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Abstract—Fully Homomorphic Encryption over the Torus
(TFHE)  is a promising approach for secure computing in cloud
servers to perform computations directly on encrypted data.
However, T F H E  has much higher computation complexity than
its unencrypted counterpart.

In this work, we propose an FPGA accelerator for T F H E
computations. We illustrate the effects of an optimization called
bootstrapping key unrolling on the tradeoff between performance
of bootstrapping and FPGA resource consumption. We customize
the data layout of T F H E  ciphertext to optimize data access
and improve data reuse. We parameterize the FPGA design for
T F H E  bootstrapping, which can be configured to achieve high
performance for different user-specified security requirements
and given FPGA resources. We implement our design on a
state-of-the-art FPGA and compare it with existing results on
CPUs. Our implementation for T F H E  bootstrapping achieves
216× improvement in throughput and 16.5× improvement in
latency compared with the software baseline on a state-of-the-
art CPU server.

Index Terms—Privacy-Preserving Computation, Fully Homo-
morphic Encryption, FPGA

I. INTRODUC T I ON

Data security and privacy have always been major concerns
in cloud computing. Despite the fact that many encryptions can
protect the confidential data in transit, the data are still exposed
to cloud servers, which are not always trusted by users. Fully
Homomorphic Encryption (FHE) [1] addresses this issue by
allowing the servers to directly perform computations over the
encrypted data. The data is encrypted by the users locally into
ciphertext before being sent to the cloud servers. The servers
perform computations directly on the encrypted data (without
decrypting the data) and return the result, still in ciphertext,
back to the users for decryption. No one other than the users
has access to the plaintext data, ensuring end-to-end privacy
throughout the protocol.

For most FHE schemes (e.g, B F V  [2], BGV [3], C K K S  [4]),
the depth of computations over the ciphertext is limited
unless the users decrypt and re-encrypt the ciphertext or an
expensive procedure called bootstrapping [5] is triggered.
Additionally, those FHE schemes are incapable of performing
non-linear computations (e.g., ReLU) and must approximate
them using polynomial functions, which significantly reduces
the accuracy. Fully Homomorphic Encryption over the Torus
(TFHE) [6] is a variant that supports non-linear computations

of any depth due to its faster bootstrapping procedure. As a
result, TFHE is well suited for applications such as high-
accuracy deep machine learning inference and training.

However, a critical disadvantage of TFHE is its high compu-
tational complexity in comparison to its unencrypted counter-
part that exposes data in plaintext to the servers. FPGAs are
appropriate accelerators for efficient TFHE implementations
because they enable customized architectures that take use of
the potential parallelism among the various TFHE primitives.
Challenges arise when designing an efficient FPGA accelerator
for TFHE, including: (1) As the TFHE scheme has various
possible security levels, the design should be able to support a
wide range of security levels instead of being customized only
for specific parameters (e.g., security level, ciphertext size).
(2) Because FPGAs have limited on-chip memory and the
TFHE ciphertext is significantly larger than plaintext, data
layout and data reuse should be optimized to reduce on-
chip memory access conflicts and utilize the limited external
memory bandwidth.

In this paper, we propose an efficient FPGA accelerator
for the TFHE bootstrapping primitive. In the proposed ar-
chitecture, we customize the data layout of TFHE ciphertext to
optimize the data access and improve the data reuse. We
propose parameterized IP cores for TFHE primitives and their
subroutines, which can be configured to achieve high through-
put for TFHE primitives for different security parameters. Our
main contributions include:

• We design the first FPGA architecture for TFHE primi-
tives. To enable efficient multi-level parallelism, we cus-
tomize the data layout of TFHE ciphertext for FPGA on-
chip SRAM to optimize data access and reduce memory
access conflict. Our data layout also improves data reuse
to effectively utilize the external memory bandwidth.

• To exploit the optimization called bootstrapping key
unrolling, we evaluate its effects on the performance of
TFHE bootstrapping. Our design is parameterized and can
be configured to achieve high throughput and low latency
for TFHE bootstrapping for different user-specified TFHE
security requirements.

• We conduct detailed experiments to evaluate the proposed
design. For TFHE bootstrapping, our implementation
achieves 216× improvement in throughput and 16.5×

978-1-6654-9786-2/22/$31.00 ©2022 IEEE
Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:10:24 UTC from IEEE Xplore. Restrictions apply.



P n
i = 1

q P
i = 0

P n

q

q

q

1 N N − 1 2

i
′ ′

ks

P PN l ks ′

improvement in latency compared with the CPU base-
line [7].

I I . BAC K G RO U N D

A. Fully Homomorphic Encryption over the Torus

Fully Homomorphic Encryption (FHE) provides a solution
to secure cloud computing by allowing the servers to directly
perform computations over ciphertext. Multiple variants of
FHE schemes have been proposed, e.g., BGV [3], B F V  [2],
[8], C K K S  [4]. For all those schemes, the ciphertext has
a noise term that rapidly grows along with homomorphic
multiplications and would make the plaintext unretrievable
after a specific number of computations. The “bootstrapping”
procedure of those schemes, which can refresh the noise
term to a minimal level, have prohibitively high computation
complexity. Hence, those schemes only support applications
with limited depth of computations.

Fully Homomorphic Encryption over the Torus (TFHE) [6]
is a recent scheme that has much faster bootstrapping pro-
cedure and thus makes it practical to compute computations
with arbitrary depth. Here we describe the basic preliminary
knowledge about TFHE needed in this paper. The TFHE
scheme consists of three types of ciphertext:

LW E  ciphertext. Let q be a modulus (typically, q =  232

or 264). The plaintext space is Zq , meaning integers modulo
q. A  secret key for LWE ciphertext is n bits denoted as
s =  (s1, ..., sn) � {0, 1}n . Under the secret key s, a
plaintext integer m � Z q  is encrypted into a LWE ciphertext
LWE(m) =  c =  (a1, ..., an, b) where a1, ..., an are n random
integers sampled from Z q  and b =  a · s + m + e = aisi +
m +  e (mod q) with a small noise term e.
R LW E  ciphertext. The plaintext space is Z q , N  [X ], mean-ing

a polynomial of degree N  −  1 with all coefficients
in Z  . A  secret key for RLWE ciphertext is a polynomial
S  = N − 1  S i X i  where S i      � {0, 1}. Under the secret
key S ( X ) ,  a plaintext polynomial M ( X )  is encrypted into
a RLWE ciphertext RLWE(M (X ) )  =  ( A ( X ) , B ( X ) )  where
A ( X )  is randomly sampled from Z q , N  [X ]  and B ( X )  =
A ( X ) · S ( X ) + E ( X ) + M ( X )  with a small-coefficient noise
polynomial E ( X ) .

RGSW ciphertext. RGSW and RLWE share the same
plaintext space and secret key. The RGSW ciphertext is in
Z q , N  [X ] 2 L × 2 ,  meaning a matrix with 2 L  rows and each row
is a RLWE ciphertext. A  subroutine required in this paper is
the external product � : RGSW × RLWE → RLWE. It receives as
input an RGSW ciphertext RGSW(m1) and an RLWE
ciphertext RLWE(m2 ), where m1 and m2 are plaintext poly-
nomials, and outputs an RLWE ciphertext RLWE(m1 · m2).
The external product consists of 4 L  polynomial multiplications
and additions.

Usage of LWE,  R LW E  and RGSW ciphertext. Typically,
LWE ciphertexts are used to encrypt every integer or real
number from the input data. Linear computations, including
addition and constant multiplication, can be performed on
LWE ciphertexts. RLWE and RGSW ciphertexts are usually

used to encrypt constant values required in the programmable
bootstrapping procedure, which is described as follows.

Programmable bootstrapping (PBS). PBS is the most im-
portant procedure in TFHE that can simultaneously reduce the
noise term of a LWE ciphertext and compute an arbitrary non-
linear function. The algorithm of PBS is shown in Algorithm 1.
The input is the LWE ciphertext cin encrypting a plaintext m.
The output is the LWE ciphertext cout encrypting the plaintext
f (m) with low noise, which is equivalent to apply an arbitrary
function f  : Z q  → Z q  to the underlying plaintext. The RLWE
ciphertext cT is considered as an input-independent constant
encoding the function f .  An RGSW ciphertext B K i  encrypts a
bit si  of the secret key s. Line 3-7 is to homomorphically
compute cT · X − b + c · s  =  cT · X − b +       i = 1  a i s i  . All  the poly-
nomial multiplications in Line 3, 5 and 6 will be computed
using NTT/INTT that reduces the complexity from O(N 2 ) to
O(N log N ). Due to the limit of space, we refer the readers
to [6] and [7] for more details.

Algorithm 1: Programmable Bootstrapping (PBS)
Input: LWE ciphertext cin � Z n + 1

Const: RLWE ciphertext cT � Z q , N  [X ]2 ;
RGSW bootstrapping key B K i  (i =  1, ..., n);
KeySwitching key K S K i , j  (i =  1, ..., N ,
j  =  1, ..., lks)

Output: LWE ciphertext cout � Z n + 1

1 c ← �2N · cin�
2 (a1, ..., an, b) ← c
3 AC C  ← X − b  · cT
4 for ( i  ← 1; i  ≤  n; i  ← i  +  1) do
5 tmp ← ( X a i  −  1) · B K i  +  1
6 AC C  ← tmp � AC C
7 end
8 (a ′  , −a ′  , −a ′ , ..., −a′ , b′) ← AC C
9 for ( i  ← 1; i  ≤  n; i  ← i  +  1) do

10 Decompose a′ into ai,1, ..., ai,l
11 end
12 cout ← (0, ..., 0, b′) − i = 1 j = 1  a i , j  · K S K i , j

B. Secure Cloud Computing Protocol
In our secure cloud computing protocol, the server is

defined as the cloud provider who offers computing service,
and the client is defined as the owner of confidential data who
wants to use the computing service from the server. Initially,
the client and server makes an agreement on the encryption
parameters (e.g., security levels and polynomial degree). The
client generates private keys and sends necessary constants
(e.g., bootstrapping key and keyswitching key) to the server.
Then the client encrypts the private data locally, and sends
the ciphertext to the server. The server receives the input data
and starts to perform computation over the ciphertext directly.
Since TFHE can support non-linear and arbitrary depth of
computations, all computations can be entirely handled by the
server alone. After finishing all computations, the server sends
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Fig. 1: Bootstrapping key layout in DRAM

the output, still in ciphertext, back to the client. The client
decrypts it into the final output. In the entire process, no others
except the client can have access to the private data, and thus
it guarantees end-to-end security for the cloud computing.

I I I . R E L AT E D  WO R K

Homomorphic Encrypted Neural Network Inference:
Most prior works on secure neural network inference use FHE
schemes such as B F V  [2], BGV [3] and C K K S  [4] that do
not support non-linear activation functions. To compute non-
linear functions, a class of works [9], [10] used Server-client
protocol, which exactly computed activation functions by com-
bining FHE and Multi-Party Computation. While this method is
friendly to deep computations, it requires the client to com-
municate with the server frequently and perform significantly
more computations, which is contrary to the intention of cloud
computing, i.e., exporting the client’s heavy computations to
the server. Another class of works [11]–[13] used Server-only
protocol, where activation functions are approximated by the
square function f (z )  =  z2. However, this approach reduces
the prediction accuracy and is only acceptable for neural
networks with limited number of layers. In contrast, TFHE
is a promising scheme for exact computation of non-linear
functions entirely on the server without requiring the client to
do much computation or communication. It also supports deep
neural network inference and training without limitation on the
network’s depth.

Hardware Accelerations for T F H E :  There have been a
few previous works that accelerate TFHE using ASIC,  GPU
and FPGA. [14] provided acceleration for TFHE bootstrap-
ping on AS IC  that was optimized for a fixed design point.
[15] accelerated TFHE primitives on GPUs. Compared with
GPUs, FPGAs have the following advantages in accelerating
TFHE: (1) FPGAs can be customized to exploit the parallelism
across different subroutines of TFHE procedures, such as NTT
and vector multiplication. (2) FPGAs enable manipulation of
the data layout in the on-chip memory in order to reduce the
latency associated with TFHE data access. (3) FPGAs
consume less energy than GPUs, which is advantageous when
deploying large number of instances of accelerators. [16]

proposed a naive FPGA architecture for TFHE primitives.
However, their design does not obtain superior performance
compared with the software implementation on CPUs due to a
lack of optimizations on polynomial multiplications and the
algorithm of TFHE bootstrapping. In this paper, we focus on
a more efficient FPGA architecture for TFHE primitives. Our
design achieves high throughput and low latency for the
TFHE’s bootstrapping procedure.

I V. A C C E L E R AT O R  DESIGN

A. Parameterized Bootstrapping Key Unrolling

In Algorithm 1, the bottleneck is the loop of n iterations in
Lines 4-7. In each iteration, ACC is homomorphically
multiplied by X a i s i  =  ( X a i  −1) · s i+ 1 where si is in the form of
a RGSW ciphertext BK i .  Thus, the loop is equivalent to
multiplying cT by X      i = 1  a i s i  . Typically, n is 500 to 1024 [7].
As the iterations have data dependency on the variable ACC,
the n iterations must be computed sequentially. Bootstrapping
key unrolling, first proposed in [17] and extended in [14],
unrolls every m iterations and reduces the number of iterations
into n/m, where m is the unrolling factor. For the example
of m =  2, what to be multiplied by ACC in iteration
i  becomes X a 2 i + 1 s 2 i + 1 + a 2 i + 2 s 2 i + 2        =  ( X a 2 i + 1 + a 2 i + 2      −  1) ·
s2i +1 s2i+2  +  ( X a 2 i + 2  −  1) · s2i+2 (1 −  s2 i+1 ) +  ( X a 2 i + 1  −
1) · s2i+1 (1 −  s2 i+2 ) +  1. Let BKi , 0 ,  BK i , 1  and BK i , 2  be
the RGSW ciphertext of s2i+1 s2i+2 , s2i+2 (1 −  s2 i+1 ) and
s2i+1 (1 −  s2 i+2 ) respectively. Line 5 in Algorithm 1 will be
modified as tmp ← ( X a 2 i + 1 + a 2 i + 2  −  1) · BK i , 0  +  ( X a 2 i + 2  −
1) · BK i , 1  +  ( X a 2 i + 1  −  1) · BK i , 2  +  1.

In our design, we let m be a configurable parameter to
support bootstrapping key unrolling for an arbitrary unrolling
factor m. Intuitively, a larger m requires higher computational
complexity in Line 5 but reduces the number of iterations. Its
effect on the performance (latency and throughput) will be
demonstrated and analyzed in Section V.

B. Data Layout and Memory Access

The main data traffic between the external DRAM
and on-chip SRAM is to load the bootstrapping keys
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BKi ,0 , BKi ,1 , ..., BKi , m−1 . As shown in Figure 1, each boot-
strapping key B K i , j  is an RGSW ciphertext consisting of
2 L × 2  polynomials of degree (N −1) .  For efficient access from
the external DRAM, the polynomials in the m bootstrapping
keys are rearranged as illustrated at the bottom of Figure 1.
The rearrangement can be done offline and has no overhead on
the performance because the bootstrapping keys are dependent
on the TFHE secret keys and irrelevant to the input ciphertext.
The FPGA loads all the m polynomials belonging to one
chunk from the DRAM and feeds a replica to the buffer at the
input port of each Processing Element (PE). The Bootstrapping
Key Unit (BKU) in each PE reads the polynomials from the
buffer and performs the computations. Details about the BKU is
described in Section IV-C. To limit the usage of on-chip
SRAM, the buffers hold polynomials from only one chunk at
a time. A  new chunk of polynomials are loaded from the
DRAM after the previous chunk has been consumed by the
BKU.

C. Architecture for TFHE Bootstrapping

The overall architecture for TFHE bootstrapping is shown
in Figure 2(a). The external DRAM stores bootstrapping keys
and keyswitch keys that will be loaded to the FPGA at runtime.

Processing Element (PE). The architecture contains P
processing elements (PEs), each of which computes Lines 4-7
of Algorithm 1 for one instance of input ciphertext. Here P
is a configurable parameter. Multiple instances of ciphertext
are processed by the PEs in parallel. Each PE consists of
a Bootstrapping Key Unit (BKU) for the computations in
Line 5, a Multiply-Accumulate (MAC) module, two Number
Theoretic Transform (NTT) modules, one Inverse NTT (INTT)
module and one Decomposition module. The MAC module
is responsible to perform the polynomial multiplications and
additions of the external product in Line 6. The Decomposition
module is to perform bitwise decomposition for each (log q)-
bit integer into l k s  smaller integers required in the external
product procedure in Line 6. All the modules in a PE operate
as a pipeline for high throughput. The outputs of the PEs are
pushed into a queue which are consumed by the KeySwitching
Unit (KSU) to perform the computation in Line 12. Details of
the NTT, INTT, BKU and KSU are described as follows.

NT T  and INTT.  NTT and INTT simplify the computa-
tional complexity of polynomial multiplications from O(N 2 )
to O(N log N ), where N  is the degree of the polynomial.
After both input polynomials are transformed by NTT (i.e.,
transformed into their evaluation space), the polynomial mul-
tiplication is simplified into coefficient-wise multiplication. In
the external product (Line 6 of Algorithm 1), every polynomial
from ACC will be multiplied by two polynomials from tmp.
We allocate one NTT module for the polynomials from ACC.
As will be described later, the polynomials from tmp are
transformed by an NTT module at an earlier step. An NTT
module is a (log N )-stage pipeline where each stage has a
configurable number of NTT cores. Each NTT core processes a
pair of coefficients by computing a modular multiplication,
addition and subtraction. Let p be the modulus for NTT,

which should be a prime integer no less than the maximum
coefficient q. To minimize the consumption of DSPs, we
extend the reduction algorithm in [18] and implement modular
multiplication with modulus of p =  233 −  220 +  1 when
q =  232, as shown in Algorithm 2. The notation [:] represents
the slice of an integer by the specified range of bits. Line 1-13
are to compute modular multiplication r  =  xin · w mod p. It
requires only one 32-bit ×  32-bit integer multiplication
(Line 1) in each NTT core that consumes 3 DSPs on the
Xilinx FPGA we use in Section V. INTT is the inverse
transform of NTT and thus has a similar accelerator design.
One INTT module is deployed after the MAC module and
outputs polynomials of ACC to the next iteration.

Algorithm 2: NTT core with p =  233−220 +1, q =  232

Input: Coeffcients xin � Zq , yin � Zq
Const: Twiddle factor w � Zp
Output: Coeffcients xout � Zp , yout � Zp  1

z ← xin · w
2 c ← z[63 : 59] +  z[58 : 46] +  z[45 : 33] 3
d ← z[63 : 59] +  z[63 : 46] +  z[63 : 33] 4

e ← c[14 : 13] +  c[12 : 0]
5 f  ← (e[13 : 13] + e[12 : 0]) · 220 − e[13 : 13] − c[14 : 13]
6 r  ← f  +  z[32 : 0]
7 if r  ≥  p then
8 r  ← r  −  p
9 end

10 r  ← r  −  d
11 if r  <  0 then
12 r  ← r  +  p
13 end
14 xout ← yin −  r  mod p
15 yout ← yin +  r  mod p

Bootstrapping Key Unit (BKU). The BKU in each PE
reads the polynomials in the buffer and computes one poly-
nomial for tmp in Line 5. Figure 2(c) shows the archi-
tecture of a BKU. For each of the m bootstrapping keys
BKi ,0 , BKi ,1 , ..., BKi , m−1 , there is a buffer at the input port
of the BKU that can store a polynomial at a time. The
BKU reads m polynomials from the buffers, and performs m
monomial-polynomial multiplications and m polynomial sub-
tractions in parallel. The monomial-polynomial multiplication
BK i , j( i ′ , j ′ )  · ( X c  −  1) could be implemented by cyclically
shifting the coefficient array of BK i , j( i ′ , j ′ )  by c slots and sub-
tracting them by the original coefficients. Here, ( i ′ , j ′ )  indexes
one of the 2 L  ×  2 polynomials for RGSW ciphertext BK i , j ,
and c is a variable depending on {a i m , a i m−1 , . . . , a i m−m + 1 }.
However, as the values of {a1, a2, ..., an} are not known
until runtime, the FPGA SRAM storing the coefficients would
suffer from I/O conflict which significantly impacts the per-
formance. Instead, we use NTT to simplify the monomial-
polynomial multiplication into coefficient-wise multiplication.
As BK i , j( i ′ , j ′ )  depends on {s1, s2, ..., sn} that are known
constants known in advance, their NTT can be computed
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(a) Architecture for bootstrapping (b) Processing element (PE) (c) Bootstrapping key unit (BKU)

Fig. 2: Overall architecture

offline and thus does not affect the runtime performance. After
all m result polynomials are computed, an adder tree receives
and sums them up to generate an polynomial belonging to
tmp. Note that the computed polynomials are still in their
evaluation space and can directly be the input of the external
product (Line 6 of Algorithm 1) that also consists of polyno-
mial multiplications.

KeySwitching Unit (KSU). The KSU performs the com-
putations in Line 8-12, where each K S K i , j  is a vector of
n coefficients. This module iteratively loads each vector and
performs constant multiplications and accumulations. As the
computation load of KSU is much lower than the PEs, only
one instance of KSU is deployed without affecting the overall
throughput of bootstrapping.

V. E X P E R I M E N TA L R E S U LT S

A. Experimental Setup

Our FPGA designs are synthesized using Xilinx Vitis HLS
2020.2 [20]. The experiments are conducted on Xilinx Virtex
UltraScale+ VU13P FPGA [21]. It has 12288 DSPs, 3456K
FFs, 1728K LUTs, 5376 instances of 18 Kb BRAMs and 1280
instances of 288 Kb UltraRAMs. The peak external memory
bandwidth is 77 GB/s.

For the CPU baseline, we implement the TFHE bootstrap-
ping using Concrete library [7]. The baseline is performed on
a state-of-the-art server with an AMD Ryzen Threadripper
3990X CPU @ 2.90 GHz with 64 cores and 128 threads. The
server has 256 GB DDR4 with 200 GB/s peak bandwidth
to DRAM. We also include results from previous work [16] as
FPGA baseline. The device used in our paper and all the
baselines are summarized in Table I.

B. Comparison on the Performance of TFHE Bootstrapping

We implement our design for TFHE bootstrapping on two
different sets of TFHE parameters:

(I) n =  500, N  =  1024, L  =  2, B g  =  1024
(II) n =  592, N  =  2048, L  =  3, B g  =  128

(I) is adopted from [6] with 110-bit security and also used
in [14] for fair comparisons. (II) is selected as a large pa-
rameter set with 80-bit security. For both parameter sets, we
conduct experiments for four different values of m as 1, 2, 3
and 4, and measure their performance (latency and throughput)

and resource consumption (LUT, FF, DSP, on-chip SRAM).
The results are shown in Table II.

Effect of unrolling factor m: The table demonstrates that
for a fixed parameter set, the latency keeps decreasing as the
unrolling factor m increases owing to the reduction in the num-
ber of loop iterations n/m required in TFHE bootstrapping.
The maximum throughput defined as the number of TFHE
bootstrappings finished per second is obtained at m =  2. It
increases as m grows from 1 to 2 because fewer iterations are
required. However, the throughput decreases when m grows
from 2 to 4 because larger m requires more on-chip SRAM
in each PE leading to fewer PEs that can be deployed using
the limited amount of on-chip SRAM in the FPGA. The value
of m should be selected depending on whether the latency or
throughput is more critical for the given application.

Comparison with CPU baselines: The CPU baselines are
based on the implementation of TFHE bootstrapping provided
by the Concrete library [7]. As  the library does not support
bootstrapping key unrolling, the unrolling factor m is set to 1.
For parameter set (I) and (II), our implementation (m =  2)
achieves 216× and 96× better throughput with 16.5× and
8.4× improvement in latency.

Comparison with prior FPGA implementation:
SPSL2021 [16] is the only prior work accelerating TFHE
bootstrapping on FPGAs. As their purpose is to demonstrate
an application of an FPGA-based programmable vector
engine, their design is a preliminary architecture on a
low-end FPGA with many opportunities for optimization. For
example: (1) It does not use NTT or FFT  for faster
polynomial multiplications. (2)     It does not consider
algorithmic optimizations such as bootstrapping unrolling.
(3) It does not use parallel computing architectures such as
pipelines. Therefore, even if we normalize the performance
by the amount of consumed resources, our implementation
still significantly outperforms this baseline.

Comaprison with prior A S I C  and GPU implemen-
tations: There are also a few prior works on hardware
acceleration for TFHE bootstrapping. MATCHA [14] is an
ASIC  design simulated by a modeling framework with the
assumption of a high HBM2 bandwidth (640 GB/s) and high
clock rate (2 GHz). For parameter set (I) and m =  3,
MATCHA achieves latency of 0.2 ms and throughput of �10K
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TA B L E  I: Resources used by various designs

Computation Resources

Peak External
Memory Bandwidth

This paper

Xilinx VU13P
@ 180 MHz

12288 DSP slices

77 GB/s
(DDR4)

CPU
w/ Concrete [7]

AMD Ryzen 3990X
@ 2.90 GHz

64 cores and 128 threads

200 GB/s
(DDR4)

GPU
w/ cuFHE [19]

NVIDIA RT X  3090
1.70 GHz

10496 CUDA cores

1008 GB/s
(GDDR6X)

SPSL2021 [16]

Xilinx 7Z020

220 DSP slices

77 GB/s
(DDR4)

MATCHA [14]

Simulated Architecture
2 GHz

36.96mm2 area

640 GB/s
(HBM2)

TA B L E  II: Comparison of TFHE bootstrapping implementations

Work

This paper

This paper

Concrete [7]

cuFHE [19]

SPSL2021 [16]b

MATCHA [14]

Parameter Set

(I)

(II)

(I)
(II)

(I)

——

(I)

m LUT / FF / DSP / On-chip SRAM

1 925K / 729K / 6240 / 319Mb
2 842K / 662K / 7202 / 338Mb
3 569K / 448K / 6640 / 383Mb
4 442K / 342K / 6910 / 409Mb

1 931K / 728K / 6272 / 343Mb
2 770K / 602K / 6446 / 400Mb
3 534K / 419K / 6034 / 429Mb
4 353K / 279K / 5656 / 422Mb

1                                   ——
1                                   ——

1 ——

1 36K / 24K / 40 / 2.9Mb

1 ——
2 ——
3 ——
4 ——

Clock (MHz)

180
180
180
180

180
180
180
180

——
——

——

——

2000
2000
2000
2000

Latency (ms)

7.53
3.76
2.51
1.88

19.13
9.56
6.38
4.78

62.0
80.3

9.34

17640

0.6
0.3
0.2
0.2

Throughput (BS/sec)a

1993
3454
3188
2657

732
1150
1098
836

16
12

9579

0.057

3500
6600

10000
10000

aNumber of bootstrappings per second.
bThe parameter set and clock rate are not available in [16].

bootstrappings per second. Note that the maximum external
memory bandwidth of our FPGA is 77 GB/s. If a higher
bandwidth is available, we would achieve better throughput by
offloading a part of the on-chip SRAM to external DRAMs and
allocating more instances of PEs. For the metric of throughput
per bandwidth, our design for m =  3 achieves 2.65× speedup
over MATCHA. The cuFHE library [19] provides a CUDA
implementation of TFHE bootstrapping for m =  1. We
measure its performance for parameter set (I) on an NVIDIA
GeForce RT X  3090 GPU @ 1.70 GHz with 10496 CUDA
cores and 1008 GB/s HBM2 bandwidth, which achieves a
latency of 9.34 ms and a throughput of 9579 bootstrappings per
second. For a fair comparison, we use our design for m =  1
which achieves 1.24× improvement in latency, which means a
better performance in latency-sensitive scenarios. Although we
have lower throughput than GPU, it should be noted that the
peak performance of the GPU is 17.8 TFLOPS while our
FPGA device has peak performance of 2.21 TFLOPS. Also,
the thermal design power (TDP) of the GPU is 350W, while
the FPGA board has a power consumption of �50W
(estimated by Xilinx Power Estimator). Therefore, for the
metric of energy efficiency (defined as throughput per unit
power), our implementation on FPGA is 1.46× better than
the GPU baseline.

V I . CO N C L U S I O N

In this paper, we proposed the first efficient FPGA archi-
tecture for TFHE bootstrapping primitive. Our design can
be configured to achieve high throughput and low latency of
bootstrapping for different user-specified security require-
ments. Our implementation of TFHE bootstrapping accel-
eration achieved 216× speedup in throughput and 16.5×
latency improvement compared with a state-of-the-art CPU
baseline. In the future, we will explore the application of
TFHE bootstrapping on privacy-preserving machine learning
applications and their hardware acceleration.
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