2022 International Conference on Field-Programmable Technology (ICFPT) | 978-1-6654-5336-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICFPT56656.2022.9974369

Bandwidth Efficient Homomorphic Encrypted
Matrix Vector Multiplication Accelerator on FPGA

Yang Yang*, Sanmukh R. Kuppannagari'®, Rajgopal Kannan® and Viktor K. Prasanna*
* Department of Electrical and Computer Engineering, University of Southern California
t Department of Computer and Data Sciences, Case Western Reserve University
! DEVCOM US Army Research Lab
Email: {yyang172, prasanna} @usc.edu, sanmukh.kuppannagari@case.edu, rajgopal.kannan.civ@army.mil

Abstract—Homomorphic Encryption (HE) is a promising so-
lution to the increasing concerns of privacy in Machine Learning
(ML) as it enables computations directly on encrypted data. How-
ever, it imposes significant overhead on the compute system and
remains impractically slow. Prior works have proposed efficient
FPGA implementations of basic HE primitives such as number
theoretic transform (NTT), key switching, etc. Composing the
primitives together to realize higher level ML computation is
still a challenge due to the large data transfer overhead.

In this work, we propose an efficient FPGA implementation
of HE Matrix Vector Multiplication (MxV), a key kernel in
HE-based Machine Learning applications. By analyzing the data
reuse characteristics and the encryption overhead of HE MYV,
we show that simply using the principles of unencrypted M xV to
design accelerators for HE M xV can lead to a significant amount
of DRAM data transfers. We tackle the computation and data
transfer challenges by proposing a bandwidth efficient dataflow
that is specially optimized for HE M x V. We identify highly reused
data entities in HE M xV and efficiently utilize the on-chip SRAM
to reduce the DRAM data transfers. To speed up the computation
of HE MxYV, we exploit three types of parallelism: partial
sum parallelism, residual polynomial parallelism and coefficient
parallelism. Leveraging these innovations, we demonstrate the
first FPGA accelerator for HE matrix vector multiplication.
Evaluation on 7 HE M xV benchmarks shows that our FPGA
accelerator is up to 3.8x (GeoMean 2.8x) faster compared to
the 64-thread CPU implementation.

Index Terms—FPGA acceleration, homomorphic encryption,
matrix vector multiplication, parallel computing

I. INTRODUCTION

Homomorphic Encryption (HE) provides a promising so-
lution for implementing privacy-preserving Neural Network
(NN) inference by allowing direct computations on encrypted
data [1]. With HE, the client provides encrypted data to a
cloud server, on which the computation is performed without
decrypting the data. While HE offers strong privacy guarantees
for NN inference in public cloud [2], [3], it comes at a high
cost: inference using HE NN is orders of magnitude slower
than inference on unencrypted data [4].

Matrix-Vector multiplication (MxV) is a basic building
block in a wide range of neural networks (NN), especially in
single batch (batch size = 1) NN inference. Fully-connected
(FC) layers in a Convolutional Neural Network (CNN) are
implemented with MxV [5]. In Recurrent Neural Network
(RNN), MxV operations are performed on the input and

$This work was done while the author was with USC.

the cell state at each time step [6], [7]. Such CNN and
RNN models are ubiquitous in image classification, image
segmentation and natural language processing [8], [9].

The hardware acceleration of unencrypted MxV is straight-
forward. The input and output vectors are typically stored on-
chip to maximize data reuse while the input matrix is streamed.
However, homomorphic encryption (HE), including HE M x'V,
imposes a significant overhead on the memory bandwidth [10]
and has completely different computation characteristics. Fig-
ure 1 shows the external DRAM data transfer breakdown
(assuming no on-chip SRAM) for an HE MxV of 1K x 1K.
The input vector constitutes only 4% of the total data transfer
while the majority of the data transfer is dominated by HE
specific data entities such as the NTT twiddle factors and the
partial sum ciphertext. Therefore the acceleration techniques
for unencrypted MxV are not suited for HE M x V.

40.00%
30.00%
20.00%

10.00%

0.00%

Total Data Transfers [%]

INTT NTT Input Input Key Partial
Twiddle Twiddle Matrix Vector Switch Sum
Factors Factors Keys

Fig. 1. HE MV data transfer breakdown.

Several works have been proposed to accelerate HE, but
they either only focus on the basic primitives [11], [12], [13]
or do not address the memory challenges of HE MxV [14],
[15]. HEAX [11] and the design from Roy et al [12] de-
veloped efficient HE primitives on FPGA, composing them
together to realize higher level applications such as MxV is
challenging. Naively chaining the implementations of basic
primitives from prior works will lead to sub-optimal designs
as global data reuse optimizations is overlooked at primitive-
level. Gazelle [14] implements HE M xV on a multi-core CPU.
Their implementation simply processes the data on-demand
using caches and does not explicitly explore the data reuse
opportunities of various HE data entities.

To the best of our knowledge, we develop the first FPGA
accelerator for Homomorphic Encrypted Matrix Vector Mul-
tiplication (HE M x V). To reduce external DRAM data trans-
fers, we utilize the FPGA on-chip SRAMs to only store highly

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

reused HE data entities. We further identify and exploit various
parallelization dimensions to speedup the HE computation.
Specifically, the key contributions of this paper are:

« By analyzing the access pattern and the data reuse of HE
MxV primitives, we show that the compute and mem-
ory characteristics of HE MxV is completely different
from its unencrypted counterpart and requires a different
acceleration strategy.

e Motivated by the analysis, we propose a bandwidth
efficient dataflow. We tackle the significantly increased
DRAM data transfer overhead by only storing the highly
reused HE data entities on-chip. We identify three di-
mensions of parallelism to speedup the computation of
HE MxV: partial sum parallelism, residual polynomial
parallelism and coefficient parallelism.

« Based on the proposed memory and compute optimiza-
tions, we design the first FPGA accelerator for HE M x V.
The accelerator is parameterized and can support various
HE parameters.

o Experimental results on 7 HE NN benchmarks including
CNNs and NLPs show that our design achieves up to
3.8x (GeoMean 2.8x) speedup compared to the 64-
thread CPU implementation.

II. BACKGROUND
A. Threat Model

The threat model this paper assumes is similar to that of
prior works [2], [16], [17], [18]. We assume a client-server
model where the client sends an encrypted input vector to the
server to perform HE MxV. The server owns the unencrypted
matrix M and performs MxV on the encrypted input vector,
without decrypting it. The encrypted result is returned to the
client after computation.

B. Homomorphic Encryption

In this paper, we use the CKKS scheme [19]. Cleartext is
first encoded as a plaintext polynomial (pf), which is then
encrypted as a pair of ciphertext polynomials (cz). Using
Single Instruction Multiple Data (SIMD) packing, the CKKS
scheme encodes and encrypts a vector of N/2 complex
numbers in N/2 slots of a plaintext and ciphertext, where
N is a power-of-two number that defines the degree of
plaintext and ciphertext polynomials. With SIMD packing, one
HE operation is simultaneously applied on every slot of the
plaintext or ciphertext. The coefficients of the plaintext and
ciphertext are represented modulo q. Let R = Z[X] /(XN +1),
a plaintext is a polynomial in the ring R, = R/qR with
coefficients from Zg, i.e. integers modulo g. The ciphertext
space is R? = (R/qR)?, which means a pair of polynomials
with coefficients from Z,. CKKS requires ciphertext modulus
q to be hundreds of bits depending on the multiplicative depth
of the function to be evaluated [20], which is expensive to
process. The Residue Number System (RNS) [19] enables
representing a ciphertext polynomial with log g-bit coefficients
as multiple polynomials with narrower coefficients. Let ¢ be a
product of [co-primes ¢ = Hézl p;. A polynomial in R, can

be represented as | polynomials, where the coefficients of the
i-th polynomial is from Z,,. [is also referred as the level of
the ciphertext. The encryption noise is accumulated over each
homomorphic operation [21]. When the noise grows beyond a
noise budget, decryption becomes impossible. Bootstrapping
can reset the noise and enable Fully Homomorphic Encryption
computation (i.e., unlimited number of HE operations). As the
number of HE operations is a known apriori in HE MxV,
bootstrapping can be avoided in accordance with several other
works [2], [3], [4], [16], [22].

Notation. Throughout the paper, we use normal case letters
to denote integers, e.g., p;. Polynomials and vectors are written
in bold, e.g., u. Vectors of polynomials and matrices are
denoted in uppercase bold, e.g. the plaintext of vector u is U.
[[] denotes the homomorphic encryption of a vector. We use
superscripts to represent the two components of a ciphertext
when needed, e.g., [u] = (U°,U'). We use subscripts to
represent the indices, e.g. UY is the i-th polynomial of the
first component of ciphertext [u].

C. Primitive Operations of CKKS.

ct-ct add performs addition between two encrypted vectors
[u], [v] and outputs the encryption of the element-wise sum of
the two vectors, [u + v]. pt-ct mult multiplies a plaintext U
with a ciphertext [v] and outputs [u o v], where o denotes
element-wise multiplication of the two vectors. ct-ct mult
consists of multiple steps, including polynomial multiplica-
tions and relinearization. As the matrix is not encrypted in
our setting, ct-ct mult is not needed. We therefore omit the
details and refer the reader to [19]. To avoid noise overflow,
a rescaling operation is performed after each HE multiplica-
tion. Rescaling involves Number Theoretic Transform (NTT),
Inverse-NTT (INTT) and element-wise operations, as shown
in Algorithm 1. This operation takes the RNS and NTT form
of a ciphertext as input and reduces its level from [to [— 1.

Algorithm 1: CKKS Rescaling
Input: [¢] = (C°,CY) € (]_, ZY)2.

1=1 “p;
Output: [¢] = (C,C') e (T]'Z! Zp)?.
1 for k< 0to 1 do
2 | a <« INTT(CF, p)
3 fori< 1tol—1do
4 a’ + NTT(a,p;)
s ¢} « Mod(p; ! - (CF — o), py)
6 end
7 end

Let u = (ug, u1, U2, ..., uN—1), Ct rotation outputs [u'] =
[(Why Ukt 15 ooy UN—1, U0, U1y ..o, Uk—1)], Namely the elements
of u are circularly shifted by k slots. To perform rotation
homomorphically, one first computes an automorphism on
each residual polynomial. Automorphism moves coefficients
of a polynomial via a mapping i — o(i), where ¢ is the
index of coefficient ¢; and oy () is defined as

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: CKKS Key Switching

Input: [e] = (C°, €') € (I, Z)%

ksk0 € (TT;Z; Zy) kskl e ([T,5, Z))"

Output: [c] € ([[}_, Z))2.
1 for i+ 1 to [do
2 | a<« INTT(C},p:)
3 for j « 1to !l do
4

a' « (i==4) 7 C; : NTT(a,p))
5 C Mod((~3q +a’ - kskO[z, j],p;)
. (~jj — Mod((~3j +a’ - kskl[z, j],p;)
7 end

8 b+ NTT(a,py1)
~0 ~0
N C,,1 < Mod(Cy; + b - kskO[i,] + 1], p141)

1 ~1
10 Cl+1 — MOd(Cl+1 + b - kskl [’L, l + 1]7pl+1)
11 end

~0

12 [€] « Rescale((C ,61),pl+1)
13 [¢] < Add([c], [¢])

or(i) =1i-5% mod N,i€0,1,...N —1
After the automorphism, the ciphertext is encrypted under a
different secret key, requiring a key switch operation to produce
the output of rotation (see Algorithm 2).

D. Homomorphic Encrypted MxV

HE MxV is performed between an unencrypted matrix M
of shape m x n and an encrypted vector v of length n. For
simplicity, we assume n < N/2 in the following analysis.
The client packs all the elements of v into [2n/N] plaintext,
then encrypts them into ciphertext. To efficiently encode the
matrix into plaintext, we use the state-of-the-art method which
combines row-based packing and diagonal packing [14], [15].
In this method, M is represented by m vectors, where each
vector has n elements. The n elements in each vector are
selected along the extended diagonals such that they have
distinct indices in the column dimension of the matrix. These
plaintext vectors are multiplied with m rotations of v. The
multiplication produces ciphertext that has k chunks of the
partial sum, where k¥ = 1 if m > n, and £k = |N/2m|
otherwise. Each chunk has m partial sums corresponding to
the m outputs. The partial sums that contribute to the same
output within a ciphertext (when k > 1) are accumulated using
the rotate and sum algorithm [14], [15].

Figure 2 uses a matrix of size 4 x 8 to illustrate the steps
to compute HE M xV. Each element in the matrix is denoted
by its row and column indices. The matrix is packed into
four plaintext, shown as pt in the figure. Each plaintext has
two extended diagonals (k = 2). The first step @) of the
computation is the pt-ct mult between the plaintext vector
and the rotated ciphertext vector. Each pt-ct mult outputs a
ciphertext that encrypts a vector that contains two chunks of
partial sums, each of which has 4 partial sums corresponding
to the 4 outputs. Next @), we need to rotate and accumulate
the partial sums within the same ciphertext. This step involves
[log k] = 1 ct rotation and ct-ct add operations. Finally @),

™ TPartiaisumo ~ 1 ™ TPariaisum1 ~— "1
" | pt *(‘M)I{L5)](2-5)|(3r77|] I [onfuafeafeafosfesfenfeo] pt I
pt-ct mult @ pt-ct mult

e oon) ot o] T2 e« 56 7]||ET2ITeTsTe T o]« |
w m) mm - -

| ct _(0,4)|l1,5)|(2.6)|(3,7]| I I |(n‘1)|(1,zlliz,3)|(3.4)|1u,sj]u,s)[(z.?)[(:‘n)] ct I

| @ rotate and ct-ct add I @ rotate and ct-ct add I

(0,9](1,)(2,)(3,)] ct

2.0)2.1)@8)

(3.0)(3,2)((3,2)

= @ ct-ct add
Mt [onjasfeen T Moafaofes]s !
orotale and ct-ct add o rotate and ct-ct add |

|cr I(n,z*:.z)[(u)l(:.s)|(o,s)|(1‘7)|(z.n)|(z,1y|l | [sEAEsEs]o e ofe 2] ct |

x
[©]
]

1

[4]

|cr|z|3 4|5‘6|7|0|1|”|3[A|5|6|7|D|1|2]ct|

n @ pt-ct mult @ pt-ct mult

| pt |(n,z;|(1.s)‘(u)](:.s)|(u,s)|u.1»](z,n||(:‘n|I I [afsfEsfEs]e Ao ofeafe2] pe |
L __ PatialSum2 __) __ RatialSum3 __ |

Fig. 2. HE matrix vector multiplication.

the 4 partial sum ciphertext are accumulated to produce the
final output.
ITII. HE MxV ALGORITHMIC ANALYSIS AND DATAFLOW

HE M XV incurs significant overhead in compute and mem-
ory requirements due to the polynomial representation and
modular arithmetic. We tackle these challenges by identifying
the reuse of various data entities in HE MxV and devise an
efficient dataflow given the limited DSP and SRAM resources.
A. Memory Requirement

A ciphertext is composed of 2-/ degree-(/N —1) polynomials.
Each coefficient in the polynomials is a log p; bits integer. The
size (bytes) of a ciphertext is

Bct =92. l . N . bytescoeﬁ‘icient (])

Because each ciphertext can encode a vector of size N/2, the
size of the encrypted input vector with length n is

B, = [2n/N] - Bet 2)
Each plaintext is one half of the size of a ciphertext
Bpt =l-N- bytescoeﬁicient 3)

We use m - [2n/N] plaintext to represent the unencrypted
matrix M. The size of the encoded matrix is

Bv =m-[2n/N7] - By, “4)

The NTT and INTT operations in the rescaling and key
switching operations require additional twiddle factors, which
is proportional to I. The size of the twiddle factors is

Bntt_tf = Bintt_tf = l -N - bytescoeﬁﬁcient (5)

INTT operations require a different set of twiddle factors but
the total size is the same as the NTT. Finally, the key switch
keys for the rotation are stored as a matrix of polynomials.
The size is

Bisko = Brsk1 =1 - (l + 1) N - bytescoeﬁiciem (6)

Note that automorphism with a different rotation distance
requires a different set of keys.

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

B. Memory Optimization: Data Reuse

As shown in the previous analysis, data movement is the
largest bottleneck in HE computations. Understanding the
temporal data reuse patterns of various data entities in HE
MxV is essential to effectively allocate the on-chip SRAM
resources and reduce external DRAM transfers. We introduce
an analytical cost model to evaluate the total DRAM transfers
by storing various data entities data on-chip.

We define the cost of an HE data entity as the total
amount of DRAM transfers due to reading the data during
the entire HE M xV computation. For simplicity, we consider
[2n/N] = 1 in the following analysis. The twiddle factors are
highly reused data entities in HE MxV due to the frequent
transformations between NTT domain and coefficient domain
in HE primitives. To compute one partial sum ciphertext, the
NTT twiddle factors are reused by (I +4) times: each Rescale
operation reuses the NTT twiddle factors twice and there are
2 Rescale ops per partial sum computation; the key switching
operation reuses the NTT twiddle factors [times (Line 1 in
Algorithm 2). There are m partial sum ciphertext. Thus the
total data transfer cost of NTT twiddle factors is

th_ntt =m:- Btf_ntt : (l + 4) (7

The INTT twiddle factors are reused a lot less than the NTT
ones. Rescale operation performs INTT for the last residual
polynomial. Key switching operation uses the INTT twiddle
factors once. The cost of INTT twiddle factor data transfers is

Cif intt = m - By inee - (1 +2/1) ()
Similarly, the input vector ciphertext is reused m times.
Cin_vector =m:- Bct (9)

The partial sum ciphertext (Line 6-7 in Algorithm 2) is also
reused frequently. The cost is

(10)

Cpartial_sum =m: Bct -1

There is no reuse of the input plaintext matrix. Each partial
sum ciphertext is rotated 1 + [logk]| times, where the first
term is to align the SIMD slots of the partial sum ciphertext
with the output ciphertext and £ is the number of partial sum
chunks as defined in Section II-D. The rotation distances for
the accumulation of k chunks are the same across various
partial sum ciphertext, therefore the key switch keys for the
[log k] rotations can be reused. The cost of the input matrix
and the key switch keys are:

Y
12)

Cin_matriz =m: Bpt
Crsk = (Brsko + Brsk1) - (m + [log k1)

We quantitatively analyze the impact of DRAM data trans-
fers and the minimal required on-chip SRAM capacity. We
use an HE M XV of size m = 1024, n = 1024 in the analysis
while other problem sizes follow similar trend. We select
N = 2" and | = 7 to achieve 128-bit security. Figure 3
shows the analysis result. The bar chart shows the cost and

the breakdown (only read traffic is considered for the sake
of simplicity). From left to right, we assume that additional
data entities can be stored on-chip completely. The line chart
shows the minimal required on-chip SRAM capacity. The
result indicates that the NTT twiddle factors and partial sum
ciphertext are among the most costly data entities. While there
is a decent amount of reuse of the input vector and the INTT
twiddle factors, the total data transfers that are incurred by
them is relatively low. The data reuse pattern of HE MxV
is significantly different from unencrypted M XV in which the
input and output vectors are the main sources of data reuse.
In terms of the SRAM capacity, we would need close to 6
MB in order to minimize the DRAM data transfers.

Minimal SRAM Partial Sum (Ct) M Key-Switch Keys M Input Vector (Ct)
Input Matrix (Pt) B NTT Twiddle Factors M INTT Twiddle Factors

50 10
40 8

6

Cost [MB]
© % g&
N »~
Minimal SRAM Required [MB]

Baseline Reuse NTT Reuse INTT
(noreuse) Twiddle Twiddle
Factors Factors

Reuse Reuse
Partial Sum Input
Ciphertext Ciphertext

Fig. 3. Reuse of various data entities in HE MXx V.

C. Compute Optimization: Parallelization

Due to the polynomial representation and the modular
arithmetic in HE, the total number of operations of HE MxV
is significantly increased [10]. Parallelizing the computation
is necessary to avoid compute bottlenecks that impact latency.
We identify three parallelization dimensions from various HE
MxV primitives. We select these parallelization dimensions
such that each one operates on a different abstraction level,
from ciphertext (highest level) to coefficients in a residual
polynomial (lowest level), and can be easily mapped to a
parameterized hardware accelerator (Section IV).

o Partial sum parallelism: The high-level parallelism is
the number of partial sum ciphertext being processed
concurrently. The maximum degree of parallelism is m,
where m is the length of the output vector. We denote
this as the high level parallelism because the computation
of partial sum ciphertext itself involves a series of lower
level HE primitives.

o Residual polynomial parallelism: This is the mid-level
parallelism. It determines the number of residual poly-
nomials being processed simultaneously within each par-
tial sum ciphertext computation. Some primitives in HE
MxV have data dependency across residual polynomials
which enforces the processing order. For example, the
first [— 1 output residual polynomials in Rescale depends
on the last residual polynomial. Therefore the maximum
degree of parallelism for Rescale is [— 1.

« Coefficient-wise parallelism: As the low-level parallelism,
this dimension determines how many coefficients in a

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

residual polynomial are processed concurrently. There
are many element-wise operations between coefficients of
polynomials in various HE primitives, which are straight-
forward to parallelize. Other operations such as NTT and
INTT require non-trivial techniques to parallelize due to
the access pattern of the algorithm (Section IV-B).

D. Bandwidth Efficient Dataflow

We design a dataflow specifically optimized for HE M x V.
The dataflow combines various memory and compute opti-
mizations: i) Given the DRAM transfer cost of various HE data
entities and the available on-chip SRAM capacity, selectively
store highly reused data on-chip to reduce memory band-
width. ii) Efficiently utilize the compute resources by enabling
various parallelization dimensions. iii) Apply HE primitive
fusion to avoid additional DRAM transfers for intermediate
ciphertext.

SRAM Allocator: The SRAM allocator takes the cost
of various data entities in HE MxV as the input. An HE
data entity is defined as the entire data structure for an
operation. For example, the whole set of NTT twiddle factors
or key switch keys is considered as one data entity. While
we can further break these down into smaller chunks, we
chose this granularity for simplicity. The allocator produces an
allocation strategy as the output, where the allocation strategy
specifies the location of the corresponding data entity (on-
chip or in the DRAM). We use a greedy algorithm to allocate
the SRAM space. The SRAM allocator always favors data
entities that have higher cost (larger data transfer overhead).
Fusion: To further reduce DRAM transfers, our dataflow fuses
the processing of the HE primitives. The allocator reserves
enough space to store the intermediate ciphertext whenever
there is a producer and consumer relationship between two
HE primitives.

Computation Dataflow: HE MxV computation can be
implemented using nested loops, where the outermost loop
iterates and accumulates the m partial sum computations while
the inner loops are used for the computation of a single
partial sum ciphertext. While the outermost loop (partial sum
parallelism) is straightforward to exploit, naively increasing
the partial sum parallelism can quickly use up the available
resources of an FPGA device, especially the on-chip SRAM.
Our dataflow applies loop tiling technique to allow g partial
sum computations be performed concurrently, where ¢ is a
parameter of the dataflow. Within the computation of one
partial sum, We apply two levels of loop tiling and unrolling
to further utilize the compute resources. The first level exploits
the residual polynomial parallelism (p) while the second level
exploits the coefficient-wise parallelism (c).

IV. FPGA ACCELERATOR DESIGN

A. Accelerator Architecture Overview

We design a parameterized accelerator that is optimized for
the bandwidth efficient dataflow. Table I lists the configuration
parameters of the accelerator. The architecture of the acceler-
ator is shown in Figure 4.

TABLE I
CONFIGURATION PARAMETERS OF THE ACCELERATOR
Parameter | Description
g Number of PE groups.
P Number of PEs per PE group.
c Number of lanes in the MAC array and SPN per PE.
b Number of banks of the scratchpad per PE.

The accelerator is composed of a number of PE groups. The
number of PE groups equals to the outermost loop (partial
sum parallelism) unrolling factor. A Partial Sum Reduction
Engine connects all the PE groups and performs partial sum
accumulation (ct-ct add). There are multiple PEs within a
PE group. An Inter-PE Bus is used to enable PE-to-PE data
communication within a PE group during key switching (Line
2-7 in Algorithm 2).

Within each PE, there are two major functional units:
Modular MAC Array and Streaming Permutation Networks
(SPN) [23] with NTT Cores. The Modular MAC Array is
used by element-wise polynomial operations with up to 3
input polynomial operands and 1 output polynomial operand.
We utilize SPN to enable streaming coefficient permutation
for NTT, INTT and automorphism. Both functional units
have multiple lanes to enable parallel processing of multiple
coefficients per cycle (coefficient parallelism). Each PE has a
local scratchpad memory that stores the residual polynomials
and twiddle factors. A Control Sequencer runs a state machine
and schedules tasks to each functional units.

PE Group Inter-PE B PE Group
PE
|« MAC Array
Scratchpad Permutation
<®>| with NTT Cores
To = = = {
DRAM Partial Sum Reduction Unit |

Fig. 4. Top-level architecture of the proposed accelerator.

B. Design Details

1) PE Architecture: Each PE is capable of producing one
or more residual polynomials of a partial sum ciphertext. The
number of residual polynomials a PE processes is [I/p], where
[is the number of residual polynomials in the ciphertext. The
PEs in a group work collaboratively to compute a partial sum
ciphertext. The computation is further broken down into HE
primitives, which are mapped onto the two major functional
units. Both functional units are fully pipelined and have a
throughput of ¢ coefficients per cycle.

Modular MAC Array: This functional unit performs
coefficient-wise modular arithmetic between polynomials such
as addition, subtraction, multiplication and accumulation. It
is used by all the HE primitives except NTT, INTT and
automorphism. It can load up to 3c coefficients and store c
coefficients per cycle. We use Barrett reduction algorithm [24]
to implement modular multiplication. This algorithm includes
three integer multiplications. The first multiplication is a full
width multiplication and multiplies two input operands. The
other two are additional half width multiplications for Barrett

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

reduction. Similar to [25], our design is fully pipelined and
can process two coefficients every cycle.

Permutation Networks with NTT Cores: NTT, INTT and
automorphism require permutation of coefficients within a
residual polynomial. Due to the complex data access pattern,
such operations are difficult to parallelize. Naive solution
requires a fully connected crossbar (unscalable) with carefully
designed memory accesses to avoid bank conflicts [11]. To
overcome this challenge, we utilize the NTTGen [26] to
enable parallel processing of NTT and automorphism without
costly corssbar. NTTGen uses Streaming Permutation Network
(SPN) [23], a folded version of the multi-stage Benes net-
work [27], to enable parallel data permutation. The SPN can
achieve arbitrary permutation [23]. It has three subnetworks —
two spatial permutation networks and one temporal permu-
tation network, as shown in Figure 5. Spatial permutation
shuffles the c coefficients that are received in the same
cycle whereas temporal permutation rearranges the coefficients
across different cycles. A spatial permutation network uses
2 x 2 switches to recursively compose a c-to-c connection.
Temporal permutation is achieved by issuing reads and writes
to ¢ dual-port memory using pre-computed addresses.

I SPN |

+{ g |CwWemono > g [NTT

- 3 —»[Memory7 H> 3 7L Cores

& H Memory2 1>

J|-> S o) ™) NTT
o & ° o & Cores
I: 39 . 39 °

| ‘:In 3} <=n 5} | °

t{_Memory c-3 }

B g >t Memory ¢-3_ 1| g °

™3 >t Memory c-2_ > 8 | NTT

4> X [Memoryc-1 b * L Cores
| Spatial Temporal Spatial|

U U U I U RIS U U U U

Fig. 5. Architecture overview of the SPN.

NTT Cores are only used by the NTT and INTT computa-
tions (bypassed during automorphism). There are ¢/2 NTT
Cores per PE. The microarchitecture of the NTT Core is
depicted in Figure 6. Each NTT Core receives two coefficients
as inputs, multiplies with the twiddle factors, and generates
two coefficients as outputs.

NTT Core
Mod
i - Modular ™ Yo
Xo T Multiplier | Reduction Add
Twiddle _| }
Factor Mod He v
X4 '>| Shift Registers Sub 1

Fig. 6. Design of the NTT Core.

Multi-bank Scratchpad: We design a multi-bank scratch-
pad to allow reading up to 3c coefficients and writing c
coefficients per cycle. Figure 7 shows the data layout of
polynomials in the scratchpad. Each bank is implemented
using one or more dual-ported BRAMs/URAMs and can store
at least one polynomial or one set of twiddle factors. An
entry in each bank stores c coefficients. The number of banks
should match the throughput of the Modular MAC Array and
Permutation Module to avoid pipeline stall.

c coefficients

c coefficients

c coefficients

BRAM

BRAM|...

BRAM

c coefficients

c coefficients

c coefficients

c coefficients

c coefficients

c coefficients

H i
1)
1)
i H
i i
'|BRAM|...|BRAM BRAM !
i i
1)
1)
i H
i i

Fig. 7. Design of the multi-bank scratchpad with b banks.

2) Inter-PE Communication and Parial Sum Reduction:
The key switching operation takes a ciphertext that is en-
crypted by a different secret key as the input and produces a
new ciphertext that can be decrypted using the original secret
key. The computation of each residual polynomial in the new
ciphertext requires modular multiply-accumulate from all the
residual polynomials of the input ciphertext (Line 4 - 8 in
Algorithm 2). This algorithm requires data communication
between the PEs. The Inter-PE Bus is designed for this
purpose. The outermost loop (Line 1 in Algorithm 2) of the
Key Switching operation is processed sequentially. In each
iteration, one PE broadcasts its residual polynomial to all the
other PEs in the same group at the rate of c¢ coefficients per
cycle. The residual polynomial is stored in each PE’s local
scratchpad. Upon receiving the residual polynomial, each PE
can start the computation as specified by the innermost loop
body. The Partial Sum Reduction Unit is a modular adder tree
which takes c coefficients from the same residual polynomial
in g partial sum ciphertext (PE groups) and adds them together
to produce the final output ciphertext.

V. EVALUATION

A. Experimental Setup

We implement our accelerator on Xilinx U200 FPGA [28]

using SystemVerilog. The FPGA has 1,182K LUTs, 2,364K
FFs, 35 MB on-chip SRAM and 6,840 DSPs. 64 GB of DRAM
is attached to the FPGA, providing a peak bandwidth of 77
GB/s. Our FPGA designs are synthesized and place-and-routed
using Xilinx Vivado 2020.2. We assume that the input matrix
and vector are stored in the FPGA DRAM. We run RTL
simulations to report latency, our main performance metric.
The latency is defined as the duration from loading the input
from DRAM to storing the output vector to DRAM.
HE Parameters. We implement our designs based on three
sets of HE parameters. The parameters are extracted from
Microsoft SEAL library [29] and satisfy 128-bit security.
Table II lists the HE parameters.

TABLE II
HE PARAMETERS USED IN THE EVALUATION.
Parameters Security Poly Degree (V) C(]))Tg:l}:a(tll)o n
Set-A 128-bit 8,192 3
Set-B 128-bit 16,384 7
Set-C 128-bit 32,768 14

Accelerator Configurations. Table III shows the accelerator
configuration for parameters Set-A, Set-B and Set-C respec-
tively. The parameters are selected based on a resource estima-
tor. We choose the number of PEs per PE group empirically.

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

We set the size of the scratchpad per PE to store the input
vector, the NTT twiddle factors and the partial sum ciphertext.
Then we maximize the number of PE groups based on the
available on-chip SRAM resources.

TABLE III
ACCELERATOR CONFIGURATIONS.
Set-A Set-B & Set-C
Num PE Groups (g) 4 2
Num PEs per Group (p) 3 7
Num Lanes per PE (c) 16 16
Scratchpad Size per PE 1.5 MiB 1.5 MiB
Num Banks per Scratchpad (b) 3 3

Benchmarks. We consider single batch (batch size = 1) as the
target inference deployment scenario [30]. Under this setting,
fully-connected (FC) layers are equivalent to MxV operations.
We evaluate the performance of HE MV using various FC
layers in state-of-the-art computer vision and speech DNN
models. Table IV shows the list of the benchmarks. There
are 7 layers in total obtained from AlexNet, VGG, RNN-T
and Deep Speech 2.

TABLE IV
M XV FROM STATE-OF-THE-ART DNN MODELS.
Name Model m n

Alex-6 AlexNet 4,096 9,216
Alex-7 AlexNet 4,096 4,096
Alex-8 AlexNet 1,000 4,096
VGG-6 VGG 4,096 25,088
RNNT-LSTM RNN-T 1,024 2,048
RNNT-FCO RNN-T 512 1,344
DS2-GRU Deep Speech 2 1,600 1,600

CPU Baseline. We compare the performance of our accelera-
tor with a multi-core CPU baseline implementation. The CPU
of the server is an AMD Ryzen 3990X CPU, which has 64
cores (128 threads) running at 2.9 GHz. The server has 256
GB DDR4 with 200 GB/s peak bandwidth to DRAM. We use
TenSeal v0.3.8 [31] and 64 CPU threads to implement the
benchmarks listed in Table IV.

B. Evaluation Results

1) Comparison with CPU Baseline: We compare the per-
formance of our accelerator against a multi-core CPU imple-
mentation (1-thread and 64-thread) on 7 benchmarks selected
from AlexNet, VGG, RNN-T and Deep Speech 2. Figure 8
shows the absolute execution time (bar chart) and speedup
(line chart) using the parameters in Set-B. We observe a
similar trend when using the other two parameter sets. Our
implementation achieves up to 9x speedup compared to the
1-thread CPU implementation. Although the CPU platform
has almost 3x DRAM bandwidth, our design significantly
outperforms the general purpose implementation with up to
3.8x (GeoMean 2.8) faster than the 64-thread baseline. The
speedup offered by our FPGA accelerator demonstrates the
effectiveness of the specially designed datafiow for HE Mx V.

Comparison with FPGA Baseline: We compare our design
with HEAX [11], the state-of-the-art FPGA accelerator for
CKKS. HEAX cannot be used to accelerate HE MxV due to

B FPGATime [s] M 64-thread CPU Time [s]
Speedup over 64-thread ® Speedup over 1-thread

BT
80 12
z
> 60 9
£
= 40 6 £
S H
s 20 3 &
¢ l-L-l_l.n# ’
w 0 0
+f° .‘;\ _‘}' 05° ,\\x‘ o Q9
4 N 2 O 2 B [
Ll S SO PR VR O
q.\‘é S 9

Fig. 8. Execution time and speedup across various benchmarks.

the lack of support for automorphism. We compare the perfor-
mance of key switching, the most time consuming operation
in HE M x V. Both designs use the same HE parameters (Set-
B). Because HEAX only reports the number of key switching
operations per second, we use the same metric to compare.
By leveraging various parallelization dimensions, our design
achieves up to 1.95x speedup compared to HEAX.

TABLE V
KEY SWITCHING PERFORMANCE COMPARISON.
Our Design HEAX [11] Speedup
Operations per Second 5,122 2,616 1.95%

2) Execution Time Breakdown: Figure 9 shows the execu-
tion time breakdown in percentage for various HE operations
using the design for parameter Set-B. The execution time is
dominated by the key switching and rescale operations, which
involve several time-consuming NTT and INTT. In contrast,
pt-ct mult, automorphism and partial sum reduction take less
time to execute because they involve less number of operations
(e.g., element-wise or permutation without computation).

B reduction M key switching automorphism
B rescale W pt-ct mult

100 —

=

p 75

£

= 50

c

2

s 25

[3]

X 0
\e"'so \e"':\ \e*'ib <) 2 "o‘& ,OQ &
v v A\ < g\ &V

s & 9

Fig. 9. Execution time breakdown by HE primitives.

Table VI shows the execution time of various HE primitives
on one residual polynomial. NTT and INTT are the most
time consuming compute kernels. Therefore HE operations
that require multiple NTTs and/or INTTs have high latency.
Our NTT Cores have a latency of 19 cycles.

3) Scalability Analysis: To evaluate the scalability of the
architecture, we instantiate two designs for the three HE
parameter sets, as listed in Table III. We reuse the same FPGA
design without runtime reconfiguration for Set-B and Set-C.
Figure 10 shows the execution time of various benchmarks.

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
EXECUTION TIME OF VARIOUS HE PRIMITIVES.

NTT/INTT Automorphism
14,658 1,024

Element-wise
1,024

Cycles

The architecture is scalable from 3 PEs per group to 7 PEs per
group. With the bandwidth-efficient dataflow, the bottleneck
of HE MxV has shifted from memory bound to compute
bound. The performance is proportional to the total number
of operations of each benchmark.

[l Set-A W Set-B Set-C
m
100
75
50
25
0 —J—-D—-D—
o A ® © N o N
+ ¥ * © A O &
\Z \Z N4 © 2 § ()
v v v 3 é&.\« ‘\\g\ o‘bq,

Fig. 10. Execution time of the benchmarks across various HE parameter sets.

4) Resource Utilization: The resource utilization of accel-
erator designs for Set-A and Set-B/C is listed in Table VII.
URAMs are heavily used in our design to store the polyno-
mials. Due to the modular arithmetic, each modular multiplier
uses 17 DSPs. BRAMs are used by the SPN (temporal permu-
tation). SPN reads coefficients of a polynomial in sequential
order and permutes the coefficients such that coefficients
with a stride defined by the NTT algorithm are produced in
the same cycle. Therefore, SPN requires internal buffers to
temporarily store the coefficients. The size of the buffers is
determined by the maximum degree of the polynomial that
can be supported. The maximum degree supported by Set-B/C
design is much greater than Set-A design, therefore Set-B/C
design requires more BRAM resources. The LUTs are used to
implement modular adders. Set-B/C design has more PEs and
thus requires more LUT resources.

TABLE VII
ACCELERATOR RESOURCE CONSUMPTION ON FPGA.

kLUT kFF BRAM URAM DSP Freq.
Set-A 756.3 610.4 224 656 4,896 200 MHz
Set-B/C 8356 1,093.2 896 742 5,712 180 MHz

VI. RELATED WORK

CPU. HE optimized frameworks [32], [33], [29] are pro-
posed to ease the tasks of programming HE applications
on CPU. Primitive level and graph level optimizations were
explored to speedup HE computation. Gazelle [14] developed
novel packing schemes under the BFV scheme to reduce
the number of rotations in HE MxV and HE convolution.
Castro et al [34] proposed data layout optimizations to improve
DRAM efficiency for various HE operations. Due to the lack
of fine-grained dataflow and parallelism, HE computations on
CPU still incur high latency [14].

GPU. Prior GPU implementations [35], [36] accelerate NTT
on GPU and do not consider the other primitives. Jung et
al. used GPU to accelerate all the CKKS primitives [13].
However, the data transfer overhead introduced by naively
chaining the primitives to compose higher level operations
such as HE MxV was not considered.

FPGA. Prior FPGA implementations [11], [12], [37] accel-
erate HE multiplication and addition. However, HE rotation
was not supported. In addition, they do not consider the data
layout and reuse in HE M x V. Using these designs will result
in excessive DRAM data transfer overhead. Tian et al [38]
proposed an FPGA accelerator for HE convolution. Their de-
sign avoids costly HE rotations by using the frequency domain
convolution. This technique cannot be applied to HE MxV.
[39] proposed analytical models of FPGA accelerated HE
CNN. However, many implementation details were ignored.
To the best of our knowledge, no prior work proposed an
FPGA-based design that can perform HE Mx V.

ASIC. Cheetah [4] optimized BFV HE algorithms based on
Gazelle [14] and designed an AISC for them. It only supports
small HE parameters that do not require RNS decomposition,
which makes the implementation less practical. F1 [40] pro-
posed ASIC acceleration of the BGV scheme. Their design
uses the row-wise packing to process HE M XV, not only
requiring more rotations but also producing m times more
output ciphertext than the scheme used in this paper, where
m is the length of the output vector. BTS [41] is a purposely
built ASIC for the CKKS scheme. To support bootstrapping,
BTS is a very costly design that has a projected area of
more than 350mm2. While Cheetah, F1 and BTS achieve
high performance, they require extremely high resource and
bandwidth availability such as 2 GHz operating frequency (F1)
or 192 MB on-chip SRAM (BTS). Further, the performance of
these accelerators were evaluated on a simulator. In contrast,
we propose a practical implementation.

VII. CONCLUSION

By comprehensively analyzing the encryption overhead and
the data reuse opportunities of HE M XV, we show that the
compute and memory characteristics of HE MxV is signifi-
cantly different from its unencrypted counterpart and requires
a different accelerator design. Motivated by the analysis, we
proposed a bandwidth efficient dataflow by only storing the
highly reused HE data entities on-chip and thereby dramati-
cally reducing the DRAM data transfers. The dataflow exploits
three dimensions of parallelism to speedup the computation of
HE M x V. Based on the proposed dataflow, we design the first
FPGA accelerator for HE MxV. We evaluate the proposed
accelerator on 7 benchmarks. Experimental results show that
our FPGA accelerator is up to 3.8x (GeoMean 2.8x) faster
than the 64-thread CPU implementation.

VIII. ACKNOWLEDGEMENT

This work has been sponsored by the U.S. National Science
Foundation under grant SaTC-2104264 and CNS-2009057.
Equipment grant from AMD Xilinx is greatly appreciated.

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

REFERENCES

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing. Association for Computing Machinery, 2009.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” ser. ICML’16.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20).

B. Reagen and et al, “Cheetah: Optimizing and accelerating homo-
morphic encryption for private inference,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021.
T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015.

R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru)
neural networks,” in 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS), 2017, pp. 1597-1600.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, 1997.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th International Conference on Learning Representations, Y. Bengio
and Y. LeCun, Eds., 2016.

L. de Castro, R. Agrawal, R. Yazicigil, A. Chandrakasan, V. Vaikun-
tanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic encryption
need compute acceleration?” arXiv preprint arXiv:2112.06396, 2021.
M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” ser. ASPLOS ’20.

S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019.

W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 114—-148, 2021.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in Proceedings
of the 27th USENIX Conference on Security Symposium, ser. SEC’18.
USA: USENIX Association, 2018.

S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in Cryp-
tology — CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014.

E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: towards deep
learning over encrypted data,” in Annual Computer Security Applications
Conference (ACSAC 2016), Los Angeles, California, USA.

E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
2018.

F. Boemer and et al, “Ngraph-he2: A high-throughput framework for
neural network inference on encrypted data,” in Proceedings of the 7th
ACM Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, ser. WAHC’19, 2019.

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography — SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347-368.

M. Albrecht, M. Chase, H. Chen, and et al, “Homomorphic encryption
security standard,” Tech. Rep., 2018.

C. Gentry, “A fully homomorphic encryption scheme,” 2009, phD
Dissertation 2009.

A. QaisarAhmadAlBadawi, J. Chao, and et al, “Hcnn, the first homomor-
phic cnn on encrypted data with gpus,” IEEE Transactions on Emerging
Topics in Computing.

R. Chen and V. K. Prasanna, “Automatic generation of high throughput
energy efficient streaming architectures for arbitrary fixed permutations,”

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

(39]

[40]

[41]

in 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), 2015, pp. 1-8.

D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Berlin, Heidelberg: Springer-Verlag, 2003.

S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 2019.

Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Nttgen:
A framework for generating low latency ntt implementations on fpga,”
in Proceedings of the 19th ACM International Conference on Computing
Frontiers, ser. CF °22, 2022, p. 30-39.

V. E. Benes, “Optimal rearrangeable multistage connecting networks,”
The Bell System Technical Journal, vol. 43, no. 4, pp. 1641-1656, 1964.
Xilinx, “Xilinx UltraScale+ FPGAs,”
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html.
“Microsoft SEAL (release 3.6),” https://github.com/Microsoft/SEAL,
Nov. 2020, microsoft Research, Redmond, WA.

V. J. Reddi and et al, “Mlperf inference benchmark,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA °20. IEEE Press, 2020, p. 446-459.

A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
2021.

R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: An optimizing compiler for
fully-homomorphic neural-network inferencing,” ser. PLDI 2019, 2019.
R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: An encrypted vector arithmetic language and compiler for
efficient homomorphic computation,” ser. PLDI 2020, 2020.

L. de Castro, R. Agrawal, R. Yazicigil, A. Chandrakasan,
V. Vaikuntanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic
encryption need compute acceleration?” 2021. [Online]. Available:
https://arxiv.org/abs/2112.06396

Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and
A. Lyashevsky, “Accelerating encrypted computing on intel gpus,” arXiv
preprint arXiv:2109.14704, 2021.

S. Kim, W. Jung, J. Park, and J. Ahn, “Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on gpus,”
in 2020 IEEE International Symposium on Workload Characterization
(IISWC), 2020.

S. S. Roy, A. C. Mert, S. Kwon, Y. Shin, D. Yoo et al., “Accelerator
for computing on encrypted data,” Cryptology ePrint Archive, 2021.

T. Ye, S. Kuppannagari, R. Kannan, and V. Prasanna, “Performance
modeling and fpga acceleration of homorphic encrypted convolution,”
in 2021 International Conference on Field Programmable Logic and
Applications (FPL), 2021.

T. Ye, R. Kannan, and V. K. Prasanna, “Accelerator design and per-
formance modeling for homomorphic encrypted cnn inference,” in 2020
IEEE High Performance Extreme Computing Conference (HPEC), 2020.
N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption. New York, NY, USA: Association
for Computing Machinery, 2021.

S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
arXiv preprint arXiv:2112.15479, 2021.

Authorized licensed use limited to: University of Southern California. Downloaded on August 05,2023 at 07:09:30 UTC from IEEE Xplore. Restrictions apply.

