
Springer Nature 2021 LATEX template 
 

 

 

 

 

 

 

 

Exploring the transition from BCS to 

unitarity using normal modes: energies, 

entropies, critical temperatures and 

excitation frequencies 

D. K. Watson 

Homer L. Dodge Department of Physics and Astronomy, 

University of Oklahoma, Norman, 73019, Oklahoma, USA. 

 
 

Contributing authors: dwatson@ou.edu; 
 
 
 

ORCID iD: D.K. Watson https://orcid.org/0000-0001-8678-7745 

Acknowledgments: This research was funded by the National Science Founda- 

tion under Grant No. PHY-2011384. 

1 Introduction 

The BCS to unitarity transition for ultracold gaseous fermions has been inves- 
tigated intensely both experimentally and theoretically since this transition 
was first achieved in the laboratory[1–9]. Theoretical methods typically assume 
that the atomic fermions form Cooper pairs to explain the emergence of 
superfluid behavior[10–16]. When a Feshbach resonance is tuned to weak inter- 
actions, the neutral atoms bind into loosely-bound pairs whose size decreases 

as the interparticle interaction strength increases toward unitarity. Eventually 
diatomic molecules are produced that condense in the BEC regime. In materi- 
als that support superconductivity, the binding of electrons into Cooper pairs 
at long distances is thought to be mediated by phonon interactions in the 

underlying material producing a weak attraction[10–14]. 
The ability of normal modes to describe superfluidity in the strongly inter- 

acting unitary regime has previously been investigated for ultracold Fermi 
gases[17, 18], obtaining results for ground state energies comparable to bench- 
mark results[17] and thermodynamic quantities in excellent agreement with 
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experiment[18]. The current study tests this normal mode picture away from 
unitarity. A preliminary study was completed that looked at the behavior 
of the N -body analytic normal mode frequencies from the BCS regime to 

unitarity[19]. This study confirmed behavior seen in the laboratory with the 
emergence of excitation gaps that increased from extremely small gaps deep in 
the BCS regime to a maximum at unitarity. The microscopic dynamics respon- 
sible for the emergence of these gaps was investigated using the analytic forms 
of the normal mode functions and a microscopic basis for universal behavior 

at unitarity was proposed. 
In this paper, I now explore the ability of these normal modes to describe 

observables away from the strongly interacting unitary regime including 
ground state energies, thermodynamic entropies, critical temperatures, and the 
breathing excitation frequency. This approach models the physics by assuming 

many-body pairing manifested through normal modes, i.e. coherent, collision- 
less motion of the fermions that minimizes interparticle interactions and makes 
two-body pairing irrelevant since it is impossible to discern which fermion is 
paired with another fermion. Normal mode functions naturally provide simple, 

coherent macroscopic wave functions that maintain phase coherence over the 
whole ensemble, and give rise to “quasiparticles” defined by the excitations 
between the modes. 

Normal mode motions exist at all scales in our universe from vibrating 
crystals[20] to oscillating black holes[21]. The particles in a normal mode move 

in synchrony with the same frequency and phase, allowing a description of the 
complex, simultaneous motions of many interacting particles in terms of collec- 
tive behavior. These modes are a manifestation of the widespread appearance 
of vibrational motions that occur in nature in diverse media and across many 
orders of magnitude[20–32]. When higher-order effects are small, vibrational 

behavior couples into stable collective motion, thus incorporating the many- 
body effects of large ensembles into simple dynamic motions. These collective 
motions correspond to the eigenfunctions of an approximate Hamiltonian and 
thus possess some stability over time. Normal modes reflect the symmetry 
that is present in this approximate Hamiltonian and can offer beyond-mean- 

field analytic many-body solutions and physical intuition into the microscopic 
dynamics responsible for diverse phenomena. 

 
 

2 Symmetry-Invariant Perturbation Theory: A 
Group Theoretic and Graphical Approach 

2.1 Background 

The formalism used to obtain these normal modes is called symmetry-invariant 
perturbation theory (SPT), a first-principle, non-numerical method that uses 

group theoretic and graphical techniques to solve many-body problems[33–38]. 
This method, which has no adjustable parameters, uses the inverse dimension- 
ality of space as the perturbation parameter. The study of physical systems 
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using 1/D or 1/N expansions was originally developed in quantum chromo- 
dynamics by t’Hooft[39], and was subsequently used in condensed matter 
by Wilson[40] to determine critical exponents for D = 3 phase transitions 
starting from exact values at D = 4. Dimensional expansion techniques are 

now found in many areas of physics including atomic[41–47] and molecular 
physics[41–43, 48–59], Bose gases[60–62], as well as Fermi gases in the uni- 
tary regime[63–66], relativistic quantum systems[67–71], nuclear physics[72, 
73], quantum field theory[74–80], condensed matter physics[40, 81–83], and 
statistical physics[84, 85] among others. 

The SPT formalism used in the current study was developed to handle 
the large systems of particles being studied in the atomic physics/condensed 
matter communities at ultracold temperatures, initially applied to bosonic 
systems[33–36, 62] and more recently to ultracold Fermi gases[17, 18] requiring 
the enforcement of the Pauli principle[17, 18, 86, 87]. The current version has 

been formulated through first order for L = 0, three-dimensional systems with 
completely general interaction potentials and spherically-symmetric confining 
potentials. Unlike conventional methods for which the resources for an exact 
solution of the quantum N -body wave function scale exponentially with N , 

typically doubling for every particle added[88, 89], the SPT approach employs 
symmetry to attack the N -scaling problem[33–35]. This is accomplished by 
formulating a perturbation series about a large-dimension configuration whose 
point group is isomorphic to the symmetric group SN , and then evaluating 
the series for D = 3. The perturbation terms are evaluated for large dimension 

where the structure has maximum symmetry yielding terms that are invariant 
under the N ! operations of the SN point group. This strategy produces a prob- 
lem order-by-order that no longer scales with N [90, 91], and in principle, can 
be solved exactly, analytically using symmetry. Although extremely challeng- 
ing, the mathematical work at each order can be saved[92] and used to study 

a problem with a new interaction potential significantly reducing numerical 
demands. 

Even at the lowest perturbation order, the SPT method includes beyond- 
mean-field effects that underlie the excellent results achieved at first order 
using this SPT method[17, 18, 62] as well as earlier dimensional approaches[93– 

97]. This formalism has also been implemented for a model problem 
of harmonically-confined, harmonically-interacting particles that is exactly 
solvable[37, 38, 86, 87]. Accuracy of ten or more digits was found for the wave 
function compared to the exact wave function obtained independently, veri- 
fying this general many-body formalism for a three-dimensional, many-body 

system that is fully-interacting [37] including the formulas derived analytically 
for the N -body normal mode coordinates and frequencies. 

Initial studies of fermionic systems focused on the unitary regime. The 
heavy numerical demands of enforcing antisymmetry in fermion systems in con- 

ventional theoretical approaches are avoided in the SPT approach by enforcing 
the Pauli principle “on paper” using specific occupations of the normal modes 
at first order[17, 18, 86, 87]. (See Section 2.2.4.) Beyond-mean-field ground[17] 
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and excited state[18] energies and their degeneracies have been calculated 
enabling the determination of a partition function and the calculation of ther- 
modynamic quantities[18, 87]. An accurate partition function requires many 

states chosen from the infinite spectrum by the Pauli principle, thus relating 
the Pauli principle to many-body interaction dynamics through the normal 
modes. 

The physical character of the analytic normal mode coordinates was investi- 
gated as a function of N with the goal of obtaining insight into the microscopic 

dynamics of cooperative motion[98] and the universal behavior at unitarity. 
This study found a smooth evolution as N increases from the expected behav- 
ior for few-body systems whose motions are analogous to those of molecular 
equivalents such as ammonia and methane, to the coherent motions observed 
in large N ensembles. Furthermore, the transition from few-body to large 

N behavior occurs at surprisingly low values of N (N ≈ 10) validating the 
results of numerous few-body studies[99–106]. This evolution in character from 
few-body to large ensembles is dictated by rather simple analytic forms that 
nevertheless take into account the complicated interplay of the particles as they 

interact and cooperate to create coherent macroscopic motion. This behavior 
was dependent primarily on the symmetry present in the Hamiltonian, and 
thus could be relevant for diverse phenomena at different scales if the same 
symmetry exists or is dominant. 

In the current paper, I now investigate whether these first-order normal 

mode solutions can accurately determine observables away from universal 
behavior of the strongly interacting unitary regime. 

 

2.2 The SPT formalism 

This section contains a brief summary of the SPT formalism. More detailed 
summaries can be found in Refs. [18, 19]. 

 
2.2.1 The Hamiltonian 

For N interacting particles, the Schrödinger equation in D dimensions is: 
 
 

HΨ = 

"
XN

 
 
 
hi + 

 
N −1 

gij 

#

 

 
 

Ψ = EΨ , (1) 
i=1 i=1 j=i+1 

~2  D 
∂2 

 

 

 
 

    D 2

  

 
gij = Vint 

 
 

     D 
(xiν − xjν)2

  

, 

(2) 

where hi is the single-particle Hamiltonian, gij a two-body interaction poten- 
tial, xiν the νth Cartesian component of the ith particle, and Vconf is a 

spherically-symmetric confining potential[33–35]. Defining internal coordinates 
as the D-dimensional scalar radii ri of the N particles from the center of the 

ν=1 

N 

∂x 2 
iν 

+ Vconf , 
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trap and the cosines γij of the N (N − 1)/2 interparticle angles between the 
radial vectors: 

ri =
    D

 

 
2 ,  (1 ≤ i ≤ N ) , 

 

γij 

 

= cos(θij ) = 
(  D

 

 

xiν 

 

xjν 

) 
/rirj 

(3) 
, 

(1 ≤ i < j ≤ N ) , the Schr ödinger equation is transformed from Cartesian to 
internal coordinates. 

 

A scale factor, κ(D) = D2āho , with āho   n  
mω̄ ho 

and ω̄ho = D3ωho , is 

used to regularize the large-dimension limit by defining dimensionally-scaled 
oscillator units. Substituting scaled variables, r¯i = ri/κ(D), with Ē = E 

nω¯ho 

and H̄ =  H  , into the similarity-transformed Schrödinger equation[34, 107] 

and defining δ = 1/D and n = m = 1 gives: 
 

H̄ Φ =
 
δ2T  ̄+ Ū  + V¯

conf + V īnt
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0
 

1 − 3b′δ 
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(1 − tanh Θ 

 

i,j ) , (8) 
i=1 j=i+1 

 

and Γ is the Gramian determinant with elements γij, and Γ(i) is the deter- 
minant with the ith row and column deleted. The barred quantities are 
scaled by κ(D). The interaction potential, V¯

int, reduces to a square well for 
D = 3. The value of the constant b′ yields a scattering length of infinity when 
V¯

0 = 1.0. V¯
0 is scaled to smaller values to reach the weaker interactions of the 

BCS regime. The argument Θij =  c¯0  

( 
r īj − ᾱ − 3δ

 
R̄ − ᾱ

 ) 
where r īj = 

  
r¯2 + r¯2 − 2r īr j̄γij is the interatomic separation, R̄ is the dimensionally- 

 

∂r̄ i 
2 

i j/=i k/=i 

scaled range of the square-well potential, and ᾱ is a constant that softens the 

T̄  = 

(5) 

jk ik 
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potential as D → ∞. R is selected so R << aho (aho = n/(mωho)) and is 
extrapolated to zero-range interaction. 

At the D → ∞ limit, the second derivative terms of the kinetic energy drop 

out resulting in a static zeroth-order problem with an effective potential, V¯
eff: 

 

N 

V ēff(r ,̄ γ; δ) = Ū  (r̄ i; δ) + V c̄onf(r̄ i; δ) 
i=1 

N −1 

+ V īnt(r ī, γij; δ) . (9) 
 

 

 

The minimum of V¯
eff corresponds to a large-dimension maximally-symmetric 

configuration with all radii, r¯i, and angle cosines, γij, of the particles equal, 

i.e. when D → ∞, r¯i = r¯∞ (1 ≤ i ≤ N ) and γij = γ∞ (1 ≤ i < j ≤ N ). 

 
2.2.2 The Dimensional Expansion 

The energy minimum as δ → 0, Ē∞ ,  is the starting point for the 1/D expan- 

sion. The N (N + 1)/2 internal coordinates, r¯i and γij, are expanded as: 

r¯i = r¯∞ + δ1/2r¯i
′ and γij = γ∞ + δ1/2γ′

ij setting up a power series in δ1/2 

about the D → ∞ symmetric minimum. The primed variables, r¯i
′ and γ′

ij , 
are dimensionally-scaled internal displacement coordinates. Expansions of the 
Hamiltonian, wave function, and energy in powers of δ1/2 are: 
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where  
H̄ ∞  = Ē ∞  (11) 

H̄− 1  = Ē2n−1 = 0 , (12) 

H̄  = − 
1 (0)
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and the y¯ν
′ 
i 

are the components, r¯i
′ and γ′

ij , of the vector of dimensionally- 
scaled internal displacement coordinates (See Eqs. (17)-(18) in Ref. [18].) 

 

y¯′ =

  
r¯′

  

, (15) 

The superprescript on the F and G tensors in Eqs. (13)-(14) denotes the 

order in δ1/2 in the sum over j in Eq. (10). The subprescripts indicate the rank, 
R, of the tensors. The G elements are defined from the first-order derivative 
terms, T¯, of the Hamiltonian while the F elements contain the first-order 
potential terms from V¯

eff. Appendix B of Ref. [62] gives formulas for the F 
and G elements. 

 

2.2.3 Symmetry Coordinates and Normal Modes 

According to Eqs. (10) and (13), H̄ 0  contains contributions from all terms in 
the Hamiltonian, including the interparticle interaction, through first order in 
the displacements from the maximally-symmetric structure. H̄ 0  has the form of 
a multidimensional harmonic oscillator, so the first-order wave function can be 
expressed in terms of the normal mode basis whose frequencies and coordinates 
include effects of the many-body interactions of the particles through first 
order. Since H̄ 0  is invariant under SN , the normal modes transform under 
irreducible representations (irreps.) of the SN group. For the r¯′ vector, the 
irreps. are [N ] and [N − 1, 1] , while for the γ′ vector, the irreps. are [N ] , 
[N − 1, 1] , and [N − 2, 2]. 

The normal mode coordinates and their frequencies are obtained using 
a quantum chemistry method, the FG method developed by Wilson in 
1941[108], which has been used extensively to study molecular normal mode 
behavior[109]. The determination of the normal modes coordinates[34] and 

their frequencies[33] was achieved analytically using group theoretic tech- 
niques. The five irreducible representations of SN [110, 111] are labelled 
0+, 0−, 1+, 1−, 2[33] where the N (N −3)/2 normal modes of type 2 are phonon 
modes; the N − 1 modes of type 1− exhibit single-particle i.e. particle-hole 
radial excitation behavior; the N − 1 normal modes of type 1+ have single- 

particle/particle-hole angular excitation behavior; the single 0+ normal mode 

is a symmetric bend/center of mass motion, and the single 0− normal mode is 
a symmetric stretch/ breathing motion. These motions are analyzed in detail 
in Ref. [98]. The energy through first order in δ = 1/D is: [33] 

 

 
  

E = E∞ + δ

 

 

µ={0±, 1±, 2} 

 
1 

(nµ + 
2 

dµ)ω̄ µ + vo 

 

, (16) 

 

where nµ is the total normal mode quanta with frequency ω̄ µ ;  µ the normal 
mode label (0+, 0−, 1+, 1−, 2), and vo a constant. The multiplicities are: d0+ = 

1, d0− = 1, d1+ = N − 1, d1− = N − 1, d2 = N (N − 3)/2. 
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Normal modes for the α = [N ] and [N − 1, 1] sectors in terms of symmetry 

coordinates [Sα ′ ]ξ are given by: q′α = cα 
(
cos θα [Sα ]ξ + sin θα [Sα ]ξ

)
[34] 

 

± ±
+ −

 

is: q′[N −2, 2] = c[N −2, 2]S[N −2, 2] . 

 
2.2.4 Applying the Pauli Priniple 

The energy expression, Eq. (16), gives the energy of the ground state as well as 
the excited state spectrum. The Pauli allowed states are determined by setting 

up a correspondence between the states identified by normal mode quantum 
numbers |n0+ , n0− , n1+ , n1− , n2 > and the non-interacting states of the trap 

with νi, the radial quantum number and li, the orbital angular momentum 
quantum number of the three dimensional harmonic oscillator (Vconf(ri) = 
1 mω2 ri

2). These single-particle quantum numbers satisfy ni = 2νi +li, where 
 2 ho 

ni is the i th particle energy level quanta defined by: E =
  N  [

ni + 3 
] 
nωho = 

N 
i=1 

[
(2νi + li) + 3 

] 
nωho. The states of the harmonic oscillator have known 

constraints due to antisymmetry that can be transferred to the normal mode 

representation in the double limit D → ∞, ωho → ∞ where both represen- 

tations are valid. The radial and angular quantum numbers separate at this 
double limit resulting in two conditions[17, 86]: 

 
N N 

2n0− + 2n1− = 
L 

2νi , 2n0+ + 2n1+ + 2n2 = 
L 

li (17) 
 

Eqs. (17) define a possible set of normal mode states |n0+ , n0− , n1+ , n1− , n2 > 

consistent with an antisymmmetric wave function from the set of harmonic 
oscillator configurations that are known to obey the Pauli principle. As par- 

ticles are added at the non-interacting ωho → ∞ limit, additional harmonic 

oscillator quanta, νi and li, are, of course, required by the Pauli principle as 
fermions fill the harmonic oscillator levels. Equivalently, this corresponds to 
additional normal mode quanta required to ensure antisymmetry as the normal 
modes begin to reflect the emerging interactions. This strategy is analogous 

to Landau’s use of the non-interacting system in Fermi liquid theory to set up 
the correct Fermi statistics as interactions evolve adiabatically[112]. 

 

3 Application: Ultracold Fermi Gases from 
BCS to Unitarity 

I assume an N -body system of fermions, with equal numbers of “spin up” 
and “spin down” fermions and L = 0 symmetry. The particles are con- 
fined by a spherically-symmetric harmonic potential with frequency ωho so 

aho(=  n/(mωho)) and ωho are the characteristic length and energy scales 
of the trap, representing the largest length scale and smallest energy scale of 

for the [N − 1, 1] sector. The 2 normal mode 
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the problem. An attractive square-well potential of radius R is set up with a 

potential depth parameter V¯
0 in scaled units which is varied from a value of 

1.0 where the magnitude of the s-wave scattering length, as, is infinite to zero 
as the gas becomes weakly interacting in the BCS regime. The range is chosen 

such that R ≪ aho.(See Eq. (8)) 

When the scattering length as is much smaller than the interparticle 
spacing the system is considered weakly interacting. To reach the strongly 
interacting unitary regime, a Feshbach resonance can be tuned using an exter- 
nal magnetic field so that the scattering length becomes much larger than 

the other length scales of the problem. The system is strongly interacting in 
this regime and is independent of the microscopic details acquiring universal 
behavior. 

I apply the full SPT many-body formalism defining the internal dis- 

placement coordinates and determining symmetry coordinates, normal mode 
coordinates and frequencies as a function of N . The energy expression of 
Eq. (16) gives the ground state energy as well as the excited state spectrum 
used to construct the partition function. Values of N were chosen in the range 

10 ≤ N ≤ 30 which had produced excellent results in the unitary regime. For 
the thermodynamic quantities, converging the partition function for higher 
values of N becomes extremely difficult. 

The canonical partition function is defined as: Z = j
∞

=0 gj exp(−Ej/T ), 
where Ej is a many-body energy, T is the temperature (kB = 1), and gj is 
the degeneracy of Ej. To determine a particular degeneracy, I search for all 
the partitions of the N particles into different levels, ni, i = 1, , , N that yield 
the correct Ej. For each partition, I find the possible quantum numbers li and 
νi of the occupied sublevels for all possible particle arrangements. Gathering 
these statistics yields the degeneracy as well as the sums over li and νi for this 
partition. I then use Eq. (17) to assign the normal mode quantum numbers to 
ensure antisymmetry. The quanta corresponding to the lowest normal mode 
frequencies are selected to yield the lowest energy for each excited energy level. 

This gives occupation in n2, the phonon modes, and in n1− , the particle-hole 

radial excitation modes, which have the lowest angular and radial frequencies 
respectively. The conditions are: 

 
N N 

2n1− = 
L 

2νi, 2n2 = 
L 

li . (18) 
 

Thus, the enforcement of the Pauli principle yields occupation in different 
normal modes for each state determining the energy as well as character of the 
state since the normal modes have clear dynamical motions[98]. 

3.1 Ground state energies from BCS to Unitarity 

Ground states energies have been determined for trapped Fermi gases across 
the transition from BCS to unitarity using the SPT formalism. The SPT ener- 

gies as a function of V¯
0 are shown in Fig. 1 from a value of V¯

0 = 10−8 deep in 
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the BCS regime to a value of V¯
0 = 1.0 at unitarity. The energies are normal- 

ized by the noninteracting energies, ENI , and increase rather rapidly from the 
values at unitarity converging to the expected noninteracting energies, ENI 

as V¯
0 → 0. The energies at unitarity were determined in a previous study[17] 

and compared to other theoretical values, agreeing closely with benchmark 
auxilliary Monte Carlo results[113] for N ≤ 30. 

Unlike many approaches in the literature that use the s-wave scattering 
length, as, to set up a contact interaction for the interparticle interaction, 
the SPT method does not explicitly use the scattering length to define the 
interaction term. (The square-well potential has a scattering length associated 
with it, however, the solution of the perturbation equations is only through first 
order, so the results reflect only the first order terms from this potential, not 
the full scattering length.) To compare to both experimental and theoretical 
results in the literature, I have used simple interpolation between the SPT 
ground state energies across the transition with ground state energies in the 
literature that have been obtained using an explicit scattering length in the 
interaction term. This connects the interaction parameter V¯

0 used in my SPT 
calculation to a value of the scattering length in a study using an explicit 
scattering length in the interaction term. (Because these two parameters have 

very different ranges (0 ≤ V¯
0 ≤ 1.0; −∞ ≤ as ≤ 0) determining a scale factor 

between the parameters is probably not as accurate as interpolation.) 
I chose to use the ground state energies from a density functional 

calculation[114] which were obtained by fitting their interaction parameters to 
very accurate energies for the trapped superfluid both at unitarity[115, 116] 
and in the BCS regime[117]. In Fig. 2, the SPT energies are regraphed as 
a function of these interpolated scattering lengths, specifically as a function 

of 1/kf as where kf is the Fermi momentum, and compared with available 
theoretical results[118] (including the density functional results used for the 
interpolation[114]) and experimental results[119]. For the experimental results 
which are for potential energies across the transition, I have assumed that the 
virial theorem which is valid at unitarity and at the independent particle limit 

holds across the transition[114, 120]. Using the results of other energy stud- 
ies across this transition for the interpolation yields comparable results as the 
close agreement in Fig. 2 would suggest. 

 
 

3.2 Entropies from BCS to Unitarity 

Although thermodynamic quantities have been well studied in the unitary 
regime, there are very few determinations of thermodynamic quantities across 
the BCS to unitarity transition. I have chosen to look at entropies across this 

transition since values for the entropy as a function of temperature have been 
calculated at several values of 1/kf as using a T-matrix approach[121]. My 
approach uses a straightforward calculation of the partition function, summing 
over the spectrum of equally-spaced normal mode states that are chosen by 
the Pauli principle. 
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Fig. 1  The SPT ground state energies from BCS to unitarity as a function of V¯0 for N = 12. 
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Fig. 2 Ground state energies from BCS to unitarity as a function of 1/kf as. My SPT 
results are for N = 12 and are compared to experimental [119], density functional (DF)[114] 
and variational Monte Carlo results (MC)[118]. 

 

 

In Fig. 3, I graph the entropy at 1/kf as = −0.5 comparing to the theo- 

retical results of Ref. [121]. For comparison, using the interpolated values of 
the scattering length obtained above, I have plotted values for the entropy at 

unitarity, 1/kf as = 0 (as = −∞), in Fig. 4 as a function of T/TF (instead of 
the previous S vs. E plot in Ref. [18]). 

The partition function becomes difficult to converge as the interparticle 
interaction decreases away from unitarity due to two effects: the narrowing 

of the frequencies and the increase in the value of the frequencies as they 
approach 2ωho deep in the BCS regime. Larger frequency values mean that 
the individual terms of the partition function decrease their contribution to 
the total (a larger negative number in the numerator of each exponential) so 

more states are needed for convergence. The narrowing of the frequencies as 
the gaps shrink toward the BCS regime means that more states are becoming 
accessible at a given temperature which again increases the number of terms 
required for convergence. This increase in the number of states as interactions 
weaken results in higher entropy values as can be seen in Fig. 3 for the weaker 

interactions at 1/kf as = −0.5 compared to unitarity results in Fig. 4. The 
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Fig. 3 The entropy for N = 20 as a function of T/TF for 1/kfa = −0.5. SPT results - blue 
dots, T matrix results - orange triangles from Ref. [121] 
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Fig. 4 The SPT entropy for N = 20 as a function of T/TF at unitarity is compared to 
experimental data: ENS[122] and theoretical results: NSR, GG0, and GG[123, 128]. 

 

 
number of states needed also increases as the temperature increases. These 
three effects combine to make it very challenging to calculate thermodynamic 
quantities accurately across the BCS to unitarity transition using straightfor- 
ward summing over the available states. Alternative approaches to obtaining a 

converged partition function are complicated by the need to enforce the Pauli 
principle at each step. 

 
3.3 Estimate of Critical Temperatures from BCS to 

Unitarity 

The critical temperature, TC, is defined as the transition temperature from a 
normal fluid to a superfluid that exhibits long-range order due to a macroscopic 
occupation of the phonon ground state. This transition has been observed in 
the heat capacity whose thermodynamic expression involves a derivative with 
respect to the temperature. The heat capacity has a well-known, strong exper- 

imental signature in the unitary regime, the lambda transition, which has been 
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studied extensively both experimentally[4, 124–127] and theoretically[128– 
131]. An estimate of the critical temperature in the unitary regime has also 
been extracted from measurements of the entropy as a function of temperature 
using the thermodynamic relation; 1/T = ∂S/∂E[124]. 

Theoretically, the sudden change in thermodynamic properties as the 
ensemble becomes a superfluid is governed by the partition function and orig- 
inates in the details of the lowest terms including the size of the gap and 
the degeneracies of the lowest states. For a given spectrum, the partitioning 
of particles among the available energy levels depends on a single parameter, 

the temperature. As the temperature drops below the critical temperature, 
one expects to see the occupation in the phonon ground state increase rapidly 
due to the gap in the spectrum. This phenomenon is manifested by a sudden 
change in the value of certain observables such as the specific heat. 

In an earlier SPT study in the unitary regime[18], a calculation of the spe- 

cific heat clearly showed a cusp at the lambda transition, yielding a critical 
temperature of (T/TF )C = 0.16 which was significantly lower than previ- 
ous results in the literature for trapped Fermi gases: (T/TF )C = 0.19[122], 
0.20[130], 0.21[128, 131, 132], (T/TF )C = 0.27[126, 129, 131], 0.29[124, 131]. 

In the current study, I have determined the specific heat for weaker interac- 
tions, 1/kf a = −0.02, 1/kf a = −0.5, and 1/kf a = −1.0, graphing the results 

in Fig. 5. As the interactions become weaker, the excitation gap decreases and 
the cusp signifying a transition to a superfluid quickly softens. While still vis- 
ible at 1/kf a = −0.02 close to the unitary limit, the cusp is undetectable at 

a value of 1/kf a ≤ −0.5 in the crossover region with only a slight inflection 

visible, and by 1/kf a = −1.0 no sign is detected. Thus, observing an exper- 
imental signature of this transition, certainly a definitive way to define the 
critical temperature, is not always possible in all regimes. 

Theoretically, several approaches have been used to estimate the critical 

temperature at unitarity including a Monte Carlo study[130, 133] that uses 
the behavior of a correlation function to estimate the critical temperature, 
and an auxiliary field quantum Monte Carlo approach that determines the 
critical temperature from a change in the behavior of the thermodynamic 

energy as a function of temperature[129]. Along the entire transition from BCS 
to unitarity, the critical temperature has been calculated by solving the gap 
equation self-consistently with the number equation under the condition that 
the order parameter goes to zero as the temperature approaches the critical 
temperature, TC, from below, i.e. long-range order is lost. These equations 

have been solved at different levels of approximation from mean field which 
yields the well known BCS results to solutions in strongly interacting regimes 
near unitarity that include full fluctuations[134–136]. 

The SPT approach offers an alternative, straightforward way to estimate 
the critical temperature across the entire transition. Using the Pauli principle, 

the first excited state above the ground state can be determined along the tran- 
sition. This excited state involves single-particle excitations while the ground 
state is composed of only phonon normal modes. The difference between these 
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Fig. 5 The heat capacity showing the softening of the cusp as the interparticle interaction 
decreases from a maximum at unitarity: blue line 1/kf a = ∞; orange dashed line 1/kf a = 

−0.02; green dotted line 1/kf a = −0.5; red dot dashed line 1/kf a = −1.0. 
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Fig. 6 The critical temperature, TC /TF as a function of 1/kf a for 30 fermions compared to 
the BCS prediction (TC /TF = 0.277 exp(π/(2kf a)) valid for 1/kf a ≪ −1.0 and theoretical 

results: T matrix[134] and path integral[135] for −1.0 ≤ 1/kf a ≪ 0. 

 
 
 

 
two states provides an estimate of the critical temperature as simply the tem- 
perature equivalent: Eex − Egs = kBTC. This estimate is graphed in Fig. 6 

normalized by the Fermi temperature TF , EF = (3N )1/3nωho = kBTF , and 
compared to other theoretical results in the region near unitarity and to 
the BCS expression, TC/TF = 0.277 exp(π/(2kf a) valid for 1/kf a ≪ −1.0. 

The SPT results are slightly higher than the BCS results, showing a gradual 
increase from the deep BCS regime toward unitarity and then a rapid increase 
for 1/kf a ≥ −1.0 as the interactions approach unitarity. The curve converges 

at unitarity at (T/TF )C = 0.18 in reasonable agreement with several other 
theoretical approaches[122, 128, 130–132] 
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3.4 The breathing mode frequency from BCS to 
Unitarity. 

The investigation of collective excitation modes has long been used to gain 
insight into the behavior of many-body systems. The excitation frequencies 

of ultracold Fermi gases have been studied intensely across the BEC-BCS 
transition. The radial compression or “breathing” mode in a cylindrical poten- 
tial has been of particular interest due to a surprising feature observed 
in the regime of strong interactions, specifically an abrupt decrease in the 
frequency near unitarity[4, 137–139]. This minimum has been confirmed 

theoretically[140–142]. 
The microscopic basis for this minimum in the breathing mode has been 

attributed to the formation of Cooper pairs as unitarity is approached which 
decreases the frequency as the gas becomes more compressible[142]. It has also 
been suggested from the observation of this minimum coupled with an analysis 

of the corresponding damping time, that this feature could be a signature of a 
transition from a superfluid to a collisionless phase[4, 137–139] as interactions 
weaken toward the independent particle regime. 

In my earlier study of the SPT frequencies, both radial frequencies had a 
broad minimum as a function of the interparticle interaction strength param- 

eter, V¯
0[19]. To compare to existing results in the literature, I have graphed 

in Fig. 7 the SPT radial breathing frequency ω0− as a function of the param- 
eter 1/N 1/6a through the region of the minimum. This figure clearly shows 
a minimum for the SPT frequency between 1/N 1/6a = −1.0 and unitarity, 

1/N 1/6a = 0, in close agreement with the previous experimental and theoret- 
ical results[4, 138, 140–142]. The SPT minimum is broad in Fig. 2 in Ref. [19] 
graphed as a function of V¯

0 on a log scale spanning several orders of magni- 

tude from V¯
0 = 10−3 to V¯

0 = 1.0, but is quite sharp when graphed as a linear 
function of −1/N 1/6a in Fig. 7 where it maps into a small region between 

1/N 1/6a = −1.0 and 1/N 1/6a = 0. 
When the other SPT radial excitation, ω1− , which is a single-particle exci- 

tation is plotted as a function of 1/N 1/6a, its minimum is visible, but quite 
small. 

The analytic form of the SPT normal modes offers an opportunity to ana- 
lyze the microscopic dynamics responsible for this minimum thus offering an 

alternative to previous suggestions involving Cooper pairing or transitioning 
to a collisionless regime. By tracking the contribution of different terms in the 
Hamiltonian to the analytic expression for the frequency across the transi- 
tion, one can understand what is happening microscopically in this approach 
to produce this minimum. 

 
Understanding the microscopic dynamics of the minimum in the radial breath- 

ing frequency.. An analysis of the radial breathing frequency ω0− is given in 
Appendix C in Ref. [19] in terms of the FG matrix elements from the first- 
order Hamiltonian terms (Eq. (13)). The formula derived in this Appendix for 
ω0− in terms of the FG elements is: 
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Fig. 7 Excitation frequency for the radial breathing mode in a symmetric trap as a function 

of 1/N 1/6a for 30 fermions showing the minimum as unitarity is approached that is seen 
theoretically: mean field[142], TDDFT(var)[140], TDDFT(num)[141] and experimentally in 
cylindrical traps: ENS[138] and Duke[4] 

 

 
ω0− ≈  GaFa + (N − 1)GaFb (19) 

where Ga = 1, Fa and Fb involve derivatives of V¯
eff (See Eq. 9.) which is 

a sum of the confining potential V¯
conf, centrifugal potential V¯

cent = Ū , and 

interparticle interaction potential V¯
int: 

V¯
eff = Ū  + V¯

conf + V¯
int. (20) 

yielding three terms for Fa: Fa = F conf +F cent +F int and one nonzero term for 
a a 

int  
a conf 

Fb involving the interaction potential: Fb = Fb  . The term Fa   is a constant 
equal to 1. All the terms are explicitly defined in Appendix B in Ref. [19]. 

As in the analysis of the angular frequencies in Section VI of Ref. [19], it is 

useful to track the magnitude of γ∞, the angle cosine of each pair of particles 
at the minimum of the maximally-symmetric structure at large dimension. 
Early dimensional scaling work identified a nonzero value of this parameter 
as a signature of the existence of correlation between the particles. Mean-field 

results have γ∞ = 0 corresponding to no correlation between the particles, 

while increasing values of γ∞ indicated stronger and longer-range correlation 
effects. 

Consider the independent particle limit, i.e. collisionless regime, with no 

interparticle interactions so V¯
0 = 0 and thus no correlations between the par- 

ticles i.e. γ∞ = 0 so only the harmonic trap is affecting the particles which, of 
course, are also obeying the Pauli principle. Most terms in the expression for 
ω̄ 0−  in Eq. (19) are zero. The only nonzero terms are Fa  = 1 from the trap 

potential and F cent = 3 which originates in the kinetic energy, giving Fa = 4, 
Fb = 0 so ω0− = 2ωho as expected and confirmed in the laboratory. (See 
Appendix F in Ref. [19].) As interactions are introduced, γ∞ assumes a small 
nonzero value, signaling the existence of weak correlations. This nonzero value 
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means that all terms in the expression for ω̄ 0−  are nonzero. Fa begins to 

decrease, while F int and F int increase. Along the BCS to unitarity transition, 
a b 

the value of ω̄ 0−  is a balance between the centrifugal term which is decreas- 

ing and the interaction terms which are increasing as interactions (V¯
0) and 

correlations (γ∞) both increase from BCS toward unitarity. The minimum in 
the frequency occurs from the continued decrease in the centrifugal terms just 
before the increase in the interaction terms dominates. 

Microscopically, one can understand what is happening based on this anal- 
ysis of the Hamiltonian terms. The increase in the correlated motion of the 

particles as tracked by the increase in γ∞ minimizes the interparticle inter- 
actions resulting in slower oscillations of the breathing mode. Eventually the 

increase in V¯
0, i.e. the increased strength of the interparticle interactions will 

lead to more rapid oscillations i.e. an increase in the frequency as unitarity is 
approached. The gradual decrease observed when ω̄ 0−  is plotted as a function 

of V¯
0 in Ref. [19] appears as a sudden, quite narrow dip in the frequency when 

graphed as a function of 1/(N 1/6a). This is due to the rapidly changing scatter- 
ing length in this region as unitarity is approached. In summary, the minimum 

can be understood as the result of two competing factors that affect the 
microsopic behavior without invoking Cooper pairs: the increase in correlation 
which minimizes the interparticle interactions thus slowing down the frequency 
of the oscillations and second, the increasing strength of the interparticle 

interactions which eventually dominates and speeds up the frequency. 
 
 
 

4 Discussion and Conclusions 

In this study, I explored the ability of normal modes to describe the behavior 
of ultracold Fermi gases including superfluidity across the BCS to unitarity 
transition without assuming Cooper pairing. In particular, I calculated the 
following observables: ground state energies, thermodynamic entropies, critical 

temperatures and the radial breathing frequency across this transition using 
normal modes and compared to available experimental and theoretical results. 

This study has yielded close agreement with both experimental and the- 
oretical results for the ground state energies, thermodynamic entropies and 
critical temperatures at weaker interactions away from unitarity. These cal- 

culations tested the lowest frequencies relevant to ultracold systems as well 
as the spectrum of frequencies needed for the partition function. In all of 
these calculations, the Pauli principle plays a central role in choosing the 
states that contribute to these properties. The final study involved a single fre- 

quency, the breathing frequency, which did not contribute to the earlier studies 
due to its larger value. The observed dip in this SPT frequency near unitar- 
ity was in close agreement with results first observed in the laboratory and 
later confirmed theoretically, suggesting that the frequencies produced by this 
first-order SPT Hamiltonian are based on microscopic dynamics that produce 
observable effects. 
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The normal coordinates constitute beyond-mean-field, analytic solutions to 
a many-body Hamiltonian and offer microscopic insight into the evolution of 
properties across the BCS to unitarity transition. The analytic forms for the 
frequencies and coordinates allow a detailed look at the dynamics by track- 
ing the effect of the Hamiltonian terms across the transition. As correlations 

increase toward unitarity as tracked by the parameter γ∞, the dependence of 
properties on the details of the interparticle interactions is minimized consis- 
tent with the universal behavior which is also seen at the independent particle 
limit. The Pauli principle, of course, is dominating the dynamics at both limits 
underpinning the universal behavior in these regimes. 

The results of this study are based on an exact solution of the first-order 
equation of SPT perturbation theory which contains beyond-mean-field effects. 
Higher-order terms that have been formulated, but not implemented, are not 

included. These terms could become significant in some regimes changing the 
dynamics. The SPT formalism also does not offer a mechanism for the two- 
body pairing that occurs as the ensemble transitions to the BEC regime. 

The successful determination of these properties across the BCS to uni- 
tarity transition using these first-order solutions supports a normal mode 

description of superfluidity with a clear picture of the evolving microscopic 
dynamics across a broad range of interparticle interaction strengths and 
represents an interesting alternative to Cooper pairing models. 
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