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ABSTRACT

Entering the SAR's golden era began with the launch of Sentinel-1A/B satellites in 2014 and 2016 with 6-12 day
revisit time, much larger stacks of high-resolution SAR images are available over a given area to perform time
series analysis. Algorithms that deal with large stack sizes face several challenges, including interferometric
phase quality degradation due to signal decorrelations, phase closure error caused by applied multilooking, and
tropospheric phase delay. Here, we present an improved SBAS-type algorithm suitable for processing a large
stack of SAR images at an arbitrary resolution. We develop a new pair selection strategy that applies dyadic
downsampling combined with widely used Delaunay Triangulation to identify an optimal set of interferometric
pairs that minimize systematic errors due to short-lived signals and closure errors. We develop and apply a novel
statistical framework that selects elite pixels accounting for distributed and permanent scatterers. Also, we
implement a new tropospheric error correction that takes advantage of smooth 2D splines to identify and remove
error components with fractal-like structures. We demonstrate the effectiveness of the algorithms by applying
them to 3 large datasets of Sentinel-1 SAR images measuring non-linear surface deformation over various ter-
rains. Compared with independent GNSS observations, we find that over the rural/natural terrains adjacent to
San Andreas fault in southern California, our approach yields a standard deviation of 0.48 cm for time series
differences in both ascending and descending tracks. While in urban areas, such as Los Angeles, standard de-

viation difference with GNSS time series is 0.30 cm.

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) is an efficient tool
to measure mm-level land surface deformation at a regional scale and
high resolution (Burgmann et al., 2000; Franceschetti and Lanari, 1999;
Hanssen, 2001; Massonnet and Feigl, 1998; Rosen et al., 2000). The
availability of high temporal resolution time series of SAR acquisitions
from various missions, such as Sentinel-1 and the upcoming NASA-India
Synthetic Aperture Radar (NISAR), enables measuring the time-history
of land surface deformation with a temporal sampling rate of a few
days. Currently, two main classes of time series algorithms are imple-
mented, including Small BAseline Subset (SBAS) (Berardino et al., 2002;
Schmidt and Biirgmann, 2003) and Persistent Scatterers Interferometry
(PSI) (Ferretti et al., 2001; Hooper et al., 2007). SBAS and PSI algorithms
refer to different strategies of combining SAR images following cor-
egistration to a reference image. Given n coregistered SAR images, PSI
generates only n-1 interferograms, while SBAS may generate up to nC2
=n!/2!(n-2)!, (C is a combination operator). Both approaches include a
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procedure for identifying elite pixels that carry high-quality phase
measurements. However, depending on the study area, each may have
some advantages, as the targeted pixels are different. SBAS forms in-
terferograms of short temporal and perpendicular baseline and identifies
distributed scatterers (DS) with moderate to high coherence in most
interferograms. In contrast, PSI identifies Permanent Scatterers (PS),
namely pixels with stable phase values throughout the observation
period, primarily associated with artificial structures. However, the
number of permanent scatterers in rural areas and natural terrain is
minimal. As a result, some studies tried to combine PS and DS to increase
elite pixel density (Ferretti et al., 2011; Hooper, 2008). An advantage of
the SBAS algorithm is its ability to take advantage of redundant obser-
vations, enabling adjusting errors and identifying outliers caused by
improper phase unwrapping. However, both approaches can yield
comparable land surface deformation rates and time series results
(Shanker et al., 2011). Furthermore, both PSI and SBAS approaches
apply a suite of corrections to reduce environmental artifacts, particu-
larly the tropospheric delay. Currently, there are two main classes of
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Fig. 1. Processing flowchart. Boxes highlighted in blue include this work contribution. MST: Minimum Spanning Tree; Topo-Correlated ATM Correction:
Topographic-Corrected Atmospheric Correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

correction approaches: model-based and filter-based. In model-based
correction, numerical weather model (e.g., (Y. Cao et al., 2021; Dee
et al.,, 2011; Eff-Darwich et al.,, 2012; Foster et al., 2006, 2013;
Puysségur et al., 2007; Wadge et al., 2010; Webley et al., 2004))
informed by data from satellite spectrometers, such as MODIS or MERIS
(e.g., (Li et al., 2005, 2006, 2009; Walters et al., 2013)) and Global
Navigation Satellite System (GNSS) observation are often used (e.g.,
(Lofgren et al., 2010; Onn and Zebker, 2006; Yu et al., 2017, 2018)).
Overall, these approaches yield promising results, but some studies re-
ported mixed results that sometimes the correction model did not
perform well (e.g., (Y. Cao et al., 2021; Foster et al., 2013; Hobiger et al.,
2010; Samsonov et al., 2014)). On the other hand, the filter-based
correction methods apply a spatial-temporal smoothing operator
(Berardino et al., 2002; Ferretti et al., 2001), and explore relationships
between the stratified tropospheric delay and topographic height (e.g.,
(Bekaert et al., 2015; Doin et al., 2009; Lin et al., 2010; Shirzaei and
Biirgmann, 2012)), or a combination of them. The SAR community
entered a new era when Sentinel-1A/B C-Band satellites of the European
Space Agency were launched in 2014 and 2015. Thanks to the mission's
6-12 day revisit time, short data latency, and open-data policy, much
larger stacks of SAR datasets are available over a given area to perform
time series analysis. Although the conventional InSAR time series
methods proved effective in analyzing a stack of Sentinel-1 datasets
(Shirzaei et al., 2017), some problems have also emerged in dealing with
such temporally and spatially high-resolution observations. For
instance, (Ansari et al., 2020) pointed out that only using short temporal
baseline multi-looked interferograms for SBAS analysis may result in a
systematic error affecting estimated land surface deformation, which is
associated with the short-lived signals (de Zan et al., 2014, 2015; de Zan
and Gomba, 2018). With larger stacks of data, signal decorrelation
might also impact the accuracy. (Michaelides et al., 2019) propose a
method using singular value decomposition, and (Zhang et al., 2019) use
the least absolute shrinkage and selection operator to estimate the
decorrelation phase. Here, we propose an improved SBAS-type algo-
rithm optimized for processing high spatiotemporal resolution SAR
datasets. We develop a new pair selection strategy that allows selecting
m < < nC2 interferograms yet avoids systematic errors due to short-
lived signals. We further develop a novel pixel selection algorithm
that accounts for both DS and PS pixels. Also, we implement a new at-
mospheric correction that takes advantage of smooth 2D splines. We

demonstrate the effectiveness of the algorithms by applying them to 3
large SAR datasets acquired by Sentinel-1 satellites over natural and
urban terrains in southern California to measure non-linear surface
deformation. We use independent observation of the Global Navigation
Satellite System (GNSS) to validate our results.

2. Method

Our algorithm improves an existing multitemporal approach,
Wavelet-Based InSAR time series (WabInSAR) after (Shirzaei et al.,
2019; Shirzaei and Biirgmann, 2012, 2013), but can be easily integrated
into other InSAR time series algorithms. Fig. 1 presents the flowchart of
the processing algorithm we implemented in this study. Assuming n
Sentinel-1 SAR images are taken from a similar viewing geometry over
the area of interest, we begin with coregistering images to a reference
one and generate SAR images. We implement a matching algorithm that
uses precise orbital ephemeris, a digital elevation model (DEM), and
amplitude images to align all images to a single reference (Sansosti et al.,
2006). We further apply an enhanced spectral diversity (ESD) approach
to achieving a coregistration accuracy of 0.001 pixels to minimize the
phase error in the azimuth direction (Shirzaei et al., 2017; Yague-Mar-
tinez et al., 2016). Next, we generate m pairs following the approach
described in section 2.1, which minimizes the computation time, re-
duces phase closure errors (Michaelides et al., 2019), and avoids sys-
tematic errors caused by using only short baseline interferograms
(Ansari et al., 2020) and minimizes the phase temporal decorrelation. In
the following, we develop and apply a new framework (section 2.2) that
assesses the statistical similarity between DS and PS amplitudes history
and generates an ensemble comprising PS and most similar DS pixels.
Next, we apply a 2D sparse phase unwrapping algorithm using a mini-
mum cost-flow algorithm (Costantini and Rosen, 1999) to estimate ab-
solute phase values for each elite pixel (Costantini, 1998). We correct
each unwrapped interferogram for the effect of atmospheric delay using
the approach discussed in section 2.3. As an optional step, we identify
and remove the long-wavelength signal in the spatial domain, possibly
due to ionospheric delay or residual orbital error following (Shirzaei and
Walter, 2011). The residual orbital error in Sentinel-1 is negligible,
particularly when using precise ephemeris data (Shirzei et al. 2017).
Also, ionospheric errors can be corrected using different techniques (e.
g., Zhang et al. (2022)). Next, we apply a re-weighted least-squares to
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Fig. 2. Synthetic scenarios, including a
dataset of 10 SAR images and Dyadic
Delaunay Triangulation used for pair se-
lection. Black-filled triangles are the SAR
scenes. (a) Gray lines are all the possible
pairs, (b, c) Sets S1 and S2. Gray lines are
the triplets before downsampling
comprising short baseline pairs, red lines
are the triplets after the first round of
dyadic downsampling, and blue lines are
triplets after the second round of down-
sampling. (For interpretation of the ref-
erences to colour in this figure legend, the
reader is referred to the web version of
this article.)
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estimate the phase change time series for each elite pixel (Shirzaei and
Biirgmann, 2013). The phase measurement weight matrix is considered
proportional to the interferometric phase coherence. We apply a high-
pass filter based on continuous wavelet transforms to reduce the atmo-
spheric delay's temporal component in the elite pixel's surface defor-
mation time series (Shirzaei and Biirgmann, 2013). An optional step to
further smooth the signal in time is applying a triangular, rectangular or
Gaussian filter to each time series (e.g. (Berardino et al., 2002; Ferretti
et al., 2001)). The linear velocities are obtained as the slope of the best-
fitting line using a minimum cost-flow algorithm (Costantini and Rosen,
1999).

2.1. Pair selection

Delaunay Triangulation is widely used in SBAS-type algorithms (e.g.,
(Pepe, 2009; Pepe and Lanari, 2006)) to generate a set of interferometric
pairs. Here, we implement an iterative algorithm that combines Dyadic
Downsampling and Delaunay Triangulation, as sketched in Fig. 2. We
aim to devise a selection strategy that exploits all available images and
yields a set of pairs with a roughly similar number of pairs with different
temporal baselines to achieve an adequate signal-to-noise ratio for sur-
face deformation and limit the phase temporal decorrelation. Assuming
n SAR images, we divide the dataset into two subsets of s'={1,2,..,n
— 1} and S$? = {2,3,...,n}, comprising n% and n% SAR images. We
generate ki and k? triplets, including all possible unique pairs (i.e., n1C2
and n%C2) of P% and P%, given temporal and spatial baselines shorter than
a threshold to minimize the decorrelation errors. Next, we iteratively
downsample each subset by a factor of 2. In interaction i, n} and nf are
number of SAR images, k! and k? are the number of triplets, and P} and
P? are the number of pairs. The down-sampling repeats for I iterations
until each set is left with <3 images. The final set of m unique pairs is

-15 L f L s 1 _
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®
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where (J. and (). are union and intersection operators. The set P com-
prises m pairs that have a variable temporal baseline (smaller than a
threshold) and allow adjusting the closure phase ¢ defined as

Eabe = Oy + e — 6b 2)

where 8¢ is the interferometric phase measured between times t; and tg,
and a, b and c are three epochs of images forming a triplet. To assess the
robustness of the presented pair selection strategy, we perform a
variance-covariance analysis of the unknown phase vector ¢p = [¢p(t1), ¢
(t2),...,p(t]. Given interferometric phase 6¢T = [6¢p1,5¢2, ..., 5¢m]
measured by m interferograms, the following stochastic relation exists
(Mikhail, 1976):

Ap =6p+v 3

where v is a normally distributed vector of length m x 1 including the
additive noise and A is m x n matrix as follows:

1 -10 0
01 -1 0
A= 00 1 -1 ()]

Matrix A is not full rank and to overcome the deficiency, we assume
¢(t1) = 0, which eliminates the first column of matrix A. The solution to
an overdetermined system of Eq. (3) is given by:
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Fig. 3. Different pair selection strategies with the associated coefficient of variation (CV). (a) Considering interferograms produced following our strategy using
Dyadic Delaunay Triangulation algorithm, (b) Considering all possible interferograms, (c) Considering only interferograms created by using the following 3 images
(Zhang et al., 2019), (d) Considering only interferograms created by using the following 2 images (Zhang et al., 2019).

&= (ATWA) 'ATWs¢ ©
Cy = (ATWA)A ”
CV = 5td(diag(Cs) ) [yean(diag (C,) ) 7

where W is m x m weight matrix, C4 is the n — 1 x n — 1 variance-
covariance matrix, CV is the coefficient of variation, std and mean are
standard deviation, mean value and diag is an operator that returns a
vector of diagonal components of a square matrix. In practice, the above
solution is influenced by the phase decorrelation noise associated with
the spatial and temporal baseline length. Pairs of longer baselines have
larger decorrelation noise (Pepe, 2009) and thus should be assigned a
lower weight. Assuming a constant thermal noise for all the interfero-
metric pairs, we define a theoretical weight matrix as

W=I-(pp,) ®

where I is the identity matrix and ps and p,; are m x m matrixes of spatial
and temporal decorrelation with zero off-diagonal components. The
spatial and temporal decorrelation of pair q (i.e., qgth diagonal compo-
nent) are modeled as follows (Zebker and Villasenor, 1992):

- 2|B,|Rycos*0

P = - ©
g 1 (4r\* 2.2 2.2

pl=exp 5\ (dv sin“60+d,"cos 0) (10)

dy =T, *vy (11)

d, =T,*v, (12)

where B is the perpendicular spatial baseline, T is the temporal baseline,
Ry is the range resolution, 6 is the look angle of the SAR images,  is the
wavelength of the SAR satellite, r is the satellite altitude, d, and d, are
the displacement of the target in horizontal and vertical directions,
while v, and v, are the respected velocities. In this study, we use the
following values for these variables; Ry= 60 m, 6= 35°, A=5.6 cm, r =
700 km, v,=30 mm/yr, v,=10 mm/yr.

In the following, we use a synthetic scenario of 10 SAR images and

compare the performance of our pair selection strategy against three
different approaches suggested in the literature (Fig. 3). To avoid the
decorrelation error caused by pairs with very long temporal baselines,
we choose a relatively short observation period that allows ignoring
temporal decorrelation error. The first synthetic test (Fig. 3a) is the
pairing strategy suggested by this study, the second one (Fig. 3b) con-
siders all possible interferograms, and the third and fourth (Fig. 3c,d) is
the common pairing strategies of SBAS (Berardino et al., 2002; Schmidt
and Biirgmann, 2003) in the Sentinel-1 datasets (e.g. (Zhang et al.,
2019)) since the spatial and temporal baseline are primarily small.

Given the mean and standard deviation of Cp, we calculate the
associated CV (Eq. (7)) for each scenario as an indicator for the overall
quality of the final time series. Using the pair selection strategy in this
study, we generated 25 pairs with CV of 0.15. The case, including all
possible 45 pairs, yields a CV of 0.09. The corresponding values for
scenarios 3 and 4 are 24 and 17 pairs and CV of 0.18 and 0.24,
respectively. Although our pair section strategy results in a slightly
larger CV than the case of considering full interferometric pairs, but our
pair selection strategy generated 25 pairs similar to that shown in
Fig. 3c, but it performs better with a smaller CV and the computation
time is significantly less than the case of the full dataset, given the
smaller number of interferograms.

2.2. Pixel selection

To increase the density of elite pixels, we propose a pixel selection
strategy that accounts for both the permanent scatterers (PS) and
distributed scatterers (DS). This algorithm identifies the high-quality DS
and PS pixels. Then it performs a statistical test comparing the time
series of the amplitude of DS pixels with that of adjacent PS pixels. The
DS pixels that pass this test are labeled as permanent-distributed scat-
terers (DSp). Thus, the final set of elite pixels comprises PS and DSp
pixels.

The permanent scatters (PS) are pixels with a high signal-to-noise
ratio over time, which are defined by thresholding the amplitude
dispersion index, & ,, (Ferretti et al., 2001) as:

Oy
Dy =—
122%

13

where ¢, is the standard deviation of amplitude and y , is the mean of
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Fig. 4. Shows the procedure used for segmenting an image using Voronoi cells
(black lines) based on distribution PS pixels (filled black circles). In each Vor-
onoi cell, examples of rejected DS (filled blue square) and DSp (filled red tri-
angle) pixels are shown. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

the amplitude over time. We identify PS pixels as those with &, smaller
than 0.3.

Similarly, to identify DS pixels, we introduce the coherence disper-
sion index, & » as below:

14)

where ¢, is the standard deviation of coherence and . is the mean of the
coherence over time. We set this threshold at 0.4. Next, we statistically
compare the time series of the amplitude of DS pixels with that of nearby
permanent scatterers. To this end, we construct the Voronoi diagram
based on the PS pixels distribution dividing the image into r cells asso-
ciated with PS pixels. Next, identify the DS pixels within each Voronoi
cell. The size of the Voronoi cell is a function of the density of PS pixels;
in areas with sparse PS distribution, their size may increase. Given an
arbitrary PS pixel with a temporal amplitude standard deviation of opg
and a set of g DS pixels with temporal amplitude standard deviations
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{011)3, a%s, ...,6hs} within the associated Voronoi cell, we perform a test
for homoscedasticity (Goldfeld and Quandt, 1965), which examines if
the temporal amplitude variance (i.e., square of standard deviation) of
DS pixels within a Voronoi cell is statistically comparable to that of its PS
pixel. Considering the ratio of the PS and DS variances,

2
F= (o'm/,;,,s) i=1..q

F approximates a Fisher probability distribution function with (n-1;
n-1) degree of freedom (Meyer, 1970). The null hypothesis states that PS
and DS variances are equivalent within a Voronoi cell, and we test this
hypothesis at a 0.01 significance level. If the value of statistics shown in
Eq. (15) is larger than its theoretical value obtained from the Fisher
distribution, the null hypothesis is rejected. Otherwise, the test passes,
and the DS becomes a DSp. This procedure is illustrated schematically in
Fig. 4 and Fig. 5. The time series of the amplitude of a DSp pixel has a
narrow probability density function (PDF) similar to that of a PS but
with a smaller mean (Fig. 5). In contrast, the rejected DS has a wide
distribution with a smaller mean.

(15)

2.3. Atmospheric delay correction

Atmospheric delay is composed of hydrostatic delay, wet delay,
liquid, and ionospheric delay. Here, we focus on hydrostatic and wet
delays, given that the contribution from the liquid term is often minor,
and the influence of ionospheric delay in the C-band is sometimes
negligible due to the inverse proportionality of dispersive phase and
frequency of the electron (Goldfeld and Quandt, 1965). However, the
ionospheric artifacts can be significant sometimes, but these can be
mitigated using methods such as split-band spectrum algorithms
(Gomba et al., 2017). Part of the hydrostatic and wet delay is correlated
with topography. The remainder is often characterized as a stochastic
delay (Hanssen, 2001), which correlates to a given spatial length, and its
behavior in a SAR interferogram can be readily described using fractal
statistics (Hanssen, 2001).

To devise the delay correction approach, our rationale is that the
atmospheric delay is independent of the temporal baseline in contrast to
the surface deformation. Thus, considering m pairs created, we identify a
set of n — 1 pairs with minimum decorrelation error, including

(d)
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Fig. 5. Normalized time series of interferometric phase amplitude for a permanent scatterer (PS) pixel with a standard deviation of 0.09, (b) a permanent-distributed
scatterer (DSp) pixel with a standard deviation of 0.11 and, (c) a distributed scatterer (DS) pixel with a standard deviation of 0.15, (d) the associated probability

density distributions.
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® O correction pixels
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Fig. 6. Sketch showing implemented algorithm for atmospheric delay correc-
tion using patch-wise 2D smoothing spline. Blue circles and rectangles are the
elite pixels. Rectangles are two adjacent pixels used to demonstrate how the
atmospheric delay works. Circles in black dashed and solid lines centered at the
location of squared elite pixels, whose radius indicates the correlation length of
the atmospheric delay. Pixels within a black circle are used to fit the ramp and
estimate the atmospheric delay for the center pixel. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

interferograms of short temporal and perpendicular baselines. To this
end, we apply a minimum spanning tree (MST) algorithm (Feng et al.,
2017), which minimizes the following cost function:

Remote Sensing of Environment 286 (2023) 113447

Cust = PPy (16)

The advantage of exploring MST pairs for this correction is that they
include a minimal deformation signal and residual DEM errors, while
they are affected by the same atmospheric delay as the original inter-
ferometric dataset. Next, we draw on the work by (Duchon, 1977),
demonstrating that smooth spline functions could effectively approxi-
mate fractal-like signals and employ a patch-wise 2D smoothing spline
to approximate the atmospheric delay in each MST interferogram
(Fig. 6). In this approach, an optimum spline function f(X;, Y;y) is found
that minimizes the following cost function (Gu, 2002):

Copne = 166 —f|* +2f an
where 6¢ is the unwrapped phase, f is a 2D spline function that is
differentiable, and 4 > 0 is the smoothing parameter. An infinite set of
functions f exists that minimizes Eq. (17) depending on the choice of A.
Thus function f is obtained numerically following some assumptions.
Here, we broadly follow the approach of (de Boor, 1978), in which we
find a numerical form of function f that maintains a certain level of
smoothness and closeness to data points. To this end, we make the
following assumptions, (i) within a small area (e.g., 5 km x 5 km), the
atmospheric delay can be approximated by a ramp (Ferretti et al., 2001),
and (ii) within interferograms of short temporal baseline, the surface
deformation to atmospheric delay ratio is low, while the atmospheric
delay is independent of temporal baseline. As shown in Fig. 6, we
consider a sliding window of 5 km x 5 km centered at the pixel location
(X;, Yy, and fit a plane to the unwrapped phase value of pixels within the
window. Evaluating this plane at the pixel location (X;, Y;) yields the
value f(X;, Y;). Next, we slide the window to the adjacent pixel and repeat
the operation above, which eventually yields the evaluations of function
f for every pixel in the interferogram. It is straightforward to show that
the significant overlap between adjacent sliding windows satisfies both
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Fig. 7. Study area and interferometric baseline plots. (a) Study area. The inset map shows the southwest United States, with our study area marked by the yellow
box. The red box indicates the SAR scene. The shaded relief topographic map is from SRTM 90 m DEM and the overlaid faults are from the USGS quaternary fault
map. The rectangles are the GNSS stations used for affine transformation and the triangles are the GNSS stations used for validation. (b) Interferometric baselines
plot. The filled triangles are the SAR acquisitions, and the gray lines are the interferometric dataset used for generating time series. The red lines are pairs identified
using a minimum spanning tree algorithm used for atmospheric delay correction and elite pixel selection. (c) The pie chart shows the distribution of the temporal
baselines of the interferograms used in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 9. Pixel selection results. Distribution of (a) permanent scatterers (PS), (b) distributed scatterers (DS), (c) permanent-distributed scatterers (DSp), and (d) elite
pixels obtained by merging DSp and PS sets.



J.-C. Lee and M. Shirzaei

(a) original interferogram (b) DEM
117 -116.5 -116 -115.5 -117 -116.5
34.0t .Eu ° . o o 34.0f
o S , o
(e}
o‘f “* 2 e PE
:R-‘ ‘,}ﬁ o) 2
33.5 o oo ° 133.5}
5 ey O
= o
e
- L& o
o
33.0t e 33.00 ) '
Height (m)
|
RMS =1.10cm ‘ 0 1000 2000

3000

Remote Sensing of Environment 286 (2023) 113447

Fig. 10. Example of unwrapped phase
spanning 2014/11/10-2014/12/28 and
applied atmospheric delay corrections. (a)
Original unwrapped interferogram, (b)
SRTM 90 m DEM oversampled on the
interferogram. (c) Unwrapped interfero-
gram after correction using a height-
dependent filter. (d) Unwrapped interfer-
ogram after correction using our 2D
smoothing spline filter. Circles show GNSS
stations colour-coded to their displace-
ment for the interval covered by the
interferogram shown in panel a. RMS:
Root Mean Square of difference between
InSAR and GNSS observation projected on
LOS direction.
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smoothness of function f and closeness to data points, as required by Eq.
(17) (Graham and Hell, 1985). After estimating the spline functions
{1(X;, Y9, ..., fn_1(X;, Y}, we obtain the corrected unwrapped phase
{3@1, ey ¢§q\5n,1} for MST pairs by subtracting its corresponding spline f
from the unwrapped phase 6¢p. To low-pass filter the corrected
unwrapped phase of a pixel at a location (Xj, Y;), following (Berardino
et al., 2002), we fit a temporal quadratic polynomial function to its
corrected phase measurements {5{7)1 X, Y1), .., 5(7),,,1 (Xi,Y;) } and then
evaluate this quadratic function at the time of n SAR acquisitions to

~T
obtain the time series of corrected phase change, ¢p with respect to the
time of the first acquisition:

¢T = [01$17---7$n—1]

Additionally, applying Eq. (3) to the original interferometric phase
observations, {6¢1, ...,6¢n_1}, yields a time series of uncorrected qu

¢T = [07¢17---7¢n—l]

The difference of Egs. (18) and (19) yields the atmospheric delay
correction time series as follows

(18)

19)

=E’

atm

+E,

E' = ¢T - ‘AﬁT noise

We further detrend ET and apply a 2D Gaussian filter of radius 5 km
to reduce the effect of El;. and obtain EX,, following (Ferretti et al.,
2001). The time series of EL,, obtained from n — 1 MST pairs is used to
correct the entire interferometric dataset, comprising m interferograms.

The algorithm above may fail to correct a portion of the topography-
correlated delay with a short spatial wavelength. Thus, we further apply
the method of (Shirzaei and Biirgmann, 2012), which uses wavelet
transforms to identify and remove the residual topography-correlated
atmospheric delay. To this end, we use Coiflet wavelets of order 5 at 1

(20)

level of decomposition, which results in wavelet function with support
twice the ground dimension of a multilooked SAR pixel (Shirzaei and
Biirgmann, 2012).

Note that given n images, only n — 1 independent pairs can be
generated, which are the minimum requirements for performing the
analysis above. In addition to n — 1 MST pairs, one can include other
interferograms to increase the degree of freedom, but additional pairs
are an algebraic combination of the MST interferograms. Thus, they do
not carry new information on the atmospheric delay content, while their
noise contents vary due to SAR geometry, surface characteristics, and
baselines. We found that the n — 1 MST pairs are sufficient to estimate
atmospheric delay, though the estimate is not robust to outliers and
noise due to a lack of redundancy. However, since the original inter-
ferometric dataset, corrected using MST pairs, has significant redun-
dancy, any remaining outliers will be adjusted when the final time series
is generated.

3. Experimental results

We apply the proposed framework to 3 SAR datasets acquired over
two different terrains with spatially and temporally variable deforma-
tion patterns. The first study case is in southern California (Fig. 7a) and
is characterized by a considerable surface elevation change and different
textures, such as bare land and agriculture. Several active faults also run
through this area, including the San Andreas Fault and the San Jacinto
Fault. We apply the presented processing algorithm shown in Fig. 1 and
use 195 Sentinel-1 SAR datasets acquired from November 2014 to April
2021 in descending orbit, covering the study area highlighted by a red
box in Fig. 7a. To reduce the dataset size, we apply multilook factor of 30
in range and 6 in azimuth, resulting in a pixel size of ~69.9 by 83.9 m.
Using the method described in section 2.1, 1113 interferograms are
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Fig. 11. Example of unwrapped phase spanning

2014/11/10-2014/12/28 and applied atmospheric
delay corrections. (a) Bivariate plot showing the
correlation between original interferogram
unwrapped phase and the SRTM 90 m DEM, (b)
Semivariogram generated for the panels Fig. 10 a, ¢
and d, (c) Power spectrum of the atmospheric delay
corrected using 2D smoothing spline and height-
dependent filters in Fig. 10 panels ¢ and d. Black
lines indicate —5/3 and — 8/3 power-law behav-
iors (Hanssen, 2001), (d) Power spectrum of the
atmospheric delay corrected for all the interfero-
grams using 2D smoothing spline filter.
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generated with temporal baseline and spatial baselines <3 years and
150 m, respectively, consisting of different temporal baseline pairs
(Fig. 7c) to prevent the potential systematic bias (Ansari et al., 2020)
while avoiding pairs with too long temporal baselines affected by
decorrelation noise. We also visually inspect to ensure long baseline
pairs are of good quality. The baseline plot of the entire interferometric
dataset is shown by gray lines in Fig. 7b, where MST pairs are high-
lighted in red. Elite pixels selection follows the procedures in section 2.2.
Firstly, we identify DS pixels using the coherence dispersion index (Eq.
(14)) and compare the results with that based on average temporal
coherence. Fig. 8 shows the spatial distribution of the DS pixels from the
two approaches, which are visually indistinguishable with a similar
number of elite pixels. We conclude that either approach is suitable for
identifying the DS pixels in our study area. We, next, identify PS pixels.
The PS and DS datasets include 1,279,028 and 2,370,969 pixels (Fig. 9).
As seen in Fig. 8, in the northern areas of the Salton Sea, including farms,
the PS pixels are distributed sparsely, while DS pixels are abundant. The
refined distribution of DS pixels, namely the DSp pixels, includes
1,920,533 pixels, and many of the high-quality DS pixels in the north of
the Salton Sea are preserved. The final population of elite pixels is ob-
tained by combining DSp and PS pixels comprising 1,920,545 pixels.
The atmospheric delay time series is estimated using MST pairs, and
accordingly, the entire interferometric dataset is corrected. We visually
inspect MST pairs to ensure they are of good quality. Fig. 10 shows an
example of a corrected unwrapped interferogram spanning 2014/11/
10-2014/12/28. The unwrapped interferogram (Fig. 10a) includes
phase values with a significant spatial variation that partly correlates
with the DEM (Fig. 10b, c). For comparison, we first correct the
unwrapped phase using a conventional approach that removes the
height-dependent component of the unwrapped phase (Duchon, 1977)
(Fig. 10d). Next, we apply our approach based on spatial patch-wise 2D
smoothing spline (Fig. 11a). To evaluate the accuracy of different

Frequency (1/mm)

correction approaches, we use independent observation of Global Nav-
igation Satellite System (GNSS) displacement within the same time
frame, projected on the line-of-sight (LOS) direction. The standard de-
viation of the difference between GNSS displacement and the original
unwrapped interferogram, height-dependent corrected interferogram,
and 2D smoothing spline corrected interferogram are 1.10 cm, 0.53 cm,
and 0.40 cm, respectively. Our approach reduces the majority of long-
wavelength and topography-correlated phase components (Fig. 11b),
and the corrected phase agrees well with independent measurements. To
further assess the spatial patterns of atmospheric delay, we employ a
spatial structure-function (Hanssen, 2001) in the form of a semivario-
gram. Fig. 11b shows the semivariogram of the original unwrapped
interferogram and the height-dependent and 2D smoothing spline-
corrected ones. The original interferogram is characterized by signals
correlated at distances >100 km. The corresponding correlation lengths
for height-dependent and 2D smoothing spline corrected ones are 30 km
and 5 km, respectively.

Furthermore, the spectral properties of the corrected atmospheric
delay are investigated. Fig. 11c compares the power spectrum of the
subtracted atmospheric delay using height-dependent and 2D smoothing
spline correction approaches. The study by (Hanssen, 2001) demon-
strates that atmospheric turbulence can be described by power-law
behavior with slopes varying between —5/3 and — 8/3, which, for
reference, are shown in Fig. 11c. As seen, the atmospheric correction
using the 2D smoothing spline approach agrees well with the theoretical
power-law behavior proposed for atmospheric turbulence. Fig. 11d
shows the power spectrums of the corrected atmospheric delay for the
entire atmospheric dataset, all of which show a slope within the range of
—5/3 and — 8/3. Following atmospheric delay correction, we identify
and remove the long-wavelength signal in the spatial domain, possibly
due to ionospheric delay or residual orbital error following (Shirzaei and
Walter, 2011). The corrected unwrapped interferograms are inverted
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Fig. 12. InSAR LOS velocity for period late 2014 to early 2021 and validations of the descending frame of the southern San Andreas Fault. (a) LOS velocity following
the algorithm presented in this study. Bi-variable plot showing the association between the InSAR time series and GNSS validation stations (triangles in Fig. 7), also
root mean square of differences and coefficients of variations are provided. Lowest panel shows the LOS creep rate and standard deviation along the creeping segment
of San Andreas Fault. A thick black line shows the creeping segment in the top panel. (b) Same as panel a, without applying 2D smoothing spline filter for atmospheric
error correction. (e) Same as panel a, but considering interferometric dataset created using the following two images and applying 2D smoothing spline filter for

atmospheric error correction.

using Eq. (3) to obtain the time series of surface displacement for each
elite pixel. The weight matrix is proportional to the time series of
interferometric coherence associated with each elite pixel. We used
observations from the GNSS network to restore the long-wavelength
deformation signals that were possibly removed while correcting for
ionospheric and residual orbital errors. We obtain these datasets from
the Nevada Geodetic Laboratory of the UNAVCO PBO network (Blewitt
et al., 2018), including 21 stations within our study area, and apply the
Greedy Automatic Signal Decomposition algorithm (Bedford and Bevis,
2018) to avoid the noise from daily solutions. We randomly select 14
stations to determine the parameters of an affine transformation,
including two rotations, one translation, and one scale suitable for
transforming the LOS displacement field and restoring the long-
wavelength signals. The remaining 7 GNSS stations are independent
observations that validate our proposed multitemporal SAR interfero-
metric analysis. We note that the horizontal observations at 7 GNSS
stations are not entirely independent from the 14 stations used for
restoring long wavelengths. However, the vertical component often
varies locally and can differ significantly from nearby stations.

The estimated LOS velocities for cases with and without applying our
atmospheric corrections are also shown in Figs. 12a and b. Overall, the
two results are comparable; for instance, the Coachella Valley is affected
by a similar maximum LOS rate. However, our approach successfully
maintains localized signals, such as creep along the San Andreas Fault,
as shown in the lowest panel of Fig. 12a. Compared with the previous
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study that used the SBAS approach in the southern San Andreas Fault
(Fialko, 2006; Lindsey and Fialko, 2013; Tymofyeyeva et al., 2019; Xu
et al., 2018), our result can successfully extract the displacement and
velocity of elite pixels within the Coachella Valley while the other study
shows noisy data points or lack of pixels within the valley due to low
coherence.

We compare the LOS displacement time series against the indepen-
dent GNSS datasets following projecting 3D displacements onto the
radar LOS (Figs. 12a and 13). To this end, we identified elite pixels
within 500 m of each GNSS station and averaged their values to obtain a
corresponding LOS value. We find a root mean square of 0.48 cm for the
difference between our LOS displacement time series and that obtained
from GNSS with a 0.84 coefficient of determination (Fig. 12a). The
corresponding values for the case without atmospheric correction are
0.78 cm and 0.69, respectively (Fig. 12b). We have performed an
additional test using the interferometric dataset created using the
following two images (Zhang et al., 2019), in which we also apply our
atmospheric correction approach. Results are shown in Fig. 12¢c. The
LOS velocity map appears noisy, and the validation against GNSS
measurements yields a root mean square error of 0.80 cm for the time
series differences. Fig. 13 also shows the comparison between the InSAR
time series and that of GNSS. At most stations, our approach performs
well, which a root mean square error of difference smaller than 0.5 cm.
These tests indicate the success of our approach in reducing atmospheric
errors and retrieving surface deformation at high accuracy and
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precision. Site C shows a rate of —0.34 cm/yr at Seal Beach and site D, with a rate

As for the second test, we apply an identical processing pipeline and
parameters to the ascending pass of Sentinel-1 over the same site used in
our first test, namely southern California. We used 149 SAR images and
generated 845 interferograms from mid-2015 to mid-2021. The final
LOS velocity is shown in Fig. 14 (a) and the time series is validated
against independent GNSS observations, shown in Fig. 14(a). Despite the
relative northwest-southeast orientation of the fault systems, which is
unfavorable concerning the ascending satellite flight direction, the ob-
tained velocity field is consistent with that of the descending track
shown in Fig. 12(a) with a standard deviation of 0.48 cm for the dif-
ference between InSAR LOS time series and independent GNSS
observations.

As for the third test, we chose the city of Los Angeles and analyzed
247 SAR images acquired in descending orbit of Sentinel-1 satellites
from early 2016 to mid-2022. For this case study, we applied a multi-
looking factor of 12 and 2 in range and azimuth directions, corre-
sponding with a pixel size of ~25 m by ~25 m on the ground. Assuming
a maximum temporal baseline of 300 m, we created 1054 pairs using
this dataset, comprising 3,039,151 elite pixels. The final LOS velocity
and validation against independent GNSS observation are shown in
Fig. 14 (b). We found a standard deviation of 0.30 cm for the difference
between the InSAR and GNSS time series. In order to further investigate
the vertical land motion across Los Angeles, we created a horizontal
velocity field from observation of GNSS stations within the study area,
oversampled it on the location of elite pixels, and then projected it onto
the LOS direction. We then removed them from LOS velocities and time
series. Next, we projected back the residuals in the vertical direction.
Fig. 15 shows the vertical land motion rate and sample time series,
comprising various uplifting and subsiding features consistent with
earlier studies (Brooks et al., 2007; Lanari et al., 2004; Riel et al., 2018;
Shen and Liu, 2020). We observe a subsidence rate of 0.79 cm/yr over
the Santa Ana area (site A) and about 0.23 cm/yr uplift nearby (site B).
The time series of both sites, A and B, show seasonal variations likely due
to groundwater level fluctuations within the aquifers (Riel et al., 2018).
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of 0.42 cm/yr at Long Beach, near the Newport-Inglewood Fault. Sites E
and J, with rates of 1.04 cm/yr and — 0.51 cm/yr, are located at the
Wilmington oil field. A strong uplift signal of rate 1.04 cm/yr was
observed at site E, likely associated with enhanced oil recovery. Site J
shows a subsidence signal of —0.51 cm/yr. Site F is located at the center
of the Los Angeles area, showing slight subsidence of —0.30 cm/yr. Sites
G and H are located near the Hollywood Fault. Site H shows a strong
uplift signal of 0.57 cm/yr, while site G subsidies at a rate of —0.5 cm/yr.
Site I is located in Ontario and subsides at a rate of —0.6 cm/yr.

4. Discussion and conclusions

The primary issues with employing an SBAS-type processing algo-
rithm include a somewhat arbitrary pair selection strategy, a non-
uniform DS pixels quality, and a lack of an effective atmospheric error
correction approach. To overcome some of these limitations, we pre-
sented an improved multitemporal InSAR algorithm to perform an
advanced analysis of high-resolution datasets such as those provided by
Sentinel-1A/B.

Our pair selection strategy leverages the Delaunay Triangulation
method and combines it with dyadic downsampling to create a random
but limited set of triplets, including interferograms with a wide range of
temporal baselines. Using parametric analysis of variance-covariance
matrices and numerical case studies, we demonstrated that our
approach efficiently retrieves surface deformation signals at high accu-
racy and precision.

Our elite pixel selection approach adds to the growing literature on
the combined analysis of DS and PS pixels (Ferretti et al., 2011; Hooper,
2008). The novel aspect of our approach is performing hypothesis
testing based on Fisher distribution to examine the similarity between
the temporal distribution of the interferometric amplitude of DS and PS
pixels. Unlike pixel selection algorithms that rely only on interfero-
metric coherence, our approach applies to full resolution and multi-
looked interferogram analysis since it exploits interferometric
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Fig. 14. Experimental results for test cases two and three. (a) Ascending track of southern California, (b) Descending track of Los Angeles. LOS velocity and bi-
variable plots showing the association between the InSAR time series and GNSS validation stations (triangles in top panels), root-mean-square of differences, and
coefficients of variations are provided. The blank lines marking the burst limits in Los Angles case study are rows of null entries added after discarding the recording
of one of the overlapped bursts to avoid artefect due to geometric and radiometric differences at the burst overlaps. This null line is not visible in the other case

studies due to larger multilooking factor, resulting in lower resolution.

amplitude and coherence information. This is because the interfero-
metric coherence is independent of the number of looks (Lee et al.,
1994). However, the issue of the applicability of the SBAS method to the
analysis of interferograms at full resolution is addressed by (Lanari et al.,
2004).

Our atmospheric delay correction approach explores the natural
behavior of atmospheric turbulence in a SAR interferogram and effec-
tively removes the hydrostatic and wet components of the delay, which
are characterized by fractal statistics. Our approach requires that the
deformation signal correlates with the temporal baseline and/or its
spatial pattern differs from that of fractals. This requirement does not
restrict the applicability of our approach, as it may be violated seldom
only by rapid deformation caused, for instance, by an earthquake. In
practice, the interferograms spanning an earthquake often are not cor-
rected for the atmospheric delay due to the large amplitude of the signal.
Nevertheless, we recommend examining the power spectrum of the
corrected atmospheric delay to ensure it follows the theoretical power-
law statistics suggested for atmospheric turbulence.

Here, we used the WabInSAR framework to implement our new
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algorithms. However, they can be readily implemented in any SBAS-
type processing workflow. We note that not accounting for all possible
interferometric pairs might still cause phase inconsistencies (de Zan
et al., 2015). Other approaches to overcome this issue include incor-
porating all possible interferograms to estimate the systematic bias by
investigating their statistical characteristics using the phase triangula-
tion algorithm (Ferretti et al., 2011; Guarnieri and Tebaldini, 2008),
eigenvalue decomposition (EVD) (N. Cao et al., 2016; Fornaro et al.,
2015),eigendecomposition-based maximum likelihood-estimator of
interferometric phase (EMI) (Ansari et al., 2018).

We conclude that (i) implementing a careful pair selection strategy
such as Dyadic Delaunay Triangulation can significantly reduce
computation load and result in a deformation field with precision
comparable to that obtained from analyzing all possible pairs, excluding
those affected by temporal decorrelation. (ii) Statistical comparison of
the permanent and distributed scatterers is a practical approach for
maximizing the population of elite pixels. (iii) Atmospheric delay in SAR
interferometry can be effectively estimated and removed using a filter
based on 2D smoothing splines. (iv) Compared with GNSS
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Fig. 15. Vertical land motion rate (top panel) across Los Angeles from 2016 to 2022 and selected vertical time series (lower panels). Here we apply a Gaussian filter
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of 18 days and a standard deviation of 0.3 cm to smooth each time series temporally.

measurements, our multitemporal SAR interferometric framework
yields an accuracy of better than 0.5 cm and 0.3 cm for LOS displace-

ment in rural and urban areas, respectively.
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