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Abstract—One-bit quantization, which relies on comparing
the signals of interest with given threshold levels, has attracted
considerable attention in signal processing for communications
and sensing. A useful tool for covariance recovery in such settings
is the arcsine law, that estimates the normalized covariance
matrix of zero-mean stationary input signals. This relation,
however, only considers a zero sampling threshold, which can
cause a remarkable information loss. In this paper, the idea of the
arcsine law is extended to the case where one-bit analog-to-digital
converters (ADCs) apply time-varying thresholds. Specifically,
three distinct approaches are proposed, investigated, and com-
pared, to recover the autocorrelation sequence of the stationary
signals of interest. Additionally, we will study a modification of
the Bussgang law, a famous relation facilitating the recovery of
the cross-correlation between the one-bit sampled data and the
zero-mean stationary input signal. Similar to the case of the
arcsine law, the Bussgang law only considers a zero sampling
threshold. This relation is also extended to accommodate the
more general case of time-varying thresholds for the stationary
input signals.

Index Terms—Arcsine law, Bussgang law, covariance matrix,
cross-correlation matrix, one-bit quantization, stationary signals,
time-varying thresholds.

I. INTRODUCTION

D IGITAL signal processing typically requires the quan-
tization of the signals of interest through analog-to-

digital converters (ADCs). In high resolution settings, a very
large number of quantization levels is required in order to
represent the original continuous signal. However, this leads
to some difficulties in modern applications where the signals of
interest have large bandwidths, and may pass through several
RF chains that require using a plethora of ADCs. Moreover,
the overall power consumption and manufacturing cost of
ADCs, and chip area grows exponentially with the number
of quantization bits. Such drawbacks lend support to the idea
of utilizing fewer bits for sampling. The most extreme version
of this idea would be to use one-bit quantization, in which
ADCs are merely comparing the signals with given threshold
levels, producing sign (±1) outputs. This allows for sampling
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at a very high rate, with a significantly lower cost and energy
consumption compared to conventional ADCs [2]–[5].

In the context of one-bit sampling, until recently, most
researchers approached the problem of estimating signal pa-
rameters by comparing the signal with a fixed threshold,
usually zero. This introduces difficulties in the recovery of the
signal amplitude. On the other hand, recent works have shown
enhanced estimation performance for the signal parameters by
employing time-varying thresholds [6]–[11].

The arcsine law is a fundamental statistical property of one-
bit sampling [12]–[15], which connects the covariance of an
unquantized signal with that of its quantized counterpart [4],
[16]. An important disadvantage of the arcsine law is, however,
that the one-bit quantization threshold is considered to be zero,
which leads to a considerable loss of information. In this
paper, we present a new approach to extending the arcsine
law in the context of time-varying sampling thresholds, which
can recover the covariance values of the input unquantized
signal with accuracy. In particular, we further expand on the
ideas we presented in [1] by employing several competing
recovery approaches. Moreover, we propose a new formalism
for the Bussgang law [4], [17] in the context of time-varying
thresholds, which is referred to as the modified Bussgang law.

A. Contributions of the Paper

In this paper, we will study the covariance recovery in
one-bit quantization systems with time-varying thresholds. We
present a theorem demonstrating an integral representation of
the relation between the autocorrelation function of the one-
bit sampled data and the covariance matrix elements of the
input signal. The obtained integral appears to be difficult to
evaluate analytically. To approach this problem, we employ
a one-point piece-wise Padé approximation (PA) to recast the
integrands as rational expressions which are readily integrable.
Next, we formulate an estimation criterion to recover the
desired parameters which are the input signal variance and
the input autocorrelation values. In the next step, we present
the idea of fast input covariance matrix recovery based on a
lemma which relates the mean of the one-bit sampled data
to the input signal variance. Furthermore, alongside the PA
technique, two well-known numerical integration approaches
are employed to recover the input autocorrelation values using
the proposed fast recovery algorithm; i.e. the Gauss-Legendre
quadrature and the Monte-Carlo integration techniques. Lastly,
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the modified Bussgang law is presented considering time-
varying thresholds. By using the modified Bussgang law, the
cross-correlation matrix elements between the input signal
and the one-bit sampled signal can be recovered. Numerical
examples are presented to showcase the effectiveness of the
proposed ideas and to provide an avenue for their comparison.

B. Organization of the Paper

Section II is dedicated to obtaining the autocorrelation
function of the one-bit sampled data with time-varying thresh-
olds in the case of stationary inputs. In Section III, the
Padé Approximation (PA) is utilized to recover the input
signal autocorrelation sequence. Moreover, a useful lemma
is presented which relates the mean of the one-bit sampled
data to the input signal variance laying the ground for a
fast input covariance matrix recovery. Sections IV and V
will present two famous numerical integration techniques
applied to our fast covariance recovery problem; namely, the
Gauss-Legendre quadrature and the Monte-Carlo integration
methods. Section VI is where the various methods proposed
for covariance recovery are compared. The modified Bussgang
law for time-varying thresholds in the case of stationary signals
is obtained in Section VII. Finally, Section VIII concludes the
paper.

Notation: We use bold lowercase letters for vectors, bold
uppercase letters for matrices, and uppercase letters for matrix
elements. For instance, Rx and Rx(i, j) denote the autocor-
relation matrix and the ij-th element of the autocorrelation
matrix of the vector x, respectively. (·)> and (·)H denote
the vector/matrix transpose, and the Hermitian transpose,
respectively. [aij ]

N1×N2 is a N1 × N2 matrix with aij as its
ij-th element. E {.} denotes the expected value operator. The
Q-function is defined as

Q(x) =
1√
2π

∫ ∞
x

e−
z2

2 dz,

Q(x) = 1−Q(−x) =
1

2
− 1

2
erf

(
x√
2

)
.

(1)

where erf(.) is the associated error function. Further, Q−1(x)
is an inverse Q-function. Finally, the incomplete gamma
function is given by

Γ(s, x) =

∫ ∞
x

zs−1e−z dz. (2)

II. MODIFIED ARCSINE LAW FOR TIME-VARYING
THRESHOLDS

Consider a zero-mean stationary Gaussian input signal, x ∼
N (0,Rx), where Rx is a Toeplitz matrix associated with the
autocorrelation function of x, denoted as Rx. The input signal
x ∈ RN is an arbitrary temporal sequence of the distribution
ensembles {x(k)} where k ∈ {1, · · · , Nx}. Suppose xi and xj
are the ith and jth entries of x, and y = f(x) is the output of a
process in which f(x) is the sign function. The autocorrelation
function of the output, denoted by Ry(l), with l = |i− j|, is
connected to that of x via the arcsine law [12]–[14]:

Ry(i, j) = Ry(l) = E {yiyj} =
2

π
sin−1

(
Rx(l)

Rx(0)

)
, (3)

where yi and yj are the ith and jth entries of y, and Rx(l)
denotes the input signal autocorrelation for lag l.

A. Autocorrelation Function of the One-Bit Sampled Signal
With Time-Varying Thresholds

We consider a non-zero time-varying Gaussian threshold τ
that is independent of the input signal, with the distribution
τ ∼ N (d = 1d,Σ). We define a new random process w
such that w = x − τ . Clearly, w is a Gaussian stochastic
process with w ∼ N (−d,Rx + Σ = P ). The autocorrelation
function of the one-bit quantized output process for lag l is
studied in the following.

Theorem 1. Suppose pl and p0 denote the autocorrelation
term for lag l ≥ 1, and the variance of w, respectively.
Consider the one-bit quantized random variable y = f(w).
Then, the autocorrelation function of y takes the form

Ry(l) =
e

−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs
+

√
π

βs

αs
2βs

e
α2
s

4βs

−
√

π

βs

αs
βs
Q

(
αs√
2βs

)
e
α2
s

4βs dθ

}
− 1,

(4)

where αs and βs are evaluated as

αs =
d (sin θ + cos θ)

p0 + pl
,

βs =
p0 − pl sin 2θ

2(p20 − p2l )
.

(5)

Proof. The covariance matrix of y can be written as

Ry = E
{
yyH

}
,

=
1√

(2π)N |P |

∫ ∞
−∞
I(w)e−

1
2 (w+d)HP−1(w+d) dw,

(6)
where I(w) = f(w)f(w)

H and f(w) = [f(wj)]
N
j=1 is a

column vector. Clearly, I is a matrix including only entries
of the form ±1. Note that one can write the output covariance
matrix as

Ry = [E{yiyj}]N×N . (7)

Therefore, the autocorrelation of f(wi) and f(wj) is given by

Ry(i, j) = E{yiyj},
= E {f(wi)f(wj)} ,

=

∫ ∞
−∞

∫ ∞
−∞

f(wi)f(wj)p(wi, wj) dwi dwj ,

(8)

where p(wi, wj) is the joint Gaussian probability distribution,
that can be obtained as

p(wi, wj) = (9)

1

2π
√
p20 − p2l

e
−

(wi+d)
2p0+(wj+d)

2p0−2pl(wi+d)(wj+d)

2(p20−p2
l
) .

By substituting (9) in (8), the output autocorrelation function
Ry(i, j) can be evaluated as [1],

Ry(i, j)=
1

2π
√
p20 − p2l

∫ ∞
−∞

∫ ∞
−∞

f(wi)f(wj)e
λ(d) dwi dwj

(10)
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where λ(d) is defined as follows:

λ(d)=
(wi + d)2p0 + (wj + d)2p0 − 2pl(wi + d)(wj + d)

−2(p20 − p2l )
.

(11)
The autocorrelation function in (10) can be rewritten as

Ry(i, j)=
1

2π
√
p20 − p2l

(∫ ∞
0

∫ ∞
0

eλ(d) dwi dwj

+

∫ 0

−∞

∫ 0

−∞
eλ(d) dwi dwj

−
∫ ∞
0

∫ 0

−∞
eλ(d) dwi dwj

−
∫ 0

−∞

∫ ∞
0

eλ(d) dwi dwj

)
.

(12)

We can simplify (12) using the relation

1

2π
√
p20 − p2l

∫ ∞
−∞

∫ ∞
−∞

eλ(d) dwi dwj = 1. (13)

In fact, using (13) one can verify that

Ry(i, j) =
1

π
√
p20 − p2l

∫ ∞
0

∫ ∞
0

(
eλ(d) + eλ(−d)

)
dwi dwj

− 1.
(14)

By employing polar coordinates wi = ρ cos θ, wj = ρ sin θ,
we can recast the integral in (14) as

Ry(i, j) =
e

−d2
p0+pl

π
√
p20 − p2l

∫ π
2

0

∫ ∞
0

e−βρ
2(
e−αρ + eαρ

)
ρ dρ dθ

− 1,
(15)

where
αs =

d (sin θ + cos θ)

p0 + pl
,

βs =
p0 − pl sin 2θ

2(p20 − p2l )
.

(16)

Let Ry(l) = Ry(i, j) with l = |i − j|. Integrating (15) with
respect to ρ leads to

Ry(l) =
e

−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs
+

√
π

βs

αs
2βs

e
α2
s

4βs

−
√

π

βs

αs
βs
Q

(
αs√
2βs

)
e
α2
s

4βs dθ

}
− 1,

(17)

a transition for which you can find more detailed derivations
in Appendix A. This completes the proof.

It remains to evaluate the integral in (4) in terms of p0 and
{pl}, which have to be estimated—a task that is central to our
efforts in the rest of this paper. Finding p0 and {pl} results
in input variance and autocorrelation recovery, which can be
achieved by considering the relation:

Rx(i, j) = P (i, j)−Σ(i, j). (18)

For i = j, the input variance is thus given by Rx(i, i) = r0 =
p0−Σ(i, i), while for i 6= j, we have the input autocorrelation
for lag l = |i− j| as Rx(i, j) = Rx(l) = rl = pl −Σ(i, j).

Note that evaluating the integral in (4) does not appear to be
amenable to a closed-form solution in its general form. There-
fore, in the following, we resort to various approximations to
facilitate its evaluation, leading to the recovery of the input
signal covariance matrix elements.

III. ANALYTIC APPROACH FOR COVARIANCE RECOVERY

To enable an approximation of the autocorrelation values
in (4), we first resort to the rational Padé approximation (PA)
[18]–[20]. This lays the ground for the recovery of p0 and
{pl}, as discussed in Section III-B.

A. Proposed Rational Approximation

According to [21], the Q-function is well-approximated by
the Q̄-function as,

Q̄ (x) =
1

12
e

−x2
2 +

1

4
e

−2x2

3 , x > 0. (19)

We further note that the integral in (4) may be evaluated

by substituting D1 (θ; p0, pl, d) =
√

π
βs

αs
βs
Q
(

αs√
2βs

)
e
α2
s

4βs and

D2 (θ; p0, pl, d) =
√

π
βs

αs
2βs

e
α2
s

4βs with Padé approximants, that
yield the best approximation of a function by a rational func-
tion of given order through the moment matching technique.

For the sake of completeness, herein we present a brief
introduction of the PA method. Suppose I(t) is an analytic
function at point t = 0 with the Taylor series:

I(t) =

∞∑
n=0

cnt
n, cn ∈ R. (20)

The PA of order [L/M ] for I(t), denoted by P [L/M ](t), is
defined as a rational function in the form [19], [20]:

P [L/M ](t) ,

∑L
n=0 ant

n∑M
n=0 bnt

n
(21)

where the coefficients {an} and {bn} are defined so that

lim
t→0

∑L
n=0 ant

n∑M
n=0 bnt

n
=
L+M∑
n=0

cnt
n +O(tL+M+1) (22)

with b0 = 1. The moment matching technique is a method
widely used to obtain the coefficients of PA. The coefficients
{bn} are obtained through the linear system of equations [19],
[20]:

cL−M+1 cL+M+2 · · · cL
...

...
...

...
cL−M+k cL−M+k+1 · · · cL+k−1

...
...

...
...

cL cL+1 · · · cL+M−1




bM

...
bk
...
b1


= −

[
cL+1 · · · cL+k+1 · · · cL+M

]T
(23)

where the matrix in the left-hand side of (23) is a Hankel
matrix. Clearly, the determinant of the Hankle matrix must be
non-zero to permit a unique solution to the linear system. The
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coefficients {an} are obtained by backsubstitution [1], [19],
[20]:

aj = cj +

min(M,j)∑
i=1

bicj−i, 0 ≤ j ≤ L. (24)

The selection of the PA order is an important task in ap-
proximation; see [18]–[20] for a related study. Note that
the integration in (4) occurs in the interval θ ∈

[
0, π2

]
. To

have a better fitness, we use the idea of piece-wise PA.
Owing to the fact that the functions D1 (θ; p0, pl, d) and
D2 (θ; p0, pl, d) have their extremum at θ = π

4 , the selection
of three distinct intervals

[
0, π8

]
,
[
π
8 ,

3π
8

]
, and

[
3π
8 ,

π
2

]
with

the expansion points θ ∈
{

0, π4 ,
π
2

}
paves the way for a con-

venient approximation, with extra boundary points π
8 and 3π

8
making the chosen intervals symmetric. Moreover, choosing
more expansion points to approximate our integrands in (4)
is not appropriate due to its relatively large computational
burden which is caused by relatively large approximated
coefficients. By adopting the above piece-wise scheme, the
function D2 (θ; p0, pl, d) can be approximated as,

θ ∈
[
0,
π

8

]
∪
[

3π

8
,
π

2

]
:

√
π

βs

αs
2βs

e
α2
s

4βs ≈ e+ sθ

k + gθ + hθ2
,

θ ∈
[
π

8
,

3π

8

]
:

√
π

βs

αs
2βs

e
α2
s

4βs ≈ z + uθ + vθ2

k′+ g′θ + h′θ2
.

(25)
A similar approximation with same orders can be proposed
for D1 (θ; p0, pl, d). As mentioned earlier, the two functions
D1 (θ; p0, pl, d) and D2 (θ; p0, pl, d) should be analytic at the
expansion points (which can be easily verified in this case).
Accordingly, many diagonal and subdiagonal elements of PA
with higher orders could be used; however, the aforementioned
interval partitions appear to provide a good approximation
while maintaining the simplicity of the integrands.

The first part of the integration in (4) can be analytically
evaluated as

∫ π
2

0

1

βs
dθ =

√
p20 − p2l

(
π + 2 tan−1

[
pl√

p20 − p2l

])
.

(26)
Substituting D2 (θ; p0, pl, d) with its approximation and eval-
uating the integration in the associated parts of (4) results in:

∫ π
8

0

√
π

βs

αs
2βs

e
α2
s

4βs dθ ≈ s

2h
ln


∣∣∣k + πg

8 + π2h
64

∣∣∣
|k|

+

2eh− sg
h
√

4hk − g2
tan−1

(
πh
√

4hk − g2
16hk + πgh

)
,

(27)

∫ 3π
8

π
8

√
π

βs

αs
2βs

e
α2
s

4βs dθ ≈ πv

4h′
+

uh′− vg′

2h′
2 ln

(∣∣64k′+ 9π2h′+ 24πg′
∣∣

|64k′+ π2h′+ 8πg′|

)
+

2vh′k′− 2zh′
2

+ ug′h′− vg′2

h′
2
√

4k′h′− g′2

tan−1

 −8πh′
√

4h′k′− g′2

64h′k′+ 3π2h′
2

+ 16πh′g′

 ,

(28)∫ π
2

3π
8

√
π

βs

αs
2βs

e
α2
s

4βs dθ ≈ s

2h
ln


∣∣∣k + πg

2 + π2h
4

∣∣∣∣∣k + 3πg
8 + 9π2h

64

∣∣
+

2eh− sg
h
√

4kh− g2
tan−1

(
πh
√

4hk − g2
16kh+ 3π2h2 + 7πhg

)
.

(29)
Similar approximations can be obtained for terms associated
with the function D1 (θ; p0, pl, d).

B. Recovery Criterion

In this subsection, p0 and {pl} are estimated by formulating
a minimization problem. For this purpose, one may consider
the following criterion [1]:

C̄(p0, pl) , log

∣∣∣∣∣∣Ry(l)− e
−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs

+

√
π

βs

αs
2βs

e
α2
s

4βs −
√

π

βs

αs
βs
Q

(
αs√
2βs

)
e
α2
s

4βs dθ

}
+ 1

∣∣∣∣2
)
,

(30)
where the autocorrelation of output signal (Ry) can be esti-
mated with the given sign vector (y) via the sample covariance
matrix [22],

Ry ≈
1

Nx

Nx∑
k=1

y(k)y(k)H. (31)

Note that by now we have derived an approximated version
of (4). Let Hs(p0, pl) denote this approximation. Therefore,
we can alternatively consider the criterion:

C(p0, pl) , log
(
|Ry(l)−Hs(p0, pl)|2

)
. (32)

A numerical investigation of (32) reveals that it is highly multi-
modal, with many local minima—see Fig. 1 for an example
of the optimization landscape of C(p0, pl). To filter out the
undesired local minima, we resort to constraints re-enforcing
the behaviour of an autocorrelation function. More precisely,
we will consider the minimization problem:

P` : min
p0,pl

C(p0, pl), s.t. p20 ≥ p2l , p0 ≥ 0, (33)

where the first inequality constraint in (33) is imposed to
ensure that the magnitude of the diagonal elements of the
covariance matrix of w is greater than the magnitude of the
off-diagonal elements. The non-convex problem in (33) may
be solved via the gradient descent numerical optimization
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Figure 1: Example plot of the estimation criterion C(p0, pl)
with respect to p0 and pl showing its multi-modality, i.e.
having multiple local optima.

approach by employing multiple random initial points. Once
p0 and {pl} are obtained, one can estimate the autocorrelation
values of x via (18).

C. Optimal Variance Estimation for Fast Covariance Recovery

In Section III-B, we suggested that the unknown vari-
ables p0 and {pl} may be recovered through the non-convex
program (33) with a well-chosen initial point. Nevertheless,
solving such a multivariate non-convex problem can costly
and finding a proper initial point can be challenging. In this
section, we discuss how one can accelerate finding the optimal
point in the cost function (32). Namely, we introduce the idea
of fast covariance matrix recovery by reducing the number of
optimization variables. To make this happen, one can estimate
the optimal variance p0 based on the following lemma:

Lemma 1. The first moment (mean) of the one-bit sampled
data, typically approximated as µ ≈ 1

Nx

∑Nx

k=1 y(k), depends
on the threshold distribution and the power of sampled data
via the relation:

µ = E {y} = 1µ = 1

(
2Q

(
d
√
p0

)
− 1

)
, (34)

Proof. We have

E {yi} =

∫ +∞

−∞
f(wi)p(wi) dwi, (35)

for i ∈ {1, · · · , N}, where p(wi) =
(√

2πp0
)−1

e
−(wi+d)

2

2p0 .
We can further simplify (35) as

E {yi} = −
∫ 0

−∞
p(wi) dwi +

∫ ∞
0

p(wi) dwi

= 2

∫ +∞

0

p(wi) dwi − 1

= 2Q

(
d
√
p0

)
− 1

(36)

which completes the proof.

We observe that Lemma 1 unveils a relationship between
the input variance and the mean of one-bit sampled data.
Therefore, in addition to (4), we have another equation to

-1 -0.5 0 0.5 1

-10

-5

0

5

10

Figure 2: Example plot of the simplified estimation criterion
C(pl) with respect to pl showing its multi-modality, i.e. having
multiple local optima.

evaluate the variance p0. The input variance as evaluated via
Lemma 1 is given as

p?0 =

(
d

Q−1
(
µ+1
2

))2

, (37)

where p?0 denotes the optimal value of p0. Moreover, according
to Lemma 1, all elements of the one-bit sampled data mean
are equal. However, because of using the approximated mean,
some elements can have a negligible difference with each
other. In order to compensate these differences, an average of
elements may be deployed. Subsequently, based on (18), the
input variance can be obtained using p?0. Once p0 is obtained,
one can estimate pl based on (4). As a result, in the PA-based
covariance recovery, problem (33) boils down to the single-
variable optimization problem,

P` : min
pl

C(pl), s.t. −p?0 ≤ pl ≤ p?0, (38)

where C(pl) = C (p?0, pl). The objective function of the above
optimization problem is still multi-modal—see Fig. 2 for an
example of the optimization landscape of C(pl). However,
the process of finding the optimal point has been made
faster by choosing an one-dimensional slice (p?0, pl) of the
feasible space of the objective function (32) containing the
optimal value of the autocorrelation value pl. Consequently,
the dependency of the recovery algorithm to choosing an
appropriate initial value for p0 is eliminated. In other words,
by optimal variance substitution in the objective function (32),
we are effectively removing many poor local optima.

Similar to Section III-B, the non-convex problem in (38)
may be solved via the gradient descent numerical optimization
approach by employing multiple random initial points.

D. Numerical Results

In this section, we will examine the proposed method
by comparing its recovery results with the true input signal
autocorrelation values. In all experiments, the input signals
were generated as zero-mean Gaussian sequences with unit
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Figure 3: Recovery of the input signal autocorrelation for a
sequence of length 31 from one-bit sampled data, with the
true values plotted along the estimates.

variance. The number of states N is 100 (x ∈ R100).
Accordingly, we made use of the time-varying thresholds with
d = 0.3 and diagonal Σ whose diagonal entries are equal to
0.4. Note that the values of d and Σ are best chosen based on
the application, considering the magnitude of the input signal.

To show the effectiveness of the proposed approach, we
present an example of autocorrelation sequence recovery. The
true input signal autocorrelation and the estimated autocorrela-
tion values by our approach are shown in Fig. 3 for a random
sequence of length 31. Fig. 3 appears to confirm the possibility
of recovering the autocorrelation values from one-bit sampled
data with time-varying thresholds.

Next, we investigate the impact of a growing sample size
in autocorrelation recovery, and in particular, the variance.
We define the normalized mean square error (NMSE) of an
estimate r̂0 of a variance r0 as

NMSE ,
|r0 − r̂0|2

|r0|2
. (39)

Each data point presented is averaged over 15 experiments.
As can be seen in Fig. 4, the proposed method can estimate
the variance elements of an input signal accurately. The
results are obtained for the number of ensembles Nx ∈
{1000, 3000, 6000, 10000}, with fixed d and Σ for each ex-
periment. As expected, the accuracy of variance recovery will
significantly enhance as the number of one-bit samples grows
large.

To examine the efficacy of fast covariance matrix recovery
method discussed in Section III-C, we consider the same
setting for the input signal. Fig. 4 shows the performance of
(37) in estimating the input variance. Each data point presented
is averaged over 15 experiments, in which we made use of
time-varying thresholds with d = 0.7 and Σ = 0.3I , where I
denotes the identity matrix. Additionally, Fig. 5 confirms the
possibility of input autocorrelation sequence recovery using
(38) when the parameters of the time-varying thresholds are
set to d = 0.3 and Σ = 0.4I . Fig. 4 reaffirms that by
estimating the optimal variance from (38), the accuracy of the
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Figure 4: Average NMSE for signal variance recovery for
different one-bit sample sizes when (i) the non-convex pro-
gram (33) with random initial points, and (ii) the closed form
formula in Lemma 1, are used to evaluate the input variance.

variance recovery is improved. Interestingly, in our numerical
experiments, solving the criterion (33) took 25 times more
CPU time than the single-variable problem proposed in (38).

IV. GAUSSIAN QUADRATURE TECHNIQUE FOR
COVARIANCE RECOVERY

In this section, we will adopt the Gauss-Legendre quadrature
method, a well-known numerical integration technique, to
evaluate the integral in (4). This lays the ground for the
recovery of {pl} since p0 is obtained by (37). Finally, the
efficacy of this approach in estimating the input autocorrelation
values is numerically evaluated. We will present a brief review
of the Gauss-Legendre quadrature technique in IV-A. We
will then proceed to obtain an approximated version of (4)
based on Gauss-Legendre quadrature rule to recover {pl}, and
subsequently, the input autocorrelation values in Section IV-B.

A. The Gauss-Legendre Quadrature Approach: A Short Intro-
duction

The quadrature rule is a famous approximation approach
in the numerical analysis utilized to approximate the definite
integral of a function, which is usually stated as a weighted
sum of function values at specified points within the domain
of integration [23]–[25]. One of the famous forms of the
quadrature rule is the Gauss-Legendre quadrature, which can
approximate the integral of a function f(x) in [−1, 1] as [23],
[24], ∫ 1

−1
f(x) dx ≈

Nq∑
i=1

ωif (xi) , (40)

where ωi are given by [23],

ωi =
2

(1− x2i )
[
P ′Nq (xi)

]2 . (41)

The associated orthogonal polynomials, denoted above by
PNq (x), are referred to as Legendre polynomials, with the
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Figure 5: Recovery of the input signal autocorrelation for a
sequence of length 31 from one-bit sampled data using the
fast PA-based recovery algorithm, with the true values plotted
along the estimates.

n-th polynomial normalized in a such way that PNq (1) = 1.
In particular, the i-th Gauss node, i.e., xi, is the i-th root of
PNq . Eq. (40) can be extended to a generic interval [a, b] as
[23],∫ b

a

f(x) dx =
b− a

2

∫ 1

−1
f

(
b− a

2
t+

a+ b

2

)
dt,

≈ b− a
2

Nq∑
i=1

wif

(
b− a

2
ti +

a+ b

2

)
.

(42)

The key assumption central to the use of the Gauss-Legendre
quadrature method is that the integrand f(x) should be finite
within the domain of integration, i.e. |f(x)| < ∞ for x ∈
[a, b]. The integrands in (4) meet this condition; it is easy to
verify that num(βs) 6= 0, where num(·) denotes the numerator
of the fractional argument. By employing (42), the relation in
(4) can be approximated as

Ry(i, j) = Ry(l) ≈ e
−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs
dθ

−π
4

Nq∑
i=1

ωiD1

(π
4

(θi + 1); p0, pl, d
)

+
π

4

Nq∑
i=1

ωiD2

(π
4

(θi + 1); p0, pl, d
)− 1,

(43)

where θi denotes the i-th Gauss node. Note that the first part of
the above integration was readily given in closed-form in (26).

B. Recovery Criterion

Based on our discussion in Section III-C, at first p?0 is
obtained by (37). Then, {pl} is estimated by formulating
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Figure 6: Example plot of the Gauss-Legendre quadrature
approach-based estimation criterion Φ(pl) with respect to pl
showing its convexity.

a minimization problem; namely, we consider the following
criterion (p?0 = u):

Φ̄(pl) , log

∣∣∣∣∣∣Ry(l)− e
−d2
u+pl

π
√

(u2 − p2l )

{∫ π
2

0

1

βs
dθ

−π
4

Nq∑
i=1

ωiD1

(π
4

(θi + 1);u, pl, d
)

+
π

4

Nq∑
i=1

ωiD2

(π
4

(θi + 1);u, pl, d
)+ 1

∣∣∣∣∣∣
2
 .

(44)

By now, we have derived an approximated version of (4)
using the Gauss-Legendre quadrature. Let Js(pl) denote this
approximation. Therefore, we can alternatively consider the
criterion:

Φ(pl) , log
(
|Ry(l)− Js(pl)|2

)
. (45)

Surprisingly, the criterion in (45) appears to be a convex func-
tion with respect to pl (a proof is presented in Appendix B)—
see Fig. 6 for an example of the optimization landscape
of Φ(pl). By considering the feasible region of {pl}, the
following problem is cast:

P` : min
pl

Φ(pl), s.t. −u ≤ pl ≤ u. (46)

The convex problem in (46) may be solved efficiently via the
golden section search and parabolic interpolation approach.
Once {pl} is obtained, one can estimate the input autocorre-
lation values {rl} via (18). The acquired optimum recovery
results will be presented in the following.

C. Numerical Results

We will now examine the Gauss-Legendre quadrature ap-
proach by comparing its recovery results with the true input
signal autocorrelation values. In all experiments, the input
signals were generated as zero-mean Gaussian sequences with
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Figure 7: Recovery of the input signal autocorrelation for
a sequence of length 31 from one-bit sampled data using
the Gauss-Legendre quadrature approach, with the true values
plotted along the estimates.

unit variance. Accordingly, we made use of the time-varying
thresholds with d = 0.3 and a diagonal matrix Σ whose
diagonal entries are set to 0.1.

To show the effectiveness of the Gauss-Legendre quadrature
approach, we present an example of autocorrelation sequence
recovery. The true input signal autocorrelation and the esti-
mated autocorrelation values by this approach are shown in
Fig. 7 for a random sequence of length 31. Fig. 7 appears
to confirm the possibility of recovering the autocorrelation
values in our example. The number of quadrature points Nq
is considered to be 13 based on our model performance.

V. MONTE-CARLO INTEGRATION FOR COVARIANCE
RECOVERY

In this section, another well-known approach referred to as
the Monte-Carlo integration is utilized to evaluate the integral
in (4); as deemed essential for the recovery of {pl} since
p0 is obtained by (37). We begin by a brief overview of
the Monte-Carlo integration method in Section V-A. We then
move to formulate an approximated version of (4) based on
the Monte-Carlo integration technique. Lastly, the efficacy of
this approach in estimating the input autocorrelation values is
numerically evaluated.

A. The Monte-Carlo Integration Method: An Overview

The Monte-Carlo integration is another extensively used
approach in numerical analysis to approximate the definite
integral of a function, stated as an expectation of the function
over uniform random variables as below [26], [27]:

E {f(x)} =

∫ b

a

f(x)p(x) dx ≈ 1

Nm

Nm∑
i=1

f(xi),

p(x) =
1

b− a
⇒
∫ b

a

f(x) dx ≈ b− a
Nm

Nm∑
i=1

f(xi),

(47)

where p(x) = 1
b−a is the uniform probability distribution in

the interval [a, b]. By employing (47), the expression in (4)
may be rewritten as

Ry(i, j) = Ry(l) ≈ e
−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs
dθ

− π

2Nm

Nm∑
i=1

D1 (θi; p0, pl, d)

+
π

2Nm

Nm∑
i=1

D2 (θi; p0, pl, d)

}
− 1,

(48)
where θi denotes the i-th random number generated from the
uniform distribution in the interval

[
0, π2

]
. Note that the first

part of the above integral was readily evaluated in closed-form
in (26).

B. Recovery Criterion

Similar to two previous cases, at first p?0 is obtained by
(37). Then, the parameter of interest, i.e., {pl}, is estimated
by formulating a minimization problem. Namely, we consider
the following criterion (u = p?0):

Ω̄(pl) , log

∣∣∣∣∣∣Ry(l)− e
−d2
u+pl

π
√

(u2 − p2l )

{∫ π
2

0

1

βs
dθ

− π

2Nm

Nm∑
i=1

D1 (θi;u, pl, d)

+
π

2Nm

Nm∑
i=1

D2 (θi;u, pl, d)

}
+ 1

∣∣∣∣∣
2
 ,

(49)

where the autocorrelation of output signal Ry is estimated
via (31). Suppose an approximated version of (4) has been
obtained using the Monte-Carlo integration approach, which
is denoted by Fs(pl). Thus, the above criterion may be
approximated via the following:

Ω(pl) , log
(
|Ry(l)− Fs(pl)|2

)
. (50)

Similar to the previous criterion (45), Ω(pl) appears to be a
convex function respect to pl, whose proof of convexity is
similar to that of Φ(.) in Appendix B—see Fig. 8 for an ex-
ample of the optimization landscape of Ω(pl). By considering
the feasible region of {pl}, we can formulate the following
recovery problem:

P` : min
pl

Ω(pl), s.t. −u ≤ pl ≤ u, (51)

which may be tackled using the same tools as proposed in
Section IV-B. The recovery of {pl} results in estimating the
autocorrelation values of x via (18). The obtained recovery
results will be investigated in the following.

C. Numerical Results

We will examine the Monte-Carlo integration approach
by comparing its recovery results with the true input signal
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Figure 8: Example plot of the estimation criterion Ω(pl) with
respect to pl showing its convexity.

autocorrelation values. In all experiments, the input signals
were generated as zero-mean Gaussian sequences with unit
variance. Accordingly, we made use of the time-varying
thresholds with d = 0.3 and a diagonal matrix Σ whose
diagonal entries are set to 0.1.

To show the efficacy of the Monte-Carlo-based approach,
we compare the input signal autocorrelation values for 31
lags with the true values as presented in Fig. 9. The number
of nodes (Nm) was experimentally set to 2000 based on our
model error.

VI. COMPARING THE PROPOSED RECOVERY METHODS

We will now compare all the discussed approaches in the au-
tocorrelation sequence recovery for stationary signals. We will
take advantage of (37) to obtain the optimal value of p0 in (4).
To recover the desired parameter {pl} for l 6= 0, we presented
three approaches: (i) employing the Padé approximation of
the integrands in (4), also referred to as the PA technique, (ii)
applying the Gauss-Legendre quadrature technique, and (iii)
applying the Monte-Carlo integration to evaluate the integral
in (4). As was observed before, all three approaches show
promising recovery results. To numerically compare these
approaches, we consider input signals x ∈ R5 generated as
zero-mean Gaussian sequences with unit variance. The time-
varying threshold setting is the same as Section IV-C. As a
metric for comparisons, we use the experimental mean square
error (MSE) of an estimate r̂l of an autocorrelation value rl,
defined as

MSE ,
1

EL

E∑
e=1

L∑
l=1

|rel − r̂el |2, (52)

where {rel , r̂el } are the autocorrelation values and their esti-
mates at the e-th experiment, with the number of lags set
to L = 4. The number of experiments is assumed to be
E = 5. The results are obtained for the number of ensembles
Nx ∈ {1000, 3000, 6000, 10000}.

Fig. 10 shows that the Gauss-Legendre method has a better
performance in recovering the input signal autocorrelation val-
ues in comparison with the PA technique and the Monte-Carlo
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Figure 9: Recovery of the input signal autocorrelation for a
sequence of length 31 from one-bit sampled data using the
Monte-Carlo integration approach, with the true values plotted
alongside the estimates.

integration. Other than the PA-based recovery, the proposed
numerical approaches are capable of recovering the input auto-
correlation values via convex programming, which makes them
appealing. Nevertheless, the proper selection of the number of
nodes and quadrature points in the Gauss-Legendre quadrature
and the Monte-Carlo integration techniques is crucial and may
present itself as a bottleneck in an effective recovery.

Remark: Since the true input signal autocorrelation values
are unknown a priori, the above observation hints at the
practical value of the PA technique. On the other hand, one
can use the outcome of the PA technique as an initial estimate,
to subsequently run the other slightly improved approximation
techniques.

VII. MODIFIED BUSSGANG LAW FOR TIME-VARYING
SAMPLING THRESHOLDS

In addition to the arcsine law, the Bussgang law unveils an
important connection in stochastic analysis of one-bit corre-
lation data. It states that the cross-correlation of a Gaussian
signal before and after it has passed through the nonlinear
sampling operation is equal to its autocorrelation up to a
constant [17]. In this section, at first, we review the original
Bussgang law and its formalism for one-bit quantization
systems. Secondly, a modified Bussgang law is presented for
cases where the input signals are sampled using time-varying
thresholds.

A. The Bussgang Law for One-Bit Quantization

The Bussgang law informs on the second order statistics
of one-bit sampled data by relating the cross-correlation func-
tion of a stationary zero-mean Gaussian input signal x and
the output y of a nonlinear memoryless amplitude-distortion
function with the autocorrelation function of the input signal
as follows [17]:

Rxy = CRx, (53)
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Figure 10: Comparing the three proposed methods (PA tech-
nique when we use the fast covariance recovery formulation
(38), Gauss-Legendre method and Monte-Carlo integration)
in recovering the input stationary signal autocorrelation by
average obtained MSE for different one-bit sample sizes.

where Rxy is the cross-correlation function between input and
output signals of the nonlinear system (y = g(x) where g(.)
is the nonlinear memoryless amplitude-distortion function).
Also, C is defined as [17],

C =
1√

2πR3
x(0)

∫ ∞
−∞

xig(xi)e
− x2i

2Rx(0) dxi, (54)

where xi is the i-th entry of x. If we consider g(.) to be a
sign function, we have a one-bit quantization system and C is
obtained as,

C =

√
2

π
R
− 1

2
x (0). (55)

B. The Modified Bussgang Law

When we consider time-varying thresholds, the cross-
correlation matrix between the one-bit sampled signal and the
input signal can be written in the following form.

Theorem 2. Suppose τ ∼ N (d = 1d,Σ) is a time-varying
threshold, and x is a stationary input signal. Let y = g(w)
denote the one-bit sampled data, where w = x − τ , with p0
denoting its associated variance. Then, the cross correlation
matrix between y and x satisfies the relation,

Ryx = Ryτ+[C1 (Rx + Σ) + C2d (Rx + Σ− p0U)] , (56)

where U is an all-one matrix, and C1 and C2 are given by

C1 =

√
2

πp0
Γ

(
1,

d2

2p0

)
− d√

πp20

(
Γ

(
1

2
,
d2

2p0

)
−
√
π

)
,

C2 = − 1

p0
erf

(
d√
2p0

)
.

(57)

Proof. Suppose wi and wj are the i-th and j-th entries of
w (i 6= j) with E{wi} = E{wi} = −d, and that pl and p0
denote the autocorrelation term for lag l = |i−j| and variance
of w, respectively. Consider the quantized random variables

yi = g(wi) and yj = g(wi), where g(.) denotes the non-
linear transformation function. The cross-correlation function
between wi and yj can thus be obtained as below:

Ryw(i, j) =
1

2π
√
p20 − p2l

∫ ∞
−∞

∫ ∞
−∞

wig(wj)e
λ(d) dwi dwj

(58)
where λ(d) is defined in (13). We begin by evaluating the
integral in (58) with respect to wi as,

Ryw(i, j) =
e

−d2
p0+pl

2π
√
p20 − p2l

∫ ∞
−∞

g(wj)e

2d(p0−pl)wj+w
2
j p0

−2(p20−p2
l
)

∫ ∞
−∞

wie
2d(p0−pl)wi+w

2
i p0−2pijwiwj

−2(p20−p2
l
) dwi dwj

= C1pl − C2d(p0 − pl),
(59)

where C1 and C2 are given by

C1 =
1√

2πp30

∫ ∞
−∞

wjg(wj)e
−

(wj+d)
2

2p0 dwj ,

C2 =
1√

2πp30

∫ ∞
−∞

g(wj)e
−

(wj+d)
2

2p0 dwj .

(60)

A detailed proof of the results in (59) and (60) is presented
in Appendix C. Next note that (59) can be rewritten as

Ryw = C1Rw − dC2 (p0U −Rw) , (61)

where U is an all-one matrix, and Ryw can be simplified as

Ryw = E{y(x− τ )H},
= E{yxH} − E{yτH},
= Ryx −Ryτ .

(62)

Since the covariance matrix of w is Rw = Rx + Σ, our
modified Bussgang law will thus take the form,

Ryx −Ryτ = (C1 + dC2) (Rx + Σ)− dC2p0U . (63)

If the nonlinear function g(.) is the sign function, C1 and C2

are given in closed-form as,

C1 =
1√

2πp30

∫ ∞
0

wj

{
e−

(wj+d)
2

2p0 + e−
(wj−d)

2

2p0

}
dwj

=

√
2

πp0
Γ

(
1,

d2

2p0

)
− d√

πp20

(
Γ

(
1

2
,
d2

2p0

)
−
√
π

)
,

C2 =
1√

2πp30

∫ ∞
0

{
e−

(wj+d)
2

2p0 − e−
(wj−d)

2

2p0

}
dwj

= − 1

p0
erf

(
d√
2p0

)
,

(64)
where Γ(., .) denotes an incomplete gamma function [28], [29].
Based on (63), the cross-correlation matrix between the input
and the output one-bit data are computed where p0 is obtained
by (37) and {pl} can be either recovered using (38), (46)
or (51). In addition, Rx is obtained through (18). Note that
the cross-correlation matrix between the threshold vector τ
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and the output vector y can be estimated via a sample cross-
correlation matrix as,

Ryτ ≈
1

Nx

Nx∑
k=1

y(k)τ (k)H. (65)

Note that the reliance of the cross-correlation recovery on
the recovery of the autocorrelation values paves the way for
the three proposed autocorrelation recovery approaches to be
used as an intermediate stage for cross-correlation recovery via
our modified Bussgang law. This will lead to cross-correlation
recovery methods with various levels of accuracy.

C. A Numerical Investigation of the Modified Bussgang Law

In this section, we will examine the proposed modified
Bussgang law by comparing its recovery results with the true
cross-correlation values between the input signal and the one-
bit sampled data. In all experiments, the input signal settings
are the same as in Section III-D. The time-varying threshold
settings are as follows: (a) PA: d = 0.1 and Σ = 0.2I , (b)
Gauss-Legendre: d = 0.3 and Σ = 0.1I , (c) Monte-Carlo:
d = 0.3 and Σ = 0.1I , where I denotes the identity matrix.

In order to showcase the effectiveness of the proposed
approach, we present an example of cross-correlation sequence
recovery. The true cross-correlation between the input sig-
nal and the one-bit sampled data and the estimated cross-
correlation values by our approach are shown in Fig. 11
for a random sequence of length 30. Fig. 11 appears to
confirm the possibility of recovering the cross-correlation
values from one-bit sampled data with time-varying thresh-
olds by employing any of the three recovery methods (PA,
Gauss-Legendre method and Monte-Carlo integration). The
difference between the true values and the estimated values in
Fig. 11 is presumably for the most part due to the numerical
approximations used for the error function, and the incomplete
gamma function utilized in (56). In addition, estimation error
in the autocorrelation recovery used to estimate the desired
parameters p0 from (37) and pl from (38), (46) and (51), can
propagate to the cross-correlation recovery as well.

VIII. CONCLUSION

We proposed a modified arcsine law that can make use of
non-zero time-varying thresholds in one-bit sampling when the
input signal is assumed to be stationary. Our extended results
take advantage of Padé approximations, as well as numerical
approaches such as the Gauss-Legendre and the Monte-Carlo
integration techniques. The numerical results showcased the
effectiveness of the proposed approaches in recovering the
autocorrelation values. We finalized our work by proposing
a modified Bussgang law for one-bit sampling of stationary
signals with time-varying thresholds.

APPENDIX A
DETAILED DERIVATIONS FOR THE INTEGRAL IN (15)

The focus herein is on obtaining the ultimate for-
malism for Ry(i, j) in (17) from the relation in (15).

In particular, based on (15), we define ζ(αs, βs) ,∫∞
0
e−βsρ

2

(e−αsρ + eαsρ) ρ dρ and simplify it as,

ζ(αs, βs) =

∫ ∞
0

(
e−βsρ

2+αsρ + e−βsρ
2−αsρ

)
ρ dρ

=

∫ ∞
0

e
α2
s

4βs

(
e
−βs

(
ρ2+αs

βs
ρ+ a2

4β2s

)

+e
−βs

(
ρ2−αsβs ρ+

α2
s

4β2s

))
ρ dρ

=

∫ ∞
0

e
α2
s

4βs

(
e−βs(ρ+

αs
2βs

)
2

+ e−βs(ρ−
αs
2βs

)
2)
ρ dρ.

(66)
We can now split the integration in (66) into two parts as
below:

ζ(αs, βs) = e
α2
s

4βs

∫ ∞
0

e−βs(ρ+
αs
2βs

)
2

ρ dρ

+ e
α2
s

4βs

∫ ∞
0

e−βs(ρ−
αs
2βs

)
2

ρ dρ

= e
a2

4βs

∫ ∞
αs
βs2

e−βs(a)
2

(
a− αs

2βs

)
da

+ e
α2
s

4βs

∫ ∞
− a

2βs

e−βs(a)
2

(
a+

αs
β22

)
da

= I1 + I2,

(67)

where I1 is constructed as,

I1 = e
α2
s

4βs

∫ ∞
αs
2βs

e−βs(a)
2

a da− αs
2βs

e
α2
s

4βs

∫ ∞
αs
2βs

e−βs(a)
2

da

=
1

2βs
e
α2
s

4βs

∫ ∞
α2
s

4βs

e−u du−
√

π

βs

αs
2βs

e
α2
s

4βs
1√
2π

∫ ∞
αs√
2βs

e−
u2

2 du

=
1

2βs
−
√

π

βs

αs
βs2

e
α2
s

4βsQ

(
αs√
2βs

)
.

(68)
Similar to above process, we have I2 =
1

2βs
+

√
π
βs

αs
2βs

e
α2
s

4βsQ
(
− αs√

2βs

)
. The relation

Q(x) = 1 − Q(−x) proves helpful to rewrite I2 as
1

2βs
+
√

π
βs

αs
2βs

e
α2
s

4βs

{
1−Q

(
αs√
2βs

)}
. As a result, we can

rewrite ζ(αs, βs) as

ζ(αs, βs) = I1 + I2

=
1

βs
+

√
π

βs

αs
2βs

e
α2
s

4βs −
√

π

βs

αs
βs
e
α2
s

4βsQ

(
αs√
2βs

)
.

(69)
Hence, we obtain our ultimate formula for Ry(i, j) as below:

Ry(i, j) =
e

−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

βs
+

√
π

βs

αs
2βs

e
α2
s

4βs

−
√

π

βs

αs
βs
Q

(
αs√
2βs

)
e
a2

4βs dθ

}
− 1.

(70)

APPENDIX B
PROOF OF THE CONVEXITY OF Φ(pl) IN (45)

Since log(·) is a strictly increasing function, it is thus only
required to analyze the criterion Φm(pl) = (Ry(l)− Js(pl))2
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Figure 11: The recovery of the cross-correlation between the input signal and the one-bit sampled data by the modified Bussgang
law applied in conjunction with various one-bit autocorrelation recovery approaches for a sequence of length 30, with the true
values plotted alongside the estimates.

to show the convexity of Φ(pl). Taking the derivative of
Φm(pl) with respect to pl results in

Φ′m(pl) = −2 (Ry(l)− Js(pl)) J ′s(pl), (71)

where Js is the approximated version of (4) using the Gauss-
Legendre quadrature presented in (44). Mathematically, Js(pl)
can be represented by the following closed-form formula:

Js(pl) =
e
− d2

p0+pl

π

(
π + 2 tan−1

(
pl√

p20 − p2l

)

+
πI

4
√
p20 − p2l

)
− 1,

(72)

where I is given by

I =

Nq∑
i=1

ωi

√
π

βs

(
αs
βs

)(
1

2
−Q

(
αs√
2βs

))
e
α2
s

4βs . (73)

Based on (72) and (73), J ′s(pl) can be written as

J ′s(pl) = e
− d2

p0+pl

 2

π
√
p20 − p2l

+
d2
(
π + 2 sin−1

(
pl
p0

))
π (p0 + pl)

2


+

e
− d2

p0+pl

4
√
p20 − p2l

(
∂I

∂αs

∂αs
∂pl

+
∂I

∂βs

∂βs
∂pl

)

+

e− d2

p0+pl

(
d2 (p0 − pl) + p2l + p0pl

)
4 (p0 + pl) (p20 − p2l )

3/2

 I,

(74)
where ∂αs

∂pl
and ∂βs

∂pl
are given according to (5). As can be

seen in (71), (72) and (74), analyzing the convexity of Φm(pl)
depends on the parameters d, p0, Nq and {θi} which indicates
the fact that the analysis is restricted to the case where the
mentioned parameters are known; i.e. the parameters must be
specified for the covariance matrix recovery. Generally, based
on (71), (72) and (74), Φm(pl) is convex when J ′s(pl) > 0
or equivalently Js(pl) is a strictly increasing function in the
feasible region of pl; i.e. −p0 ≤ pl ≤ p0. As a result,
Φ′m(pl) = 0 has only one solution which is the value of pl that
satisfies Ry(l) = Js(pl). Therefore, the convexity of Φm(pl)

can be easily concluded based on (71). For instance, one can
easily verify that the selected parameters for the recovery of
the input covariance matrix in Section IV-C makes Js(pl)
a strictly increasing function, and thus, Φm(pl) a convex
function.

APPENDIX C
PROOF OF THE MODIFIED BUSSGANG LAW FORMULA

Note that

Ryw(i, j) =
e
− d2

p0+pl

2π
√
p20 − p2l

∫ ∞
−∞

g(wj)e

2d(p0−pl)wj+w
2
j p0

−2(p20−p2
l
)

∫ ∞
−∞

wie
2d(p0−pl)wi+w

2
i p0−2pijwiwj

−2(p20−p2
l
) dwi dwj .

(75)
Let us denote the inner integral and the outer integral by L1

and L2, respectively. The inner integral is evaluated as,

L1 =

∫ ∞
−∞

wie
2d(p0−pl)wi+w

2
i p0−2plwiwj

−2(p20−p2
l
) dwi

= e
(p0d−pl(wj+d))

2

2p0(p20−p2
l
)

∫ ∞
−∞

wie

−
(wi+(d− pl

p0
(wj+d)))

2

2(p0−
p2
l
p0

)
dwi

= e
(p0d−pl(wj+d))

2

2p0(p20−p2
l
)

√
2π

(
(p0 −

p2l
p0

)

)
× · · ·(

pl
p0

(wj + d)− d
)
.

(76)
Moreover, the outer integral may be evaluated as,

L2 =

√
2π

(
(p0 −

p2l
p0

)

)
e
p20d

2+p2l d
2−2dp0pl

2p0(p20−p2
l
) × · · ·

∫ ∞
−∞

g(wj)

(
pl
p0

(wj + d)− d
)
e

w2
j (p

2
0−p2l )+2dwj(p

2
0−p2l )

−2p0(p20−p2
l
) dwj .

(77)
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The integration in (77) can thus be simplified as follows:

L2 =

√
2π

(
p0 −

p2l
p0

)
e

d2

p0+pl × · · ·∫ ∞
−∞

g(wj)

(
pl
p0

(wj + d)− d
)
e−

(wj+d)
2

2p0 dwj .

(78)

Therefore, based on (75), (76) and (78), the modified Bussgang
law is obtained as

Ryw(i, j) = C1pl − C2d(p0 − pl), (79)

where C1 and C2 are given by

C1 =
1√

2πp30

∫ ∞
−∞

wjg(wj)e
−

(wj+d)
2

2p0 dwj ,

C2 =
1√

2πp30

∫ ∞
−∞

g(wj)e
−

(wj+d)
2

2p0 dwj .

(80)
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