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Abstract
In this paper, we introduce Neural Probabilis-
tic Soft Logic (NeuPSL), a novel neuro-symbolic
(NeSy) framework that unites state-of-the-art sym-
bolic reasoning with the low-level perception of
deep neural networks. To model the boundary be-
tween neural and symbolic representations, we
propose a family of energy-based models, NeSy
Energy-Based Models, and show that they are
general enough to include NeuPSL and many
other NeSy approaches. Using this framework,
we show how to seamlessly integrate neural and
symbolic parameter learning and inference in Ne-
uPSL. Through an extensive empirical evaluation,
we demonstrate the benefits of using NeSy meth-
ods, achieving upwards of 30% improvement over
independent neural network models. On a well-
established NeSy task, MNIST-Addition, NeuPSL
demonstrates its joint reasoning capabilities by out-
performing existing NeSy approaches by up to
10% in low-data settings. Furthermore, NeuPSL
achieves a 5% boost in performance over state-of-
the-art NeSy methods in a canonical citation net-
work task with up to a 40 times speed up.

1 Introduction
The field of artificial intelligence (AI) has long sought a sym-
biotic union of neural and symbolic methods. Neural-based
methods excel at low-level perception and learn from large
training data sets but struggle with interpretability and gen-
eralizing in low-data settings. Meanwhile, symbolic methods
can effectively use domain knowledge, context, and common
sense to reason with limited data but have difficulty represent-
ing complex low-level patterns. Recently, neuro-symbolic
computing (NeSy) [Besold et al., 2017; d’Avila Garcez et al.,
2019; De Raedt et al., 2020] has emerged as a promising new
research area with the goal of developing systems that inte-
grate neural and symbolic methods in a mutually beneficial
manner.

A neural and symbolic union has the potential to yield two
highly desirable capabilities - the ability to perform struc-
tured prediction (joint inference) across related examples that
possess complex low-level features and the ability to jointly

learn (joint learning) and adapt parameters over neural and
symbolic models simultaneously. For instance, predicting the
result of competitions between teams using historical perfor-
mance statistics in a tournament bracket requires methods to
perform joint inference to reason over low-level trends and
avoid inconsistencies such as two first-place finishes. Unfor-
tunately, joint inference problems quickly grow in complexity
as the output space typically increases combinatorially. For
example, in the tournament setting, as the number of entries
increases, the number of potential solutions grows exponen-
tially (O(2n)). An open challenge in the NeSy community is
scaling joint inference and reasoning.

This paper introduces Neural Probabilistic Soft Logic (Ne-
uPSL), a novel NeSy method that integrates deep neural net-
works with a symbolic method designed for fast joint learning
and inference. NeuPSL extends probabilistic soft logic (PSL)
[Bach et al., 2017], a state-of-the-art and scalable probabilis-
tic programming framework that can reason statistically (us-
ing probabilistic inference) and logically (using soft rules).
PSL has been shown to excel in a wide variety of tasks, in-
cluding natural language processing [Beltagy et al., 2014;
Deng and Wiebe, 2015; Liu et al., 2016; Rospocher, 2018],
data mining [Alshukaili et al., 2016; Kimmig et al., 2019],
recommender systems [Kouki et al., 2015], knowledge graph
discovery [Pujara et al., 2013], fairness modeling [Farnadi et
al., 2019; Dickens et al., 2020], and causal reasoning [Srid-
har et al., 2018]. The key innovation of NeuPSL is a new
class of predicates that rely on neural network output for
their values. This change fundamentally alters the learning
and joint inference problems by requiring efficient integrated
symbolic and neural parameter learning. The appeal of this
extension is that it allows for the semantics and implemen-
tation of the symbolic language to remain the same as PSL,
while also incorporating the added benefit of low-level neu-
ral perception. To gain a deeper understanding of optimiz-
ing the symbolic and neural parameters, we propose a versa-
tile mathematical framework, Neuro-Symbolic Energy-Based
Models (NeSy-EBMs), that enables many NeSy systems to
utilize established Energy-Based Model learning losses and
algorithms. Utilizing this theory and leveraging the unique
relaxation properties of PSL, we show that a gradient over
these neural predicates can be calculated and passed back to
common back-propagation engines such as PyTorch or Ten-
sorflow, allowing for scalable end-to-end gradient training.



Our key contributions include: 1) We define Neuro-
Symbolic Energy-Based Models (NeSy-EBMs), a family of
energy-based models, and show how they provide a founda-
tion for describing, understanding and comparing NeSy sys-
tems. 2) We introduce NeuPSL, describe how it fits into the
NeSy ecosystem and supports scalable joint inference, and
show how it can be trained end-to-end using a joint energy-
based learning loss. 3) We perform extensive evaluations
over two image classification tasks and two citation network
datasets. Our results show NeuPSL consistently outperforms
existing approaches on joint inference tasks and can more ef-
ficiently leverage structure, particularly in low-data settings.

2 Related Work
Neuro-symbolic computing (NeSy) is an active area of re-
search that aims to incorporate logic-based reasoning with
neural networks [d’Avila Garcez et al., 2002; Bader and Hit-
zler, 2005; d’Avila Garcez et al., 2009; Serafini and d’Avila
Garcez, 2016; Besold et al., 2017; Donadello et al., 2017;
Yang et al., 2017; Evans and Grefenstette, 2018; Manhaeve et
al., 2021; d’Avila Garcez et al., 2019; De Raedt et al., 2020;
Lamb et al., 2020; Badreddine et al., 2022]. The advantages
of NeSy systems include interpretability, robustness, and the
ability to integrate various sub-problem solutions (such as
perception, reasoning, and decision-making). For a thorough
introduction to NeSy literature, we refer the reader to the
excellent surveys by Besold et al. (2017) and De Raedt et
al. (2020). In this section, we identify key NeSy research cat-
egories and provide a brief description of each.

Differentiable frameworks of logical reasoning: Meth-
ods in this category use neural networks’ universal function
approximation properties to emulate logical reasoning inside
networks. Examples include: Rocktäschel and Riedel (2017),
Bošnjak et al. (2017), Evans and Grefenstette (2018), and Co-
hen et al. (2020).

Constrained Output: These approaches enforce con-
straints or regularizations on the output of neural networks.
Examples include: Hu et al. (2016), Diligenti et al. (2017),
Donadello et al. (2017), Mehta et al. (2018), Xu et al. (2018),
and Nandwani et al. (2019).

Executable logic programs: These approaches use neural
models to build executable logical programs. Examples in-
clude Liang et al. (2017) and Mao et al. (2019). We highlight
Logic Tensor Networks (LTNs) [Badreddine et al., 2022], as
we include this approach in our empirical evaluation. LTNs
connect neural predictions into functions representing sym-
bolic relations with real-valued or fuzzy logic semantics.

Neural networks as predicates: This line of work inte-
grates neural networks and probabilistic reasoning by intro-
ducing neural networks as predicates in the logical formulae.
This technique provides a very general and flexible frame-
work for NeSy reasoning and allows for the use of multiple
networks as well as the full incorporation of constraints and
relational information. Examples include DASL [Sikka et al.,
2020], NeurASP [Yang et al., 2020], Nuts&Bolts [Sachan et
al., 2018], DeepProbLog (DPL) [Manhaeve et al., 2021], and
our proposed method (Neural Probabilistic Soft Logic). DPL

combines general-purpose neural networks with the proba-
bilistic modeling of ProbLog [De Raedt et al., 2007] in a way
that allows for learning and inference over complex tasks,
such as program induction. We include DPL in our empiri-
cal evaluation.

3 Neuro-Symbolic Energy-Based Models
With the success and growth of NeSy research, there is an in-
creasing need for a common formalization of NeSy systems
to accelerate the research and understanding of the field. We
fill this need with a general mathematical framework, Neuro-
Symbolic Energy-Based Models (NeSy-EBMs). NeSy-EBMs
encompass previous approaches and establishes the founda-
tion of our approach. Energy-Based Models (EBMs) [Le-
Cun et al., 2006] measure the compatibility of a collection
of observed (or input) variables x ∈ X and target (or out-
put) variables y ∈ Y with a scalar-valued energy function:
E : Y × X → R. Low energy states of the variables rep-
resent high compatibility. Prediction or inference in EBMs is
performed by finding the lowest energy state of the variables
y given x. Energy functions are parameterized by variables
w ∈ W , and learning is the task of finding a parameter set-
ting that associates low energy to correct solutions.

Building on the well-known EBM framework, NeSy-
EBMs are a family of EBMs that integrate neural architec-
tures with explicit encodings of symbolic relations. The input
variables are organized into neural, xnn ∈ Xnn, and sym-
bolic, xsy ∈ Xsy , vectors. Furthermore, the parameters of
the energy function, w, are partitioned into neural weights,
wnn ∈ Wnn, and symbolic weights, wsy ∈ Wsy . Formally,
Definition 1 (NeSy-EBM). Let y ∈ Y and xsy ∈ Xsy

be vectors of variables with symbolic interpretations. Let
gnn be neural networks with neural weights wnn ∈ Wnn

and inputs xnn ∈ Xnn. A symbolic potential is a function
of y, xsy , and gnn(·) parameterized by symbolic weights
wsy ∈ Wsy: ψ(y,xsy,wsy,gnn(xnn,wnn)) ∈ R. A
NeSy-EBM energy function is a mapping of a vector of
m symbolic potential outputs, Ψ(y,xsy,wsy,xnn,wnn) =
[ψi(y,xsy,wsy,gnn(xnn,wnn))]

m
i=1, to a real value:

E(Ψ(y,xsy,wsy,xnn,wnn)) ∈ R.
NeSy-EBMs are differentiated from one another by the in-

stantiation process, the form of the symbolic potentials, and
the definition of the energy function. In appendix, we for-
mally show how two NeSy systems DeepProbLog (DPL)
[Manhaeve et al., 2018] and Logic Tensor Networks (LTNs)
[Badreddine et al., 2022] fit into the NeSy-EBM framework.
In summary, DPL uses neural network outputs to specify
event probabilities that are used in logical formulae defining
probabilistic dependencies. The definition of the DPL sym-
bolic potentials and energy function are tied to the inference
task; a different definition of the symbolic potential and en-
ergy function is used to implement marginal versus MAP
inference. For marginal, the most common DPL inference,
symbolic potentials are functions of marginal probabilities,
and the energy function is a joint distribution that is the sum
of the symbolic potentials. LTNs instantiate a model which
forwards neural network predictions into functions represent-
ing symbolic relations with real-valued or fuzzy logic seman-



tics. The fuzzy logic functions are symbolic potentials that
are aggregated to define the energy function. The following
section will introduce how our approach, NeuPSL, is instanti-
ated as a NeSy-EBM. Using this common framework, under-
standing and theoretical advances can be made across NeSy
approaches.

3.1 Joint Reasoning in NeSy-EBMs
We highlight two important categories of NeSy-EBM en-
ergy functions: joint and independent. Formally, an energy
function that is additively separable over the output variables
y is an independent energy function, i.e., corresponding to
each of the ny components of the output variable y there ex-
ists functions ny functionsE1(y[1],xsy,wsy,g(xnn,wnn)),
· · · , Eny (y[ny],xsy,wsy,g(xnn,wnn)) such that

E(·) =
ny∑
i=1

Ei(y[i],xsy,wsy,g(xnn,wnn)).

While a function that is not separable over output variables
y is a joint energy function. This categorization allows for
an important distinction during inference and learning. Inde-
pendent energy functions simplify inference and learning as
finding an energy minimizer, y∗, can be distributed across
the independent functions Ei. In other words, the predicted
value for a variable y[i] has no influence over that of y[j]
where j ̸= i and can therefore be predicted separately, i.e., in-
dependently. However, independent energy functions cannot
leverage some joint information that may be used to improve
predictions. See appendix for further details.

4 Neural Probabilistic Soft Logic
Having laid the NeSy-EBM groundwork, we now introduce
Neural Probabilistic Soft Logic (NeuPSL), a novel NeSy-
EBM framework that extends the probabilistic soft logic
(PSL) framework [Bach et al., 2017]. At its core, NeuPSL
leverages the power of neural networks’ low-level percep-
tion by seamlessly integrating their outputs with a collec-
tion of symbolic potentials generated through a PSL program.
Figure 1 provides a graphical representation of this process.
The symbolic potentials and neural networks together define
a deep hinge-loss Markov random field (Deep-HL-MRF), a
tractable probabilistic graphical model that supports scalable
convex joint inference. This section provides a comprehen-
sive description of how NeuPSL instantiates its symbolic po-
tentials and how the symbolic potentials are combined to
define an energy function, while the following section de-
tails NeuPSL’s end-to-end neural-symbolic inference, learn-
ing, and joint reasoning processes.

NeuPSL instantiates the symbolic potentials of its energy
function using the PSL language where dependencies be-
tween relations and attributes of entities in a domain, de-
fined as atoms, are encoded with weighted first-order logi-
cal clauses and linear arithmetic inequalities referred to as
rules. To illustrate, consider a setting in which a neural net-
work is used to classify the species of an animal in an image.
Further, suppose there exists external information suggesting
when two images may contain the same entity. The infor-
mation linking the images may come from various sources,

such as the images’ caption or metadata indicating the images
were captured by the same device within a short period of
time. NeuPSL represents the neural network’s animal classi-
fication of an image (Image1) as a species (Species) with
the atom NEURAL(Image1,Species) and the probability
that two images (Image1 and Image2) contain the same
entity with the atom SAMEENTITY(Image1,Image2). Ad-
ditionally, we represent NeuPSL’s classification of Image2

with CLASS(Image2,Species). The following weighted
logical rule in NeuPSL represents the notion that two images
identified as the same entity may also be of the same species:

w : NEURAL(Image1,Species)

∧ SAMEENTITY(Image1,Image2)

→ CLASS(Image2,Species) (1)

The parameter w is the weight of the rule, and it quantifies its
relative importance in the model. Note these rules can either
be hard or soft constraints. Atoms and weighted rules are tem-
plates for creating symbolic potentials or soft constraints. To
create these symbolic potentials, atoms and rules are instanti-
ated with observed data and neural predictions. Atoms instan-
tiated with elements from the data are referred to as ground
atoms. Then, valid combinations of ground atoms substituted
in the rules create ground rules. To illustrate, suppose that
there are two images {Id1, Id2} and three species classes
{Cat,Dog, Frog}. Using the above data for cats would re-
sult in the following ground rules (analogous ground rules
would be created for dogs and frogs):

w : NEURAL(Id1, Cat)∧SAMEENTITY(Id1, Id2)

→ CLASS(Id2, Cat)

w : NEURAL(Id2, Cat)∧SAMEENTITY(Id2, Id1)

→ CLASS(Id1, Cat)

Ground atoms are mapped to either an observed variable,
xsy,i, target variable, yi, or a neural function with inputs
xnn and parameters wnn,i: gnn,i(xnn,wnn,i). Then, vari-
ables are aggregated into the vectors xsy = [xsyi

]nx
i=1 and

y = [yi]
ny

i=1 and neural outputs are aggregated into the vec-
tor gnn = [gnn,i]

ng

i=1. Ground rules are either logical (e.g.,
Equation 1) or arithmetic defined over xsy , y, and gnn. These
ground rules create one or more potentials ϕ(·) ∈ R, where
logical rules are relaxed using Łukasiewicz continuous val-
ued logical semantics [Klir and Yuan, 1995]. Each potential
ϕ(·) is associated with a weight wpsl inherited from its in-
stantiating rule. The potentials and weights from the instanti-
ation process are used to define a member of a tractable class
of graphical models, deep hinge-loss Markov random fields
(Deep-HL-MRF):
Definition 2 (Deep Hinge-Loss Markov Random Field). Let
y ∈ [0, 1]ny and xsy ∈ [0, 1]nx be vectors of [0, 1] val-
ued variables. Let gnn = [gnn,i]

ng

i=1 be functions with cor-
responding parameters wnn = [wnn,i]

ng

i=1 and inputs xnn. A
deep hinge-loss potential is a function of the form

ϕ(y,xsy,xnn,wnn) = max(l(y,xsy,gnn(xnn,wnn)), 0)
α

(2)



Figure 1: NeuPSL inference and learning pipeline.

where l(·) is a linear function and α ∈ {1, 2}. Let T =
[ti]

r
i=1 denote an ordered partition of a set of m deep hinge-

loss potentials: {ϕ1, · · · , ϕm}. For each partition ti define
Φi(y,xsy,xnn,wnn) :=

∑
j∈ti

ϕi(y,xsy,xnn,wnn) and
let Φ(y,xsy,xnn,wnn) := [Φi(y,xsy,xnn,wnn)]

r
i=1. Fur-

ther, let wpsl = [wpsl,i]
r
i=1 be a vector of non-negative

weights corresponding to the partition T . Then, a deep
hinge-loss energy function is
E(y,xsy,xnn,wnn,wpsl) = wT

pslΦ(y,xsy,xnn,wnn)

(3)

Further, let c = [ci]
q
i=1 be a vector of q linear

constraints in standard form, defining the feasible set
Ω = {y,xsy | ci(y,xsy) ≤ 0, ∀i ∈ {0, · · · , q}}. Then a
deep hinge-loss Markov random field, P , with random vari-
ables y conditioned on xsy and xnn is a probability density
of the form

P (y|xsy,xnn) =

{
exp(−E(·))∫

y|y,xsy∈Ω
exp(−E(·))dy (y,xsy) ∈ Ω

0 o.w.

Deep-HL-MRFs naturally fit into the NeSy-EBM frame-
work. The symbolic potentials of deep-HL-MRFs are the ag-
gregated and scaled deep hinge-loss potentials:

ψNeuPSL(y,xsy,wpsl,gnn(xnn,wnn))

= wpslΦ(y,xsy,xnn,wnn) (4)
Then the energy function is the sum of symbolic potentials:

ENeuPSL(y,xsy,xnn,wnn,wpsl)

=
r∑

i=1

ψNeuPSL,i(y,xsy,wpsl,gnn(xnn,wnn)) (5)

5 NeuPSL Inference and Learning
There is a clear connection between neural and symbolic in-
ference in NeuPSL that allows any neural architecture to in-
teract with symbolic reasoning in a simple and expressive
manner. The NeuPSL neural-symbolic interface and infer-
ence pipeline is shown in Figure 1. Neural inference is com-
puting the output of the neural networks given the input xnn,
i.e., computing gnn,i(xnn,wnn,i) for all i. NeuPSL symbolic
inference minimizes the energy function over y:

y∗ = argmin
y|(y,xsy)∈Ω

E(y,xsy,xnn,wnn,wpsl) (6)

Note that the hinge-loss potentials are convex in y and hence,
with the common constraint enforcing symbolic parameters
to be non-negative, i.e., wpsl > 0, the energy function is con-
vex in y. Any scalable convex optimizer can be applied to
solve (6). NeuPSL uses the alternating direction method of
multipliers [Boyd et al., 2010].

NeuPSL learning is the task of finding both neural and
symbolic parameters, i.e., rule weights, that assign low en-
ergy to correct values of the output variables and higher en-
ergies to incorrect values. Learning objectives are functionals
mapping an energy function and a set of training examples
S = {(yi,xsy,i,xnn,i) : i = 1, · · · , P} to a real-valued
loss. As the energy function for NeuPSL is parameterized
by the neural weights wnn and symbolic weights wpsl, we
express the learning objective as a function of wnn, wpsl,
and S: L(S,wnn,wpsl). Learning objectives follow the stan-
dard empirical risk minimization framework and are there-
fore separable over the training examples in S as a sum of
per-sample loss functions Li(yi,xi,xnn,i,wnn,wpsl). Con-
cisely, NeuPSL learning is the following minimization:

argmin
wnn,wpsl

L(wnn,wpsl,S)

= argmin
wnn,wpsl

P∑
i=1

Li(yi,xsy,i,xnn,i,wnn,wpsl)

In the learning setting, variables yi from the training set S are
partitioned into vectors yi,t and zi. The variables yi,t repre-
sent variables for which there is a corresponding truth value,
while zi represent latent variables. Without loss of generality,
we write yi = (yi,t, zi).

There are multiple losses that one could motivate for opti-
mizing the parameters of an EBM. Common losses, including
the loss we present in this work, use the following terms:
z∗i = argmin

z|((yi,t,z),xsy,i)∈Ω

E((yi,t, z),xsy,i,xnn,i,wnn,wpsl)

y∗
i = argmin

y|(y,xsy,i)∈Ω

E(y,xsy,i,xnn,i,wnn,wpsl)

In words, z∗i and y∗
i are the lowest energy states given

(yi,t,xsy,i,xnn,i) and (xsy,i,xnn,i), respectively. A special
case of learning is when the per-sample losses are not func-
tions of z∗i and y∗

i , and more specifically, the losses do not
require any subproblem optimization. We refer to this situ-
ation as constraint learning. Constraint learning reduces the
time required per iteration at the cost of expressivity.



All interesting learning losses for NeuPSL are a composi-
tion of the energy function. Thus, a gradient-based learning
algorithm will require the following partial derivatives: 1

∂E(·)
∂wpsl[i]

= Φi(y,xsy,xnn,wnn)

∂E(·)
∂wnn[i]

= wT
psl∇wnn[i]Φ(y,xsy,xnn,wnn)

Continuing with the derivative chain rule and noting the po-
tential can be squared (α = 2) or linear (α = 1), the potential
partial derivative with respect to wnn[i] is the piece-wise de-
fined function:1

∂ϕ(·)
∂wnn[i]

=

{
∂

∂gnn[i]
ϕ(·) · ∂

∂wnn[i]
gnn[i](·) α = 1

2 · ϕ(·) · ∂
∂gnn[i]

ϕ(·) · ∂
∂wnn[i]

gnn[i](·) α = 2

∂ϕ(·)
∂gnn[i]

=

{
0 ϕ(·) = 0

∂
∂gnn[i]

l(y,xsy,gnn(xnn,wnn)) ϕ(·) > 0

Since l(y,xsy,gnn(xnn,wnn)) is a linear function, the par-
tial gradient with respect to gnn[i] is trivial. With the partial
derivatives presented here, standard backpropagation-based
algorithms for computing gradients can be applied for both
neural and symbolic parameter learning.
Energy Loss: A variety of differentiable loss functions can
be chosen for L. For simplicity, in this work, we present the
energy loss. The energy loss parameter learning scheme di-
rectly minimizes the energy of the training samples, i.e., the
per-sample losses are:
Li(yi,xsy,i,xnn,i,wnn,wpsl)

= E((yi,t, z
∗
i ),xsy,i,xnn,i,wnn,wpsl)

Notice that inference over the latent variables is necessary for
gradient and objective value computations. However, a com-
plete prediction from NeuPSL, i.e., inference over all compo-
nents of y, is unnecessary. Therefore the parameter learning
problem is as follows:

argmin
wnn,wpsl

P∑
i=1

min
z∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn)

With L2 regularization, the NeuPSL energy function is
strongly convex in all components of yi. Thus, by Dan-
skin (1966), the gradient of the energy loss, Li(·), with re-
spect to wpsl at yi,xi,xnn,iwnn is:

∇wpsl
Li(yi,xsy,i,wnn,wpsl)

= Φ((yi,t, z
∗
i ),xsy,i,xnn,i,wnn)

Then the per-sample energy loss partial derivative with re-
spect to wnn[j] at yi,xsy,i,xnn,i,wpsl is:

∂Li(yi,xsy,i,xnn,i,wnn,wpsl)

∂wnn[j]

=
R∑

r=1

wpsl[r]
∑
q∈τr

∂ϕq((yi,t, z
∗
i ),xsy,i,xnn,i,wnn)

∂wnn[j]

1Note arguments of the energy function and sym-
bolic potentials are dropped for simplicity, i.e., E(·) =
E(y,xsy,i,xnn,i,wnn,wpsl), ϕ(·) = ϕ(y,xsy,xnn,wnn),
and gnn[i](·) = gnn[i](xnn,wnn).

Details on the learning algorithms and accounting for degen-
erate solutions of the energy loss are included in supplemen-
tary materials.

6 Experimental Evaluation
We evaluate NeuPSL’s prediction performance and infer-
ence time on three tasks to demonstrate the significance of
joint symbolic inference and learning. NeuPSL, implemented
using the open-source PSL software package, can be inte-
grated with any neural network library (here, we used Tensor-
Flow).2 Our investigation addresses the following questions:
Q1) Can neuro-symbolic methods provide a boost over con-
ventional purely data-driven neural models? Q2) Can we ef-
fectively leverage structural relationships across training ex-
amples through joint reasoning? Q3) How does NeuPSL com-
pare with other neuro-symbolic methods in terms of time ef-
ficiency on large scale problems?

6.1 MNIST Addition
The first set of experiments are conducted on a variation of
MNIST Addition, a widely used NeSy evaluation task [Man-
haeve et al., 2018]. The task involves determining the sum
of two lists of MNIST images. For example, a MNIST-Add1
addition is (

[ ]
+
[ ]

= 8), and a MNIST-Add2 addition
is (
[

,
]
+
[
,
]
= 41). The challenge stems from the

lack of labels for the MNIST images in the addition equation.
Only the final sum of the equation is given, leaving the task of
identifying the individual digits and determining their values
up to the model being used.

While NeuPSL proves to be successful in the original
MNIST-Add setting (appendix for further details), here we
are interested in exploring the power of joint inference and
learning capabilities in NeSy systems. We introduce a vari-
ant of the MNIST-Add task in which digits are reused across
multiple addition examples, i.e., we introduce overlap. Fig-
ure 2 demonstrates the process of introducing overlap and
how joint models narrow the space of possible labels when
MNIST images are re-used. For instance, in the scenario pre-
sented in Figure 2, the same MNIST image of a zero is uti-
lized in two separate additions. To comply with both addition
constraints, the potential label space is restricted and can no
longer include options such as two or three, as they would vi-
olate one of the addition rules. In contrast, a model perform-
ing independent reasoning would have no way of enforcing
this constraint across examples.

In the overlap variant of MNIST-Add, we focus on low-
data settings to understand whether NeSy systems’ joint rea-
soning can effectively leverage additional structure to over-
come a lack of data. To create overlap, we begin with a set of
n unique MNIST images from which we re-sample to create
(n+m)/2 MNIST-Add1 and (n+m)/4 MNIST-Add2 ad-
ditions. We vary the amount of overlap with m ∈ {0, n/2, n}
and compare performance with n ∈ {40, 60, 80}. Results are

2Implementation details, hyperparameters, network architec-
tures, hardware, and NeuPSL models, are described in the Appendix.

Code and Data: https://github.com/linqs/neupsl-ijcai23
Appendix: https://arxiv.org/abs/2205.14268



Figure 2: Example of overlapping MNIST images in MNIST-Add1. On the left, distinct images are used for each zero. On the
right, the same image is used for both zeros.

Figure 3: Average test set accuracy and standard deviation on MNIST-Add datasets with varying amounts of overlap.

reported over ten test sets of 1, 000 MNIST images with over-
lap proportional to the respective train set.

Figure 3 summarizes average performance for varying
overlap settings. Each panel varies the number of additions
for a set number of unique MNIST images. For example,
the upper left panel presents the results obtained for MNIST-
Add1 with 40 unique images used to generate 20, 30, and
40 additions. Initially, there is not enough structure from the
additions with no overlap for symbolic inference to discern
the correct digit labels for training the neural models. Then,
despite the number of unique MNIST images remaining the
same, as the number of additions increases, DPL and Ne-
uPSL improve their prediction performance by leveraging the
added joint information (Q2). In all cases, NeuPSL performs
best and uses the added structure most efficiently. LTNs and
the CNN baseline benefit the least from joint information, a
consequence of both learning and inference being performed
independently across batches of additions (Q1).

6.2 Visual Sudoku Classification
Inspired by the Visual Sudoku problem proposed by Wang et
al. (2019), Augustine et al. (2022) introduced a novel NeSy
task, Visual-Sudoku-Classification. In this task, 4x4 Sudoku
puzzles are constructed using unlabeled MNIST images. The
model must identify whether a puzzle is correct, i.e., no du-
plicate digits in any row, column, or square. Therefore this
task does not require learning the underlying label for images

but rather whether an entire puzzle is valid. For instance,
[ ]

does not need to belong to a ”3” class, instead
[ ]

and
[ ]

need to be labeled as different symbols. Similar to MNIST-
Add we explore an overlap variant in low-data settings, with
overlapping MNIST images across puzzles.

We compare NeuPSL with two baselines, CNN-Visual and
CNN-Digit. The first, CNN-Visual, takes the pixels for a Su-
doku puzzle as input and outputs the probability the puzzle
is valid. The second, CNN-Digit, is provided the (unfair) ad-
vantage of all sixteen image labels as input. We use this to
verify whether a neural model can learn Sudoku rules. Scal-
ably developing LTN and DPL models in this new setting is
not straightforward due to the large dimensionality of the out-
put space. A non-expert implementation of a visual sudoku
model in DPL and LTN may result in suboptimal reports on
model performance and are therefore not included.

Figure 4 shows the accuracy of NeuPSL and CNN mod-
els on Visual-Sudoku-Classification with varying amounts
of overlap. CNN-Visual and CNN-Digit struggle to leverage
the problem structure and fail to generalize even the high-
est data and overlap setting with 256 MNIST images across
64 puzzles. However, NeuPSL achieves 70% accuracy using
roughly 64 MNIST images across 16 puzzles, again showing
it efficiently leverages joint information across training exam-
ples (Q1 and Q2). This is a particularly impressive result as
the neural network in the NeuPSL model was trained to be a
93% 4-digit distinguisher without digit labels.



Figure 4: Average test set accuracy and standard deviation on Visual-Sudoku-Classification with varying amounts of overlap.

Method Citeseer Cora
(Accuracy) (Seconds) (Accuracy) (Seconds)

NeuralPSL 57.76 ± 1.71 - 57.12 ± 2.13 -
LPPSL 50.88 ± 1.18 - 73.32 ± 2.39 -

DeepProbLog timeout timeout timeout timeout
DeepStochLog 61.30 ± 1.44 34.42 ± 0.87 69.96 ± 1.47 165.28 ± 4.49

GCN 67.50 ± 0.57 3.10 ± 0.04 79.52 ± 1.13 1.31 ± 0.01
NeuPSLLP 67.34 ± 1.17 3.98 ± 0.05 76.80 ± 2.27 4.00 ± 0.31

NeuPSLLP+FP 68.48 ± 1.22 4.23 ± 0.05 81.22 ± 0.79 4.07 ± 0.14

Table 1: Test set accuracy and inference runtime in seconds on two citation network datasets.

6.3 Citation Network Node Classification

In our final experiment, we evaluate the performance of Ne-
uPSL on two widely studied citation network node classifi-
cation datasets: Citeseer and Cora [Sen et al., 2008]. In these
datasets, symbolic models have the potential to improve pre-
dictions by leveraging the homophilic structure of the citation
network, i.e., two papers connected in the network are more
likely to have the same label. This setting differs from Visual-
Sudoku-Classification and MNIST-Add as the symbolic re-
lations are not always true. Moreover, the symbolic relations
can be defined over a general and potentially large number
of nodes in the network, i.e., a node can be connected to any
number of neighbors.

We propose two NeuPSL models for citation network
node classification. Both models integrate a neural network
that uses a paper’s features to provide an initial classifica-
tion, which is then adjusted via symbolic reasoning. The
first model, NeuPSLLP (Label Propagation), directly uses
the bag-of-words feature vector, while the second model,
NeuPSLLP+FP (Label + Feature Propagation), first performs
the feature construction procedure as described in Wu et
al. (2019) to obtain a richer representation to provide to the
neural model. We examine the runtime and model perfor-
mance of NeSy methods NeuPSLLP , NeuPSLLP+FP , DPL
and its scalable extension, DeepStochLog [Winters et al.,
2022], and a Graph Convolutional Network (GCN) [Kipf and
Welling, 2017]. Additionally, we include the performance of
two baselines, LPPSL and NeuralPSL. These baselines repre-
sent the distinct symbolic and neural components used in the
NeuPSLLP model but perform only neural or symbolic rea-
soning, not both. We averaged the results over ten randomly
sampled splits using 5% of the nodes for training, 5% of the

nodes for validation, and 1000 nodes for testing.
Table 1 shows DeepStochLog, GCN, and NeuPSL

all outperform the independent baselines (Q1), with
NeuPSLLP+FP performing the best. These results demon-
strate the power of using NeSy systems to effectively leverage
structure to improve prediction performance. Additionally,
NeuPSL is capable of scaling its joint inference process to
larger structures, achieving higher accuracy with an 8 and 40
times speed up over DeepStochLog in Citeseer and Cora, re-
spectively (Q3). Surprisingly, NeuPSL also achieves a higher
prediction performance than even a GCN model while using
significantly fewer trainable parameters.

7 Conclusion
In this paper, we introduced NeuPSL, a novel NeSy frame-
work that integrates neural architectures and a tractable class
of graphical models for jointly reasoning over symbolic rela-
tions and showed its utility across a range of neuro-symbolic
tasks. There are many avenues for future work, including ex-
ploring different learning objectives, such as ones that bal-
ance traditional neural and energy-based losses and new ap-
plication domains. Each of these is likely to provide new chal-
lenges and insights.
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A Appendix
The appendix includes the following sections: Limitations,
Formulating Existing NeSy Frameworks as NeSy-EBMs,
Joint Reasoning in NeSy-EBMs, NeuPSL Parameter Learn-
ing, Dataset Details, NeuPSL Models, Baseline Models, Ex-
tended Evaluation Details, and Computational Hardware De-
tails.

B Limitations
Practitioners applying NeuPSL should consider the following
three limitations. First, NeuPSL operates on real-valued logic,
which improves scalability but is a relaxation of the original
problem. This relaxation may overlook nuances (e.g., inte-
ger constraints) of the original task. Second, while NeuPSL
demonstrates excellent performance in solving joint symbolic
inference tasks, it comes at the expense of a higher infer-
ence runtime than a purely neural model. The computational
demands of NeuPSL may limit its applicability in scenarios
where real-time processing is necessary. Lastly, NeuPSL is
trained in this work with the energy learning loss. Using this
loss reduces the energy of the truth data but does not necessar-
ily align with a downstream evaluation metric, and we have
identified some degenerate solutions (Appendix E.1). Explor-
ing the adaptation of NeuPSL to support different learning
losses is an interesting avenue for future research.

C Formulating Existing NeSy Frameworks as
NeSy-EBMs

This section shows how to formulate two popular NeSy
frameworks, DeepProbLog (DPL) [Manhaeve et al., 2018]
and LTNs (LTNs) [Badreddine et al., 2022], as NeSy-EBMs.

C.1 DeepProbLog
DeepProbLog (DPL) extends the probabilistic programming
language ProbLog [De Raedt et al., 2007]. A ProbLog pro-
gram consists of (i) a set of probabilistic facts F of the form
p :: f where p is a probability and f is a {0, 1} valued sym-
bolic variable and (ii) a set R of symbolic statements or rules.
The following ProbLog program is a common example that
models the likelihood of a burglary or an earthquake, given
an alarm was sounded and is also presented in Manhaeve et
al. [2021]

# Probabilistic Facts
0.1 :: burglary. 0.2 :: earthquake.
0.5 :: hearsAlarm(mary). 0.4 :: hearsAlarm(john).
# Rules
alarm : − earthquake.
alarm : − burglary.
calls(X) : − alarm, hearsAlarm(X).

A subset of the probabilistic facts F ⊆ F defines a possible
instantiation, or world:

tF := F ∪ {f |R ∪ F ⊨ f}.

For the example, t{burglary, hearsAlarm(mary)} =
{burglary, hearsAlarm(mary), alarm, calls(mary)}. Then,
the probability of a world, P (tF ), is the product of the
probabilities of the probabilistic facts in the world:

P (tF ) := Πf [i]∈Fp[i]Πf [i]∈F\F (1− p[i]).

For the running example, P (t{burglary, hearsAlarm(mary)}) = 0.1 ·
0.5 · (1 − 0.2) · (1 − 0.4). Finally, the probability of a query
atom, q, is defined as the sum of the probabilities of the
worlds containing q:

P (q) :=
∑

F∈F | q∈tF

P (tF ).

ProbLog inference, specifically as it is applied in the deep
extension proposed by Manhaeve et al. (2018), is a marginal
inference problem. Specifically, the inference task is comput-
ing the marginal probability of a single query atom as shown
above. This is equivalent to finding the weighted model count
(WMC) of the worlds where the query atom is true. Thus, the
exact marginal inference problem in ProbLog is #P-complete,
i.e., it is at least NP-hard. This means that computing the ex-
act probability of a query in a ProbLog program is a com-
putationally challenging problem that requires exponential
time in the worst case. Therefore, exact marginal inference
in ProbLog is generally only feasible for small or moderately
sized problems. For larger problems with more variables, ap-
proximate inference techniques are used to obtain approxi-
mate probabilities more efficiently De Raedt et al. [2007];
Moldovan et al. [2015].

DPL introduces syntax and semantics to ProbLog to sup-
port specifying probabilities of events with neural networks
Manhaeve et al. [2018, 2021]. Specifically, a set of neural an-
notated disjunctions (nADs) are specified by a user and take
the form:

nn(id,v, u1) :: h(v, u1) ;
· · · ; nn(id,v, un) :: h(v, un) ; ⊨ b1, · · · , bm,

where the bi are atoms, v is a vector of features that the
neural component, identified by id, has access to. More-
over, the output of the neural component, nn(id,v, ui), is
interpreted as the probability that the atom hi is true and
the sum of the outputs of the neural model must sum to 1:∑n

i=1 nn(id,v, u1) = 1. The interpretation of an annotated
disjunction is that whenever all of the atoms b1, · · · , bm are
true, then each hi will be true with probability nn(id,v, ui).

Inference in DPL is exactly the same as ProbLog marginal
inference with a single query atom, except a forward pass is
made with the neural network to compute the probabilities of
the nADs. Learning the parameters of the DPL model is the
task of finding the setting of the trainable parameters, denoted
by x, that minimizes a sum of losses, L(). Each loss measures
the distance between a vector of n desired probabilities ptrue

and [P (q1), · · · , P (qn)], the marginal inference values pre-
dicted by DPL:

argmin
x

1

n

n∑
i=1

L(P (qi),ptrue[i]).



Though instantiating the marginal probability function is
non-trivial and computationally expensive, marginal infer-
ence ultimately reduces to a series of differentiable algebraic
operations and is therefore differentiable. DPL uses stochas-
tic gradient descent to find parameters minimizing the train-
ing objective.

DPL is a NeSy-EBM. The fact probabilities, p, are parti-
tioned into the observed NeSy-EBM symbolic variables xsy ,
the vector of symbolic parameters, wsy , and neural network
outputs, g(xnn,wnn). Without loss of generality, suppose

p =

[
xsy

wsy

g(xnn,wnn)

]
.

The query atoms, i.e., the atoms present in the DPL model
that are not specified in the set of probabilistic facts, corre-
spond to the symbolic variables y.

The definition of the DPL symbolic potentials and energy
function are tied to the inference task; a different definition
of the symbolic potential and energy function is used to im-
plement marginal versus MAP inference. As previously men-
tioned, DPL predictions are most commonly obtained by per-
forming marginal inference for a single query atom. More-
over, a consequence of the DPL semantics is that the marginal
inference problem reduces to an analytical expression com-
posed of only product and sum operations. Thus, from the
NeSy EBM perspective, to implement marginal inference
DPL interprets a program with a set of probabilistic facts and
data to define a symbolic potential for every marginal prob-
ability and then the energy function is simply the sum of the
symbolic potentials. On the other hand, for MAP inference,
DPL creates a symbolic potential for every possible world and
the energy function is equivalent to the negative of the joint
probability distribution implied by the DPL program. We will
only formally cover the marginal inference case.

The probability of a world tF , defined by the subset of
probabilistic facts F ∈ F is a function of the DPL fact
probabilities, p, and hence is a function of xsy , wsy , and
g(xnn,wnn):

PtF (xsy,wsy,g(xnn,wnn))

:=

(
Πxsy [j]∈Fxsy[j]

)
·
(
Πxsy [j]∈F\F (1− xsy[j])

)
·
(
Πwsy [j]∈Fwsy[j]

)
·
(
Πwsy [j]∈F\F (1−wsy[j])

)
·
(
Πg(xnn,wnn)[j]∈Fg(xnn,wnn)[j]

)
·
(
Πg(xnn,wnn)[j]∈F\F (1− g(xnn,wnn)[j])

)
.

Then, as in ProbLog, the marginal probability of a query atom
is a function of the probabilities of the worlds. For the world
tF , defined by the subset of probabilistic facts F ⊆ F , let
χtF [·] be the indicator function identifying if a setting of the
variables y matches the world tF :

χtF [ŷ] :=

{
1 ((ŷ[i] = 1) =⇒ y[i] ∈ tF ) ∀i ∈ {1, · · · , ny}
0 o.w.

.

With χtF [y], it is also possible to write the marginal proba-
bility of a variable as function of xsy,wsy , and g(xnn,wnn):

Py[i](xsy,wsy,g(xnn,wnn))

:=
∑

ŷ∈{0,1}ny

ŷ[i]

 ∑
F∈P(F)

χtF [ŷ]PtF (xsy,wsy,g(xnn,wnn))

 .

Let d : [0, 1]×[0, 1] → R be a metric quantifying the distance
between its two arguments. For each variable y[i] for i ∈
{1, · · · , ny} define a symbolic potential:

ψDPL,i(y,xsy,wsy,g(xnn,wnn))

:= d(y[i], Py[i](xsy,wsy,g(xnn,wnn))).

Let ΨDPL(·) :=
[
ψDPL,tFi

(·)
]ny

i=1
be the vector of all ny

symbolic potentials. The energy function to produce marginal
inference DPL predictions is then the summation of all the
symbolic potentials:

EDPL(ΨDPL(y,xsy,wsy,g(xnn,wnn)))

:=

ny∑
i=1

ΨDPL(y,xsy,wsy,g(xnn,wnn))[i].

Clearly, the optimal value of the energy function is 0 and is
achieved at the unique setting of the variables matching their
corresponding marginal probability. Thus inference is equiva-
lent to evaluating the marginal probabilities for each variable.

C.2 Logic Tensor Networks
Logic Tensor Networks (LTNs) forwards deep neural net-
work predictions into functions representing symbolic rela-
tions with real-valued or fuzzy logic semantics Badreddine et
al. [2022]. The fuzzy logic functions are combined using a
formula aggregator to define a satisfaction level. Badreddine
et al. (2022) suggest using the product real logical semantics
to translate logical statements, i.e., given two truth values a
and b in [0, 1]:

¬(a) := 1− a

∧(a, b) := a · b
∨(a, b) := a+ b− a · b

=⇒ (a, b) := a+ b− a · b

Additionally, generalized mean semantics for existential and
universal quantifiers are used for collections of truth values
a = [a]ni=1:

∃(a) :=

(
1

n

n∑
i=1

api

) 1
p

∀(a) := 1−

(
1

n

n∑
i=1

(1− ai)
p

) 1
p

,

where p ∈ R+ is a hyperparameter. For example, consider
the logical statement

∃v ∈ V (P (u, v) ∧Q(v)) .

LTNs instantiate predicate arguments with features. Let XU
and XV be collections of variable feature vectors such that



X[u] and X[v] are the feature vectors corresponding to the
entities u and v, respectively. Furthermore, the predicate val-
ues are either provided by a deep neural network output or
are values representing observations or a potential prediction.
For instance, the predicate P (u, v) in the example can be
instantiated as the output of a deep neural network parame-
terized by its weights wnn and represented by the function:
nn(X[u],X[v];w) which takes the two feature vectors, cor-
responding to the arguments u and v, respectively, to a value
in [0, 1]. Then, Q(v) could be a constant from [0, 1]. Let xQ
be a vector of scalars from [0, 1] such that xQ[v] represents
the predicate value for Q(v). Then, the logical statement in
the example is a composition of the specified real-logic oper-
ators and quantifiers. For a provided instance of the argument
u the real-valued logic function for the example is:

hu(XU ,XV ,xQ;w)

:=

(
1

∥V∥
∑
v∈V

(
nn(X[u],X[v];w) · xQ[v]

)p) 1
p

.

Using the generalized mean semantics for the universal quan-
tifier as the formula aggregator, the satisfaction level of the
LTNs model prediction is:

G(w) := 1−
(

1

∥U∥
∑
u∈U

(
1− hu(XU ,XV ,xQ;w)

)p) 1
p

.

There are many ways to instantiate an LTN depending on the
modeler’s choice of real-logic semantics, the formula aggre-
gator, and the logical relations. The example above illustrates
a common setting of the real-logic semantics and the formula
aggregator for a specific composition of logical formula.

The parameters of the LTNs are the deep neural network
weights. Learning is the task of finding a setting of the
weights which maximize the satisfaction of an aggregated set
of logical formula instantiated with observations and features:

w∗ = argmax
w

G(w).

In other words, learning in LTNs can be understood as opti-
mizing under first-order logic constraints relaxed into a loss
function. There are a variety of real-valued logical seman-
tics and formula aggregators that result in the satisfaction
level function G(w) being differentiable with respect to the
weights. Given a trained set of parameters obtained by learn-
ing, w∗, inference is presented as querying the truth value of
an instantiated predicate or logical formula. A prediction in
LTNs in a multi-class or joint output setting such is obtained
by evaluating the truth-value of all possible outputs and re-
turning the highest valued configuration, i.e., the state with
maximum satisfaction.

Through the lens of NeSy-EBMs, the system’s fuzzy
logic semantics define the symbolic potentials and the for-
mula aggregator is the energy function. More formally, the
NeSy-EBM unobserved and observed symbolic variables
and neural network outputs partition the instantiated predi-
cates of the real-valued logic functions hi. Each of the m
real-valued logic functions can be written as a function of
only the symbolic variables and the neural network outputs:
hi(y,xsy,g(xnn,wnn)). The functions hi are the symbolic
potentials of the NeSy-EBM:

ψLTN,i(y,xsy,wsy,g(xnn,wnn) := hi(y,xsy,g(xnn,wnn).

Let ΨLTNs(·) := [ψLTNs,i(·)]mi=1 be the vector of allm sym-
bolic potentials. Then, the formula aggregator defines the en-
ergy function. Using the generalized mean semantics for the
universal quantifier, the NeSy-EBM energy function for LTNs
is:

ELTN (ΨLTNs(y,xsy,wsy,g(xnn,wnn)))

:=

(
1

m

m∑
i=1

(
1−ΨLTNs(y,xsy,wsy,g(xnn,wnn))[i]

)p) 1
p

.

The LTNs framework is general and the scalability and ex-
pressivity of the system are dependent on the modeler’s
choice of the domain of the unobserved variables: Y , the
real-valued logical semantics, and the formula aggregator.
Furthermore, notice there is no explicit use of the symbolic
parameters wsy as the LTNs framework uses standard real-
valued logics that typically do not have trainable parameters.

LTNs learning is finding the parameters with the highest
satisfaction, i.e., learning with the energy loss in the NeSy-
EBM framework. The NeSy-EBM framework connects LTNs
to the EBM literature, which suggests principled alternative
learning algorithms. Moreover, the NeSy-EBM framework
sheds light on design choices for the various components of
the LTNs to ensure the applicability of first-order methods for
learning and desirable scalability and expressiveness proper-
ties of inference.

D Joint Reasoning in NeSy-EBMs
This section expands the discussion of joint reasoning in
NeSy-EBMs. To reiterate, we highlight two important cat-
egories of NeSy-EBM energy functions: joint and inde-
pendent. Formally, an energy function that is additively
separable over the output variables y is an independent
energy function, i.e., corresponding to each of the ny
components of the output variable y there exists func-
tions ny functions E1(y[1],xsy,wsy,g(xnn,wnn)), · · · ,
Eny (y[ny],xsy,wsy,g(xnn,wnn)) such that

E(·) =
ny∑
i=1

Ei(y[i],xsy,wsy,g(xnn,wnn)).

While a function that is not separable over output variables
y is a joint energy function. This categorization allows for
an important distinction during inference and learning. Inde-
pendent energy functions simplify inference and learning as
finding an energy minimizer, y∗, can be distributed across
the independent functions Ei. In other words, the predicted
value for a variable y[i] has no influence over that of y[j]
where j ̸= i and can therefore be predicted separately, i.e., in-
dependently. However, independent energy functions cannot
leverage some joint information that may be used to improve
predictions.

To illustrate, recall the example described in the Neural
Probabilistic Soft Logic section where a neural network is
used to classify the species of an animal in an image with
external information. Figure 5 outlines the distinction be-
tween independent and joint prediction for this scenario. In
Figure 5(a), the independent setting, the input is a single im-
age, and the energy function is defined over the three possible



(a) Independent Energy

(b) Joint-Energy

Figure 5: Example of non-joint and joint energy functions.

classes: dog, cat, and frog. While in Figure 5(b), the joint
setting, the input is a pair of images, and the energy func-
tion is defined for every possible combination of labels (e.g.,
(dog, dog), (dog, cat), etc.). The joint energy function of
(b) leverages external information suggesting the images are
of the same entity. Joint reasoning enables a model to make
structured predictions that resolve contradictions an indepen-
dent model could not detect.

For NeSy-EBMs, a joint energy function encodes depen-
dencies between its output variables through its symbolic po-
tentials. NeuPSL additionally benefits from scalable convex
inference to speed up learning over a dependent set of out-
put variables. As we see in the Experimental Evaluation sec-
tion, utilizing joint inference and learning in NeSy-EBMs not
only provides a boost in performance but produces results that
non-joint methods cannot (even with five times the amount of
data).

E NeuPSL Parameter Learning

This section details the NeuPSL parameter learning algo-
rithm. We begin by discussing degenerate solutions to the en-
ergy loss problem and techniques for overcoming them. We
then provide the precise parameter updates we use to effi-
ciently fit NeuPSL model parameters while avoiding the dis-
cussed degenerate solutions.

E.1 Energy Loss Degenerate Solutions

In this section, we show two degenerate solutions of the en-
ergy loss learning problem for NeuPSL and methods for over-
coming them. Recall that the NeuPSL energy loss learning

problem is:

argmin
(wnn,wpsl)∈Rnn×Rr

+

L(wnn,wpsl,S)

= argmin
(wnn,wsy)∈Rnn×Wsy

P∑
i=1

E((yi,t, z
∗
i ),xsy,i,xnn,i,wnn,wsy)

= argmin
(wnn,wpsl)∈Rnn×Rr

+

P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn)

Note that the symbolic parameters are constrained to be non-
negative real numbers. Furthermore, as every symbolic po-
tential has the form:

ϕi(y,xsy,xnn,wnn) = max(li(y,xsy,gnn(xnn,wnn)), 0)
α

we have that ϕi(y,xsy,xnn,wnn) ≥ 0 for all
settings of the variables y,xsy,xnn,wnn. Thus,
Φi(y,xsy,xnn,wnn) :=

∑
j∈ti

ϕi(y,xsy,xnn,wnn) ≥ 0

and Φ(y,xsy,xnn,wnn) := [Φi(y,xsy,xnn,wnn)]
r
i=1 ⪰

0. Therefore, we have that

L(wnn,wpsl,S) =
P∑
i=1

min
z|((yi,t,z),xsy)∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn) ≥ 0

In fact, L(wnn,wpsl,S) = 0 when wpsl = 0. The 0 solu-
tion to the weight learning problem is degenerate and should
be avoided. Precisely, wpsl = 0 results in a collapsed en-
ergy function: a function that assigns all points y ∈ Y to the
same energy. Collapsed energy functions have no predictive
power since inference, i.e., finding a lowest energy state of
the variables is trivial and uninformative. To overcome this
degenerate solution a simplex constraint on the symbolic pa-
rameters, wpsl ∈ ∆r := {w ∈ Rr

+

∣∣∥w∥1 = 1}, is added,
making the degenerate solution wpsl = 0 infeasible. This
constraint also ensures the non-negativity of the parameters
and does not inhibit the expressivity of NeuPSL when the
deep HL-MRF is exclusively used to obtain MAP inference
predictions. This property of (deep) HL-MRFs was shown by
Srinivasan et al. (2021), where they proved and leveraged the
fact that MAP inference in HL-MRFs is invariant to the scale
of the weights. Formally, for all weight configurations wpsl

and scalars c̃ ∈ R+,

argmax
y|(y,xsy)∈Ω

E(y,xsy,xnn,wnn,wpsl)

= argmax
y|(y,xsy)∈Ω

E(y,xsy,xnn,wnn, c̃ ·wpsl)

The wpsl = 0 is infeasible with the simplex constraint;
however, an additional degenerate solution arises from its in-
troduction. This is because the energy loss is concave in the
symbolic parameters wpsl for fixed wnn and S , as is shown in
following lemma and its corresponding proof. Consequently,
a solution to the constrained energy loss learning problem
must exist at corner points of the simplex.



Lemma 1. The energy loss function

L(wnn,wpsl,S) =
P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn)

is concave in wpsl.

Proof. For all i

E((yi,t,z
∗
i ),xsy,i,xnn,i,wnn,wpsl) =

inf
z|((yi,t,z),xsy)∈Ω

wT
pslΦ((yi,t, z),xsy,i,xnn,i,wnn)

is a pointwise infimum of a set of affine, hence concave, func-
tions of wpsl and is therefore concave [Boyd and Vanden-
berghe, 2004]. Therefore,

L(wnn,wpsl,S) =
P∑
i=1

E((yi,t, z
∗
i ),xsy,i,xnn,i,wnn,wpsl)

(7)

is a sum of concave functions of wpsl and is concave.

Additionally, note that the unit simplex, ∆r, is a convex set,
and, more precisely, a polyhedron. Following from its defi-
nition, a concave function is minimized over a polyhedron at
one of the vertices. This solution is undesirable for the energy
minimization problem because each symbolic relation corre-
sponding to the parameters should have an influence over the
model predictions. For this reason, we propose using a nega-
tive logarithm as a parameter regularizer, giving the simplex
corner solutions infinitely high energy. With negative log reg-
ularization and simplex constraints, energy loss symbolic pa-
rameter learning is:

min
wnn∈Wnn,wpsl∈∆r

L(wnn,wpsl,S)−
r∑

i=1

logb(wpsl[i])

(8)

E.2 Exponentiated Gradient Descent
As suggested by Dickens et al. (2022), we minimize the en-
ergy loss with respect to the symbolic parameters constrained
to the unit simplex via normalized exponentiated gradient de-
scent [Kivinen and Warmuth, 1997; Shalev-Shwartz, 2012].
Then, minimization over neural parameters is performed with
standard gradient descent. With an initial step size parameter
η > 0, the parameter updates are

wk+1
nn = wk

nn + η∇wnnL(w
k
nn,w

k
psl, S)

wk+1
psl [i] =

wk
psl[i] exp{−η

∂L(wk
nn,wk

psl,S)

∂wk
psl

[i]
}∑r

j=1 exp{−
∂L(wk

nn,wk
psl

,S)

∂wk
psl

[j]
}
, ∀i = 1, · · · , r

With this update, the symbolic parameter wpsl is guaranteed
to satisfy the simplex constraints.

(a) MNIST-Add1

(b) MNIST-Add2

Figure 6: Example of MNIST-Add1 and MNIST-Add2.

F Dataset Details
In this section, we provide additional information on the
MNIST-Add and Visual-Sudoku-Classification datasets. Both
datasets are generated from the original MNIST image clas-
sification dataset introduced by LeCun et al. (1998). Each
MNIST image is a 28x28 matrix consisting of pixel grayscale
values normalized to lie in the range [0, 1].

F.1 MNIST-Add
The MNIST-Add task, originally proposed by Manhaeve et
al. (2018), constructs addition equations using MNIST im-
ages with only their summation as a label. As shown in Fig-
ure 6, equations consist of two numbers each comprised of k
MNIST images, i.e., MNIST-Add1 consists of two numbers
with one image each (k = 1) and MNIST-Add2 consists of
two numbers with two images each (k = 2). Given two num-
bers (2 ∗ k images), the classification task is to predict the
sum.

Generation Addition examples are created by shuffling a
list of MNIST images and then partitioning, in order, pairs of
numbers. For example, let the corresponding list of MNIST
images be [ , , , , , ]. First this list is shuffled,
[ , , , , , ], and then partitioned into 2 ∗ k tuples
in order. In this scenario, MNIST-Add1 creates 3 addition ex-
amples,

[
[ , ], [ , ], [ , ]

]
.

Overlap The process for generating addition examples for
overlap variations is the same, but the list of MNIST images
contains duplicates. Specifically, a list of n ∈ {40, 60, 80}
unique MNIST images are randomly selected without re-
placement from the original MNIST train split. Then, a list of
m ∈ {0, n/2, n} images are randomly selected with replace-
ment from these n images. These two lists are combined to
create a final list of MNIST images (n+m images). This list
is used to generate MNIST-Add examples using the process



Figure 7: An example of a valid Visual-Sudoku-Classification
puzzle.

described above. This process is then repeated to generate a
validation set and then repeated again to generate the test set.
The MNIST images in the test set are pulled from the original
MNIST test split to avoid leaking data and n = 1000.

F.2 Visual-Sudoku-Classification
Inspired by the Visual Sudoku problem proposed by Wang et
al. (2019), Augustine et al. (2022) introduced a novel NeSy
task, Visual-Sudoku-Classification. In this task, 4x4 Sudoku
puzzles are constructed using unlabeled MNIST images, e.g.,
Figure 7. The model must identify whether a puzzle is correct,
i.e., no duplicate digits in any row, column, or square.

Generation Puzzles are created from a list of MNIST im-
ages, where this list has an equal representation of each class
(e.g., zeroes, ones, twos, and threes). To create a ”correct”
puzzle, four images of each class are randomly selected with-
out replacement from this list and arranged in a layout that
adheres to the traditional sudoku puzzle rules. This layout is
randomly chosen from all possible correct solutions. The first
image represents the top-left corner, and the final image rep-
resents the bottom-right corner of the puzzle. For example,
Figure 7 would be {1, 2, 4, 3, 4, 3, 1, 2, 2, 4, 3, 1, 3, 1, 2, 4}.

In addition to generating correctly solved Sudoku puzzles,
incorrect puzzles are generated. Instead of randomly creat-
ing puzzles and checking if they are correct, we begin with
the correct puzzles and corrupt them. In this way, we hope
to create puzzles that are more subtle and closer to the incor-
rect puzzles that a human may create, as opposed to randomly
generated puzzles that may be obviously incorrect.

The corruptions are done in one of two ways: replacement
or substitution. A replacement corruption chooses a random
cell and replaces it with a random image of another class. Re-
placement images are chosen uniformly from the same split.
A substitution corruption randomly chooses two cells in the
same puzzle and swaps them.

Each correct puzzle has one corrupted puzzle made from it,
resulting in a balanced dataset. A fair coin is flipped for each
puzzle to decide which corruption method will be used. After
each corruption is made, a fair coin is flipped to see if the
process continues. After the complete corruption process, the
puzzle is checked to ensure it is not a valid Sudoku puzzle.

Order Layer Parameter Value

1 Convolutional Kernel Size 5
Output Channels 6

2 Max Pooling
Pooling Width 2
Pooling Height 2

Activation ReLU

3 Convolutional Kernel Size 5
Output Channels 16

4 Max Pooling
Pooling Width 2
Pooling Height 2

Activation ReLU

5 Fully Connected
Input Shape 256

Output Shape 120
Activation ReLU

6 Fully Connected
Input Shape 120

Output Shape 84
Activation ReLU

7 Fully Connected
Input Shape 84

Output Shape 10
Activation Softmax

Table 2: Neural architecture used in NeuPSL for both
MNIST-Add and Visual-Sudoku-Classification experiments.

If the puzzle is invalid, it is added to the split. Otherwise, the
process is repeated using the same correct puzzle.

Overlap The process for generating puzzle examples for
overlap variations is the same, but the list of MNIST images
contains duplicates. Specifically, a list of n ∈ {64, 128, 256}
unique MNIST images are randomly selected without re-
placement from the original MNIST train split, with an equal
representation of four classes (zeros, ones, twos, and threes).
Then, a list of m ∈ {0, n, 3.0 · n} images are randomly se-
lected with replacement from these n images, where there is
an equal representation of the four class. These two lists are
combined to create a final list of MNIST images (n+m im-
ages). This list is used to generate puzzles using the process
described above. This process is then repeated to generate a
validation set and then repeated again to generate the test set.
The MNIST images in the test set are pulled from the original
MNIST test split to avoid leaking data and n = 1000.

G NeuPSL Models
This section provides an overview of the NeuPSL models
used in the Experimental Evaluation. The subsequent sub-
sections will examine the symbolic model, neural model, and
hyperparameters employed for each setting.

G.1 MNIST-Add1
The NeuPSL model for the MNIST-Add1 experiment inte-
grates the neural model summarized in Table 2 with the sym-
bolic model depicted in Figure 8. The symbolic model con-
tains the following predicates:

• NEURAL(Img,X) The NEURAL predicate is the class
probability for each image as inferred by the neural net-
work. Img is MNIST image identifier and X is a digit
class that the image may represent.

• DIGITSUM(X,Y,Z) The DIGITSUM predicate deter-
mines if two digits (X and Y) sum to a number (Z). For



# Digit Sums

w1 : NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z) → SUM(Img1, Img2, Z)

w2 : ¬NEURAL(Img1, X) ∧ NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z) → ¬SUM(Img1, Img2, Z)

w3 : NEURAL(Img1, X) ∧ ¬NEURAL(Img2, Y) ∧ DIGITSUM(X, Y, Z) → ¬SUM(Img1, Img2, Z)

# Digit Constraints

w4 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}
w5 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Z){X : POSSIBLEDIGITS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2,+Z) = 1.

Figure 8: NeuPSL MNIST-Add1 Symbolic Model

Hyperparameter Tuning Range Final Value

Neural Learning Rate {1e-2, 1e-3, 1e-4} 1e-3
ADMM Max Iterations {50, 100, 500, 1000} 500

Table 3: NeuPSL hyperparameters for the MNIST-Add1 ex-
periment.

example, DIGITSUM(4, 5, 9) would return 1 as 4 added
to 5 is 9. Conversely, DIGITSUM(2, 2, 5) would return 0
as 2 added to 2 is not 5.

• SUM(Img1,Img2,Z) The SUM predicate is the proba-
bility that the digits represented in the images identified
by arguments Img1 and Img2 add up to the number
identified by the argument Z. This predicate instantiates
decision variables, i.e., variables from this predicate are
not fixed during inference and learning as described in
the NeSy EBM, NeuPSL, and Inference and Learning
sections.

• POSSIBLEDIGITS(X,Z) The POSSIBLEDIGITS pred-
icate determines if a digit (X) can be included
in a sum that equals a number (Z). For example,
POSSIBLEDIGITS(9, 0) would return 0 as no posi-
tive digit when added to 9 will equal 0. Conversely,
POSSIBLEDIGITS(9, 17) would return 1 as 8 added to
9 equals 17.

The Digit Sums rules represents the summation of the two
images Img1 and Img2, i.e., if the neural model labels the
image id Img1 as digit X and Img2 as Y and the digits X and
Y sum to Z then the sum of the images must be Z.

The Digit Constraints rules restrict the possible values of
the SUM predicate based on the neural model’s prediction.
For instance, if the neural model predicts that the digit label
for image Img1 is 1, then the sum that Img1 is involved in
cannot be any less than 1 or greater than 10.

Hyperparameters Table 3 presents the hyperparameter
values and tuning ranges for the NeuPSL MNIST-Add1 mod-
els. The hyperparameter search was conducted on a single
split generated from a list of 600 MNIST images, with the
best parameters applied to all data settings. Any unspecified
values were left at their default settings. The ADMM Max It-
erations parameter refers to the number of ADMM iterations

conducted between each step of gradient descent during the
learning process. The Neural Learning Rate parameter refers
to the learning rate of the neural model used to predict image
labels.

G.2 MNIST-Add2
The NeuPSL model for the MNIST-Add2 experiment inte-
grates the neural model summarized in Table 2 with the sym-
bolic model depicted in Figure 9. The symbolic model con-
tains the following predicates:

• NEURAL(Img,X) The NEURAL predicate is the class
probability for each image as inferred by the neural net-
work. Img is MNIST image identifier and X is a digit
class that the image may represent.

• DIGITSUM(X,Y,Z) The DIGITSUM predicate deter-
mines if two digits (X and Y) sum to a number (Z). For
example, DIGITSUM(4, 5, 9) would return 1 as 4 added
to 5 is 9. Conversely, DIGITSUM(2, 2, 5) would return 0
as 2 added to 2 is not 5.

• SUM(Img1,Img2,Img3,Img4,Z) The SUM predi-
cate is the probability that the numbers represented in
the images identified by arguments (Img1,Img2) and
(Img3,Img4) add up to the number identified by the ar-
gument Z. This predicate instantiates decision variables,
i.e., variables from this predicate are not fixed during
inference and learning as described in the NeSy EBM,
NeuPSL, and Inference and Learning sections.

• POSSIBLETENDIGITS(X,Z) POSSIBLETENDIGITS
takes a 0 or 1 value representing whether the digit
identified by the argument X is possible when it is in the
tens place of a number involved in a sum that totals to
the number identified by the argument Z. For instance
POSSIBLETENDIGITS(9, 70) = 0 as no positive num-
ber added to a number with a 9 in the tens place, e.g.,
92, equals 70, while POSSIBLETENDIGITS(9, 170) = 1
as 78 added to 92 is 170.

• POSSIBLEONESDIGITS(X,Z)POSSIBLEONESDIGITS
takes a 0 or 1 value representing whether the digit
identified by the argument X is possible when it is in the
ones place of a number involved in a sum that totals to
the number identified by the argument Z. For instance



# Tens Digit Sums

w1 : NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z) → IMAGEDIGITSUM(Img1, Img3, Z)

w2 : ¬NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z) → ¬IMAGEDIGITSUM(Img1, Img3, Z)

w3 : NEURAL(Img1, X) ∧ ¬NEURAL(Img3, Y) ∧ DIGITSUM(X, Y, Z) → ¬IMAGEDIGITSUM(Img1, Img3, Z)

# Ones Digit Sums

w4 : NEURAL(Img2, X) ∧ NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z) → IMAGEDIGITSUM(Img2, Img4, Z)

w5 : ¬NEURAL(Img2, X) ∧ NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z) → ¬IMAGEDIGITSUM(Img2, Img4, Z)

w6 : NEURAL(Img2, X) ∧ ¬NEURAL(Img4, Y) ∧ DIGITSUM(X, Y, Z) → ¬IMAGEDIGITSUM(Img2, Img4, Z)

# Place Digit Sums

IMAGEDIGITSUM(Img1, Img3, Z10) ∧ IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ SUM(Img1, Img2, Img3, Img4, Z)

¬IMAGEDIGITSUM(Img1, Img3, Z10) ∧ IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ ¬SUM(Img1, Img2, Img3, Img4, Z)

IMAGEDIGITSUM(Img1, Img3, Z10) ∧ ¬IMAGEDIGITSUM(Img2, Img4, Z1) ∧ PLACENUMBERSUM(Z10, Z1, Z)

→ ¬SUM(Img1, Img2, Img3, Img4, Z)

# Tens Digit Constraints

w7 : NEURAL(Img1,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}
w8 : NEURAL(Img3,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSDIGITS(X, Z)}

# Ones Digit Constraints

w9 : NEURAL(Img2,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}
w10 : NEURAL(Img4,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESDIGITS(X, Z)}

# Digit Sum Constraints

w11 : NEURAL(Img1,+X) >= IMAGEDIGITSUM(Img1, Img3, Z){X : POSSIBLEDIGITS(X, Z)}
w12 : NEURAL(Img3,+X) >= IMAGEDIGITSUM(Img1, Img3, Z){X : POSSIBLEDIGITS(X, Z)}
w13 : NEURAL(Img2,+X) >= IMAGEDIGITSUM(Img2, Img4, Z){X : POSSIBLEDIGITS(X, Z)}
w14 : NEURAL(Img4,+X) >= IMAGEDIGITSUM(Img2, Img4, Z){X : POSSIBLEDIGITS(X, Z)}

# Number Sum Constraints

IMAGEDIGITSUM(Img1, Img3,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLETENSSUMS(X, Z)}
IMAGEDIGITSUM(Img2, Img4,+X) >= SUM(Img1, Img2, Img3, Img4, Z){X : POSSIBLEONESSUMS(X, Z)}

# Simplex Constraints

SUM(Img1, Img2, Img3, Img4,+X) = 1.

IMAGEDIGITSUM(Img1, Img2,+X) = 1.

Figure 9: NeuPSL MNIST-Add2 Symbolic Model



# Row Constraint

NEURAL(Puzzle,+X, Y, Number) = 1.

# Column Constraint

NEURAL(Puzzle, X,+Y, Number) = 1.

# Block Constraint

NEURAL(Puzzle, “0”, “0”, Number) + NEURAL(Puzzle, “0”, “1”, Number)

+ NEURAL(Puzzle, “1”, “0”, Number) + NEURAL(Puzzle, “1”, “1”, Number) = 1.

NEURAL(Puzzle, “2”, “0”, Number) + NEURAL(Puzzle, “2”, “1”, Number)

+ NEURAL(Puzzle, “3”, “0”, Number) + NEURAL(Puzzle, “3”, “1”, Number) = 1.

NEURAL(Puzzle, “0”, “2”, Number) + NEURAL(Puzzle, “0”, “3”, Number)

+ NEURAL(Puzzle, “1”, “2”, Number) + NEURAL(Puzzle, “1”, “3”, Number) = 1.

NEURAL(Puzzle, “2”, “2”, Number) + NEURAL(Puzzle, “2”, “3”, Number)

+ NEURAL(Puzzle, “3”, “2”, Number) + NEURAL(Puzzle, “3”, “3”, Number) = 1.

# Pin First Column

w2 : FIRSTPUZZLE(Puzzle, X, Y) − NEURAL(Puzzle, X, Y) = 0.0

Figure 10: NeuPSL Visual-Sudoku-Classification Symbolic Model

POSSIBLEONESDIGITS(9, 7) = 0 as no positive num-
ber added to a number with a 9 in the ones place, e.g., 9,
equals 7 while POSSIBLEONESDIGITS(9, 170) = 1 as
71 added to 99 is 170.

• IMAGEDIGITSUM(Img1,Img2,Z) The
IMAGEDIGITSUM predicate is the probability that
the digits represented in the images specified by Img1
and Img2 will sum up to the number indicated by the
argument Z. These variables are considered latent in the
NeuPSL model as there are no truth labels for sums of
images in the ones or tens places.

• PLACENUMBERSUM(Z10,Z1,Z) The
PLACENUMBERSUM predicate takes a 0 or 1 value
representing whether the sum of the numbers Z10 and
Z1, where Z10 is the sum of digits in the tens place and
Z1 is the sum of digits in the one place, adds up to the
number Z. For instance PLACENUMBERSUM(1, 15, 25)
is 1 as 1 · 10 + 15 = 25.

The Tens Digit Sums and Ones Digit Sums rules compute
the sum of two images in the same manner as the Digit Sums
rules in the MNIST-Add1 model. The sum of the digits is
captured by the latent variables instantiated by the predicate
IMAGEDIGITSUM.

The Place Digit Sums rules use the value of the
IMAGEDIGITSUM variables to infer the sum of the im-
ages. More specifically, if the IMAGEDIGITSUM of the im-
ages in the tens place, Img1 and Img3), is Z10, and the
IMAGEDIGITSUM of the images in the ones place, Img2 and
Img4) is Z1, and if according to PLACENUMBERSUM the
sum of the numbers Z10 and Z1 is Z, then the SUM of the
images must be Z. Notice that these rules are hard constraints
as it is always possible and desirable to find values of the
IMAGEDIGITSUM and SUM variables that satisfy these rela-
tions.

The Tens Digit Constraint rules restrict the possible values
of the SUM predicate based on the neural model’s prediction

Hyperparameter Tuning Range Final Value

Neural Learning Rate {1e-2, 1e-3, 1e-4} 1e-3
ADMM Max Iterations {50, 100, 500, 1000} 100

Table 4: NeuPSL hyperparameters for the MNIST-Add2 ex-
periments.

for the digit in the tens place of a number. For instance, if the
neural model predicts that the digit label for the image Img1
is 1 and Img1 is in the tens place of a number, then the sum
that Img1 is involved in cannot be any less than 10 or greater
than 118.

The Ones Digit Constraint rules restrict the possible values
of the SUM predicate based on the neural model’s prediction
for the digit in the ones place of a number. For instance, if the
neural model predicts that the digit label for the image Img2
is 5 and Img2 is in the one place of a number, then the sum
that Img2 is involved in cannot be any less than 5 or greater
than 194.

The Number Sum Constraint rules limit the values that
IMAGEDIGITSUM and SUM can take using constraints rep-
resenting the possible sums in the tens and ones place. For
instance, if the IMAGEDIGITSUM of two images, Img1 and
Img3, both in the tens place of two numbers being added, is
17, then the SUM cannot be less than 170 or greater than 188.
Furthermore, if the IMAGEDIGITSUM of two images, Img2
and Img4, both in the tens place of two numbers being added,
is 17, then the SUM cannot be less than 17 or greater than 197,
and must have a 7 in the ones place.

Hyperparameters Table 4 presents the hyperparameter
values and tuning ranges for the NeuPSL MNIST-Add2 mod-
els. The hyperparameter search was conducted on a single
split generated from a list of 600 MNIST images, with the
best parameters applied to all data settings. Any unspecified
values were left at their default settings. The ADMM Max It-
erations parameter refers to the number of ADMM iterations



Number of Images Number of Puzzles Hyperparameter Tuning Range Final Value

˜64

4 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

10 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.01
ADMM Max Iterations {50, 100, 1000} 50

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 1000

˜160

10 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

40 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 100

˜320

20 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 50

40 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.001
ADMM Max Iterations {50, 100, 1000} 50

80 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.0001
ADMM Max Iterations {50, 100, 1000} 100

˜1600 100 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.0001
ADMM Max Iterations {50, 100, 1000} 100

˜3200 200 Neural Learning Rate {1e-2, 1e-3, 1e-4} 0.01
ADMM Max Iterations {50, 100, 1000} 100

Table 5: NeuPSL hyperparameters for the Visual-Sudoku-Classification experiments.

conducted between each step of gradient descent during the
learning process. The Neural Learning Rate parameter refers
to the learning rate of the neural model used to predict image
labels.

G.3 Visual-Sudoku-Classification
The NeuPSL model for the Visual-Sudoku-Classification ex-
periment integrates the neural model summarized in Table 2
with the symbolic model depicted in Figure 10. The symbolic
model contains the following predicates:

• NEURAL(Puzzle,X,Y,Number) The NEURAL pred-
icate contains the output class probability for each digit
image inferred by the neural network. Puzzle is su-
doku puzzle’s identifier, X and Y represent the location
of image in the puzzle, and Number is a digit that image
may represent.

• DIGIT(Puzzle,X,Y,Number) The DIGIT predicate
has the same arguments as the NEURAL predicate, rep-
resenting PSL’s digit prediction on the image.

• FIRSTPUZZLE, X, Y(Puzzle) The FIRSTPUZZLE
predicate pins the values for the first row of the first
puzzle to an arbitrary assignment. This is used to force
the neural model to learn the correct label representation
for easier evaluation.

The Row Constraint, Column Constraint, and Block Con-
straint rules encode the standard Sudoku rules into con-
straints. These constraints restrict multiple instances of a digit
from appearing in a row, column, or block, respectively.

The Pin First Column rules are used to assign arbitrary
classes to the first row of a Sudoku puzzle. The first row of the
first correct puzzle from the training set is used to determine
this arbitrary label assignment. By assigning the first row to
arbitrary classes, the neural model is provided a starting point
for differentiating between the different classes and makes the
final evaluation easier.

Hyperparameters Table 5 presents the hyperparameter
values and tuning ranges for the NeuPSL Visual-Sudoku-
Classification models. A hyperparameter search was con-
ducted for each data setting on the initial split, with the opti-
mal hyperparameters applied to all subsequent splits. Any un-
specified values were left at their default settings. The ADMM
Max Iterations parameter refers to the number of ADMM it-
erations conducted between each step of gradient descent dur-
ing the learning process. The Neural Learning Rate parameter
refers to the learning rate of the neural model used to predict
image labels.

G.4 Citation Network Node Classification
The NeuPSL model for the Citation Network Node Classifi-
cation experiments integrates a single-layered neural model
with the symbolic model depicted in Figure 11. The single-
layer neural model connects the input to a dense-layered out-
put containing a soft-max activation, kernel regularizer, and
bias regularizer. The symbolic model contains the following
predicates:

• NEURAL(Paper,Label) The NEURAL predicate
contains the output class probability for each paper as



# L2 Loss

w1 : NEURAL(Paper, Label) = CATEGORY(Paper, Label)

# Label Propagation

w2 : LINK(Paper1, Paper2) ∧ CATEGORY(Paper1, Label) → CATEGORY(Paper2, Label)

# Simplex Constraints

CATEGORY(Paper,+Label) = 1.

Figure 11: NeuPSL Citation Network Symbolic Model

Dataset Model Neural/Symbolic Hyperparameter Tuning Range Final Value

Citeseer

NeuPSLLP

Neural
Hidden Layer Size {None, 32, 64, 128} None
Learning Rate {2.0e-0, 1.5e-0, 1.0e-0, 1.0e-1} 1.0e-0
Weight Regularization {5.0e-5, 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7} 1.0e-6

Symbolic

ADMM Step Size {0.1, 1.0} 1.0
ADMM Max Iterations {25, 100, 1000} 25
Alpha {0.0, 0.1} 0.0
Gradient Steps {5, 50, 100} 50
Gradient Step Size {1.0e-2, 1.0e-3, 1.0e-8} 1.0e-8

NeuPSLLP+FP

Neural
Hidden Layer Size {None, 32, 64, 128} None
Learning Rate {2.0e-0, 1.5e-0, 1.0e-0, 1.0e-1} 1.5e-0
Weight Regularization {5.0e-5, 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7} 1.0e-6

Symbolic

ADMM Step Size {0.01, 0.1, 1.0} 1.0
ADMM Max Iterations {25, 100, 1000} 1000
Alpha {0.0, 0.1} 0.0
Gradient Steps {5, 50, 100} 100
Gradient Step Size {1.0e-2, 1.0e-3, 1.0e-8} 1.0e-2

Cora

NeuPSLLP

Neural
Hidden Layer Size {None, 32, 64, 128} None
Learning Rate {2.0e-0, 1.5e-0, 1.0e-0, 1.0e-1} 1.5e-0
Weight Regularization {5.0e-5, 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7} 5.0e-5

Symbolic

ADMM Step Size {0.01, 0.1, 1.0} 1.0
ADMM Max Iterations {25, 100, 1000} 25
Alpha {0.0, 0.1} 0.0
Gradient Steps {5, 50, 100} 50
Gradient Step Size {1.0e-2, 1.0e-3, 1.0e-8} 1.0e-8

NeuPSLLP+FP

Neural
Hidden Layer Size {None, 32, 64, 128} None
Learning Rate {2.0e-0, 1.5e-0, 1.0e-0, 1.0e-1} 1.5e-0
Weight Regularization {5.0e-5, 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7} 5.0e-7

Symbolic

ADMM Step Size {0.01, 0.1, 1.0} 1.0
ADMM Max Iterations {25, 100, 1000} 1000
Alpha {0.0, 0.1} 0.0
Gradient Steps {5, 50, 100} 100
Gradient Step Size {1.0e-2, 1.0e-3, 1.0e-8} 1.0e-3

Table 6: NeuPSL hyperparameters for the citation network node classification experiments.

inferred by the neural network. Paper is the identifier
and Label is the category it can take.

• CATEGORY(Paper,Label) The CATEGORY predi-
cate has the same arguments as the NEURAL predicate
and represents PSL’s label prediction on the paper.

• LINK(Paper1,Paper2) The LINK predicate denotes
whether two papers share a citation link.

The Label Propagation rule propagates node labels to
neighbors. In this sense, it encodes the idea that papers shar-

ing a citation link are likely to have the same underlying label
category.

Hyperparameters Table 6 presents the hyperparameter
values and tuning ranges for the NeuPSL citation network
node classification models. A hyperparameter search was
conducted for each data setting on the initial split, with
the optimal hyperparameters applied to all subsequent splits.
The search process was divided into two distinct stages: a
neural hyperparameter search and a symbolic hyperparam-
eter search. The optimal hyperparameters identified during



Order Layer Parameter Value

1 Convolutional

Input Shape 28 × 28
Kernel Size 5

Output Channels 6
Activation ELU

2 Max Pooling Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 5

Output Channels 16
Activation ELU

4 Max Pooling Pooling Width 2
Pooling Height 2

5 Fully Connected
Input Shape 256

Output Shape 100
Activation ELU

6 Concatenation
Input Shape 2 × 100

Output Shape 200
Activation ELU

7 Fully Connected
Input Shape 200

Output Shape 84
Activation ELU

8 Fully Connected
Input Shape 84

Output Shape 19
Activation Softmax

Table 7: Neural architecture for the MNIST-Add2 CNN base-
line [Badreddine et al., 2022].

the neural search were subsequently set during the symbolic
search. All neural models were trained for 250 epochs uti-
lizing early stopping on the validation set with a patience of
25. Final hyperparameter values for LPPSL and NeuralPSL

are the same as NeuPSLLP . Any unspecified values were left
at their default settings. The Hidden Layer Size parameter
refers to the size of a single hidden layer, where ”None” re-
moves that hidden layer, resulting in a model with only input
and output layers. The Learning Rate parameter refers to the
learning rate of the neural model. The Weight Regularization
parameter adds a kernel and bias regularizer to the hidden
layer and output. The ADMM Step Size parameter refers to
the initial step size of the ADMM reasoner. The ADMM Max
Iterations parameter refers to the number of ADMM itera-
tions conducted between each step of gradient descent during
learning. The Alpha is a value that weights the importance of
the structural gradient passed back from the symbolic poten-
tials and the gradient with respect to the labels. The Gradient
Steps parameter refers to the number of gradient steps taken
for joint learning. The Gradient Step Size parameter refers to
the step size used in learning the symbolic parameters.

H Baseline Models
This section provides additional details of the baseline mod-
els used in the Experimental Evaluation. The subsequent sub-
sections will examine the architectural structure and hyperpa-
rameters employed for each setting.

H.1 MNIST-Add
The CNN baseline neural models for the MNIST-Add1 and
MNIST-Add2 experiments are summarized in Table 7 and
Table 8 respectively. These models take as input either
two MNIST images (MNIST-Add1) or four MNIST images

Order Layer Parameter Value

1 Convolutional

Input Shape 28 × 28
Kernel Size 5

Output Channels 6
Activation ELU

2 Max Pooling Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 5

Output Channels 16
Activation ELU

4 Max Pooling Pooling Width 2
Pooling Height 2

5 Fully Connected
Input Shape 256

Output Shape 100
Activation ELU

6 Concatenation
Input Shape 4 × 100

Output Shape 400
Activation ELU

7 Fully Connected
Input Shape 400

Output Shape 128
Activation ELU

8 Fully Connected
Input Shape 128

Output Shape 199
Activation Softmax

Table 8: Neural architecture for the MNIST-Add2 CNN base-
line [Badreddine et al., 2022].

Model Number of Hyperparameter Tuning Range FinalAdditions

MNIST-Add1

300 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 32

3,000 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 16

25,000 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 32

MNIST-Add2

150 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 32

1,500 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 32

12,500 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
Batch Size {16, 32, 64, 128} 64

Table 9: CNN baseline hyperparameters for the MNIST-Add1
and MNIST-Add2 experiments.

(MNIST-Add1) and output a probability distribution of the
resulting sum. Both models were trained to minimize cross-
entropy loss.

Hyperparameters Table 9 presents the hyperparameter
values and tuning ranges for the baseline MNIST-Add1 and
MNIST-Add2 models. A hyperparameter search was con-
ducted for three data sizes on the initial split, with the op-
timal results applied to all subsequent splits. All experiments
involving overlap utilized the best hyperparameters identified
from the MNIST-Add1 300 additions and MNIST-Add2 150
additions searches. Any unspecified values were left at their
default settings. The Batch Size parameter refers to the num-
ber of addition examples per batch of training and evaluation.
The Learning Rate parameter refers to the learning rate of the
model used to predict.



Order Layer Parameter Value

1 Convolutional

Input Shape 112 × 112
Kernel Size 3

Output Channels 16
Activation ReLU

2 Max Pooling Pooling Width 2
Pooling Height 2

3 Convolutional
Kernel Size 3

Output Channels 16
Activation ReLU

4 Max Pooling Pooling Width 2
Pooling Height 2

5 Convolutional
Kernel Size 3

Output Channels 16
Activation ReLU

6 Max Pooling Pooling Width 2
Pooling Height 2

7 Fully Connected
Input Shape 2304

Output Shape 256
Activation ReLU

8 Fully Connected
Input Shape 256

Output Shape 256
Activation ReLU

9 Fully Connected
Input Shape 256

Output Shape 128
Activation ReLU

10 Fully Connected
Input Shape 128

Output Shape 1
Activation Softmax

Table 10: Neural architecture for the Visual-Sudoku-
Classification CNN-Visual baseline [Badreddine et al., 2022].

Order Layer Parameter Value

1 Fully Connected
Input Shape 16

Output Shape 512
Activation ReLU

2 Fully Connected
Input Shape 512

Output Shape 512
Activation ReLU

3 Fully Connected
Input Shape 512

Output Shape 256
Activation ReLU

4 Fully Connected
Input Shape 256

Output Shape 1
Activation ReLU

Table 11: Neural architecture for the Visual-Sudoku-
Classification CNN-Digit baseline.

H.2 Visual-Sudoku-Classification
The CNN-Visual and CNN-Digit baseline neural models for
the Visual-Sudoku-Classification experiments are summa-
rized in Table 10 and Table 11 respectively. The input to the
CNN-Visual baseline takes 16 MNIST images as input and
produces a probability distribution indicating the likelihood
that the images form a correct puzzle. The input to the CNN-
Digit baseline takes 16 MNIST image ground truth labels as
input and produces a probability distribution indicating the
likelihood that the images’ labels form a correct puzzle. Both
models were trained to minimize cross-entropy loss.

Hyperparameters Table 12 presents the hyperparameter
values and tuning ranges for the CNN-Visual and CNN-Digit

Model Number of Hyperparameter Tuning Range FinalPuzzles

CNN-Visual

10 Learning Rate {1e-3, 1e-4, 1e-5} 1e-4
20 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
100 Learning Rate {1e-3, 1e-4, 1e-5} 1e-2
200 Learning Rate {1e-3, 1e-4, 1e-5} 1e-2

CNN-Digit

10 Learning Rate {1e-3, 1e-4, 1e-5} 1e-3
20 Learning Rate {1e-3, 1e-4, 1e-5} 1e-2
100 Learning Rate {1e-3, 1e-4, 1e-5} 1e-2
200 Learning Rate {1e-3, 1e-4, 1e-5} 1e-2

Table 12: CNN-Visual and CNN-Digit hyperparameters for
the Visual-Sudoku-Classification experiment.

Order Layer Parameters Value

1 Graph Conv Layer Number of Parameters 237056

2 Graph conv Layer Number of Parameters 390
Activation softmax

Table 13: Neural architecture for the citation network node
classification GCN model.

Hyperparameter Tuning Range Final Value

Hidden Units {16, 32, 64} 64
Learning Rate {1e-2, 1e-3} 1e-3
Weight Regularizer {1.0e-3, 5.0e-4} 1.0e-3

Table 14: GCN hyperparameters for the citation network node
classification experiments.

baseline neural models. A hyperparameter search was con-
ducted for each data setting on the initial split, with the opti-
mal hyperparameters applied to all subsequent splits. Any un-
specified values were left at their default settings. The Learn-
ing Rate parameter refers to the learning rate of the neural
model.

H.3 Citation Network Node Classification
As described in the Experimental Evaluation, the LPPSL and
NeuralPSL baseline models represent the distinct symbolic
and neural components used in NeuPSLLP . Therefore, the
LPPSL model is depicted in Figure 11, and the NeuralPSL

model is a single-layered neural model connecting the in-
put to a dense-layered output containing a soft-max activa-
tion, kernel regularizer, and bias regularizer. Hyperparame-
ters were set to the best values found for the NeuPSLLP neu-
ral hyperparameter search (Table 6).

The GCN model follows the same architecture proposed
by Kipf and Welling [2017] and is summarized in Table 13.
The GCN takes a collection of node identifiers as input and
outputs each node’s class label.

Hyperparameters Table 14 presents the hyperparameter
values and tuning ranges for the GCN model. Each GCN
model was trained with 50 percent dropout, a batch size of
1024, and 1000 epochs (utilizing early stopping on the vali-
dation set with a patience of 250). A hyperparameter search
was conducted for each data setting on the initial split, with
the optimal hyperparameters applied to all subsequent splits.
Any unspecified values were left at their default settings.



Method
MNIST-Add1 MNIST-Add2

Number of Additions
300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32
LTNs 69.23 ± 15.68 93.90 ± 00.51 80.54 ± 23.33 02.02 ± 00.97 71.79 ± 27.76 77.54 ± 35.55
DPL 85.61 ± 01.28 92.59 ± 01.40 -2 71.37 ± 03.90 87.44 ± 02.15 -2

NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37

Table 15: Test set accuracy and standard deviation on MNIST-Add. Results reported here are run and averaged over the same
ten splits.

I Extended Evaluation Details
This section provides NeSy model details and expands the
Experimental Evaluation presented earlier on MNIST-Add
and provides inference and learning times for all experiments.

I.1 NeSy Model Details
The NeSy methods used in this work, along with their respec-
tive publications and implementation codes, are listed below:
DeepProbLog (DPL): All DPL results use the DPL mod-

els presented in [Manhaeve et al., 2021], using
default hyperparameters. Code was obtained from
github.com/ML-KULeuven/deepproblog.

DeepStochLog (DSL): All DeepStochLog results use the
DeepStochLog models presented in [Winters et al.,
2022], using default hyperparameters. Code was ob-
tained from github.com/ML-KULeuven/deepstochlog.

Logic Tensor Networks (LTNs): All LTNs results use the
LTNs models presented in [Badreddine et al., 2022], us-
ing default hyperparameters. Code was obtained from
github.com/logictensornetworks/logictensornetworks.

Licenses for NeuPSL, DeepProbLog, DeepStochLog, are
under Apache License 2.0 and Logic Tensor Networks are
under MIT License.

I.2 MNIST-Add Extended Results
In this section, we conduct an extended analysis of the
MNIST-Add experiment by comparing the performance of
NeuPSL, DeepProbLog (DPL) [Manhaeve et al., 2021],
Logic Tensor Networks (LTNs) [Badreddine et al., 2022] and
neural baselines in non-overlap settings with commonly used
split sizes in the research community [Manhaeve et al., 2021].
Ten train splits are generated by randomly selecting, without
replacement, n ∈ {600, 6000, 50000} unique MNIST images
from the original MNIST train split and converted to MNIST
additions as described in the Datasets appendix. This process
is then repeated to create validation and test splits, with the
test splits being pulled from the original MNIST test split to
prevent data leakage and n = 10000.

Table 15 shows the average accuracy and standard devi-
ation for MNIST-Add1 and MNIST-Add2.3 The best aver-
age accuracy and results within a standard deviation of the

3In the largest data setting, there appeared to be an error with
DPL, and the results produced were random. Rather than present
these potentially misleadingly low results, we indicate with ‘-’.

Setting Method Inference Learning
(sec) (sec)

Citeseer NeuPSLLP 3.98 ± 0.05 29.90 ± 0.82
NeuPSLLP+FP 4.23 ± 0.05 32.94 ± 0.36

Cora NeuPSLLP 4.00 ± 0.31 33.41 ± 1.23
NeuPSLLP+FP 4.07 ± 0.14 36.50 ± 0.53

Table 16: Inference and learning time for NeuPSL on Cita-
tion Network Node Classification experiments presented in
Section 6.3.

Unique Puzzles Inference Learning
Digits (sec) (sec)

64
4 4.65 ± 0.16 43.18 ± 1.35
8 6.47 ± 0.19 52.56 ± 1.08
16 12.56 ± 0.66 68.64 ± 0.89

128
8 4.54 ± 0.07 52.45 ± 0.94
16 6.48 ± 0.18 68.91 ± 1.01
32 12.62 ± 0.52 102.60 ± 0.90

256
8 4.67 ± 0.20 68.62 ± 1.04
16 6.53 ± 0.30 102.76 ± 2.05
32 12.59 ± 0.53 170.66 ± 5.82

Table 17: Inference and learning time for NeuPSL on Visual
Sudoku Puzzle Classification experiments presented in Sec-
tion 6.2.

best are in bold. In all but two settings, NeuPSL is either
the highest-performing model or within a standard deviation
of the highest-performing model. Moreover, NeuPSL has a
markedly lower variance for nearly all training examples in
both MNIST-Add tasks.

I.3 Inference and Learning Runtime
Table 16 summarizes the inference and learning time for Ne-
uPSL on Citation Network Node Classification experiments
presented in Section 6.3 and Table 17 summarizes the infer-
ence and learning time for NeuPSL on Visual Sudoku Puzzle
Classification experiments presented in Section 6.2.

Figure 12 summarizes the inference and learning times as-
sociated with the MNIST-Add experiments described in Sec-
tion 6.1. When evaluating the performance of the NeSy meth-



Figure 12: Inference and learning time for MNIST-Add experiments presented in Section 6.1.

ods that perform complex symbolic inference (DPL and Ne-
uPSL), a trade-off is observed. NeuPSL inference runs an
order of magnitude faster than DPL but, surprisingly, takes
longer to train on roughly the same number of gradient steps.
This timing difference derives from NeuPSL taking full gra-
dient steps over the entire train dataset while DPL takes
batched stochastic gradient steps. Symbolic inference is a
subprocess of NeSy-EBM learning, and DPL performs infer-
ence over a single addition, while NeuPSL performs infer-
ence over every addition. An interesting direction for future
work is to take batched gradient steps during NeuPSL learn-
ing, where the batches contain a set of overlapping additions.

Compared with the CNN and LTN models, DPL and Ne-
uPSL run orders of magnitude slower. CNN and LTN infer-
ence is equivalent to making a feed-forward pass through a
neural network. This will, therefore, be significantly faster
than the complex symbolic inference done in DPL and Ne-

uPSL, but comes with a decrease in predictive performance.

J Computational Hardware Details
All timing experiments were performed on an Ubuntu 22.04.1
Linux machine with Intel Xeon Processor E5-2630 v4 at
3.10GHz.


