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A B S T R A C T   

Entering the SAR's golden era began with the launch of Sentinel-1A/B satellites in 2014 and 2016 with 6–12 day 
revisit time, much larger stacks of high-resolution SAR images are available over a given area to perform time 
series analysis. Algorithms that deal with large stack sizes face several challenges, including interferometric 
phase quality degradation due to signal decorrelations, phase closure error caused by applied multilooking, and 
tropospheric phase delay. Here, we present an improved SBAS-type algorithm suitable for processing a large 
stack of SAR images at an arbitrary resolution. We develop a new pair selection strategy that applies dyadic 
downsampling combined with widely used Delaunay Triangulation to identify an optimal set of interferometric 
pairs that minimize systematic errors due to short-lived signals and closure errors. We develop and apply a novel 
statistical framework that selects elite pixels accounting for distributed and permanent scatterers. Also, we 
implement a new tropospheric error correction that takes advantage of smooth 2D splines to identify and remove 
error components with fractal-like structures. We demonstrate the effectiveness of the algorithms by applying 
them to 3 large datasets of Sentinel-1 SAR images measuring non-linear surface deformation over various ter-
rains. Compared with independent GNSS observations, we find that over the rural/natural terrains adjacent to 
San Andreas fault in southern California, our approach yields a standard deviation of 0.48 cm for time series 
differences in both ascending and descending tracks. While in urban areas, such as Los Angeles, standard de-
viation difference with GNSS time series is 0.30 cm.   

1. Introduction 

Interferometric Synthetic Aperture Radar (InSAR) is an efficient tool 
to measure mm-level land surface deformation at a regional scale and 
high resolution (Burgmann et al., 2000; Franceschetti and Lanari, 1999; 
Hanssen, 2001; Massonnet and Feigl, 1998; Rosen et al., 2000). The 
availability of high temporal resolution time series of SAR acquisitions 
from various missions, such as Sentinel-1 and the upcoming NASA-India 
Synthetic Aperture Radar (NISAR), enables measuring the time-history 
of land surface deformation with a temporal sampling rate of a few 
days. Currently, two main classes of time series algorithms are imple-
mented, including Small BAseline Subset (SBAS) (Berardino et al., 2002; 
Schmidt and Bürgmann, 2003) and Persistent Scatterers Interferometry 
(PSI) (Ferretti et al., 2001; Hooper et al., 2007). SBAS and PSI algorithms 
refer to different strategies of combining SAR images following cor-
egistration to a reference image. Given n coregistered SAR images, PSI 
generates only n-1 interferograms, while SBAS may generate up to nC2 
= n!/2!(n-2)!, (C is a combination operator). Both approaches include a 

procedure for identifying elite pixels that carry high-quality phase 
measurements. However, depending on the study area, each may have 
some advantages, as the targeted pixels are different. SBAS forms in-
terferograms of short temporal and perpendicular baseline and identifies 
distributed scatterers (DS) with moderate to high coherence in most 
interferograms. In contrast, PSI identifies Permanent Scatterers (PS), 
namely pixels with stable phase values throughout the observation 
period, primarily associated with artificial structures. However, the 
number of permanent scatterers in rural areas and natural terrain is 
minimal. As a result, some studies tried to combine PS and DS to increase 
elite pixel density (Ferretti et al., 2011; Hooper, 2008). An advantage of 
the SBAS algorithm is its ability to take advantage of redundant obser-
vations, enabling adjusting errors and identifying outliers caused by 
improper phase unwrapping. However, both approaches can yield 
comparable land surface deformation rates and time series results 
(Shanker et al., 2011). Furthermore, both PSI and SBAS approaches 
apply a suite of corrections to reduce environmental artifacts, particu-
larly the tropospheric delay. Currently, there are two main classes of 
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correction approaches: model-based and filter-based. In model-based 
correction, numerical weather model (e.g., (Y. Cao et al., 2021; Dee 
et al., 2011; Eff-Darwich et al., 2012; Foster et al., 2006, 2013; 
Puysségur et al., 2007; Wadge et al., 2010; Webley et al., 2004)) 
informed by data from satellite spectrometers, such as MODIS or MERIS 
(e.g., (Li et al., 2005, 2006, 2009; Walters et al., 2013)) and Global 
Navigation Satellite System (GNSS) observation are often used (e.g., 
(Löfgren et al., 2010; Onn and Zebker, 2006; Yu et al., 2017, 2018)). 
Overall, these approaches yield promising results, but some studies re-
ported mixed results that sometimes the correction model did not 
perform well (e.g., (Y. Cao et al., 2021; Foster et al., 2013; Hobiger et al., 
2010; Samsonov et al., 2014)). On the other hand, the filter-based 
correction methods apply a spatial-temporal smoothing operator 
(Berardino et al., 2002; Ferretti et al., 2001), and explore relationships 
between the stratified tropospheric delay and topographic height (e.g., 
(Bekaert et al., 2015; Doin et al., 2009; Lin et al., 2010; Shirzaei and 
Bürgmann, 2012)), or a combination of them. The SAR community 
entered a new era when Sentinel-1A/B C-Band satellites of the European 
Space Agency were launched in 2014 and 2015. Thanks to the mission's 
6–12 day revisit time, short data latency, and open-data policy, much 
larger stacks of SAR datasets are available over a given area to perform 
time series analysis. Although the conventional InSAR time series 
methods proved effective in analyzing a stack of Sentinel-1 datasets 
(Shirzaei et al., 2017), some problems have also emerged in dealing with 
such temporally and spatially high-resolution observations. For 
instance, (Ansari et al., 2020) pointed out that only using short temporal 
baseline multi-looked interferograms for SBAS analysis may result in a 
systematic error affecting estimated land surface deformation, which is 
associated with the short-lived signals (de Zan et al., 2014, 2015; de Zan 
and Gomba, 2018). With larger stacks of data, signal decorrelation 
might also impact the accuracy. (Michaelides et al., 2019) propose a 
method using singular value decomposition, and (Zhang et al., 2019) use 
the least absolute shrinkage and selection operator to estimate the 
decorrelation phase. Here, we propose an improved SBAS-type algo-
rithm optimized for processing high spatiotemporal resolution SAR 
datasets. We develop a new pair selection strategy that allows selecting 
m < < nC2 interferograms yet avoids systematic errors due to short- 
lived signals. We further develop a novel pixel selection algorithm 
that accounts for both DS and PS pixels. Also, we implement a new at-
mospheric correction that takes advantage of smooth 2D splines. We 

demonstrate the effectiveness of the algorithms by applying them to 3 
large SAR datasets acquired by Sentinel-1 satellites over natural and 
urban terrains in southern California to measure non-linear surface 
deformation. We use independent observation of the Global Navigation 
Satellite System (GNSS) to validate our results. 

2. Method 

Our algorithm improves an existing multitemporal approach, 
Wavelet-Based InSAR time series (WabInSAR) after (Shirzaei et al., 
2019; Shirzaei and Bürgmann, 2012, 2013), but can be easily integrated 
into other InSAR time series algorithms. Fig. 1 presents the flowchart of 
the processing algorithm we implemented in this study. Assuming n 
Sentinel-1 SAR images are taken from a similar viewing geometry over 
the area of interest, we begin with coregistering images to a reference 
one and generate SAR images. We implement a matching algorithm that 
uses precise orbital ephemeris, a digital elevation model (DEM), and 
amplitude images to align all images to a single reference (Sansosti et al., 
2006). We further apply an enhanced spectral diversity (ESD) approach 
to achieving a coregistration accuracy of 0.001 pixels to minimize the 
phase error in the azimuth direction (Shirzaei et al., 2017; Yague-Mar-
tinez et al., 2016). Next, we generate m pairs following the approach 
described in section 2.1, which minimizes the computation time, re-
duces phase closure errors (Michaelides et al., 2019), and avoids sys-
tematic errors caused by using only short baseline interferograms 
(Ansari et al., 2020) and minimizes the phase temporal decorrelation. In 
the following, we develop and apply a new framework (section 2.2) that 
assesses the statistical similarity between DS and PS amplitudes history 
and generates an ensemble comprising PS and most similar DS pixels. 
Next, we apply a 2D sparse phase unwrapping algorithm using a mini-
mum cost-flow algorithm (Costantini and Rosen, 1999) to estimate ab-
solute phase values for each elite pixel (Costantini, 1998). We correct 
each unwrapped interferogram for the effect of atmospheric delay using 
the approach discussed in section 2.3. As an optional step, we identify 
and remove the long-wavelength signal in the spatial domain, possibly 
due to ionospheric delay or residual orbital error following (Shirzaei and 
Walter, 2011). The residual orbital error in Sentinel-1 is negligible, 
particularly when using precise ephemeris data (Shirzei et al. 2017). 
Also, ionospheric errors can be corrected using different techniques (e. 
g., Zhang et al. (2022)). Next, we apply a re-weighted least-squares to 

Fig. 1. Processing flowchart. Boxes highlighted in blue include this work contribution. MST: Minimum Spanning Tree; Topo-Correlated ATM Correction: 
Topographic-Corrected Atmospheric Correction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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estimate the phase change time series for each elite pixel (Shirzaei and 
Bürgmann, 2013). The phase measurement weight matrix is considered 
proportional to the interferometric phase coherence. We apply a high- 
pass filter based on continuous wavelet transforms to reduce the atmo-
spheric delay's temporal component in the elite pixel's surface defor-
mation time series (Shirzaei and Bürgmann, 2013). An optional step to 
further smooth the signal in time is applying a triangular, rectangular or 
Gaussian filter to each time series (e.g. (Berardino et al., 2002; Ferretti 
et al., 2001)). The linear velocities are obtained as the slope of the best- 
fitting line using a minimum cost-flow algorithm (Costantini and Rosen, 
1999). 

2.1. Pair selection 

Delaunay Triangulation is widely used in SBAS-type algorithms (e.g., 
(Pepe, 2009; Pepe and Lanari, 2006)) to generate a set of interferometric 
pairs. Here, we implement an iterative algorithm that combines Dyadic 
Downsampling and Delaunay Triangulation, as sketched in Fig. 2. We 
aim to devise a selection strategy that exploits all available images and 
yields a set of pairs with a roughly similar number of pairs with different 
temporal baselines to achieve an adequate signal-to-noise ratio for sur-
face deformation and limit the phase temporal decorrelation. Assuming 
n SAR images, we divide the dataset into two subsets of S1 = {1,2,…,n 
− 1} and S2 = {2,3,…,n}, comprising n11 and n12 SAR images. We 
generate k11 and k12 triplets, including all possible unique pairs (i.e., n11C2 
and n12C2) of P11 and P12, given temporal and spatial baselines shorter than 
a threshold to minimize the decorrelation errors. Next, we iteratively 
downsample each subset by a factor of 2. In interaction i, ni1 and ni2 are 
number of SAR images, ki1 and ki2 are the number of triplets, and Pi1 and 
Pi2 are the number of pairs. The down-sampling repeats for I iterations 
until each set is left with <3 images. The final set of m unique pairs is 

P =

{∑I

i
P1

i ∪ P2

i −
∑I

i
P1

i ∩ P2

i

}
(1)  

where ⋃. and ⋂. are union and intersection operators. The set P com-
prises m pairs that have a variable temporal baseline (smaller than a 
threshold) and allow adjusting the closure phase ξ defined as 
ξabc = δϕab + δϕbc − δϕac (2)  

where δϕjk is the interferometric phase measured between times tj and tk, 
and a, b and c are three epochs of images forming a triplet. To assess the 
robustness of the presented pair selection strategy, we perform a 
variance-covariance analysis of the unknown phase vector ϕ = [ϕ(t1),ϕ 

(t2),…,ϕ(tn)]. Given interferometric phase δϕT = [δϕ1,δϕ2,…,δϕm] 
measured by m interferograms, the following stochastic relation exists 
(Mikhail, 1976): 
Aϕ = δϕ+ υ (3)  

where υ is a normally distributed vector of length m × 1 including the 
additive noise and A is m × n matrix as follows: 

A =

⎡
⎢⎢⎢⎣

1 − 1 0 0 …

0 1 −1 0 …

0 0 1 −1 …

… … … … …

… … … … …

⎤
⎥⎥⎥⎦ (4) 

Matrix A is not full rank and to overcome the deficiency, we assume 
ϕ(t1) = 0, which eliminates the first column of matrix A. The solution to 
an overdetermined system of Eq. (3) is given by: 

Fig. 2. Synthetic scenarios, including a 
dataset of 10 SAR images and Dyadic 
Delaunay Triangulation used for pair se-
lection. Black-filled triangles are the SAR 
scenes. (a) Gray lines are all the possible 
pairs, (b, c) Sets S1 and S2. Gray lines are 
the triplets before downsampling 
comprising short baseline pairs, red lines 
are the triplets after the first round of 
dyadic downsampling, and blue lines are 
triplets after the second round of down-
sampling. (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of 
this article.)   
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ϕ =
(
AT WA

)−1

AT Wδϕ (5)  

Cϕ =
(
AT WA

)−1 (6)  

CV = std
(
diag

(
Cϕ

) )/
mean

(
diag

(
Cϕ

) ) (7)  

where W is m × m weight matrix, Cϕ is the n − 1 × n − 1 variance- 
covariance matrix, CV is the coefficient of variation, std and mean are 
standard deviation, mean value and diag is an operator that returns a 
vector of diagonal components of a square matrix. In practice, the above 
solution is influenced by the phase decorrelation noise associated with 
the spatial and temporal baseline length. Pairs of longer baselines have 
larger decorrelation noise (Pepe, 2009) and thus should be assigned a 
lower weight. Assuming a constant thermal noise for all the interfero-
metric pairs, we define a theoretical weight matrix as 
W = I−(ρs.ρt) (8)  

where I is the identity matrix and ρs and ρt are m × m matrixes of spatial 
and temporal decorrelation with zero off-diagonal components. The 
spatial and temporal decorrelation of pair q (i.e., qth diagonal compo-
nent) are modeled as follows (Zebker and Villasenor, 1992): 

ρq
s = 1−

2
⃒⃒
Bq

⃒⃒
Rycos2θ

λr
(9)  

ρq
t = exp

{
−

1

2

(
4π

λ

)2(
dy

2sin2θ+ dz
2cos2θ

)
}

(10)  

dy = Tq*vy (11)  

dz = Tq*vz (12)  

where B is the perpendicular spatial baseline, T is the temporal baseline, 
Ry is the range resolution, θ is the look angle of the SAR images, λ is the 
wavelength of the SAR satellite, r is the satellite altitude, dy and dz are 
the displacement of the target in horizontal and vertical directions, 
while vy and vz are the respected velocities. In this study, we use the 
following values for these variables; Ry= 60 m, θ= 35◦, λ=5.6 cm, r =
700 km, vy=30 mm/yr, vz=10 mm/yr. 

In the following, we use a synthetic scenario of 10 SAR images and 

compare the performance of our pair selection strategy against three 
different approaches suggested in the literature (Fig. 3). To avoid the 
decorrelation error caused by pairs with very long temporal baselines, 
we choose a relatively short observation period that allows ignoring 
temporal decorrelation error. The first synthetic test (Fig. 3a) is the 
pairing strategy suggested by this study, the second one (Fig. 3b) con-
siders all possible interferograms, and the third and fourth (Fig. 3c,d) is 
the common pairing strategies of SBAS (Berardino et al., 2002; Schmidt 
and Bürgmann, 2003) in the Sentinel-1 datasets (e.g. (Zhang et al., 
2019)) since the spatial and temporal baseline are primarily small. 

Given the mean and standard deviation of Cϕ, we calculate the 
associated CV (Eq. (7)) for each scenario as an indicator for the overall 
quality of the final time series. Using the pair selection strategy in this 
study, we generated 25 pairs with CV of 0.15. The case, including all 
possible 45 pairs, yields a CV of 0.09. The corresponding values for 
scenarios 3 and 4 are 24 and 17 pairs and CV of 0.18 and 0.24, 
respectively. Although our pair section strategy results in a slightly 
larger CV than the case of considering full interferometric pairs, but our 
pair selection strategy generated 25 pairs similar to that shown in 
Fig. 3c, but it performs better with a smaller CV and the computation 
time is significantly less than the case of the full dataset, given the 
smaller number of interferograms. 

2.2. Pixel selection 

To increase the density of elite pixels, we propose a pixel selection 
strategy that accounts for both the permanent scatterers (PS) and 
distributed scatterers (DS). This algorithm identifies the high-quality DS 
and PS pixels. Then it performs a statistical test comparing the time 
series of the amplitude of DS pixels with that of adjacent PS pixels. The 
DS pixels that pass this test are labeled as permanent-distributed scat-
terers (DSp). Thus, the final set of elite pixels comprises PS and DSp 
pixels. 

The permanent scatters (PS) are pixels with a high signal-to-noise 
ratio over time, which are defined by thresholding the amplitude 
dispersion index, D A , (Ferretti et al., 2001) as: 

D A ≡
σA

μ
A

(13)  

where σA is the standard deviation of amplitude and μA is the mean of 

Fig. 3. Different pair selection strategies with the associated coefficient of variation (CV). (a) Considering interferograms produced following our strategy using 
Dyadic Delaunay Triangulation algorithm, (b) Considering all possible interferograms, (c) Considering only interferograms created by using the following 3 images 
(Zhang et al., 2019), (d) Considering only interferograms created by using the following 2 images (Zhang et al., 2019). 
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the amplitude over time. We identify PS pixels as those with D A smaller 
than 0.3. 

Similarly, to identify DS pixels, we introduce the coherence disper-
sion index, D C as below: 

D C ≡
σC

μC

(14)  

where σc is the standard deviation of coherence and μc is the mean of the 
coherence over time. We set this threshold at 0.4. Next, we statistically 
compare the time series of the amplitude of DS pixels with that of nearby 
permanent scatterers. To this end, we construct the Voronoi diagram 
based on the PS pixels distribution dividing the image into r cells asso-
ciated with PS pixels. Next, identify the DS pixels within each Voronoi 
cell. The size of the Voronoi cell is a function of the density of PS pixels; 
in areas with sparse PS distribution, their size may increase. Given an 
arbitrary PS pixel with a temporal amplitude standard deviation of σPS 
and a set of q DS pixels with temporal amplitude standard deviations 

{σDS1 ,σDS2 ,…,σDSq } within the associated Voronoi cell, we perform a test 
for homoscedasticity (Goldfeld and Quandt, 1965), which examines if 
the temporal amplitude variance (i.e., square of standard deviation) of 
DS pixels within a Voronoi cell is statistically comparable to that of its PS 
pixel. Considering the ratio of the PS and DS variances, 

F =

(
σi

DS

/
σPS

)2

i = 1,…q (15) 

F approximates a Fisher probability distribution function with (n-1; 
n-1) degree of freedom (Meyer, 1970). The null hypothesis states that PS 
and DS variances are equivalent within a Voronoi cell, and we test this 
hypothesis at a 0.01 significance level. If the value of statistics shown in 
Eq. (15) is larger than its theoretical value obtained from the Fisher 
distribution, the null hypothesis is rejected. Otherwise, the test passes, 
and the DS becomes a DSp. This procedure is illustrated schematically in 
Fig. 4 and Fig. 5. The time series of the amplitude of a DSp pixel has a 
narrow probability density function (PDF) similar to that of a PS but 
with a smaller mean (Fig. 5). In contrast, the rejected DS has a wide 
distribution with a smaller mean. 

2.3. Atmospheric delay correction 

Atmospheric delay is composed of hydrostatic delay, wet delay, 
liquid, and ionospheric delay. Here, we focus on hydrostatic and wet 
delays, given that the contribution from the liquid term is often minor, 
and the influence of ionospheric delay in the C-band is sometimes 
negligible due to the inverse proportionality of dispersive phase and 
frequency of the electron (Goldfeld and Quandt, 1965). However, the 
ionospheric artifacts can be significant sometimes, but these can be 
mitigated using methods such as split-band spectrum algorithms 
(Gomba et al., 2017). Part of the hydrostatic and wet delay is correlated 
with topography. The remainder is often characterized as a stochastic 
delay (Hanssen, 2001), which correlates to a given spatial length, and its 
behavior in a SAR interferogram can be readily described using fractal 
statistics (Hanssen, 2001). 

To devise the delay correction approach, our rationale is that the 
atmospheric delay is independent of the temporal baseline in contrast to 
the surface deformation. Thus, considering m pairs created, we identify a 
set of n − 1 pairs with minimum decorrelation error, including 

Fig. 4. Shows the procedure used for segmenting an image using Voronoi cells 
(black lines) based on distribution PS pixels (filled black circles). In each Vor-
onoi cell, examples of rejected DS (filled blue square) and DSp (filled red tri-
angle) pixels are shown. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Normalized time series of interferometric phase amplitude for a permanent scatterer (PS) pixel with a standard deviation of 0.09, (b) a permanent-distributed 
scatterer (DSp) pixel with a standard deviation of 0.11 and, (c) a distributed scatterer (DS) pixel with a standard deviation of 0.15, (d) the associated probability 
density distributions. 
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interferograms of short temporal and perpendicular baselines. To this 
end, we apply a minimum spanning tree (MST) algorithm (Feng et al., 
2017), which minimizes the following cost function: 

CMST = ρs.ρt (16) 
The advantage of exploring MST pairs for this correction is that they 

include a minimal deformation signal and residual DEM errors, while 
they are affected by the same atmospheric delay as the original inter-
ferometric dataset. Next, we draw on the work by (Duchon, 1977), 
demonstrating that smooth spline functions could effectively approxi-
mate fractal-like signals and employ a patch-wise 2D smoothing spline 
to approximate the atmospheric delay in each MST interferogram 
(Fig. 6). In this approach, an optimum spline function f(Xi,Yi) is found 
that minimizes the following cost function (Gu, 2002): 
Cspline = ‖δϕ − f‖2 + λf

′ (17)  

where δϕ is the unwrapped phase, f is a 2D spline function that is 
differentiable, and λ ≥ 0 is the smoothing parameter. An infinite set of 
functions f exists that minimizes Eq. (17) depending on the choice of λ. 
Thus function f is obtained numerically following some assumptions. 
Here, we broadly follow the approach of (de Boor, 1978), in which we 
find a numerical form of function f that maintains a certain level of 
smoothness and closeness to data points. To this end, we make the 
following assumptions, (i) within a small area (e.g., 5 km × 5 km), the 
atmospheric delay can be approximated by a ramp (Ferretti et al., 2001), 
and (ii) within interferograms of short temporal baseline, the surface 
deformation to atmospheric delay ratio is low, while the atmospheric 
delay is independent of temporal baseline. As shown in Fig. 6, we 
consider a sliding window of 5 km × 5 km centered at the pixel location 
(Xi,Yi), and fit a plane to the unwrapped phase value of pixels within the 
window. Evaluating this plane at the pixel location (Xi,Yi) yields the 
value f(Xi,Yi). Next, we slide the window to the adjacent pixel and repeat 
the operation above, which eventually yields the evaluations of function 
f for every pixel in the interferogram. It is straightforward to show that 
the significant overlap between adjacent sliding windows satisfies both 

Fig. 6. Sketch showing implemented algorithm for atmospheric delay correc-
tion using patch-wise 2D smoothing spline. Blue circles and rectangles are the 
elite pixels. Rectangles are two adjacent pixels used to demonstrate how the 
atmospheric delay works. Circles in black dashed and solid lines centered at the 
location of squared elite pixels, whose radius indicates the correlation length of 
the atmospheric delay. Pixels within a black circle are used to fit the ramp and 
estimate the atmospheric delay for the center pixel. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. Study area and interferometric baseline plots. (a) Study area. The inset map shows the southwest United States, with our study area marked by the yellow 
box. The red box indicates the SAR scene. The shaded relief topographic map is from SRTM 90 m DEM and the overlaid faults are from the USGS quaternary fault 
map. The rectangles are the GNSS stations used for affine transformation and the triangles are the GNSS stations used for validation. (b) Interferometric baselines 
plot. The filled triangles are the SAR acquisitions, and the gray lines are the interferometric dataset used for generating time series. The red lines are pairs identified 
using a minimum spanning tree algorithm used for atmospheric delay correction and elite pixel selection. (c) The pie chart shows the distribution of the temporal 
baselines of the interferograms used in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 8. DS pixels selection using (a) phase coherence dispersion (this study) (b) phase coherence threshold (conventional methods).  

Fig. 9. Pixel selection results. Distribution of (a) permanent scatterers (PS), (b) distributed scatterers (DS), (c) permanent-distributed scatterers (DSp), and (d) elite 
pixels obtained by merging DSp and PS sets. 
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smoothness of function f and closeness to data points, as required by Eq. 
(17) (Graham and Hell, 1985). After estimating the spline functions 
{f1(Xi,Yi),…, fn−1(Xi,Yi)}, we obtain the corrected unwrapped phase 
{δ̂ϕ1,…, δ̂ϕn−1} for MST pairs by subtracting its corresponding spline f 
from the unwrapped phase δϕ. To low-pass filter the corrected 
unwrapped phase of a pixel at a location (Xi,Yi), following (Berardino 
et al., 2002), we fit a temporal quadratic polynomial function to its 
corrected phase measurements {δ̂ϕ1(Xi,Yi) ,…, δ̂ϕn−1(Xi,Yi) } and then 
evaluate this quadratic function at the time of n SAR acquisitions to 
obtain the time series of corrected phase change, ϕ̂T with respect to the 
time of the first acquisition: 

ϕ̂
T

= [0, ϕ̂
1
,…, ϕ̂n−1

] (18) 
Additionally, applying Eq. (3) to the original interferometric phase 

observations, {δϕ1,…,δϕn−1}, yields a time series of uncorrected ϕT 

ϕT = [0,ϕ
1
,…,ϕn−1

] (19) 
The difference of Eqs. (18) and (19) yields the atmospheric delay 

correction time series as follows 

ЕT = ϕT − ϕ̂
T

= ЕT
atm +ЕT

noise (20) 
We further detrend ЕT and apply a 2D Gaussian filter of radius 5 km 

to reduce the effect of ЕnoiseT and obtain ЕatmT , following (Ferretti et al., 
2001). The time series of ЕatmT obtained from n − 1 MST pairs is used to 
correct the entire interferometric dataset, comprising m interferograms. 

The algorithm above may fail to correct a portion of the topography- 
correlated delay with a short spatial wavelength. Thus, we further apply 
the method of (Shirzaei and Bürgmann, 2012), which uses wavelet 
transforms to identify and remove the residual topography-correlated 
atmospheric delay. To this end, we use Coiflet wavelets of order 5 at 1 

level of decomposition, which results in wavelet function with support 
twice the ground dimension of a multilooked SAR pixel (Shirzaei and 
Bürgmann, 2012). 

Note that given n images, only n − 1 independent pairs can be 
generated, which are the minimum requirements for performing the 
analysis above. In addition to n − 1 MST pairs, one can include other 
interferograms to increase the degree of freedom, but additional pairs 
are an algebraic combination of the MST interferograms. Thus, they do 
not carry new information on the atmospheric delay content, while their 
noise contents vary due to SAR geometry, surface characteristics, and 
baselines. We found that the n − 1 MST pairs are sufficient to estimate 
atmospheric delay, though the estimate is not robust to outliers and 
noise due to a lack of redundancy. However, since the original inter-
ferometric dataset, corrected using MST pairs, has significant redun-
dancy, any remaining outliers will be adjusted when the final time series 
is generated. 

3. Experimental results 

We apply the proposed framework to 3 SAR datasets acquired over 
two different terrains with spatially and temporally variable deforma-
tion patterns. The first study case is in southern California (Fig. 7a) and 
is characterized by a considerable surface elevation change and different 
textures, such as bare land and agriculture. Several active faults also run 
through this area, including the San Andreas Fault and the San Jacinto 
Fault. We apply the presented processing algorithm shown in Fig. 1 and 
use 195 Sentinel-1 SAR datasets acquired from November 2014 to April 
2021 in descending orbit, covering the study area highlighted by a red 
box in Fig. 7a. To reduce the dataset size, we apply multilook factor of 30 
in range and 6 in azimuth, resulting in a pixel size of ~69.9 by 83.9 m. 
Using the method described in section 2.1, 1113 interferograms are 

Fig. 10. Example of unwrapped phase 
spanning 2014/11/10–2014/12/28 and 
applied atmospheric delay corrections. (a) 
Original unwrapped interferogram, (b) 
SRTM 90 m DEM oversampled on the 
interferogram. (c) Unwrapped interfero-
gram after correction using a height- 
dependent filter. (d) Unwrapped interfer-
ogram after correction using our 2D 
smoothing spline filter. Circles show GNSS 
stations colour-coded to their displace-
ment for the interval covered by the 
interferogram shown in panel a. RMS: 
Root Mean Square of difference between 
InSAR and GNSS observation projected on 
LOS direction.   
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generated with temporal baseline and spatial baselines <3 years and 
150 m, respectively, consisting of different temporal baseline pairs 
(Fig. 7c) to prevent the potential systematic bias (Ansari et al., 2020) 
while avoiding pairs with too long temporal baselines affected by 
decorrelation noise. We also visually inspect to ensure long baseline 
pairs are of good quality. The baseline plot of the entire interferometric 
dataset is shown by gray lines in Fig. 7b, where MST pairs are high-
lighted in red. Elite pixels selection follows the procedures in section 2.2. 
Firstly, we identify DS pixels using the coherence dispersion index (Eq. 
(14)) and compare the results with that based on average temporal 
coherence. Fig. 8 shows the spatial distribution of the DS pixels from the 
two approaches, which are visually indistinguishable with a similar 
number of elite pixels. We conclude that either approach is suitable for 
identifying the DS pixels in our study area. We, next, identify PS pixels. 
The PS and DS datasets include 1,279,028 and 2,370,969 pixels (Fig. 9). 
As seen in Fig. 8, in the northern areas of the Salton Sea, including farms, 
the PS pixels are distributed sparsely, while DS pixels are abundant. The 
refined distribution of DS pixels, namely the DSp pixels, includes 
1,920,533 pixels, and many of the high-quality DS pixels in the north of 
the Salton Sea are preserved. The final population of elite pixels is ob-
tained by combining DSp and PS pixels comprising 1,920,545 pixels. 
The atmospheric delay time series is estimated using MST pairs, and 
accordingly, the entire interferometric dataset is corrected. We visually 
inspect MST pairs to ensure they are of good quality. Fig. 10 shows an 
example of a corrected unwrapped interferogram spanning 2014/11/ 
10–2014/12/28. The unwrapped interferogram (Fig. 10a) includes 
phase values with a significant spatial variation that partly correlates 
with the DEM (Fig. 10b, c). For comparison, we first correct the 
unwrapped phase using a conventional approach that removes the 
height-dependent component of the unwrapped phase (Duchon, 1977) 
(Fig. 10d). Next, we apply our approach based on spatial patch-wise 2D 
smoothing spline (Fig. 11a). To evaluate the accuracy of different 

correction approaches, we use independent observation of Global Nav-
igation Satellite System (GNSS) displacement within the same time 
frame, projected on the line-of-sight (LOS) direction. The standard de-
viation of the difference between GNSS displacement and the original 
unwrapped interferogram, height-dependent corrected interferogram, 
and 2D smoothing spline corrected interferogram are 1.10 cm, 0.53 cm, 
and 0.40 cm, respectively. Our approach reduces the majority of long- 
wavelength and topography-correlated phase components (Fig. 11b), 
and the corrected phase agrees well with independent measurements. To 
further assess the spatial patterns of atmospheric delay, we employ a 
spatial structure-function (Hanssen, 2001) in the form of a semivario-
gram. Fig. 11b shows the semivariogram of the original unwrapped 
interferogram and the height-dependent and 2D smoothing spline- 
corrected ones. The original interferogram is characterized by signals 
correlated at distances >100 km. The corresponding correlation lengths 
for height-dependent and 2D smoothing spline corrected ones are 30 km 
and 5 km, respectively. 

Furthermore, the spectral properties of the corrected atmospheric 
delay are investigated. Fig. 11c compares the power spectrum of the 
subtracted atmospheric delay using height-dependent and 2D smoothing 
spline correction approaches. The study by (Hanssen, 2001) demon-
strates that atmospheric turbulence can be described by power-law 
behavior with slopes varying between −5/3 and − 8/3, which, for 
reference, are shown in Fig. 11c. As seen, the atmospheric correction 
using the 2D smoothing spline approach agrees well with the theoretical 
power-law behavior proposed for atmospheric turbulence. Fig. 11d 
shows the power spectrums of the corrected atmospheric delay for the 
entire atmospheric dataset, all of which show a slope within the range of 
−5/3 and − 8/3. Following atmospheric delay correction, we identify 
and remove the long-wavelength signal in the spatial domain, possibly 
due to ionospheric delay or residual orbital error following (Shirzaei and 
Walter, 2011). The corrected unwrapped interferograms are inverted 

Fig. 11. Example of unwrapped phase spanning 
2014/11/10–2014/12/28 and applied atmospheric 
delay corrections. (a) Bivariate plot showing the 
correlation between original interferogram 
unwrapped phase and the SRTM 90 m DEM, (b) 
Semivariogram generated for the panels Fig. 10 a, c 
and d, (c) Power spectrum of the atmospheric delay 
corrected using 2D smoothing spline and height- 
dependent filters in Fig. 10 panels c and d. Black 
lines indicate −5/3 and − 8/3 power-law behav-
iors (Hanssen, 2001), (d) Power spectrum of the 
atmospheric delay corrected for all the interfero-
grams using 2D smoothing spline filter.   
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using Eq. (3) to obtain the time series of surface displacement for each 
elite pixel. The weight matrix is proportional to the time series of 
interferometric coherence associated with each elite pixel. We used 
observations from the GNSS network to restore the long-wavelength 
deformation signals that were possibly removed while correcting for 
ionospheric and residual orbital errors. We obtain these datasets from 
the Nevada Geodetic Laboratory of the UNAVCO PBO network (Blewitt 
et al., 2018), including 21 stations within our study area, and apply the 
Greedy Automatic Signal Decomposition algorithm (Bedford and Bevis, 
2018) to avoid the noise from daily solutions. We randomly select 14 
stations to determine the parameters of an affine transformation, 
including two rotations, one translation, and one scale suitable for 
transforming the LOS displacement field and restoring the long- 
wavelength signals. The remaining 7 GNSS stations are independent 
observations that validate our proposed multitemporal SAR interfero-
metric analysis. We note that the horizontal observations at 7 GNSS 
stations are not entirely independent from the 14 stations used for 
restoring long wavelengths. However, the vertical component often 
varies locally and can differ significantly from nearby stations. 

The estimated LOS velocities for cases with and without applying our 
atmospheric corrections are also shown in Figs. 12a and b. Overall, the 
two results are comparable; for instance, the Coachella Valley is affected 
by a similar maximum LOS rate. However, our approach successfully 
maintains localized signals, such as creep along the San Andreas Fault, 
as shown in the lowest panel of Fig. 12a. Compared with the previous 

study that used the SBAS approach in the southern San Andreas Fault 
(Fialko, 2006; Lindsey and Fialko, 2013; Tymofyeyeva et al., 2019; Xu 
et al., 2018), our result can successfully extract the displacement and 
velocity of elite pixels within the Coachella Valley while the other study 
shows noisy data points or lack of pixels within the valley due to low 
coherence. 

We compare the LOS displacement time series against the indepen-
dent GNSS datasets following projecting 3D displacements onto the 
radar LOS (Figs. 12a and 13). To this end, we identified elite pixels 
within 500 m of each GNSS station and averaged their values to obtain a 
corresponding LOS value. We find a root mean square of 0.48 cm for the 
difference between our LOS displacement time series and that obtained 
from GNSS with a 0.84 coefficient of determination (Fig. 12a). The 
corresponding values for the case without atmospheric correction are 
0.78 cm and 0.69, respectively (Fig. 12b). We have performed an 
additional test using the interferometric dataset created using the 
following two images (Zhang et al., 2019), in which we also apply our 
atmospheric correction approach. Results are shown in Fig. 12c. The 
LOS velocity map appears noisy, and the validation against GNSS 
measurements yields a root mean square error of 0.80 cm for the time 
series differences. Fig. 13 also shows the comparison between the InSAR 
time series and that of GNSS. At most stations, our approach performs 
well, which a root mean square error of difference smaller than 0.5 cm. 
These tests indicate the success of our approach in reducing atmospheric 
errors and retrieving surface deformation at high accuracy and 

Fig. 12. InSAR LOS velocity for period late 2014 to early 2021 and validations of the descending frame of the southern San Andreas Fault. (a) LOS velocity following 
the algorithm presented in this study. Bi-variable plot showing the association between the InSAR time series and GNSS validation stations (triangles in Fig. 7), also 
root mean square of differences and coefficients of variations are provided. Lowest panel shows the LOS creep rate and standard deviation along the creeping segment 
of San Andreas Fault. A thick black line shows the creeping segment in the top panel. (b) Same as panel a, without applying 2D smoothing spline filter for atmospheric 
error correction. (e) Same as panel a, but considering interferometric dataset created using the following two images and applying 2D smoothing spline filter for 
atmospheric error correction. 
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precision. 
As for the second test, we apply an identical processing pipeline and 

parameters to the ascending pass of Sentinel-1 over the same site used in 
our first test, namely southern California. We used 149 SAR images and 
generated 845 interferograms from mid-2015 to mid-2021. The final 
LOS velocity is shown in Fig. 14 (a) and the time series is validated 
against independent GNSS observations, shown in Fig. 14(a). Despite the 
relative northwest-southeast orientation of the fault systems, which is 
unfavorable concerning the ascending satellite flight direction, the ob-
tained velocity field is consistent with that of the descending track 
shown in Fig. 12(a) with a standard deviation of 0.48 cm for the dif-
ference between InSAR LOS time series and independent GNSS 
observations. 

As for the third test, we chose the city of Los Angeles and analyzed 
247 SAR images acquired in descending orbit of Sentinel-1 satellites 
from early 2016 to mid-2022. For this case study, we applied a multi-
looking factor of 12 and 2 in range and azimuth directions, corre-
sponding with a pixel size of ~25 m by ~25 m on the ground. Assuming 
a maximum temporal baseline of 300 m, we created 1054 pairs using 
this dataset, comprising 3,039,151 elite pixels. The final LOS velocity 
and validation against independent GNSS observation are shown in 
Fig. 14 (b). We found a standard deviation of 0.30 cm for the difference 
between the InSAR and GNSS time series. In order to further investigate 
the vertical land motion across Los Angeles, we created a horizontal 
velocity field from observation of GNSS stations within the study area, 
oversampled it on the location of elite pixels, and then projected it onto 
the LOS direction. We then removed them from LOS velocities and time 
series. Next, we projected back the residuals in the vertical direction. 
Fig. 15 shows the vertical land motion rate and sample time series, 
comprising various uplifting and subsiding features consistent with 
earlier studies (Brooks et al., 2007; Lanari et al., 2004; Riel et al., 2018; 
Shen and Liu, 2020). We observe a subsidence rate of 0.79 cm/yr over 
the Santa Ana area (site A) and about 0.23 cm/yr uplift nearby (site B). 
The time series of both sites, A and B, show seasonal variations likely due 
to groundwater level fluctuations within the aquifers (Riel et al., 2018). 

Site C shows a rate of −0.34 cm/yr at Seal Beach and site D, with a rate 
of 0.42 cm/yr at Long Beach, near the Newport-Inglewood Fault. Sites E 
and J, with rates of 1.04 cm/yr and − 0.51 cm/yr, are located at the 
Wilmington oil field. A strong uplift signal of rate 1.04 cm/yr was 
observed at site E, likely associated with enhanced oil recovery. Site J 
shows a subsidence signal of −0.51 cm/yr. Site F is located at the center 
of the Los Angeles area, showing slight subsidence of −0.30 cm/yr. Sites 
G and H are located near the Hollywood Fault. Site H shows a strong 
uplift signal of 0.57 cm/yr, while site G subsidies at a rate of −0.5 cm/yr. 
Site I is located in Ontario and subsides at a rate of −0.6 cm/yr. 

4. Discussion and conclusions 

The primary issues with employing an SBAS-type processing algo-
rithm include a somewhat arbitrary pair selection strategy, a non- 
uniform DS pixels quality, and a lack of an effective atmospheric error 
correction approach. To overcome some of these limitations, we pre-
sented an improved multitemporal InSAR algorithm to perform an 
advanced analysis of high-resolution datasets such as those provided by 
Sentinel-1A/B. 

Our pair selection strategy leverages the Delaunay Triangulation 
method and combines it with dyadic downsampling to create a random 
but limited set of triplets, including interferograms with a wide range of 
temporal baselines. Using parametric analysis of variance-covariance 
matrices and numerical case studies, we demonstrated that our 
approach efficiently retrieves surface deformation signals at high accu-
racy and precision. 

Our elite pixel selection approach adds to the growing literature on 
the combined analysis of DS and PS pixels (Ferretti et al., 2011; Hooper, 
2008). The novel aspect of our approach is performing hypothesis 
testing based on Fisher distribution to examine the similarity between 
the temporal distribution of the interferometric amplitude of DS and PS 
pixels. Unlike pixel selection algorithms that rely only on interfero-
metric coherence, our approach applies to full resolution and multi- 
looked interferogram analysis since it exploits interferometric 

Fig. 13. Validating InSAR time series versus that of 
GNSS stations with the root-mean-square of InSAR 
data and the velocity estimate of GNSS and InSAR 
data. Gray dots are the GNSS daily solutions, and blue 
triangles correspond InSAR time series. We used the 
average value of pixels within a 500 m radius of each 
GNSS station for this comparison. To further reduce 
temporal noise in InSAR time series, one can apply a 
triangular, rectangular, or Gaussian filter following 
(Berardino et al., 2002; Ferretti et al., 2001), which 
we did not apply in this case study. (For interpreta-
tion of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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amplitude and coherence information. This is because the interfero-
metric coherence is independent of the number of looks (Lee et al., 
1994). However, the issue of the applicability of the SBAS method to the 
analysis of interferograms at full resolution is addressed by (Lanari et al., 
2004). 

Our atmospheric delay correction approach explores the natural 
behavior of atmospheric turbulence in a SAR interferogram and effec-
tively removes the hydrostatic and wet components of the delay, which 
are characterized by fractal statistics. Our approach requires that the 
deformation signal correlates with the temporal baseline and/or its 
spatial pattern differs from that of fractals. This requirement does not 
restrict the applicability of our approach, as it may be violated seldom 
only by rapid deformation caused, for instance, by an earthquake. In 
practice, the interferograms spanning an earthquake often are not cor-
rected for the atmospheric delay due to the large amplitude of the signal. 
Nevertheless, we recommend examining the power spectrum of the 
corrected atmospheric delay to ensure it follows the theoretical power- 
law statistics suggested for atmospheric turbulence. 

Here, we used the WabInSAR framework to implement our new 

algorithms. However, they can be readily implemented in any SBAS- 
type processing workflow. We note that not accounting for all possible 
interferometric pairs might still cause phase inconsistencies (de Zan 
et al., 2015). Other approaches to overcome this issue include incor-
porating all possible interferograms to estimate the systematic bias by 
investigating their statistical characteristics using the phase triangula-
tion algorithm (Ferretti et al., 2011; Guarnieri and Tebaldini, 2008), 
eigenvalue decomposition (EVD) (N. Cao et al., 2016; Fornaro et al., 
2015),eigendecomposition-based maximum likelihood-estimator of 
interferometric phase (EMI) (Ansari et al., 2018). 

We conclude that (i) implementing a careful pair selection strategy 
such as Dyadic Delaunay Triangulation can significantly reduce 
computation load and result in a deformation field with precision 
comparable to that obtained from analyzing all possible pairs, excluding 
those affected by temporal decorrelation. (ii) Statistical comparison of 
the permanent and distributed scatterers is a practical approach for 
maximizing the population of elite pixels. (iii) Atmospheric delay in SAR 
interferometry can be effectively estimated and removed using a filter 
based on 2D smoothing splines. (iv) Compared with GNSS 

Fig. 14. Experimental results for test cases two and three. (a) Ascending track of southern California, (b) Descending track of Los Angeles. LOS velocity and bi- 
variable plots showing the association between the InSAR time series and GNSS validation stations (triangles in top panels), root-mean-square of differences, and 
coefficients of variations are provided. The blank lines marking the burst limits in Los Angles case study are rows of null entries added after discarding the recording 
of one of the overlapped bursts to avoid artefect due to geometric and radiometric differences at the burst overlaps. This null line is not visible in the other case 
studies due to larger multilooking factor, resulting in lower resolution. 
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measurements, our multitemporal SAR interferometric framework 
yields an accuracy of better than 0.5 cm and 0.3 cm for LOS displace-
ment in rural and urban areas, respectively. 
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J.-C. Lee and M. Shirzaei                                                                                                                                                                                                                     



Remote Sensing of Environment 286 (2023) 113447

14

References 
Ansari, H., de Zan, F., Bamler, R., 2018. Efficient phase estimation for interferogram 

stacks. IEEE Trans. Geosci. Remote Sens. 56 (7), 4109–4125. https://doi.org/ 
10.1109/TGRS.2018.2826045. 

Ansari, H., de Zan, F., Parizzi, A., 2020. Study of systematic bias in measuring surface 
deformation with SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1–1 https:// 
doi.org/10.1109/tgrs.2020.3003421. 

Bedford, J., Bevis, M., 2018. Greedy automatic signal decomposition and its application 
to daily GPS time series. J. Geophys. Res. Solid Earth 123 (8), 6992–7003. https:// 
doi.org/10.1029/2017JB014765. 

Bekaert, D.P.S., Hooper, A., Wright, T.J., 2015. A spatially variable power law 
tropospheric correction technique for InSAR data. J. Geophys. Res. Solid Earth 2, 
1–12. https://doi.org/10.1002/2014JB011557.A. 

Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface 
deformation monitoring based on small baseline differential SAR interferograms. 
IEEE Trans. Geosci. Remote Sens. 40 (11), 2375–2383. https://doi.org/10.1109/ 
TGRS.2002.803792. 

Blewitt, G., Hammoon, W.C., Kreener, C., 2018. Harnessing the GPS data explosion for 
interdisciplinary science. Eos 99. https://doi.org/10.1029/2018EO104623. 

Brooks, B.A., Merrifield, M.A., Foster, J., Werner, C.L., Gomez, F., Bevis, M., Gill, S., 
2007. Space geodetic determination of spatial variability in relative sea level change, 
Los Angeles basin. Geophys. Res. Lett. 34 (1) https://doi.org/10.1029/ 
2006GL028171. 

Burgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry 
to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. 
Sci. 28, 169–209. https://doi.org/10.1146/annurev.earth.28.1.169. 

Cao, N., Lee, H., Jung, H.C., 2016. A phase-decomposition-based PSInSAR processing 
method. IEEE Trans. Geosci. Remote Sens. 54 (2), 1074–1090. https://doi.org/ 
10.1109/TGRS.2015.2473818. 

Cao, Y., Jónsson, S., Li, Z., 2021. Advanced InSAR tropospheric corrections from global 
atmospheric models that incorporate spatial stochastic properties of the troposphere. 
J.Geophys. Res. Solid Earth 126 (5), 1–20. https://doi.org/10.1029/2020JB020952. 

Costantini, M., 1998. A novel phase unwrapping method based on network 
programming. IEEE Trans. Geosci. Remote Sens. 36 (3), 813–821. https://doi.org/ 
10.1109/36.673674. 

Costantini, M., Rosen, P.A., 1999. Generalized phase unwrapping approach for sparse 
data. In: International Geoscience and Remote Sensing Symposium (IGARSS), 1, 
pp. 267–269. https://doi.org/10.1109/igarss.1999.773467. 

de Boor, C., 1978. A Pratical Guid to Splines, Vol. 27. Springer-Verlag, New York.  
de Zan, F., Gomba, G., 2018. Vegetation and soil moisture inversion from SAR closure 

phases: first experiments and results. Remote Sens. Environ. 217 (March), 562–572. 
https://doi.org/10.1016/j.rse.2018.08.034. 

de Zan, F., Parizzi, A., Prats-Iraola, P., López-Dekker, P., 2014. A SAR interferometric 
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Eff-Darwich, A., Pérez, J.C., Fernández, J., García-Lorenzo, B., González, A., González, P. 
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Löfgren, J.S., Björndahl, F., Moore, A.W., Webb, F.H., Fielding, E.J., Fishbein, E.F., 2010. 
Tropospheric correction for InSAR using interpolated ECMWF data and GPS zenith 
total delay from the Southern California integrated GPS network. Int. Geosci. Remote 
Sens. Symp. (IGARSS) 4503–4506. https://doi.org/10.1109/IGARSS.2010.5649888. 

Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in 
the Earth’s surface. Rev. Geophys. 36 (4), 441–500. https://doi.org/10.1029/ 
97RG03139. 

Meyer, P.L., 1970. Introductory probability and statistical applications. Addison-Wesley 
Pub. Co., Reading, Mass.  

Michaelides, R.J., Zebker, H.A., Zheng, Y., 2019. An algorithm for estimating and 
correcting decorrelation phase from InSAR data using closure phase triplets. IEEE 
Trans. Geosci. Remote Sens. 57 (12), 10390–10397. https://doi.org/10.1109/ 
TGRS.2019.2934362. 

Mikhail, E.M., 1976. Observations and least squares. IEP. 
Onn, F., Zebker, H.A., 2006. Correction for interferometric synthetic aperture radar 

atmospheric phase artifacts using time series of zenith wet delay observations from a 
GPS network. J. Geophys. Res. 111 (B9), B09102. https://doi.org/10.1029/ 
2005JB004012. 

Pepe, A., 2009. Advanced differential interferometric SAR techniques: the extended 
minimum cost flow phase unwrapping (EMCF) technique. VDM publishing. 

Pepe, A., Lanari, R., 2006. On the extension of the minimum cost flow algorithm for 
phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. 
Geosci. Remote Sens. 44 (9), 2374–2383. https://doi.org/10.1109/ 
TGRS.2006.873207. 

Puysségur, B., Michel, R., Avouac, J.-P., 2007. Tropospheric phase delay in 
interferometric synthetic aperture radar estimated from meteorological model and 
multispectral imagery. J. Geophys. Res. 112 (B5), B05419. https://doi.org/10.1029/ 
2006JB004352. 

Riel, B., Simons, M., Ponti, D., Agram, P., Jolivet, R., 2018. Quantifying ground 
deformation in the Los Angeles and Santa Ana coastal basins due to groundwater 
withdrawal. Water Resour. Res. 54 (5), 3557–3582. https://doi.org/10.1029/ 
2017WR021978. 

Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., Goldstein, R. 
M., 2000. Synthetic aperture radar interferometry. Proc. IEEE 88 (3), 333–382. 
https://doi.org/10.1109/5.838084. 

J.-C. Lee and M. Shirzaei                                                                                                                                                                                                                     

https://doi.org/10.1109/TGRS.2018.2826045
https://doi.org/10.1109/TGRS.2018.2826045
https://doi.org/10.1109/tgrs.2020.3003421
https://doi.org/10.1109/tgrs.2020.3003421
https://doi.org/10.1029/2017JB014765
https://doi.org/10.1029/2017JB014765
https://doi.org/10.1002/2014JB011557.A
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.1029/2018EO104623
https://doi.org/10.1029/2006GL028171
https://doi.org/10.1029/2006GL028171
https://doi.org/10.1146/annurev.earth.28.1.169
https://doi.org/10.1109/TGRS.2015.2473818
https://doi.org/10.1109/TGRS.2015.2473818
https://doi.org/10.1029/2020JB020952
https://doi.org/10.1109/36.673674
https://doi.org/10.1109/36.673674
https://doi.org/10.1109/igarss.1999.773467
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020716085162
https://doi.org/10.1016/j.rse.2018.08.034
https://doi.org/10.1109/TGRS.2013.2241069
https://doi.org/10.1109/TGRS.2013.2241069
https://doi.org/10.1109/TGRS.2015.2444431
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1016/j.jappgeo.2009.03.010
https://doi.org/10.1016/j.jappgeo.2009.03.010
https://doi.org/10.1007/BFB0086566
https://doi.org/10.1007/s00024-011-0401-4
https://doi.org/10.1007/s00024-011-0401-4
https://doi.org/10.1016/J.ASR.2017.06.019
https://doi.org/10.1109/TGRS.2011.2124465
https://doi.org/10.1109/36.898661
https://doi.org/10.1038/nature04797
https://doi.org/10.1038/nature04797
https://doi.org/10.1109/TGRS.2014.2352853
https://doi.org/10.1029/2006GL026781
https://doi.org/10.1002/jgrb.50093
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020716208832
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020731261089
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020731261089
https://doi.org/10.1109/TGRS.2016.2604461
https://doi.org/10.1109/TGRS.2016.2604461
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020716342352
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020716342352
https://doi.org/10.1007/978-1-4757-3683-0
https://doi.org/10.1007/978-1-4757-3683-0
https://doi.org/10.1109/TGRS.2008.2001756
https://doi.org/10.1038/scientificamerican0297-46
https://doi.org/10.1007/s00190-010-0393-3
https://doi.org/10.1007/s00190-010-0393-3
https://doi.org/10.1029/2008GL034654
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1029/2004GL021294
https://doi.org/10.1109/36.312890
https://doi.org/10.1029/2005GL025299
https://doi.org/10.1080/01431160802562172
https://doi.org/10.1029/2004JB003446
https://doi.org/10.1029/2010GC003228
https://doi.org/10.1029/2010GC003228
https://doi.org/10.1029/2012JB009358
https://doi.org/10.1109/IGARSS.2010.5649888
https://doi.org/10.1029/97RG03139
https://doi.org/10.1029/97RG03139
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020717501592
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020717501592
https://doi.org/10.1109/TGRS.2019.2934362
https://doi.org/10.1109/TGRS.2019.2934362
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020717557042
https://doi.org/10.1029/2005JB004012
https://doi.org/10.1029/2005JB004012
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020717574872
http://refhub.elsevier.com/S0034-4257(22)00553-3/rf202301020717574872
https://doi.org/10.1109/TGRS.2006.873207
https://doi.org/10.1109/TGRS.2006.873207
https://doi.org/10.1029/2006JB004352
https://doi.org/10.1029/2006JB004352
https://doi.org/10.1029/2017WR021978
https://doi.org/10.1029/2017WR021978
https://doi.org/10.1109/5.838084


Remote Sensing of Environment 286 (2023) 113447

15

Samsonov, S.V., Trishchenko, A.P., Tiampo, K., González, P.J., Zhang, Y., Fernández, J., 
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