17, 18, 62] as well as earlier dimensional approaches[93—
97]. This formalism has also been implemented for a model problem
of harmonically-confined, harmonically-interacting particles that is exactly
solvable[37, 38, 86, 87]. Accuracy of ten or more digits was found for the wave
function compared to the exact wave function obtained independently, veri-
fying this general many-body formalism for a three-dimensional, many-body
system that is fully-interacting [37] including the formulas derived analytically
for the N-body normal mode coordinates and frequencies.

Initial studies of fermionic systems focused on the unitary regime. The
heavy numerical demands of enforcing antisymmetry in fermion systems in con-
ventional theoretical approaches are avoided in the SPT approach by enforcing
the Pauli principle “on paper” using specific occupations of the normal modes
at first order[17, 18, 86, 87]. (See Section 2.2.4.) Beyond-mean-field ground[17]
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and excited state[18] energies and their degeneracies have been calculated
enabling the determination of a partition function and the calculation of ther-
modynamic quantities[18, 87]. An accurate partition function requires many
states chosen from the infinite spectrum by the Pauli principle, thus relating
the Pauli principle to many-body interaction dynamics through the normal
modes.

The physical character of the analytic normal mode coordinates was investi-
gated as a function of N with the goal of obtaining insight into the microscopic
dynamics of cooperative motion[98] and the universal behavior at unitarity.
This study found a smooth evolution as N increases from the expected behav-
ior for few-body systems whose motions are analogous to those of molecular
equivalents such as ammonia and methane, to the coherent motions observed
in large N ensembles. Furthermore, the transition from few-body to large
N behavior occurs at surprisingly low values of N (N = 10) validating the
results of numerous few-body studies[99—106]. This evolution in character from
few-body to large ensembles is dictated by rather simple analytic forms that
nevertheless take into account the complicated interplay of the particles as they
interact and cooperate to create coherent macroscopic motion. This behavior
was dependent primarily on the symmetry present in the Hamiltonian, and
thus could be relevant for diverse phenomena at different scales if the same
symmetry exists or is dominant.

In the current paper, I now investigate whether these first-order normal
mode solutions can accurately determine observables away from universal
behavior of the strongly interacting unitary regime.

2.2 The SPT formalism

This section contains a brief summary of the SPT formalism. More detailed
summaries can be found in Refs. [18, 19].

2.2.1 The Hamiltonian

For N interacting particles, the Schrodinger equation in D dimensions is:

"
< xaw
HY = hi + g W=EV, (6))
i=1 i=1 j=i+1
D [
~2 92 D
hi=— omy 9x2 + Veonf v=1X%
v=1 iv
— (2)
gij = Vint v=1 Ceiv — x50)2

where h; is the single-particle Hamiltonian, g; a two-body interaction poten-
tial, x; the vth Cartesian component of the ith particle, and Veonr is a
spherically-symmetric confining potential[33—35]. Defining internal coordinates
as the D-dimensional scalar radii r; of the N particles from the center of the
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trap and the cosines y;; of the N(IN — 1)/2 interparticle angles between the
radial vectors:

ri = I_ 2, (@1<i=<N),
e, ) (3)
v=1 Xiv Xjv / TiTy >

yij = cos(0;) =

(1<i<j < N),the Schrodinger equation is transformed from Cartesian to
internal coordinates.

A scale factor, k(D) = D2ano, with ano = 7= and who = D3who, is
used to regularize the large-dimension limit by defining dimensionally-scaled
oscillator units. Substituting scaled variables, r ; = ri/x(D), with E = ;5=

and H = 1. into the similarity-transformed Schrodinger equation[34, 107]
and defining 6 = 1/D and n = m = 1 gives:
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and T is the Gramian determinant with elements y;;, and I'® is the deter-
minant with the i row and column deleted. The barred quantities are
scaled by k(D). The interaction potential, V' int, reduces to a square well for
D = 3. The value of the constant b’ yields a scattering length of infinity when
0=1.0.V o isscaled to smaller Valuef; to reach the weaker inte)ractions of the

BCS regime. The argument ®;; = ¢ ° 38r —""\/; a-35R—da wherer j=

r2+r;2—2r r jy; is the interatomic separation, R is the dimensionally-
scaled range of the square-well potential, and a is a constant that softens the
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potential as D — co. R is selected so R << ano (ano = n/(mwno)) and is

extrapolated to zero-range interaction.
Atthe D — oo limit, the second derivative terms of the kinetic energy drop

out resulting in a static zeroth-order problem with an effective potential, V'

_ N _
V elr ,y; 6) = Ul 58)+V wnf 56)
=1
vy _
+ V i 5 Y35 6). ()]
i=1 j=i+1

The minimum of V corresponds to a large-dimension maximally-symmetric
configuration with all radii, r ;, and angle cosines, y;;, of the particles equal,

i.e.whenD — oo, r =7 . 1<i<N)andy;j=y. (1<i<j<N).

2.2.2 The Dimensional Expansion

The energy minimum as § — 0, E -, is the starting point for the 1/D expan-
sion. The N(N + 1)/2 internal coordinates, r ; and yj, are expanded as:
r =T »+8Y2r [ andyy = y. + 6Y2y; setting up a power series in §v2
about the D — co symmetric minimum. The primed variables, » ; and y’;,
are dimensionally-scaled internal displacement coordinates. Expansions of the
Hamiltonian, wave function, and energy in powers of 62 are:

_ L — e( ) —
H=H,+8§:H,+6§ &% H;
RO
O(r; ,y)= 6= @ (10)
()

where

H:l =E2i171=0, (12)
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and they ,, are the components, r ; andy';;, of the vector of dimensionally-
scaled internal displacement coordinates (See Egs. (17)-(18) in Ref. [18].)

y = (15)

The superprescript on the F and G tensors in Egs. (13)-(14) denotes the
order in /2 in the sum overj in Eq. (10). The subprescripts indicate the rank,
R, of the tensors. The G elements are defined from the first-order derivative
terms, T , of the Hamiltonian while the F elements contain the first-order
potential terms from V ¢fr. Appendix B of Ref. [62] gives formulas for the F
and G elements.

2.2.3 Symmetry Coordinates and Normal Modes

According to Egs. (10) and (13), H - contains contributions from all terms in
the Hamiltonian, including the interparticle interaction, through first order in
the displacements from the maximally-symmetric structure. H , has the form of
a multidimensional harmonic oscillator, so the first-order wave function can be
expressed in terms of the normal mode basis whose frequencies and coordinates
include effects of the many-body interactions of the particles through first
order. Since H , is invariant under Sy, the normal modes transform under
irreducible representations (irreps.) of the Sy group. For the r ' vector, the
irreps. are [N ] and [N — 1, 1], while for the y vector, the irreps. are [N ],
[N—1, 1],and [N — 2, 2].

The normal mode coordinates and their frequencies are obtained using
a quantum chemistry method, the FG method developed by Wilson in
1941[108], which has been used extensively to study molecular normal mode
behavior[109]. The determination of the normal modes coordinates[34] and
their frequencies[33] was achieved analytically using group theoretic tech-
niques. The five irreducible representations of Sy[110, 111] are labelled
0+,07,1% 17, 2[33] where the N (N —3)/2 normal modes of type 2 are phonon
modes; the N — 1 modes of type 1~ exhibit single-particle i.e. particle-hole
radial excitation behavior; the N — 1 normal modes of type 1+ have single-
particle/particle-hole angular excitation behavior; the single 0* normal mode
is a symmetric bend/center of mass motion, and the single 0™ normal mode is
a symmetric stretch/ breathing motion. These motions are analyzed in detail
in Ref. [98]. The energy through first order in § = 1/D is: [33]

_ L 1
E=E, +6 (et ;i) op +vo (16)
u={0%* 1*, 2}

where n,, is the total normal mode quanta with frequency w ,, ; u the normal
mode label (0+, 07, 1+, 17, 2), and v, a constant. The multiplicities are: do. =

1, do- =1,di: =N —1,di- =N —1, &= NN — 3)/2.



Springer Nature 2021 IATEX template

8  Exploring the transition from BCS to unitarity using normal modes: energies, entropi
Normal modes for the a = [N] and [N — 1( 1] sectors in terms of sym1}1etry
coordinates [§{a:]§ are given by: % = ce cos 02 [S‘;_Jg + sin 91[8‘1? 1: [34]

where cos 8¢ and sin 6¢ are mixing coefficients and the + refer to 0o+ and 0~

for the [N]sectorand1 " and 1~ for the [N — 1, 1] sector. The 2 normal mode
is: q'[N_z’ 2] _ oIN-2, 21glN-2, 2]
Y

2.2.4 Applying the Pauli Priniple

The energy expression, Eq. (16), gives the energy of the ground state as well as
the excited state spectrum. The Pauli allowed states are determined by setting
up a correspondence between the states identified by normal mode quantum
numbers |no:, no-, ni1., n1-, n2 > and the non-interacting states of the trap
with v;, the radial quantum number and I;, the orbital angular momentum

quantum number of the three dimensional harmonic oscillator (Veent(1;) =
Lmaw3.1). These single-particle quantum numbers satisfy n; = 2v; +{i, where

n; is the ith particle energy level quanta defined by: E = .N ni + 3 Nwho =
1=1
i.i L (2vi+ 1) +3 N@ho. The states of the harmonic oscillator ha\27e known
constraints due to antisymmetry that can be transferred to the normal mode
representation in the double limit D — oo, wp, — o0 where both represen-
tations are valid. The radial and angular quantum numbers separate at this
double limit resulting in two conditions[17, 86]:

N N
| I |

2no- +2n1- =  2Vi, 2No+ + 21+ +2nz2= [ (17)
i=1 i=1

Egs. (17) define a possible set of normal mode states |no-, no-, ni+, ni-, n2 >
consistent with an antisymmmetric wave function from the set of harmonic
oscillator configurations that are known to obey the Pauli principle. As par-
ticles are added at the non-interacting wn, — oo limit, additional harmonic
oscillator quanta, v; and [, are, of course, required by the Pauli principle as
fermions fill the harmonic oscillator levels. Equivalently, this corresponds to
additional normal mode quanta required to ensure antisymmetry as the normal
modes begin to reflect the emerging interactions. This strategy is analogous
to Landau’s use of the non-interacting system in Fermi liquid theory to set up
the correct Fermi statistics as interactions evolve adiabatically[112].

3 Application: Ultracold Fermi Gases from
BCS to Unitarity

I assume an N -body system of fermions, with equal numbers of “spin up”
and “spin down” fermions and L = o symmetry. The particles are con-
fined by,a spherically-symmetric harmonic potential with frequency wno so
ar(= n/(mwn)) and wp, are the characteristic length and energy scales
of the trap, representing the largest length scale and smallest energy scale of
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the problem. An attractive square-well potential of radius R is set up with a
potential depth parameter V' ,, in scaled units which is varied from a value of
1.0 where the magnitude of the s-wave scattering length, as, is infinite to zero
as the gas becomes weakly interacting in the BCS regime. The range is chosen
such that R < ano.(See Eq. (8))

When the scattering length as is much smaller than the interparticle
spacing the system is considered weakly interacting. To reach the strongly
interacting unitary regime, a Feshbach resonance can be tuned using an exter-
nal magnetic field so that the scattering length becomes much larger than
the other length scales of the problem. The system is strongly interacting in
this regime and is independent of the microscopic details acquiring universal
behavior.

I apply the full SPT many-body formalism defining the internal dis-
placement coordinates and determining symmetry coordinates, normal mode
coordinates and frequencies as a function of N . The energy expression of
Eq. (16) gives the ground state energy as well as the excited state spectrum
used to construct the partition function. Values of N were chosen in the range
10 < N < 30 which had produced excellent results in the unitary regime. For
the thermodynamic quantities, converging the partition function for higher
values of N becomes extremely difficult.

The canonical partition function is defined as: Z = jw:O g;exp(—E;/T),
where Ej is a many-body energy, T is the temperature (kg = 1), and g; is
the degeneracy of E;. To determine a particular degeneracy, I search for all
the partitions of the N particles into different levels, n;, i = 1, ,, N that yield
the correct E;. For each partition, I find the possible quantum numbers /; and
v; of the occupied sublevels for all possible particle arrangements. Gathering
these statistics yields the degeneracy as well as the sums over [; and v; for this
partition. I then use Eq. (17) to assign the normal mode quantum numbers to
ensure antisymmetry. The quanta corresponding to the lowest normal mode
frequencies are selected to yield the lowest energy for each excited energy level.
This gives occupation in n;, the phonon modes, and in ni-, the particle-hole
radial excitation modes, which have the lowest angular and radial frequencies
respectively. The conditions are:

N N
L L

2ni1- = 2V, 2n2 = ;. (18)
i=1 i=1

Thus, the enforcement of the Pauli principle yields occupation in different

normal modes for each state determining the energy as well as character of the
state since the normal modes have clear dynamical motions[98].

3.1 Ground state energies from BCS to Unitarity

Ground states energies have been determined for trapped Fermi gases across
the transition from BCS to unitarity using the SPT formalism. The SPT ener-

gies as a function of V', are shown in Fig. 1 from a value of V' , =108 deep in
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the BCS regime to a value of V' , = 1.0 at unitarity. The energies are normal-
ized by the noninteracting energies, Enr, and increase rather rapidly from the
values at unitarity converging to the expected noninteracting energies, Enr
as V o — 0. The energies at unitarity were determined in a previous study[17]
and compared to other theoretical values, agreeing closely with benchmark
auxilliary Monte Carlo results[113] for N < 30.

Unlike many approaches in the literature that use the s-wave scattering
length, as, to set up a contact interaction for the interparticle interaction,
the SPT method does not explicitly use the scattering length to define the
interaction term. (The square-well potential has a scattering length associated
with it, however, the solution of the perturbation equations is only through first
order, so the results reflect only the first order terms from this potential, not
the full scattering length.) To compare to both experimental and theoretical
results in the literature, I have used simple interpolation between the SPT
ground state energies across the transition with ground state energies in the
literature that have been obtained using an explicit scattering length in the
interaction term. This connects the interaction parameter V ,used in my SPT
calculation to a value of the scattering length in a study using an explicit
scattering length in the interaction term. (Because these two parameters have
very different ranges (0 < V' ¢ < 1.0; — < a5 < 0) determining a scale factor
between the parameters is probably not as accurate as interpolation.)

I chose to use the ground state energies from a density functional
calculation[114] which were obtained by fitting their interaction parameters to
very accurate energies for the trapped superfluid both at unitarity[115, 116]
and in the BCS regime[117]. In Fig. 2, the SPT energies are regraphed as
a function of these interpolated scattering lengths, specifically as a function
of 1/ks a; where ky is the Fermi momentum, and compared with available
theoretical results[118] (including the density functional results used for the
interpolation[114]) and experimental results[119]. For the experimental results
which are for potential energies across the transition, I have assumed that the
virial theorem which is valid at unitarity and at the independent particle limit
holds across the transition[114, 120]. Using the results of other energy stud-
ies across this transition for the interpolation yields comparable results as the
close agreement in Fig. 2 would suggest.

3.2 Entropies from BCS to Unitarity

Although thermodynamic quantities have been well studied in the unitary
regime, there are very few determinations of thermodynamic quantities across
the BCS to unitarity transition. I have chosen to look at entropies across this
transition since values for the entropy as a function of temperature have been
calculated at several values of 1/kf as using a T-matrix approach[121]. My
approach uses a straightforward calculation of the partition function, summing
over the spectrum of equally-spaced normal mode states that are chosen by
the Pauli principle.
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Fig. 1 The SPT ground state energies from BCS to unitarity as a function of V ofor N = 12.
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Fig. 2 Ground state energies from BCS to unitarity as a function of 1/kr as. My SPT
results are for N = 12 and are compared to experimental [119], density functional (DF)[114]
and variational Monte Carlo results (MC)[118].

In Fig. 3, I graph the entropy at 1/kf a; = —0.5 comparing to the theo-
retical results of Ref. [121]. For comparison, using the interpolated values of
the scattering length obtained above, I have plotted values for the entropy at
unitarity, 1/kfas = 0 (as = —o0), in Fig. 4 as a function of T/Tr (instead of
the previous S vs. E plot in Ref. [18]).

The partition function becomes difficult to converge as the interparticle
interaction decreases away from unitarity due to two effects: the narrowing
of the frequencies and the increase in the value of the frequencies as they
approach 2w, deep in the BCS regime. Larger frequency values mean that
the individual terms of the partition function decrease their contribution to
the total (a larger negative number in the numerator of each exponential) so
more states are needed for convergence. The narrowing of the frequencies as
the gaps shrink toward the BCS regime means that more states are becoming
accessible at a given temperature which again increases the number of terms
required for convergence. This increase in the number of states as interactions
weaken results in higher entropy values as can be seen in Fig. 3 for the weaker
interactions at 1/kras = —0.5 compared to unitarity results in Fig. 4. The
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Fig. 3 The entropy for N = 20 as a function of T/TF for 1/kta = —0.5. SPT results - blue
dots, T matrix results - orange triangles from Ref. [121]
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Fig. 4 The SPT entropy for N = 20 as a function of T/Tr at unitarity is compared to
experimental data: ENS[122] and theoretical results: NSR, GGo, and GG[123, 128].

number of states needed also increases as the temperature increases. These
three effects combine to make it very challenging to calculate thermodynamic
quantities accurately across the BCS to unitarity transition using straightfor-
ward summing over the available states. Alternative approaches to obtaining a
converged partition function are complicated by the need to enforce the Pauli
principle at each step.

3.3 Estimate of Critical Temperatures from BCS to
Unitarity

The critical temperature, T, is defined as the transition temperature from a
normal fluid to a superfluid that exhibits long-range order due to a macroscopic
occupation of the phonon ground state. This transition has been observed in
the heat capacity whose thermodynamic expression involves a derivative with
respect to the temperature. The heat capacity has a well-known, strong exper-
imental signature in the unitary regime, the lambda transition, which has been
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studied extensively both experimentally[4, 124—127] and theoretically[128—
131]. An estimate of the critical temperature in the unitary regime has also
been extracted from measurements of the entropy as a function of temperature
using the thermodynamic relation; 1/T = 9S/0E[124].

Theoretically, the sudden change in thermodynamic properties as the
ensemble becomes a superfluid is governed by the partition function and orig-
inates in the details of the lowest terms including the size of the gap and
the degeneracies of the lowest states. For a given spectrum, the partitioning
of particles among the available energy levels depends on a single parameter,
the temperature. As the temperature drops below the critical temperature,
one expects to see the occupation in the phonon ground state increase rapidly
due to the gap in the spectrum. This phenomenon is manifested by a sudden
change in the value of certain observables such as the specific heat.

In an earlier SPT study in the unitary regime[18], a calculation of the spe-
cific heat clearly showed a cusp at the lambda transition, yielding a critical
temperature of (T/Tr )c = 0.16 which was significantly lower than previ-
ous results in the literature for trapped Fermi gases: (T/Tr )¢ = 0.19[122],
0.20[130], 0.21[128, 131, 132], (T/TF)c = 0.27[126, 129, 131], 0.29[124, 131].

In the current study, I have determined the specific heat for weaker interac-
tions, 1/kfa = —0.02, 1/kfa = —0.5, and 1/kra = —1.0, graphing the results
in Fig. 5. As the interactions become weaker, the excitation gap decreases and
the cusp signifying a transition to a superfluid quickly softens. While still vis-
ible at 1/kra = —0.02 close to the unitary limit, the cusp is undetectable at
a value of 1/kfa < —o0.5 in the crossover region with only a slight inflection
visible, and by 1/kfa = —1.0 no sign is detected. Thus, observing an exper-
imental signature of this transition, certainly a definitive way to define the
critical temperature, is not always possible in all regimes.

Theoretically, several approaches have been used to estimate the critical
temperature at unitarity including a Monte Carlo study[130, 133] that uses
the behavior of a correlation function to estimate the critical temperature,
and an auxiliary field quantum Monte Carlo approach that determines the
critical temperature from a change in the behavior of the thermodynamic
energy as a function of temperature[129]. Along the entire transition from BCS
to unitarity, the critical temperature has been calculated by solving the gap
equation self-consistently with the number equation under the condition that
the order parameter goes to zero as the temperature approaches the critical
temperature, T¢, from below, i.e. long-range order is lost. These equations
have been solved at different levels of approximation from mean field which
yields the well known BCS results to solutions in strongly interacting regimes
near unitarity that include full fluctuations[134—-136].

The SPT approach offers an alternative, straightforward way to estimate
the critical temperature across the entire transition. Using the Pauli principle,
the first excited state above the ground state can be determined along the tran-
sition. This excited state involves single-particle excitations while the ground
state is composed of only phonon normal modes. The difference between these
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two states provides an estimate of the critical temperature as simply the tem-
perature equivalent: E.. — Egs = kgTc. This estimate is graphed in Fig. 6
normalized by the Fermi temperature Tr, Er = (3N)¥3nwn, = kgTr, and
compared to other theoretical results in the region near unitarity and to
the BCS expression, T¢/Tr = 0.277 exp(st/(2ks a) valid for 1/kfa < —1.0.
The SPT results are slightly higher than the BCS results, showing a gradual
increase from the deep BCS regime toward unitarity and then a rapid increase
for 1/kra = —1.0 as the interactions approach unitarity. The curve converges
at unitarity at (7/Tr)c = 0.18 in reasonable agreement with several other
theoretical approaches[122, 128, 130-132]
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3.4 The breathing mode frequency from BCS to
Unitarity.

The investigation of collective excitation modes has long been used to gain
insight into the behavior of many-body systems. The excitation frequencies
of ultracold Fermi gases have been studied intensely across the BEC-BCS
transition. The radial compression or “breathing” mode in a cylindrical poten-
tial has been of particular interest due to a surprising feature observed
in the regime of strong interactions, specifically an abrupt decrease in the
frequency near unitarity[4, 137—-139]. This minimum has been confirmed
theoretically[140—-142].

The microscopic basis for this minimum in the breathing mode has been
attributed to the formation of Cooper pairs as unitarity is approached which
decreases the frequency as the gas becomes more compressible[142]. It has also
been suggested from the observation of this minimum coupled with an analysis
of the corresponding damping time, that this feature could be a signature of a
transition from a superfluid to a collisionless phase[4, 137-139] as interactions
weaken toward the independent particle regime.

In my earlier study of the SPT frequencies, both radial frequencies had a
broad minimum as a function of the interparticle interaction strength param-
eter, V o[19]. To compare to existing results in the literature, I have graphed
in Fig. 7 the SPT radial breathing frequency wo- as a function of the param-
eter 1/N ¥/6a through the region of the minimum. This figure clearly shows
a minimum for the SPT frequency between 1/N ¥/6a = —1.0 and unitarity,
1/NV%a = 0, in close agreement with the previous experimental and theoret-
ical results[4, 138, 140—142]. The SPT minimum is broad in Fig. 2 in Ref. [19]
graphed as a function of V_, on a log scale spanning several orders of magni-
tudefromV (=103toV (= 1.0, but is quite sharp when graphed as a linear
function of —1/N v6a in Fig. 7 where it maps into a small region between
1/N¥6a = —1.0 and 1/N¥éa = 0.

When the other SPT radial excitation, w:-, which is a single-particle exci-
tation is plotted as a function of 1/N “%qa, its minimum is visible, but quite
small.

The analytic form of the SPT normal modes offers an opportunity to ana-
lyze the microscopic dynamics responsible for this minimum thus offering an
alternative to previous suggestions involving Cooper pairing or transitioning
to a collisionless regime. By tracking the contribution of different terms in the
Hamiltonian to the analytic expression for the frequency across the transi-
tion, one can understand what is happening microscopically in this approach
to produce this minimum.

Understanding the microscopic dynamics of the minimum in the radial breath-
ing frequency.. An analysis of the radial breathing frequency wo- is given in
Appendix C in Ref. [19] in terms of the FG matrix elements from the first-
order Hamiltonian terms (Eq. (13)). The formula derived in this Appendix for
wo- in terms of the FG elements is:
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v
Wo- =  GaFa+ (N — 1)Gal} (19)
where G, = 1, F; and Fp involve_derivatives of V .t (See Eq. 9.) which is
a sum of the confining potential V' conf, centrifugal potential V' cent = U , and
interparticle interaction potential V' int:

Vet=U+V conf +V int. (20)
yielding three terms for F,: F, = Fconf+Fcent 4 Fint and one nonzero term for
Fy involving the interaction potential: F}, = Fjnt. The term F,  is a constant
equal to 1. All the terms are explicitly defined in Appendix B in Ref. [19].

As in the analysis of the angular frequencies in Section VI of Ref. [19], it is
useful to track the magnitude of y.., the angle cosine of each pair of particles
at the minimum of the maximally-symmetric structure at large dimension.
Early dimensional scaling work identified a nonzero value of this parameter
as a signature of the existence of correlation between the particles. Mean-field
results have y.. = 0 corresponding to no correlation between the particles,
while increasing values of y. indicated stronger and longer-range correlation
effects.

Consider the independent particle limit, i.e. collisionless regime, with no
interparticle interactions so V' ¢ = 0 and thus no correlations between the par-
ticles i.e. y» = 0 so only the harmonic trap is affecting the particles which, of
course, are also obeying the Pauli principle. Most terms in the expression for
@ o in Eq. (19) are zero. The only nonzero terms are’® = 1 from the trap
potential and Fgent = 3 which originates in the kinetic energy, giving F, = 4,
Fp = 0 S0 wo- = 2wpe as expected and confirmed in the laboratory. (See
Appendix F in Ref. [19].) As interactions are introduced, y.. assumes a small
nonzero value, signaling the existence of weak correlations. This nonzero value
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means that all terms in the expression for w o~ are nonzeroFt, begins to
decrease, while Fint and ant increase. Along the BCS to unitarity transition,
the value of @ o - is a balance between the centrifugal term which is decreas-
ing and the interaction terms which are increasing as interactions (V ,) and
correlations (y.) both increase from BCS toward unitarity. The minimum in
the frequency occurs from the continued decrease in the centrifugal terms just
before the increase in the interaction terms dominates.

Microscopically, one can understand what is happening based on this anal-
ysis of the Hamiltonian terms. The increase in the correlated motion of the
particles as tracked by the increase in y.. minimizes the interparticle inter-
actions resulting in slower oscillations of the breathing mode. Eventually the
increase in V o, i.e. the increased strength of the interparticle interactions will
lead to more rapid oscillations i.e. an increase in the frequency as unitarity is
approached. The gradual decrease observed when w , - is plotted as a function
of V o in Ref. [19] appears as a sudden, quite narrow dip in the frequency when
graphed as a function of 1/(IN ¥¢a). This is due to the rapidly changing scatter-
ing length in this region as unitarity is approached. In summary, the minimum
can be understood as the result of two competing factors that affect the
microsopic behavior without invoking Cooper pairs: the increase in correlation
which minimizes the interparticle interactions thus slowing down the frequency
of the oscillations and second, the increasing strength of the interparticle
interactions which eventually dominates and speeds up the frequency.

4 Discussion and Conclusions

In this study, I explored the ability of normal modes to describe the behavior
of ultracold Fermi gases including superfluidity across the BCS to unitarity
transition without assuming Cooper pairing. In particular, I calculated the
following observables: ground state energies, thermodynamic entropies, critical
temperatures and the radial breathing frequency across this transition using
normal modes and compared to available experimental and theoretical results.

This study has yielded close agreement with both experimental and the-
oretical results for the ground state energies, thermodynamic entropies and
critical temperatures at weaker interactions away from unitarity. These cal-
culations tested the lowest frequencies relevant to ultracold systems as well
as the spectrum of frequencies needed for the partition function. In all of
these calculations, the Pauli principle plays a central role in choosing the
states that contribute to these properties. The final study involved a single fre-
quency, the breathing frequency, which did not contribute to the earlier studies
due to its larger value. The observed dip in this SPT frequency near unitar-
ity was in close agreement with results first observed in the laboratory and
later confirmed theoretically, suggesting that the frequencies produced by this
first-order SPT Hamiltonian are based on microscopic dynamics that produce
observable effects.
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The normal coordinates constitute beyond-mean-field, analytic solutions to
a many-body Hamiltonian and offer microscopic insight into the evolution of
properties across the BCS to unitarity transition. The analytic forms for the
frequencies and coordinates allow a detailed look at the dynamics by track-
ing the effect of the Hamiltonian terms across the transition. As correlations
increase toward unitarity as tracked by the parameter y., the dependence of
properties on the details of the interparticle interactions is minimized consis-
tent with the universal behavior which is also seen at the independent particle
limit. The Pauli principle, of course, is dominating the dynamics at both limits
underpinning the universal behavior in these regimes.

The results of this study are based on an exact solution of the first-order
equation of SPT perturbation theory which contains beyond-mean-field effects.
Higher-order terms that have been formulated, but not implemented, are not
included. These terms could become significant in some regimes changing the
dynamics. The SPT formalism also does not offer a mechanism for the two-
body pairing that occurs as the ensemble transitions to the BEC regime.

The successful determination of these properties across the BCS to uni-
tarity transition using these first-order solutions supports a normal mode
description of superfluidity with a clear picture of the evolving microscopic
dynamics across a broad range of interparticle interaction strengths and
represents an interesting alternative to Cooper pairing models.
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