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Abstract—The recovery of the input signal covariance values
from its one-bit sampled counterpart has been deemed a chal-
lenging task in the literature. To deal with its difficulties, some
assumptions are typically made to find a relation between the
input covariance matrix and the autocorrelation values of the
one-bit sampled data. This includes the arcsine law and the
recently proposed modified arcsine law which unleashes a promis-
ing performance in covariance recovery by taking advantage of
time-varying sampling thresholds. However, the modified arcsine
law also assumes input signals are stationary, which is typically
a simplifying assumption for real-world applications. In fact, in
many signal processing applications, the input signals are readily
known to be non-stationary with a non-Toeplitz covariance
matrix. In this paper, we propose an approach to extending the
arcsine law to the case where one-bit ADCs apply time-varying
thresholds while dealing with input signals that originate from
a non-stationary process. In particular, the recovery methods
are shown to accurately recover the time-varying variance and
autocorrelation values. Furthermore, we extend the formulation
of the Bussgang law to the case where non-stationary input
signals are considered.

Index Terms—Arcsine law, Bussgang law, covariance matrix,
one-bit quantization, modified arcsine law, non-stationary signals,
time-varying sampling thresholds, time-varying signal statistics.

I. INTRODUCTION

OVARIANCE matrix recovery plays an important role

in statistical signal processing applications such as di-
rections of arrival (DOA) estimation, radar waveform design,
target parameter estimation, communication channel estima-
tion, and adaptive radar detection [2]-[9]. When digital sig-
nal processing is concerned, using one-bit quantization and
digitization, in which the input signals are compared with
given threshold levels, allows for sampling at a very high rate
and with lower energy consumption [10]-[13]. As a result of
employing one-bit sampling, however, we can only use the
sign data as partial available information to recover the signal
covariance, and second order statistics in general, making it
more challenging. In [14]-[17], the authors have considered
the input signal as a stationary zero-mean Gaussian process,
and with this assumption, the input covariance is recovered
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by taking advantage of the arcsine law which connects the
covariance of an unquantized signal with that of its quantized
counterpart [12], [18]. In [19], the relationship between the
cross-correlation matrix of the input signal and the one-bit
output data is characterized as the Bussgang law for the
stationary zero-mean Gaussian signals. Note that the sampling
threshold levels are considered to be zero in these research
efforts. The zero threshold values can give rise to some
difficulties in signal amplitude recovery and a considerable
portion of signal information may be lost. In particular, the
power information of the input signal x is lost in one-bit data
with employing zero threshold. Because, there is no difference
between the sign of x and that of nx for n > 0 [20]. As
a natural alternative, time-varying thresholds are utilized in
recent works which can lead to enhancements in recovery
performance [1], [21]-[24]. It is worth pointing out that the
main difference between one-bit sampling with time-varying
thresholds scheme utilized in this paper and delta-sigma (AX)
sampling, is that the one-bit AY ADC may not properly
sample the input signal with a large slope which may result
in lost of amplitude information.

Owing to the successful performance of time-varying sam-
pling thresholds for signals amplitude recovery, such time-
varying thresholds were considered for the covariance recov-
ery problem [1], and more extensively in [25], exhibiting a
significantly improved performance in the estimation of signal
autocorrelation values via a modified arcsine law. Moreover,
taking time-varying thresholds into consideration for cross-
correlation matrix recovery, promising results were demon-
strated with a modified Bussgang law in [25].

A critical restriction of the arcsine law, as well as the
modified arcsine law, lies in the necessary assumption of a
stationary input signal [1], [14], [25]. In real-world commu-
nication and digital signal processing applications, however,
input signals are non-stationary in general and have time-
varying variances [26]-[28]. In such scenarios, covarince
recovery is an even more prominent tool in the analysis of
non-stationary processes and systems, and can provide useful
insights into their innate dynamics [29]-[32]. Nevertheless,
in a non-stationary environment, the expected accuracy of
covariance recovery is typically diminished.

In this paper, we present an approach to extend our modified
arcsine law for time-varying sampling thresholds, discussed
in [25], to recover signal covariance matrices with an arbi-
trary non-Toeplitz structure. Moreover, a Bussgang law with
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time-varying thresholds is established for the non-stationary
scenario.

A. Contribution of the Paper

We study the covariance recovery for a non-stationary
input signals in one-bit quantization systems deploying time-
varying thresholds. In particular, we formulate an integral-
based relation between the autocorrelation function of the one-
bit sampled data and the generic covariance matrix entries of
the input signal. Moreover, a closed-form formulation for the
mean of the input signal is obtained and the utilized to recover
the time-varying signal variances. It is demonstrated that to
recover the autocorrelation values, we should evaluate the ob-
tained integral which appears to be intractable analytically. To
approach this problem, we first employ a one-point piece-wise
Padé approximation (PA) to recast the integrands as rational
expressions which are readily integrable. Next, we formulate
an estimation criterion to recover the desired input autocorrela-
tion values. The accuracy of the PA is also investigated. In the
next step, two well-known numerical integration techniques
are employed to estimate the input autocorrelation values;
namely, the Gauss-Legendre quadrature and the Monte-Carlo
integration techniques. Interestingly, the proposed estimation
criteria for these approaches take convex form, facilitating an
accelerated recovery. Lastly, a modified Bussgang law for non-
stationary input signals is presented. By using the modified
Bussgang law, the matrix elements associated with the cross-
correlation between the input signal and the one-bit sampled
data can be recovered. Several numerical results are presented
to illustrate the effectiveness of the proposed methodologies.
Compared to [20] and the conference version of this work, we
can summarize our contributions as follows:

« Obtaining an integral-based relation between the auto-
correlation function of the one-bit sampled data and
the generic covariance matrix entries of non-stationary
input signals. Specifically, at first we obtain the time-
varying variance of non-stationary input signals using
the sample mean of the output one-bit data, and then
solve the aforementioned integration for estimating the
off-diagonal elements of the input covariance matrix.

« Approximating the mentioned integral-based relation via
PA, and subsequently solving its associated estimation
criterion by a non-convex optimization method. More-
over, we investigate PA in term of the fitness analysis
which introduces a bound on the threshold mean. This
bound plays an important role in obtaining a good esti-
mate of the input covariance matrix from one-bit sampled
data using non-convex programming.

« Approximating the mentioned integral-based relation by
numerical methods such as the Gauss-Legendre and the
Monte-Carlo integration approaches laying the ground
for deploying convex programming tools in optimizing
the associated estimation criteria. Therefore, obtaining
the global solution of our estimation problem will be
guaranteed, as further validated by presenting various
numerical examples in this paper.

o Formulating the maximum likelihood estimation (MLE)
criterion in order to estimate the parameters of the time-
varying threshold merely by using the available one-bit
information. Additionally, for the first time in the liter-
ature, we formulate the Bussgang law for time-varying
sampling thresholds, referred to the modified Bussgang
law, to estimate the cross-correlation matrix from one-bit
sampled data.

B. Organization of the Paper

Section II is dedicated to formulating the autocorrelation
function of the one-bit sampled data with time-varying thresh-
olds in the case of non-stationary inputs. In Section III, the
time-varying variances are recovered by using the proposed
formula for the mean of the one-bit sampled data. Sections IV
presents our Padé Approximation (PA) to recover the input
signal autocorrelation sequence. Subsequently, Sections V and
VI discuss two widely-known numerical integration tech-
niques, i.e. the Gauss-Legendre quadrature and the Monte-
Carlo integration methods, applied to our arbitrary non-
Toeplitz covariance matrix recovery problem. Section VII is
where the various methods proposed for covariance recovery
are compared. A proper thresholding for covariance recovery
through the estimation of the threshold parameters is discussed
in Section VIII. The modified Bussgang law for time-varying
thresholds in the case of non-stationary signals is presented in
Section IX. Finally, Section X concludes the paper.

Notation: Throughout this paper, we use bold lowercase
letters for vectors, and bold uppercase letters for matrices
and uppercase letters for matrix entries. For instance, Ry
and Ry(i,j) denote the autocorrelation matrix and the 7j-
th element of the autocorrelation matrix of the vector x,
respectively. (-)7 and (-)™ denote the vector/matrix trans-
pose, and the Hermitian transpose, respectively. The expected
value is defined as E{.}. The Frobenius norm of a matrix

B € CMXN is defined as [Blr= /S, =N, |B(r )
where {B(r,s)} are entries of B. For an event &, |(¢) is the
indicator function for that event; i.e. |(g) is 1 if £ occurs and
0 otherwise. The Q-function is defined as

1 e 22
Qz) = \/T?/L exp <—2> dz. (1

Further, Q! is an inverse Q-function. The error function (erf)

is defined as o o
2
erf v = —/ e % dz. 2)
VT Jo

The incomplete Gamma function is defined as

I(s,z) = /00 2 le* dz. 3)

Finally, the cumulative distribution function (CDF) of a zero
mean Gaussian process z ~ A (0, () is defined as

U(z) = \/127/ "3 dt. @)
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II. COVARIANCE RECOVERY IN NON-STATIONARY
SCENARIO

We assume that the input signal is a zero-mean non-
stationary Gaussian process x ~ N (0, Ry), where Ry is
the non-Toeplitz covariance matrix of x with the time-varying
diagonal elements. Specifically, the input signal is supposed to
be non wide sense stationary (WSS) or weak stationary (for
abbreviation we use “non-stationary” instead of “non-WSS”).
A signal is wide sense stationary (weak stationary) if and only
if:

a. The signal mean is constant over time.

b. Rx(i,j) = Rx(l). This means that we have a constant

variance over time; i.e. Ry (i,7) = Rx(0).

c. E {:1722} < oo or generally E {xf”} < oo [33]-[35].

In our case, the input signal can satisfy (a) and (c), however,
the autocorrelation function does not rely on lag Ry (i,5) #
Ry« (1) where I = |i — j|, therefore, Rx = [Rx(i,7)] is a
non-Toeplitz covariance matrix with distinct diagonal elements
(time-varying variance). Consequently, our signal is non-
stationary or marginal heteroskedastic [33], [35]. A simple
but famous example for such signals are those originating
in Wiener processes or Brownian motion 1n; ~ N (0,t).
The input signal x € RY is considered to be an arbitrary
temporal sequence of the distribution ensembles {x(k)} whith
ke{l,---, Ny}

A. Modified Arcsine Law For Non-Stationary Input Signals

We consider a non-zero time-varying Gaussian threshold T
that is independent of the input signal with the distribution
T ~ N(d=1d,X), and define a new random process w
such that w = x — 1. Clearly, w is a non-stationary Gaussian
process with w ~ A (—d, R, + ¥ = P) where P is a non-
Toeplitz matrix. The autocorrelation function of the one-bit
quantized output process is formulated in the following.

Theorem 1. Suppose po; = P(i,1), po; = P(j,j) and p;; =
P(i,7), where P is the covariance matrix of w. Consider the
one-bit quantized random variable y = f(w) where f(.) is
the sign function. Then, the autocorrelation function of y takes

the form
7dz(pol+po] 217”)
2(Po;iPoj — p a2
.o € [e7% n
Ry (i,j5) = {/ i /B 23 ePn
(pO’LpO] " " "

[67%% (7% P _
m&ﬁ(wm)eﬁ“}l

®)
where o, and [3,, are evaluated as
o, = d (poi sin @ + po; cos§ — p;;(cosf + sin 6’))7
(pinOj - pfj) ©)
poj cos® 0 + po; sin® 6 — Dij Sin 29
Bn =
2(p01p0] p”)

Proof. The covariance matrix of y can be written as

v =E{yy"},

1 o0
-~ /en)NP] /_oo -

where Z(w) = f(w)f(w)" and f(w) = [f(wj)];v:l is a
column vector. Clearly, Z is a matrix including only entries
of the form £1. Note that one can write the output covariance
matrix as Ry = [E{y;y; NNV >N Therefore, the autocorrelation
of f(w;) and f(wj;) is given by,

Ry(i,5) = E{yiy;},
= /1/ / flw;) f(w;)e )‘(d) dw; dw; ®

where k and A(d) are defined as

—1
K= (QW\/pm‘poJ‘ - p?j) ) &)

e~ B (Wt P (wid) g

Ad)2 (wi + d)*poj + (w; + d)*poi — 2pij(w; + d) (w; + d).
—2(poipoj — P,zj)
(10)
The autocorrelation function in (8) can be rewritten as
(i,§) =k < / / D duw, dw;
/ / dwl dw;
(11
—/ / M dw; dw;
0 —o00
0 00
—/ / M) dw; dwj) .
—oo0 JO
We can simplify an using the relation
N A e e dw;dw; = 1. In fact, one can verify
that

Ry(ij) =20 [ [ (@
0 0

By employing polar coordinates w; = pcosf, w; = psinf,
we can recast the integral in (12) as

3 [0 2
— X/ / e Bnp (e
0o Jo

*<*d>) dw; dw; — 1. (12)

TP e P) pdpdf — 1,

(13)
where «,, and (3,, are readily defined in (6), and
7‘12(?07;‘*’170]'*21372‘7')
2
X A Qe 2(PoiPoj —Pj;) (14)

Integrating (13) with respect to p leads to

{/ Bn \/6:2& o7

Qi P
m&ﬁ(ﬁm)eﬁw}
(15)

a transition for which you can find more detailed derivations
in Appendix A. This completes the proof. O

—d?%(po; —d%(poi+Poj —2Pij)
2(poiPoj — p

21)17

€

R)’(iaj) =

(p02p0j
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Figure 1: Average MSE for time-varying input variance recovery with (a) ¢ = 2 (rg2), and (b) j = 8 (rpg), for different one-bit

sample sizes.

It remains to evaluate the integral in (5) in terms of {pg;},
{po;} and {p;;}, which have to be estimated—a task that is
central to our efforts in the rest of this paper. Finding {po;},
{po; } and {p;;} results in time-varying input variance and au-
tocorrelation recovery, which can be achieved by considering
the relation:

For i = j, the input variance is hence given by Ry(i,i) =
roi = po; — 2(4,4) and Rx(j, j) = roj = po; — X(j, j), while
for i # j, we have the input autocorrelation as Ry(i,7) =
Tij = pij — 21, j)-

III. TIME-VARYING VARIANCE RECOVERY

To recover the time-varying variances {ro;}, the following
lemma would be useful.

Lemma 1. The first moment (mean) of the one-bit sampled
data, depends on the threshold distribution and the power of
sampled data via the relation

E{y:} =2Q ( - ) -1, Vie{l,---,N}. (17
0i
Proof. We have
“+o0
Ewh= [ Fwp(w) du, as)
) 1 =(witd)?
fori € {1,---, N}, with p(w;) = (v27po;) e 7o . We
can further simplify (18) as
0 0o
E{yi}Z—/ p(wi)dwi+/ p(w;) dw;
—00 0
+oo
_ 2/ p(ws) duw; — 1 (19)
0

()

which completes the proof. O

In light of the above, a relation between the input variance
and the mean of one-bit sampled data is established, which
provides an additional avenue to estimate the variances {po;}.
More precisely, according to Lemma 1 and (16), the input
time-varying variances {ro;} are given by

2
« d ,
Toi = (W) —o2, ie{l,---,N}, (20)

where {r3.} denote the estimates of {ro;}, o2 is the threshold
variance, and {u;} denote the entries of p which may be
estimated via the sample mean kal y(k) [34].

A. Numerical Results

We will examine the effectiveness of (20) in estimating the
time-varying input variances. In all experiments, the input sig-
nals were generated as zero-mean Wiener process sequences
with time-varying variance ranging from 0.2 to 0.8. Also, the
number of states is 100 (i.e., x € R100). Accordingly, we made
use of the time-varying thresholds with d = 0.5 and diagonal
3 whose diagonal entries are set to 0.2. In the non-stationary
input signal case, the true input variance is not a constant
number. Therefore, we define the experimental mean square
error (MSE) of the estimate 7y; of a variance rg; as

E
1 R
MSE = = Z|r8i — 782,

e=1

21

where {r§;,7¢;} are the time-varying variances and their esti-
mates in the e-th experiment. Also, the number of experiments
is assumed to be © = 15. As can be seen in Fig. 1, we
can accurately estimate the time-varying variance elements
of an input signal based on (20) for ¢ = 2 and j = 8
(ro2 # rog). The results are obtained for the number of
ensembles Ny € {1000, 3000, 6000, 10000}, with fixed d and
3 for each experiment. It is observed that the accuracy of
time-varying variance recovery will significantly improve as
the number of one-bit samples grows large.
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Figure 2: Recovery of the input signal time-varying variance
o? generated by a GARCH (1, 1) model based on (20), when
t is a temporal sequence of length 20, with the true values
plotted along the estimates.

To further investigate the effectiveness of our proposed ap-
proach, we generate a non-stationary Gaussian process accord-
ing to x ~ N (0,07T), where {07} are generated based on
the generalized autoregressive conditional heteroskedasticity
(GARCH) model with order one, i.e. GARCH (1, 1), which
may be written as [33],

2 2 2
o =G+ oy + Caep g,

where {x;} are elements of x, €;|¢);_1 denotes the conditional
random variable €; given its previous ensembles set 1,
and {(o, (1,2} are our GARCH model parameters. In Fig. 2,
we present an example of time-varying variance sequence
recovery. The true input signal time-varying variance o7 and
the estimated values by our approach are presented when ¢ is
a temporal sequence of length 20.

So far, we have obtained the time-varying variance elements
of the input covariance matrix. To recover the input autocor-
relation values ({r5;},7 # j), the integral in (5) should be
evaluated which appears to be difficult to find in closed-form.
Therefore, in the following, we deploy various approximations
to facilitate its evaluation, which enables to the recovery of all
elements of the covariance matrix Ry.

Ty = €t|1/1t71, (22)

IV. ANALYTIC APPROACH FOR COVARIANCE RECOVERY

The first part of the integration in (5) can be analytically
evaluated as

. Dij
—dé)— i 7+ 2sin 1[]}).
/ PoiPoj — pzy < /7p0ip0j (23)

If the threshold is considered as a zero-mean Gaus-
sian process (T ~ N (0,X)), one can resort to the
well-known arcsine law relation for non-stationary sig-

. .o o 2 a1 Dij .
nals, ie., Ry(i,j) = =sin ( N Howe'ver, in
the general case, we evaluate all parts of the integra-

tion in (5). Computing the integral in (5) with the2 inte-
grands Dy (0; poi, pog,pig»d) = (/72 5Q (- ) e and

2

Qpn e 4/3,’1

D5 (0 poi, poj, pij. d) = m 28,
appears to be a difficult task. Thus, in the following section, the
Padé approximation (PA) [36]-[38] is utilized to approximate
said integrands D; and D,. This facilitates the recovery of
{pi;} in Section IV-B.

with respect to 6

A. Padé Approximation

As in [25], we use PA to approximate D; and D,. Note
that the integration in (5) occurs in the interval 6 € [0, g]
To have a better fitness, we again use the idea of piece-wise
PA with three distinct intervals } ) 8} [}g, 37], and [3F, 2]
with the expansion points 6 € (0,7, 7 ;. Consequently, the
function D5 (6; pos, poj, Pij, d) is approximated as

vefo.Z]ulz. 2| u [ 2],
'8 8" 8 872"
) (24)
T oy o e+ s
Dy = — eihn X ———
\ B 280 k + g0 + ho?
A similar  approximation can be proposed for

Dy (8; poi, poj, pij, d). It is straightforward to verify that the
two functions D1 (Q;po,;,poj,pij, d) and D2 (G;pm,poj,pij, d)
are analytic at the expansion points. Also, the Q)-function in
(5) is approximated by the Q-function as [39]:

(25)

Substituting Dy (G;pOZ—,poj,pij,d) with its approximation
and evaluating the integration in the associated parts of (5)
results in:

w2h

‘k+”-"+
e4ﬁ dGN—ln _—
/\/ﬁn

_2¢h—sg  _y [ mhy/4hk — g*
ha/4hk — g2 16hk +mgh |’

T T a, o s [ |64k + 97%h + 247hyg|
/ — en df ~ —1 +
z \ Bn26n 2h 64k + m2h + 87hg|
8hy/4hk — g°

1
(64kh + 3m2h2 + 167hg

(26)

2eh — _2eh—sg

h/Akh — g2

(27)
st o2 ‘k + ﬂ + Lh
/2 T e do~ - In 3 .
L ﬂnzﬂn 2h ’k-i— 7Tg+971' h|
_2¢h—sg 1 why/4hk — g2
hr/4kh — g2 16kh + 3w2h2 + Trhg |
(28)

Similar approximations can be obtained for terms associated
with the function D1 (0; pos, poj, pij, d).

B. Recovery Criterion

Based on our discussions in Section III, pg; and pfj; may
be immediately obtained by (20). Then, {p;;} are estimated
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Figure 3: Example plot of the estimation criterion G(p;;) with
respect to p;; showing its multi-modality, i.e. having multiple
local optima.

by formulating a minimization problem. For this purpose, one
may consider the following criterion:

_ 7]
G (poi, Poj, ij) = log ( Ry(i,j) — x {/ B,
0 n

2>

T g 4&?; RS o
VB 28" anQ(mn)” da}
(29)

where the autocorrelation of output signal (1y) can be esti-
mated via the sample covariance matrix (SCM) [35],

1 &
Ry ~ VZ

with {y(k)} being the observed sign vectors, and  being the
same as defined in (14). Note that by now we have derived an
approximated version of (5) using PA. Let H,,(po:, Poj, Pij)
denote this approximation. Therefore, we can alternatively
consider the criterion:

(30)

Glpig) 2 10g (| Ry (i) = Hulwwiyop)[*) - G
A numerical investigation of (31) reveals that it is multi-modal,
i.e. with multiple local minima—see Fig. 3 for an example
of the optimization landscape of G(p;;). Taking the feasible
region of {p;;} into account, we can formulate the recovery
problem:

Pij: min G(pij), st

—Pm < Pij < Dm,
DPij

(32)

where p,, = min{[pg;,p;;]}. The non-convex problem
in (32) may be solved via the gradient descent numerical
optimization approach by employing multiple random initial
points. Once p;; is estimated, we can estimate the autocorre-
lation values of x via (16). The acquired optimum recovery
results will be presented in the following.

01— T 1 1 1 1
-© -Input Autocorrelation
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0.05f -1
g—_‘é:-ﬁ___:g —a“’ 5. © :g';—g\e\_eg":g
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0.1 ] ] ] ] ] ]
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J
Figure 4: Recovery of the input signal autocorrelation r;; using

the PA approach for ¢ = 2 with j being a temporal sequence
of length 13, with the true values plotted along the estimates.

C. Numerical Results

We will examine the effectiveness of the PA method by
comparing its recovery results with the true input signal
autocorrelation values in the non-stationary case. In all exper-
iments, the input signals were generated as zero-mean Wiener
process sequences with time-varying variance ranging from
0.2 to 0.8. The number of states is set to 100 (i.e., x € R109).
Accordingly, we make use of the time-varying thresholds with
d = 0.5 and diagonal 3 whose diagonal entries are set to 0.2.

We first present an example of autocorrelation sequence
recovery. The true input signal autocorrelation and the esti-
mated autocorrelation values by our approach are shown in
Fig. 4, where ¢ = 2 and j is a temporal sequence of length
13. Fig. 4 appears to confirm the possibility of recovering the
autocorrelation values from one-bit sampled data with time-
varying thresholds in the non-stationary case.

D. Fitness Analysis of the Proposed Approximations

In this section, we further examine the capability of the
PA approach to approximate the integrands in (5). In fact,
it appears a precise approximation of the integrands is con-
nected to the one-bit comparison thresholds that are used for
samphng To see how, note that the exponential term in (5),

i.e. e4ﬁn , should remain bounded to guarantee a well-behaved
Padé approxnnatlon This is due to the fact that, in (5), 3, is

non-zero and e is the only term that can grow very fast
and create a round-off numerical error. Consider a bounding
of this term in the form

of

eTn < 1.

(33)

Since In(-) is a strictly increasing function, Eq. (33) can be
alternatively expressed as:

2

D n(y).

48, o
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Figure 5: Comparing A with its approximated piece-wise
function using PA.

Note that o, in (6) is directly scaled by the sampling threshold
mean d. By setting a,, = da., (34) can be written as

2
d? (4% ) < In(y1),

where a,, and 3,, are defined in (6). To guarantee the bound
in (35), we should have:

(35)

2

dzmax{4023n (00< g)} < In(y).

The inner optimization problem maxy %I (0<o<z) can be
solved via golden section search and parabolic interpolation
method [40]. Note that 7; is greater than one. To prove this
claim, it is sufficient to show

g] © Ba(8) > 0,

since a? is always non-negative. By plugging in # = 0 in 3,
= 0.5p0; (poipo; — p3;)

(36)

36 ¢ [o, (37)

we obtain 5n‘ which is always
.. 0

positive.
To assess the goodness of the considered approximations,

consider the integrand term:

T o o
A(0; pois Poj; Pij) = ’/Fﬁ@‘kﬁn
n n

. (9
MnQ< o )efﬁz.
B Bn * \ V2B,

We compare A(-) with its approximated forms for 6 € [0, Z|U
[£,3%] U [3£, 2], whose results are plotted in Fig. 5 with
parameters po; = 0.8, pg; = 0.7, p;; = 0.05, and d = 0.7.
Note that, in this case, (36) is satisfied by considering v; = 2.
As can be seen, PA appears to promise good fitness, with a

small mean square error (MSE) of ~ 1.1699e — 04.

V. GAUSSIAN QUADRATURE TECHNIQUE FOR
COVARIANCE RECOVERY

In this section, the Gauss-Legendre quadrature approach
[25], [41] is adopted to evaluate the integration in (5). This

‘I’(pfj)

10— 1 1 1 1
-0.4 -0.2 0 0.2 0.4

bij
Figure 6: Example plot of the Gauss-Legendre quadrature

approach-based estimation criterion ¥(p;;) with respect to p;;
showing its convexity.

lays the ground for the recovery of {p;;} since po; and pg; are
obtained by (20). At first, an approximated version of (5) is
obtained based on the Gauss-Legendre quadrature technique
in Section V-A. Then, a criterion will be presented to recover
{pi;}, and subsequently, the input autocorrelation values in
Section V-B. Finally, the efficacy of this approach in estimating
the input autocorrelation values is numerically evaluated.

A. Gauss-Legendre Quadrature Method for Integral Approxi-
mation

The central assumption to the use of the Gauss-Legendre
quadrature technique is that the integrand should be finite
within the domain of integration [41]. The integrands in (5)
meet this assumption; it is easy to verify that num(S3,) # 0,
where num(-) denotes the numerator of the fractional argu-
ment. Therefore, by employing the Gauss-Legendre quadrature
technique, the relation in (5) can be approximated as

—{[ 3

.+ 1);p0¢,p0j,pij7d)

7d2(pol+po] 2p”)
2(pg;po; —P? )

\/ pOpo]
3, By

+— ZWEDQ (

1) p027p0]ap1_77d) - 1a

(39)
where 6. denotes the e-th Gauss node. Note that the first
part of the above integration was readily given in closed-form
in (23).

B. Covariance Recovery via Convex Optimization

Based on our discussion in Section III, the values for pgj; and
pp; are simply given by (20). The parameters of interest {pi;}
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are then estimated by formulating a minimization problem;
namely, we consider the following criterion:

{/ L

e+ 1);p6¢,p6j,pij7d)

U(pi;) £ log <

N‘I
s Vs
-5 w.p, (7(9
12~ 1

2

Nq
+%ZWED2 (%(95-5-1);}7&717&7192‘]‘7(1) +1] 1,

e=1

(40)

for which the autocorrelation of output signal R, can be
estimated using the SCM in (30), and x is the same as that in
(14). Recall that we have obtained an approximated version of
(5) using the Gauss-Legendre quadrature in (39). Let J,,(p;;)
denote this approximation. As a result, we can alternatively
use the criterion:

U(pij) £ log (\Ry(iaj) - Jn(Pz‘j)|2> :

It is interesting to note that the criterion in (41) is a convex
function with respect to p;; (a proof is provided in Ap-
pendix B)—see Fig. 6 for an example of the optimization
landscape of ¥(p;;). By considering the feasible region of
pij, the following recovery problem is obtained:

Pi,j :

(41)

min U(pij), St —Pm <Pij <Pm:  (42)
ij

where p,, is defined in Section IV-B. The convex problem in
(42) may be solved efficiently using the golden section search
and parabolic interpolation approach. Once {p;;} is obtained,
one can estimate the autocorrelation values of x via (16). The

recovery results will be presented in the following.

C. Numerical Results

We examine the usefulness of the Gauss-Legendre quadra-
ture technique by comparing its recovery results with the true
input signal autocorrelation values in the non-stationary case.
In all experiments, the input signals were generated as zero-
mean Gaussian sequences with time-varying variance ranging
from 0.2 to 0.8. Accordingly, we made use of the time-varying
thresholds with d = 0.3 and diagonal ¥ whose diagonal
entries are equal to 0.1.

We present an example of autocorrelation sequence recov-
ery. The true input signal autocorrelation and our estimated
autocorrelation values are shown in Fig. 7 with ¢ = 2 and j
being a temporal sequence of length 13. Fig. 7 appears not only
to confirm the possibility of recovering the autocorrelation
values from one-bit sampled data with time-varying thresholds
in the non-stationary case but also the effectiveness of the
Gauss-Legendre technique.

VI. MONTE-CARLO INTEGRATION FOR COVARIANCE

RECOVERY

In this section, the Monte-Carlo integration approach [25],
[42] is utilized to evaluate the integral in (5). At first, we

01— T 1 1 1 1
-© -Input Autocorrelation
=B~ Estimated Autocorrelation
0.05f -1
E{\
o&z-gf"' ﬂ*gz‘&'ﬂ-.-g?e*‘g “e~o Y
-0.05 -1
0.1 ] ] ] ] ] ]

4 6 8 10 12 14
J
Figure 7: Recovery of the input autocorrelation 7;; using the
Gauss-Legendre technique, with ¢ = 2 and j being a temporal
sequence of length 13. The true values are plotted alongside
the estimates.

formulate an approximated version of (5) based on the Monte-
Carlo integration approach in Section VI-A. We then present
a new criterion to recover {p;;} based on this approximation.
The efficacy of this approach in estimating the input autocor-
relation values is numerically evaluated.

A. Monte-Carlo Method for Integral Evaluation

The Monte-Carlo integration technique can be utilized to re-
cover the input signal covariance matrix. Here, the same idea is
adopted to evaluate the integration in (5) for the non-stationary
input signal scenario. More concretely, by employing the
Monte-Carlo integration technique, one can approximate (5)

as follows:
—d? (p01+pojf2p”)
e 2(poiPoj — p i)
Ry(i.j) ~ / 5
(polpoj p”
N
T 43
——>_ D1 (0<;poi, poj, pij» ) @
m.=1
’]T N’V?L
+ ZDz (03 poisPojs Pij, d) p — 1,
2N,, &

where 6. denotes the e-th random number generated from the
uniform distribution in the interval [0, Z]. Note that the first
part of the above integral was readily evaluated in closed-form
in (23).

B. Convex Covariance Recovery

Similar the previous proposed approaches, we begin by
estimating po; and pg; through (20). We then aim at estimating
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Figure 8: Example plot of the estimation criterion I'(p;;) with
respect to p;; showing its convexity.

the unknown parameters {p;;} by formulating a minimization
problem. Namely, we consider the following criterion:

Ryupj)—x{/oz ﬂide

N,
T
ToN ; D, (05§p6iapajapija d)

[(pij) = log (

(44)

N 2
Y
TN, ; Ds (=595 P65 Pij» d)} +1

)

where the autocorrelation of output signal R,, can be estimated
via (30). Let F,,(p;;) denote the approximation of (5) using
the Monte-Carlo integration. Therefore, we can consider the
following alternative criterion:

D(pig) 2 log (1Ry (i) = Fulpis)) . 49)

Similar to the previous criterion in (41), I'(p;;) appears to be a
convex function with respect to p;;, whose proof of convexity
is similar to that for ¥,,(.) in Appendix B—see Fig. 8 for an
example of the optimization landscape associated with I'(p;;).
By considering the feasible region of the parameter of interest
{pi;}, one can formulate the following recovery problem:

Pi; : min F(pij), S.t.

Pij

—Pm S Dij S Pm; (46)

where p,, is defined in Section IV-B. The convex problem
in (46) may be tackled by the same tools as proposed in
Section V-B. Recovery of {p;;} leads to estimating the au-
tocorrelation values of x via (16). The procedure of the pro-
posed covariance matrix recovery approach is summarized in
Algorithm 1. The optimum recovery results will be presented
in the following.

Algorithm 1 Covariance recovery from one-bit sampled sig-
nals with time-varying sampling thresholds.

Input: One-bit data {y(k) € RV} and sequences of time-
varying sampling threshold {t(k) ~ AN (d = 1d,X)}
with k£ € {1, -+, Nx}.

Output: The estimation of the input covariance matrix

R,. N
I o e y (k).
Ny
22 Ry + N%( Yk y(k)y(k)H.
3: fori=1:N do
4 i < R(i).

2
v b (gt

6: Ty < ph; — 02

: for j=i+1:N do

8: i 1) ,
9: paj — <Ql(d‘u;1)> .
10: Th; < Poj — o2.
11 Pm min{[l’&ap(*)j]}-
12: pij < argming, I(p;;), s.t. —pm < pij < pm.
13: 5 < Pij — 2(1, ).
14: end for
15: end for
16: return Ry [ri*j}NXN

C. Numerical Results

Herein, we examine the Monte-Carlo integration technique
by comparing its recovery results with the true input signal
autocorrelation values in the non-stationary case. In all experi-
ments, the input signals were generated as zero-mean Gaussian
sequences with time-varying variances ranging from 0.2 to 0.8.
Accordingly, we made use of the time-varying thresholds with
d = 0.3 and diagonal ¥ whose diagonal entries are set to 0.1.

We present an example of autocorrelation sequence recov-
ery. The true input signal autocorrelation and the estimated
autocorrelation values are shown in Fig. 9, with ¢ = 2 and j
being a temporal sequence of length 13. It can be observed
from Fig. 9 that the Monto-Carlo based approach presents
satisfactory recovery results in the non-stationary case as well.

VII. COMPARING THE PROPOSED RECOVERY METHODS

It would be of interest to compare the discussed covari-
ance recovery approaches in the non-stationary setting: (i)
employing the Padé approximation of the integrands in (5), (ii)
applying the Gauss-Legendre quadrature technique, and (iii)
applying the Monte-Carlo integration to evaluate the integral
in (5). To this end, we generate a non-stationary input signal
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Figure 9: Recovery of the input autocorrelation 7;; using the
Monte-Carlo integration approach, with ¢ = 2 and j being a
temporal sequence of length 13. The true values are plotted
alongside the estimates.

x € R® with the ensemble length Ny = 10000 and the
following non-Toeplitz covariance matrix:

+0.5040
—0.0065
Ry =| +0.0015
—0.0036
+0.0044

—0.0065
+0.2565
—0.0034
-+0.0086
-+0.0031

+0.0015
—0.0034
+0.3298
+0.0063
+0.0031

—0.0036
-+0.0086
+0.0063
+0.6376
—0.0062

-+0.0044
+0.0031
+-0.0031
—0.0062
+0.4552

(47)
The time-varying threshold is generated using the same
settings as in Section IV-C. Table I illustrates the squared
Frobenius norm of the error, normalized by the squared
Frobenius norm of the desired covariance matrix R}:

. 2
R: — Ry
£ (48)

NMSE £ 5

IR[F

where Ry is the recovered covariance matrix. The presented
results are averaged over 5 experiments.

In the non-stationary input signal scenario, similar to the
stationary case, all three approaches show promising recovery
results—see Table 1. The Gauss-Legendre method has a better
performance in recovering the input signal autocorrelation
values in comparison with the PA technique and the Monte-
Carlo integration. It is also worth noting that the two proposed
numerical approaches other than the PA technique boil down
to simplified convex programs, hence ensuring convergence
to the global optimum. However, a proper selection of the
number of nodes and quadrature points in the Gauss-Legendre
quadrature and the Monte-Carlo integration techniques is
crucial and may present itself as a bottleneck in an effective
recovery. This is not an obstacle in applying the PA technique.
As a result, one may wish to run the PA-based recovery to help
with the proper deployment of the other two techniques.

To compare our approach which deploys time-varying
sampling thresholds and that of [20] relying on a constant
threshold for non-stationary input signals, we generate input
signals with time-varying variance ranging from 0.2 to 1.5.

Table I: Average NMSE value for the Covariance Recovery.

Covariance recovery approach [ NMSE
PA technique 7.813e — 05
Gauss-Legendre quadrature 2.093e — 05
Monte-Carlo integration 2.488e — 05

Accordingly, we made use of the time-varying thresholds with
d = 0.4 and diagonal ¥ whose diagonal entries are set
to 0.3 and the constant threshold with d = 0.4. Also, we
consider ¢+ = 2 and j = 8 as our temporal indices. As can be
observed in Table II, the performance of our approach provides
a considerable enhancement to that of the constant threshold
in terms of the MSE defined in (21). To see why, consider two
distinct arbitrary sample indices j and & such that

i€{j.k},

where sgn(.) is the sign function, d denotes the constant
threshold, r; and z; are the i-th entry of the one-bit data r and
input signal x, respectively. For the sake of this example, we
can assume that we have z; = axy for a > 1. Now suppose
d is chosen such that 7, = sgn (zr, — d) = +1. Similarly, we
will have 7; = sgn (z; —d) = +1 in this case. As a result,
the amplitude information of the input signal will be lost with
constant threshold deployment. However, by selecting proper
time-varying sampling thresholds, we can overcome this issue.

r; = sgn(x; —d), (49)

VIII. JUDICIOUS SELECTION OF SAMPLING THRESHOLDS

While the use of time-varying thresholds for one-bit sam-
pling has shown promise in various signal recovery problems,
tuning the applied thresholds provides both an opportunity and
a challenge. In this section, we will discuss an approach to
effectively set the sampling threshold mean d—whose signif-
icance was already shown in our analysis in Section IV-D.
The value of the threshold mean d is one of the parameters
in our recovery cost functions, and consequently, impacts
the effectiveness of the autocorrelation sequence recovery by
various proposed approaches.

A. Problem Formulation for Threshold Mean Optimization

Consider a set of thresholds distributed as T ~
N (d=1d,% = 02I). To design thresholds that are inde-
pendent from the unknown zero-mean Gaussian signal (x)
merely from one-bit data, we use the CDF of the observed
sign data y and formulate a maximum likelihood estimation
(MLE) problem. The goal is to determine the threshold mean d
solely from the sign data y. The one-bit samples are generated
as
+1 xz; > 7,

(50)
-1 x; <.

ie{lv"'aN}a yz:{
The probability vector p for the one-bit measurement vector

y may be written as

1-— \I’(’Tz)
W(r;)

for {yl = +1}7

51

py (ilmi) = pi = {

for
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Table II: Comparison between the time-varying thresholds
and the constant threshold.

Type of threshold

time-varying threshold

[ MSE for 7 = 2 [ MSE for j = 8
4.8524e — 08 4.2318e — 04
0.0054 0.0891

constant threshold

27
where W(r;) = —= ["_ e ¥oi dx;, is the CDF of x. The

associated log-likelihood function is hence given by

N
Ly(ro,T) = ; {I(y1:=+1) log (1 — ¥(7)) (52)

Hy,=—1) log (¥(7)) }

where ro is a vector containing the diagonal entries of the
covariance matrix of the input signal x. As mentioned earlier,
in the non-stationary scenario, the covariance matrix has an
arbitrary non-Toeplitz structure. The entries of r(, appearing
in the CDF, are the variances for the elements of the input
signal. To immediately derive our desired parameter d from
(52), we define the following statistical linear model for our
threshold T:

T=1d+o02z z~N(0]I). (53)
Therefore, the MLE is formulated as
{;lgg — Ly (ro,T)
J 2
2 54
S.t. 1o, = (W) — 05, ( )
ie{l,---,N},

where the equality constraint is obtained from (17).

B. Numerical Illustrations for Threshold Mean Design

To numerically scrutinize our approach, the input signal is
generated using the same settings as described in Section IV-C.
The desired time-varying threshold is generated as a Gaussian
process with d* = 0.3 and ¥ = 0.1I. The sign data y was
generated accordingly to be utilized in order to estimate the
desired threshold mean by the MLE problem in (54). The
results are presented in Fig. 10 based on the NMSE between
the desired threshold mean d* and the recovered mean (;l
defined as:
jd* —dP?

@ )

NMSE £

Each presented data point is averaged over 5 experiments.
As can be seen in Fig. 10, the proposed method can
accurately estimate the mean of a time-varying threshold.
The results are obtained with sequence lengths Ny &
{1000, 3000, 6000, 10000}. Moreover, o2 is estimated using
(54) with the average NMSE of ~ le — 03 by considering
Ny = 10000.

2 T T T T
<o
<
R-25F *. -
o AN
g .
< 3F . 7
3 e
=35} AR -
Z e
(0] \\
(@] ~
9 4 = \\ -
g s
3
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0 2000 4000 6000 8000 10000

Total Number of One-Bit Samples

Figure 10: Average NMSE for the estimated sampling thresh-
old mean d, based on MLE problem presented in (54).

IX. MODIFIED BUSSGANG LAW FOR TIME-VARYING
SAMPLING THRESHOLDS

The modified Bussgang law for stationary input signals was
derived in [25]. This modified Bussgang law presents a useful
relation in stochastic analysis of stationary input signals when
they are sampled with time-varying thresholds. In this section,
the modified Bussgang law is extended to the case when the
non-stationary input signals are considered in such settings.

A. Modified Bussgang Law for Non-Stationary Input Signals

By considering time-varying thresholds, the cross-
correlation matrix between the one-bit sampled data and the
non-stationary input signal can be formulated as follows.

Theorem 2. Suppose T ~ N (d = 1d,X) is a time-varying
threshold, and x is a non-stationary input signal. Let y =
g(w) denote the one-bit sampled data, where w = x — T is
distributed as w ~ N (—d,Rx + X = P), with po; = P(4,7)
and p;j = P(i, 7). Then, the cross-correlation matrix between
y and x satisfies the relation,

RyX(iaj) = RyT(iyj) + [51pz’j - 52d(p0j —pij)] s (56)

where €1 and o are given by

2 2
o= o (1)~ (T (5) V)
TPo; 2po; 3, 2" 2po;
1 d
gg=——erf | — | .
Doj 2po;

In particular, for i = j, the relation in (56) yields
2po; d?
Ry (i,) = Ryx(i,i) + 1/ 22 T (1, 5 >

d 1 d?
_ (==
N3 (2’2p0¢)+d

Proof. Suppose w; and w; are the i-th and the j-th entries
of w (i # j) with E{w;} = E{w;} = —d, and that

(67
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Figure 11: The recovery of the cross-correlation between the input signal and the one-bit sampled data by the modified Bussgang
law applied in conjunction with various one-bit autocorrelation recovery approaches for a sequence of length 13, with the true

values plotted alongside the estimates.

poi = P(i,i), po; = P(j,j), and p;; = P(i,j), where P
denotes the covariance matrix of w. Consider the quantized
random variables y; = g(w;) and y; = g(w;), where g(.)
denotes a non-linear transformation function. Therefore, the
cross-correlation function between w; and y; can be obtained
as

Ryw(i,j) = Ii/ / w,;g(wj)e)‘(d)dwidwj, (59)
where x and A(d) are defined in (9) and (10), respectively. We
first calculate the integral in (59) with respect to w;, i.e.,

—dz(P01+Poj —QPU)
2(PoiPoj —P

e [t
27\ [Poipoj — P3;

2d(po;— p”)w +w PO
2(;)0@110] Py )

Ryw (i, j) =

2d(po; —pij)w;tw? po]72pu
/ w;e ~2(poiro; —pj;) dwidu}j
— 00
= [e1pij — e2d(poj — pij)]
(60)
where €1 and e, are given as
—(wj+d)?
/ / wig(ws)e o7 dwy,
27rp0
—(w +d)2 61)
2p07 dwj.

F/

A detailed proof of the results in (60) and (61) is presented in
Appendix C. Based on (61), it can be seen that the values of
€1 and €2 are dependent on the entry index number j. As a
result, the modified Bussgang law for the non-stationary input
signal can be presented as:

Ryx(i,5) — Ry<(i,j) = [(e1(j) + de2(j))

(Rx(l7j) + 2(27])) d52( )pOJ]
(62)

If the non-linear function g(.) is the sign function, which is the
case in one-bit quantization, €; and £, can be obtained using
similar steps as presented in [25]. However, in this case, py;
should be utilized in lieu of pg. For ¢ = j, Eq. (62) boils down
to (58), a proof of which is presented in Appendix D. Based

on (62), the cross-correlation matrix between the input and the
output one-bit data is computed, where {po;} is obtained by
(20) and {p,;} can be either recovered using (32), (42) or (46).
Note that the cross-correlation matrix between the threshold
vector T and the output vector y can be estimated via a sample
cross-correlation matrix:

1 O
— Y y(k)T(k)" (63)
X k=1

O

B. A Numerical Investigation of the Modified Bussgang Law

We now examine the modified Bussgang law for the non-
stationary input signals by comparing its recovery results with
the true cross-correlation values between the input signal and
one-bit quantized data. In all experiments, the input signal set-
tings are the same as Section IV-C. The time-varying threshold
settings are as follows: (a) PA: d = 0.5 and 3 = 0.2I, (b)
Gauss-Legendre: d = 0.3 and X = 0.1I, (c) Monte-Carlo:
d=0.3 and 3 = 0.1I , where I denotes the identity matrix.

The true cross-correlation between the input signal and the
one-bit sampled data and the estimated cross-correlation values
obtained using our approach are shown in Fig. 11, for ¢ = 2
and j as a random sequence of length 13. Our results appear
to confirm the possibility of recovering the cross-correlation
values from one-bit sampled data with time-varying thresholds
by employing any of the three recovery methods (PA, Gauss-
Legendre method and Monte-Carlo integration).

X. CONCLUSION

We studied a generalization of the modified arcsine law dis-
cussed in [25] through Padé approximations, Gauss-Legendre
quadrature approach, and Monte-Carlo integration, to cases
where the input signal is assumed to be non-stationary. The
numerical results present the efficacy of all three approaches
in the covariance matrix recovery. Moreover, a modified Buss-
gang law was established for the one-bit sampling of non-
stationary input signals with time-varying thresholds.
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APPENDIX A
DETAILED DERIVATIONS FOR THE INTEGRAL IN (13)

The focus herein is on obtaining the ultimate for-
malism for Ry (¢,j) in (15) from the relation in (13).
In particular, based on (13), we define ((an,,fB,) =
[ emBne® (emnP 4 enP) pdp and simplify it as,

[e%S)
C(O‘na ﬂn) - / (675"p2+a"p + e*ﬂnPQ*anp) ,Od,O

0
B (7452 o+ 2
e " P T By PT 152
2
7ﬁn< Otn PJF ’é)
+e *n /| pdp

o0 ‘12
= / e4 TIL
0 (64)

We can now split the integration in (64) into two parts as
below:

2
n

a oo e
C(O‘nvﬁn) = ¢%Bn / e*ﬁn(p+ﬁ) odp
0
an o0 o 5
+em/ e~ Bn(p=53%) pdp
0
a2 o0
= e o~ Bn(a)? (a B 2an> »

2B
o2 o0
+ eﬁ/ e Pn(@)? <a + > da

28n
= Il + |2;

where |1 is constructed as,

o2 0o R o 2
|1=€ﬁ/ e Pl g da — e

(65)

26y 2 28
o / o @ of [ u?
= e®n | e "du— — e e~ 2 du
26n e 28nV206n e
1 T o, i £ 0 ( o )
2677, BTL 2577, V 267; '
(66)
Similar to  above _process,  we have I =
ﬁ + /BLTe a7 Q ( \/2737”) The relation
Qlx) = ( x) proves helpful to rewrite Iy as

{1 -Q (Voé;ﬁ)} As a result, we can

1
25, T/ él ST

rewrite ((ap, Bn) as
C(anaﬁn) = Il + |2

_ 1 [mom & W%Q;;Q(

j) as below:

Hence, we obtain our ultimate formula for Ry, (7,

—a? —d*(poi+Poj —2Pij) 2;7”)

e 2(PoiPoj — p o2
/ 64ﬁn
(polpo] ) Bn \/ Bn 2,6’n

Ry(%]) =

T Qp, oy, 4&3; B
5o () w1

(63)

(e_ﬁrn(/)"!‘zog;)z + e_ﬁn(/)_;‘ﬁ)2) pdp

APPENDIX B
PROOF OF THE CONVEXITY OF U(p;;) IN (41)

Since log(-) is a strictly increasing function, we can analyze
the criterion ¥,,(p;;) = (Ry(i,7) — Jn(pij))Q to show the
convexity of U(p;;). The derivative of ¥,,(p;;) with respect
to p;; is computed as

U, (pij) = —2(Ry (3, 5) — Jn(pij)) 7, (pij )

where J,, is the approximated version of (5) using the Gauss-
Legendre quadrature with the following close-form formula:

(69)

Dij

Jn(pij) = X(Mj)(\/m (77 +2sin”! <\/m>>

%I> —1=x(pi;)T(pij) — 1,

(70)
where  is defined in (14), and [ is given by
1 fo g
I=) w e®n . (T1)
Yo (32) (- ()
Based on (70) and (71), J},(p;;) can be formulated as
pij (m+2sin™! = j
Jr(pig) = x(pig) | 2 — ( ( 50 = ))
A/ PoiPoj — Pjj
(i) oI 8an+£8ﬁn
NPT\ B pi; 05, Opiy
Ix
T i3 )5
(72)

where gi’; and g’% are given according to (6). As can
be seen in (69), (70), and (72), analyzing the convexity of
U,,(pij) depends on the parameters d, po;, poj, N4 and
{6}, which indicates that the analysis is restricted to the case
where the mentioned parameters are known; i.e. the param-
eters must be specified for the covariance matrix recovery.
Generally speaking, based on (69), (70) and (72), ¥, (p;;) is
convex when JJ, (p;;) > 0, or equivalently when J,,(p;;) is a
strictly increasing function in the feasible region of p;;; i.e.
—Pm < pij < pm Where p,, = min{[po;, po;]}. As a result,
U’ (pij) = 0 has only one solution which is the value of p;;
that satisfies Ry (i,j) = Jn(psj). Therefore, the convexity of
U, (pi;) can be easily concluded in light of (69). For instance,
one may easily verify that the selected parameters for the
recovery of the input covariance matrix in Section V-C makes
Jn(pij) a strictly increasing function, and thus, ¥,,(p;;) a
convex function.

APPENDIX C
PROOF OF THE MODIFIED BUSSGANG LAW FORMULA

Note that

—d? (po,+po,*2p”)
2(poiP0j —P5;)

e [t
27\ [ oiPoj — D3

oo 2d(poj — P1_7)w/+wi2poj*21)1:jw7‘,“’j
—2(poiPoj —P2;
[ e TR

— 00

2d(poi*pij)wj+w]2~170i
Y O e
—2(pPoiPoj —P7;)

Ryw(i,j) =

(73)
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where the inner integral and the outer integral are called £;
and Lo, respectively. The inner integral may be evaluated as

oo
L= / w;e
— 00

2d(poj —pij)wi+wipg,

*2(P01,Pojfp12,j)

—2p;jwiw;

dwi

(Pojd—pij(w;+a))* oo - 27
— ¢ 2P0 (P0iPo;~ 7)) / wye 2(poj — Pog) dw;
— 00
(pojd=pij(wj+d))* P2,
—e 2110]‘(1701‘110]'—:012]») 1 p()] _ Ty X -
Poj
(p” (wj +d) - d) .
Poj
(74)
Next, the outer integral is evaluated as
p2 d2+p d —2dpo;Pij
Lo= |21 | poj — —2 |e 2”01(”0”’01 P X .
DPoj
! (75)
00 Pij aij(w?{»?dwj)
/ gw;) | = (w; +d)—d|e " duwy,
—o0 DPoj

where Q5 = PoiPoj — p?j and ,Bij = —2poj04ij. The above

integral can be simplified as below:

p2, | Lroitroi—2pij)
Lo = |27 (pOj _ Fij ) e 2(poiPo; —P%;) .
Doy (76)
~ Pij _lor?
/ g(wj) < 4 (w] + d) d> e 2Poj dwj'
—0o0 Poj

When the values from (74) and (76) are inserted in Eq. (73),
we have the final form of the modified Bussgang law, i.e.

Ryw(i,7) = €1pij — €2d(poj — pij), a7
where £1 and ¢ are obtained as below:
_ (witd)?
€1 = / w;g(w;)e  *Poi dw;,
A /27rpO
_ (wita)? (78)
€2 = 7/ g(w o dw;.
\ /27rp8j —o0
APPENDIX D
PROOF OF EQUATION (58)
To prove (58), we may formulate E{w;y;} as
E{wiy:} = / w; f (w;)p(w;) dw;
o] 0
= / w;p(w;) dw; — / wip(w;) dw; — (19)
0 —o00

= /000 w; (p(w;) + p(—w;)) dw;,

14
1 —(w;+d)®
where p(w;)) = (V2mpe;) e o Let I; =
o —(wi+d)* —(zwitd)®
fO w;e  2roi dwi and IQ fO w;e 2p0i dwz Then,
we have
0 —(w;+d)> o —(w;+d)?
I = / w;e  2Poi dw; = / (wi + d) e 2o dw;
0 0

0 —(wi+d)? i d
fd/ e 2o dw; :dq/ﬂpo <1+erf ( >)
0 2 2poi

_ a2
2poq
07,’

+ Poi€
& —(—wi+d)? o0 —(—wi+d)?
I, = / w;e  2Poi dw; = / (wz — d) e 2roi
0

S a7 (1 ()
+ d/ 2p0; dw; = 1+ erf
2 2po;

2P0L .

+ DPoi€
(80)

Therefore, based on (80), a simplified form of the integration
in (79) can be proposed as

[2po; —d*
E{wiyi}:derf<\/%> + %e 2P0 | 81)

= /7 (1 —erf (y/)), (81)

Since I" (1,2) = ¢
is identical to (58).

Tand T’ (%,x)
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