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Abstract—The classical problem of phase retrieval has found
a wide array of applications in optics, imaging and signal
processing. In this paper, we consider the phase retrieval problem
in a one-bit setting, where the signals are sampled using one-
bit analog-to-digital converters (ADCs). A significant advantage
of deploying one-bit ADCs in signal processing systems is their
superior sampling rates as compared to their high-resolution
counterparts. This leads to an enormous amount of one-bit
samples gathered at the output of the ADC in a short period
of time. We demonstrate that this advantage pays extraordinary
dividends when it comes to convex phase retrieval formulations—
namely that the often encountered matrix semi-definiteness con-
straints as well as rank constraints (that are computationally
prohibitive to enforce), become redundant for phase retrieval
in the face of a growing sample size. Several numerical results
are presented to illustrate the effectiveness of the proposed
methodologies.

Index Terms—Convex optimization, one-bit ADCs, phase re-
trieval, semi-definite relaxation, statistical signal processing.

I. INTRODUCTION

PHASE retrieval has gained significant interest in applied
physics and statistical signal processing communities over

the past decades [1]–[21]. This classical problem manifests
as the recovery of an unknown signal solely from phaseless
measurements that depend on the signal through a linear
observation model. Due to the intrinsic difficulties of the
recovery task [22], recently, there have been many efforts to
propose approximate or relaxed versions of the phase retrieval
problem in a convex optimization language, particularly via
semi-definite programming [11], [23].

Quantization of the signals of interest through analog-to-
digital converters (ADCs) is an important task in digital signal
processing applications. A very large number of quantization
levels is necessary in order to represent the original continu-
ous signal in high-resolution scenarios. The large number of
quantization bits, however, can cause a considerable increase
in the overall power consumption and the manufacturing cost
of ADCs, as well as a reduction in sampling rate [24]. Such
disadvantages have motivated the researchers to investigate the
idea of utilizing fewer bits for sampling. One-bit quantization
is an extreme quantization scenario, in which the signals are
compared with given threshold levels at the ADCs, producing
sign (±1) outputs. This enables signal processing equipments
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to sample at a very high rate, with a considerably lower
cost and energy consumption, compared to their counterparts
which employ multi-bit ADCs [24]–[27]. We further note that
one-bit quantization with a fixed threshold (usually zero) can
lead to difficulties in the estimation of the signal amplitude.
Employing time-varying thresholds, however, has been shown
to result in enhanced signal recovery performance in some
recent works [24], [28]–[33].

A. Contributions of the Paper

While convex formulations of the phase retrieval problem
promise a global solution, some of the introduced constraints
are computationally costly; including the matrix rank and the
positive semi-definite (PSD) constraints. However, we show
that if more samples are available, the sheer number of samples
can constrain the solution in a less costly manner and make
such constraints redundant. Note that, as mentioned earlier, by
employing the one-bit quantization, sampling can be done at
significantly higher rates. As a result, the emergence of one-bit
sampling techniques paves the way for an investigation on the
role of an increased sample size in the phase retrieval problem.

In this paper, we show that the phase retrieval problem
can be tackled by taking advantage of the large number of
linear observation inequalities that emerge naturally in the
one-bit quantization regimen. Instead of considering the often-
formulated trace relaxation problem, our approach to one-
bit phase retrieval is presented as a randomized Kaczmarz
algorithm-based recovery. We present our results on a proper
selection of the sufficient number of samples. Furthermore, an
algorithm is proposed based on our model to adaptively evalu-
ate the time-varying sampling thresholds. The performance of
our approach with an increased sample size is also investigated
when noisy measurements are utilized.

B. Organization of the Paper

Since our approach takes root in convex phase retrieval,
Section II is dedicated to a survey of such formulations. In
Section III, we will discuss the appearance of one-bit sampling
with time-varying thresholds in the phase retrieval context
through linear inequality constraints (defining a polyhedron
feasible region), as well as the randomized Kaczmarz algo-
rithm (RKA) that can be utilized to recover our desired signal.
To investigate the error recovery of the proposed algorithm,
a theorem, which may be useful to select the number of
measurement, is presented in Section IV. Section V is devoted
to comparing our method with PhaseLift, its one-bit version
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and Wirtinger flow (WirtFlow) in terms of their computational
burden. Based on our proposed polyhedron formulation, an
algorithm is proposed to obtain the adaptive time-varying
thresholds which benefit finding the signal of interest with
more accuracy and less computational cost in Section VI. In
Section VII, the noisy measurement scenario is studied owing
to its importance in practical applications. Finally, Section IX
concludes the paper.

Notation: We use bold lowercase letters for vectors and bold
uppercase letters for matrices. C and R represent the set of
complex and real numbers, respectively. (·)⊤ and (·)H denote
the vector/matrix transpose, and the Hermitian transpose,
respectively. IN ∈ RN×N is the identity matrix of size N .
Tr(.) denotes the trace of the matrix argument. The spectral
radius ρ(B) of a matrix B is defined as a maximum absolute
value of its eigenvalues [34]. The Frobenius norm of a matrix

B ∈ CM×N is defined as ∥B∥F=
√∑M

r=1

∑N
s=1 |brs|

2

where {brs} are elements of B. The ℓk-norm for a vector
b is defined as ∥b∥kk=

∑
i b

k
i . The Hadamard (element-wise)

product of two matrices B1 and B2 is denoted as B1 ⊙B2.
Additionally, the Kronecker product is denoted as B1 ⊗B2.
The vectorized form of a matrix B is written as vec(B).
1s is a s-dimensional all-one vector. Given a scalar x, we
define (x)+ as max {x, 0}. For an event E , I(E) is the indicator
function for that event meaning that I(E) is 1 if E occurs, and
0 otherwise. f ≍ g means f and g are asymptotically equal.
The cumulative distribution function (CDF) of the zero-mean
Gaussian process z ∼ N (0, ζ) is given by

Φ(z) ≜
1√
2π

∫ z

−∞
e
− t2

2ζ2 dt. (1)

To compare two different CDFs, the Hellinger distance may
be utilized [35], which is defined as

d2H (p, q) ≜ (
√
p−√

q)
2
+
(√

1− p−
√
1− q

)2

, (2)

with p, q ∈ [0, 1].

II. CONVEX PHASE RETRIEVAL: OPPORTUNITIES AND
CHALLENGES

To tackle the phase retrieval problem, many non-convex and
local optimization algorithms have been developed over the
years. Recently, however, convex programming formulations
have come to the fore to yield global solutions. As a case
in point, the PhaseLift method in [11] adopts a convex opti-
mization mathematical machinery to tackle the phase retrieval
problem, ensuring a near exact recovery of the unknown sig-
nal. To do so, PhaseLift relies on a trace-norm relaxation that
is used in lieu of the original non-convex rank minimization
problem–more on this below. Due to the imposition of the
positive semi-definite (PSD) constraint, the PhaseLift problem
formulation joins the class of semi-definite programs (SDPs).

Suppose x ∈ Cn is the discrete signal of interest that is
observed linearly through the lens of sensing vectors aj , with{
aH
j

}
constituting the rows of the sensing matrix A ∈ Cm×n.

Our goal in phase retrieval is to recover the signal x from
phaseless measurements yj [11], [23]:

yj =
∣∣aH

j x
∣∣ , j ∈ J = {1, · · · ,m} . (3)

To ease the mathematical manipulation, one can use the
squared version of (3), i.e.,

y2j = xHaja
H
j x,

= Tr
(
aja

H
j xx

H
)
,

= Tr (VjX) ,

(4)

where X = xxH and Vj = aja
H
j . Based on (4), the phase

retrieval problem can be defined as,

find X

s.t. Tr (VjX) = y2j ,

rank (X) = 1,

X ⪰ 0.

(5)

To have a convex program as [11], the problem (5) is then
relaxed as [11],

min
X

Tr(X)

s.t. Tr (VjX) = y2j ,

X ⪰ 0.

(6)

The linear objective and constraints, along with the PSD
constraint, turns (6) to a semi-definite program which is
convex [36]. Due to its convexity, there exists a wide array of
numerical solvers including the popular Nesterov’s accelerated
first-order method to tackle the problem above [23], [37].

Although, the rank-one and the PSD constraints are deemed
necessary to the phase retrieval formulation, they lead to an
increased computational cost even in cases where we deal
with a convex optimization landscape. To enforce the PSD
constraint, a projected gradient method is used in [23], where
the approximate solution should be projected onto a PSD cone
at each iteration by recovering all eigenvalues and setting the
negative eigenvalues to zero, which is quite expensive [23].

An interesting alternative to enforcing the PSD constraint
in (6) emerges when one increases the number of samples
m, and solves the overdetermined linear system of equations
with m ≥ n. By collecting a large number of samples, the
linear constraints Tr (VjX) = y2j may actually yield the
optimum inside the PSD area X ⪰ 0. As a result of increasing
the number of samples, it is possible that the intersection of
these hyperplanes will shrink to the optimal point without the
need to consider the PSD constraint. However, this idea may
face practical limitations in the case of multi-bit quantization
systems since ADCs capable of ultra-high rate sampling are
difficult and expensive to produce. Moreover, one cannot
necessarily expect these constraints to intersect with the PSD
cone in such a way to form a finite-volume space before the
optimum is obtained [11].

As we will show in the next section, by defining the
phase retrieval in the one-bit sampling regimen, linear equality
constraints are superseded with linear inequalities. Therefore,
by increasing the number of samples, we may create a finite-
volume space inside the cone X ⪰ 0; making the PSD
constraint no longer informative or required. From a practical
point of view, one-bit sampling is done efficiently at a very
high rate with a significantly lower cost compared to its high-
resolution counterpart. Thus, by employing one-bit ADCs,
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it is practical, indeed natural, to study the game-changing
opportunities that emerge in the context of phase retrieval due
to the availability of a large number of samples.

III. ONE-BIT PHASE RETRIEVAL WITH SAMPLE
ABUNDANCE

As indicated earlier, employing one-bit quantization pro-
vides a practical opportunity to address an important question
as to whether more samples can mean less complexity in the
context of the phase retrieval problem. We begin our efforts by
defining a linear system of inequalities representing the phase
retrieval problem in the one-bit quantization system deploying
time-varying thresholds leading to the one-bit phase retrieval
formulation. To recover the desired symmetric positive semi-
definite matrix X⋆, we propose an algorithm which relies on
exploiting the large number of one-bit sampled data and solves
the associated linear system of inequalities by taking advantage
of the randomized Kaczmarz algorithm (RKA).

A. Problem Formulation
In the one-bit sampling scenario, we only observe sign data

r, given as
r = sgn (y − τ ) , (7)

where τ is a time-varying1 threshold. Let e denote the phase
vector to be recovered. The one-bit phase retrieval problem
can be formulated as:

find y,x, e

y ⊙ e = Ax,

y ∈ Ψ,

(8)

where Ψ is a feasible region created by the one-bit constraints

rj (yj − τj) ≥ 0, j ∈ J , (9)

or equivalently,
Ω (y − τ ) ⪰ 0, (10)

with the matrix Ω defined as Ω = diag {r}. Inspired by (8),
in the following, we present a reformulation of the one-bit
phase retrieval problem. Since yj ≥ 0 based on (3), assuming
τj ≥ 0, the following relation holds:

yj ⋚ τj ⇐⇒ y2j ⋚ τ2j . (11)

Therefore, the set of inequalities in (9) can be rewritten as

rj (yj − τj) ≥ 0 =⇒ rj
(
y2j − τ2j

)
≥ 0, j ∈ J . (12)

Consequently, one can recast (8) in the same spirit as (5):

find X

s.t. rj
(
Tr (VjX)− τ2j

)
≥ 0,

rank (X) = 1,

X ⪰ 0.

(13)

1Note that although we are focusing on temporal sampling, the low cost
associated with one-bit ADCs enables the deployment of large arrays of
ADCs that are spatially distributed, which is of immediate use in various
communications and imaging applications. This paves the way for spatially-
varying sampling thresholds, possibly along with time-varying thresholds.
Fortunately, the mathematical foundations and algorithms we present in this
work can be directly applied to cases where spatially-varying thresholds are
used as well.

Moreover, based on (6), the one-bit version of the PhaseLift
formulation may be written as

min
X

Tr(X)

s.t. rj
(
Tr (VjX)− τ2j

)
≥ 0,

X ⪰ 0,

(14)

which we refer to as one-bit PhaseLift in this paper. It is
worth noting that the problem in (14) also belongs to the
class of semi-definite programs (SDPs). As discussed earlier,
in the asymptotic case of the one-bit phase retrieval problem,
the PSD constraint may not be required. Moreover, the linear
system of inequalities in (14) can be reformulated as

Tr (VjX) = vec
(
V ⊤
j

)⊤
vec (X) , j ∈ J , (15)

where we use the matrix identity [38],

Tr
(
H⊤D

)
= vec(H)⊤ vec(D), (16)

with H and D being two arbitrary square matrices. As a
result, the constraints imposed in the optimization problem
(14) can be simplified as

min
X

Tr(X)

s.t. (R⊙ V ) vec (X) ⪰ r ⊙ τ 2,
(17)

where R = 1⊤
n2 ⊗ r, and V is a matrix with vec

(
V ⊤
j

)⊤
as

its j-th row (j ∈ J ).
Note that dropping the PSD constraint is not the only

advantage of having access to a large number of one-bit
sampled data in the context of phase retrieval problem. In
fact, we claim that by our approach the rank-one, or its relaxed
versions potentially manifested as a trace minimization, also
become redundant. To see why, observe that in the asymptotic
case of one-bit phase retrieval, the space constrained by the
defined inequalities in (12), which is a polyhedron, shrinks
to become contained inside the feasible region in terms of the
PSD constraint. However, this shrinking space always contains
the globally optimal rank-one solution, with a volume that
is decreasing with an increasing number of samples. Thus,
instead of the optimization problems in (14) and (17), we
formally define the said polyhedron, i.e.,

P =
{
X | rj

(
Tr (VjX)− τ2j

)
≥ 0, j ∈ J

}
, (18)

equivalently restated based on (15) as

P =
{
X | rj vec

(
V ⊤
j

)⊤
vec (X) ≥ rjτ

2
j , j ∈ J

}
. (19)

A numerical investigation of (19) reveals that by increasing the
number of samples m, the space formed by the intersection
of half-spaces (inequality constraints) can fully shrink to the
optimal point inside the PSD constraint—see Fig. 1 for an
illustrative example of this phenomenon. As can be seen in this
figure, the black lines representing the linear inequalities form
a finite-volume space around the optimal point displayed by
the purple circle inside the PSD cone (the elliptical region2) by
growing the number of one-bit samples. In (a)/(d), constraints

2Note that a two-dimensional slice of the three-dimensional PSD cone
typically assumes an elliptical form.
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Figure 1: Shrinkage of the polyhedron space (19), ultimately placed within the PSD cone X ⪰ 0 shown with contours and
its red boundary, when the number constraints (samples) grows large. The arrows point to the half-space associated with
each inequality constraint. The evolution of the feasible regime is depicted with increasing samples in three cases: (a) and
(d) small sample-size regime, constraints not forming a finite-volume polyhedron; (b) and (e) medium sample-size regime,
constraints forming a finite-volume polyhedron, parts of which are outside the cone; (c) and (f) large sample-size regime,
constraints forming a finite-volume polyhedron inside the PSD cone, making the PSD constraint redundant. The optimal point
representing the signal to be recovered is shown by purple.

are not enough to create a finite-volume space, whereas in
(b)/(e) such constraints can create the desired finite-volume
polyhedron space which, however, is not fully inside the PSD
cone. Lastly, in (c)/(f), the created finite-volume space shrinks
to be fully inside the PSD cone.

To find the signal of interest in the polyhedron (19), we use
the RKA without enforcing other costly constraints. This is
due to the fact that the solution may be efficiently approached
by solving the linear system of inequalities presented in (19).

Note that two signal models for the phase retrieval problem
were introduced in [11]: (1) The real-valued model: the
unknown signal x and {aj} are real. (2) The complex-valued
model: the unknown signal x and {aj} are complex [11].
Both settings will be considered in the following proposed
algorithm.

B. One-Bit Phase Retrieval Algorithm (OPeRA)
To recover the desired signal in the one-bit phase retrieval

problem, we aim to find a point in the polyhedron (19) instead
of solving the SDP in (6). As discussed in Section III-A, when
we exploit a large number of samples, the solution of (19) is
increasingly likely to capture the desired point, i.e. the signal
of interest, inside the PSD conical region. The proposed signal
recovery relies on the RKA, which is a powerful tool for
solving real- or complex-valued linear system of equations,
or inequalities through projections [39], [40].

Accordingly, we propose an algorithm to find the desired
matrix X⋆ in (13) by (i) using abundant measurements, in
order to create the finite-volume space inside the PSD conical
region (discussed further in Section IV), and (ii) solving (19)
via the RKA. We name our algorithm the One-bit Phase
Retrieval Algorithm (OPeRA).

The RKA is a sub-conjugate gradient method to solve
overdetermined linear systems, i.e, Cx ≤ b where C is a
m× n matrix with m > n [40], [41]. Conjugate-gradient
methods immediately turn the mentioned inequality to an
equality in the following form:

(Cx− b)
+
= 0, (20)

and then, approach the solution by the same process as used
for systems of equations. Without loss of generality, consider
(20) to be a polyhedron:{

cjx ≤ bj (j ∈ I≤) ,

cjx = bj (j ∈ I=) ,
(21)

where the disjoint index sets I≤ and I= partition our sample
index set J , and {cj} denote the rows of C. Based on this
problem, the projection coefficient βi of the RKA is defined
as [39], [40], [42]:

βi =

{
(cjxi − bj)

+
(j ∈ I≤) ,

cjxi − bj (j ∈ I=) .
(22)

Also, the unknown column vector x is iteratively updated as:

xi+1 = xi −
βi

∥cj∥22
cHj , (23)

where, at each iteration i, the index j is chosen independently
at random from the set J , following the distribution

P{j = k} =
∥ck∥22
∥C∥2F

. (24)

To ensure a limited error, the feasible region in (19) cannot
be an infinite space in an asymptotic sense. Fortunately, by
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Figure 2: Average MSE for signal recovery (in terms of spectral radius of X) for different one-bit sample sizes with OPeRA:
(a) x ∈ Rn, (b) x ∈ Cn.

introducing more samples, the problem can form a polyhedron
with a bounded volume containing the desired point. Even
more interesting, by adding more inequality constraints in (19),
the shrinkage of the said polyhedron will put a downward
pressure on the error between the desired and recovered points
(each informative sample will shrink this space). We will show
that by increasing the number of constraints and effective
sampling, this error approaches zero. Moreover, as a result
of using an overdetermined linear system of inequalities, the
convergence of the RKA is guaranteed [39], [40].

It is worth noting that, in our problem, we only have
the inequality partition I≤. Herein, the row vectors {cj}
and the scalars {bj} used in the RKA (21)-(24) are
−
{
rj vec

(
V ⊤
j

)⊤}
and −

{
rjτ

2
j

}
, respectively.

C. Numerical Illustrations for OPeRA

We numerically examine the effect of growing the sample
size in the recovery of the desired matrix X⋆ in OPeRA.
We will use the spectral radius metric which is particularly
informative in the recovery of rank-one matrices. Note that
for a positive semi-definite matrix such as our desired matrix
X⋆, the spectral radius is equal to the Frobenius norm of
the matrix [38]. In all experiments, the input signals were
generated as x ∼ N (0, In) + jN (0, In) for the complex-
valued model, and x ∼ N (0, In), for the real-valued model.
The rows of the sensing matrix A were generated as aj ∼
N (0, In) + jN (0, In) for complex-valued model, and aj ∼
N (0, In), for the real-valued model. Accordingly, we made
use of the time-varying thresholds τ ∼ Lognormal (0, 1). We
define the experimental mean square error (MSE) between the
true spectral radius ρ (X) and its estimate ρ

(
X̄

)
as

MSE ≜
1

E

E∑
e=1

∣∣ρe (X⋆)− ρe
(
X̄

)∣∣2 , (25)

where E is the number of experiments. Each presented
data point is averaged over 10 experiments. The re-

Table I: Average NMSE for OPeRA with different signal
dimensions.

OPeRA n = 30 n = 50 n = 128

NMSE 4.3359e-08 3.9485e-08 2.1566e-07
m⋆ 3000 8000 20000

sults are obtained for the number of samples m ∈
{1000, 5000, 10000, 50000, 100000}.

Fig. 2 appears to confirm the possibility of recovering
the spectral radius of X⋆ from the large number of one-bit
sampled data with time-varying thresholds by OPeRA for the
real-valued and the complex-valued models, respectively. As
expected, the performance of the recovery will be significantly
enhanced as the number of one-bit samples grows large. In
all experiments, the obtained maximum eigenvalue is positive,
which is equal to the spectral radius of the recovered matrix.

An important part of our work is to show that our method
can recover an X that is “increasingly” rank-one and PSD
by growing the number of one-bit sampled data. To do so,
at first, we show in Fig. 2 that the maximum eigenvalue
is accurately recovered. Next, we present that all eigenval-
ues {ℓi} of the recovered matrix X̄ except the maximum
eigenvalue approach zero by increasing the number of one-
bit sampled data. Fig. 3 appears to confirm this claim for
both real-valued and complex-valued models. The presented
results are averaged over 10 experiments and the eigenvalues
are arranged in descending order.

To further investigate the effectiveness of OPeRA in both
real-valued and complex-valued models, Fig. 4 illustrates the
squared Frobenius norm of the error normalized by the squared
Frobenius norm of the desired matrix X⋆, defined as

NMSE ≜

∥∥X⋆ − X̄
∥∥2
F

∥X⋆∥2F
, (26)

where the presented results are averaged over 10 experiments.
Fig. 4 appears to confirm that the performance of the recovery
is enhanced by increasing the number of one-bit samples.
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Figure 3: The eigenvalues {ℓi} of X̄ (excluding the maximum eigenvalue) averaged over 10 experiments: (a) x ∈ Rn, (b)
x ∈ Cn. Deploying a large number of samples leads to obtaining an X that is “increasingly” rank-one PSD.
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Figure 4: Average NMSE for the Frobenius norm error between the desired matrix X⋆ and its recovered version X̄ for different
one-bit sample sizes with the RKA applied to (19) when (a) x ∈ Rn, (b) x ∈ Cn.

The main difference of reported results of real and complex
domains is that we have to increase the number of iterations
in RKA for the recovery of complex signals, because of
their more complexity compared to that of signals in the real
domain.

To examine the performance of OPeRA for moderate and
high dimensional input signals, we consider input signals with
dimensions n ∈ {30, 50, 128} which their results are averaged
over 15 experiments and reported in Table I. As can be seen,
our proposed recovery method appears to perform well in high
dimensional scenario. These results are obtained by using the
random time-varying sampling thresholds which are chosen to
be close to the measurements {yj}; i.e., τ = y + ϵ, where ϵ
is a normal random vector ϵ ∼ N (0, 0.02I).

IV. BOUNDING THE RECOVERY ERROR

In this section, we derive the convergence rate of our
proposed algorithm in its search for the optimal point in the

PSD cone. Moreover, an upper bound for the recovery error
E
{
∥Xi −X⋆∥2F

}
will be introduced. This bound will be

leveraged to find a lower bound on the number of measure-
ments m; the critical role of which was readily discussed in
Section III.

A. Chernoff Bound Analysis for OPeRA
We first investigate the convergence of OPeRA through a

probabilistic lens. Define the distance between the optimal
point X⋆ and the j-th hyperplane presented in (19) as

Hj (X
⋆,Xi) = |Tr (VjXi)− Tr (VjX

⋆)| ,
= |Tr (Vj (Xi −X⋆))| , j ∈ J ,

(27)

where Xi is the solution from the RKA iterations. From an
intuitive point of view, it is easy to observe that by gener-
ally reducing the distances between X⋆ and the constraint-
associated hyperplanes, the possibility of capturing the optimal
point is increased.
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Suppose K is the cardinality of the set of the hyperplanes
presented in (19), a portion of the whole sample size, i.e.,
K ≤ m , which will effectively form a polyhedron inside
the PSD cone around the optimal point X⋆ if the number
of samples is sufficient. The average of the distances {Hj}
around the optimal point is obtained as

E (X⋆) =
1

K

K∑
j=1

Hj (X
⋆,Xi) , K ⊆ J . (28)

For a specific sample size m, when the area of the finite-
volume space around the optimal point is reduced, E (X⋆) is
diminished as well. Define the overall average distance Tave
as

Tave =
1

m

m∑
j=1

Hj (X
⋆,Xi) , m ∈ J . (29)

Increasing the number of samples leads to smaller values of
E (X⋆) and Tave. Therefore, the possibility of creating the
finite-volume space around the desired point increases in the
asymptotic sample-size scenario, with m ≥ m⋆, where m⋆ is
the minimal measurement size. The Chernoff Bound [43], [44]
can shed light on this phenomenon as illustrated bellow.

Theorem 1. Consider the distances {Hj (X
⋆,Xi)} between

the desired point X⋆ and the hyperplanes of the polyhedron
defined in (19) to be i.i.d. random variables.

• The Chernoff bound of Tave in (29) is given by

Pr

Tave =
1

m

m∑
j=1

Hj (X
⋆,Xi) ≤ a

 ≥ 1− inf
t≥0

MT

eta
,

(30)
where MT is the moment generating function (MGF) of
Tave, given as

MT =

1 + t
µ
(1)
Hj

m
+ · · ·+ tκ

µ
(κ)
Hj

κ!mκ
+R (m)

m

,

(31)
with µ

(κ)
Hj

= E
{
Hκ

j

}
, and R denoting a bounded

remainder associated with truncating the Taylor series
expansion of MT .

• MT is decreasing with an increasing sample size in the
sample abundance scenario, leading to an increasing
lower bound in (30).

Proof. The MGF of Tave is given by

MT = E
{
et

1
m

∑m
j=1 Hj

}
=

m∏
j=1

E
{
et

Hj
m

}
= E

{
et

Hj
m

}m

.

(32)

By using the Taylor series expansion, one can write

MT = E

{
1 + t

Hj

m
+ t2

H2
j

2m2
+ t3

H3
j

6m3
+ · · ·

}m

, (33)

which leads to the formulation (31). Note that due to the fact
that the distances {Hj} can be considered to be finite values,
their moments always exist.

It is straightforward to verify that MT is an analytic function
and that |R (m⋆)| is bounded. Let t0 denote the value of t
making the upper bound in (30) infimum. To prove that MT

is a decreasing function in the asymptotic sample-size case
(m > m⋆), we use the Padé approximation (PA) which can
asymptotically approximate MT with a rational function of
given order through the moment matching technique as follows
[24], [28], [29]:

∀ m > m⋆ : MT =

1 + · · ·+ tκ0
µ
(κ)
Hj

κ!mκ

m

≍
a0 +

a1

m

b0 +
b1
m

,

(34)
where {a0, a1, b0, b1} are the PA coefficients as given in [24].
The above rational approximation3 is a decreasing function; a
fact that can be verified by taking its first derivative with re-
spect to m. The negativity of the derivative is easily concluded
by observing that

σ2
Hj

= µ
(2)
Hj

−
(
µ
(1)
Hj

)2

≥ 0, (35)

where σ2
Hj

is the non-negative variance of the random variable
Hj .

B. Recovery Error Upper Bound for OPeRA

In order to find the signal of interest in the polyhedron (19),
we are utilizing the RKA which its convergence rate obtained
as the following lemma.

Lemma 1 (See [40], [41]). RKA converges linearly in expec-
tation:

E
{
∥xi − x⋆∥22

}
≤ qi ∥x0 − x⋆∥22 , (36)

where x⋆ is a desired point, q ∈ (0, 1) is a function of the
condition number of the matrix C, and i is the number of
required iterations for the RKA.

In our problem, xi = vec (Xi), x⋆ = vec (X⋆), and C =
R⊙V . Therefore, the left-hand side of (36) may be recast as

E
{
∥vec (Xi)− vec (X⋆)∥22

}
= E

{
∥Xi −X⋆∥2F

}
. (37)

It is clear from (36) that by using a well-chosen initial point
x0 or by increasing the number of iterations i, the recovery
error can be further contained. Nevertheless, in the proposed
recovery approach, it is deemed necessary to have the suffi-
cient number of samples (inequalities) in order to guarantee a
finite-volume feasible region and a bounded recovery error.
Once our search area is located inside the PSD cone, we
may effectively employ (36) for the convergence rate. The
convergence rate of the RKA is useful when we have a linear
system of inequalities. On the other hand, in the one-bit phase
retrieval, the main constraints, i.e. the rank-one and the PSD,
are non-linear and they may be considered to be redundant
by deploying the enough number of samples. Thus, (36) is
insufficient to present the convergence rate of OPeRA. We

3Considering the Taylor series expansion of MT , the PA with the utilized
orders presented in (34) will approximate MT with an error in the order of
O(m−3) for m > m⋆.
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can make (36) relevant to the one-bit phase retrieval problem
by taking a penalty function into consideration:

E
{
∥Xi −X⋆∥2F

}
≤ qi ∥X0 −X⋆∥2F +Ψ(m) , (38)

where Ψ(.) is a decreasing function in the abundance sample-
size regime, such that if the number of samples is enough
to satisfy the PSD constraint, the penalty function approaches
zero Ψ(m) → 0. Based on our discussion in Section IV-A, a
good example for Ψ(m) can be MT − M∞, where M∞ =
limm→∞ MT .

To find a bound for the sufficient number of measurements
m to create a finite-volume space inside the PSD cone and the
penalty function starts to be zero, we utilize the tail function
of the penalty given by

Ψ⋆(m) = Ψ(m)I(m≥m⋆). (39)

Tails of decreasing functions may be asymptotically approx-
imated by an exponential function [44]. Mathematically, this
may be expressed as

∃ ϵ0, γ1 ∈ R+, sup
m

∣∣Ψ⋆(m)− ϵ0e
−γ1m

∣∣ < ε, (40)

where ε is an arbitrarily small positive number. To evaluate ϵ0
and γ1, we can utilize the PA of Ψ(m) = MT −M∞ defined
in (34) as follows:

ϵ0e
−γ1m1 =

a0 +
a1

m1

b0 +
b1
m1

− a0
b0

,

ϵ0e
−γ1m2 =

a0 +
a1

m2

b0 +
b1
m2

− a0
b0

,

(41)

where m1 = m⋆, m2 = Cm⋆, and C is chosen to be a large
positive number. Consequently, ϵ0 and γ1 are given by

γ1 =
1

m2 −m1
ln

(
fp (m1)

fp (m2)

)
,

ϵ0 = fp (m1) e
γ1m1 ,

(42)

where fp(m) =
a0+

a1
m

b0+
b1
m

− a0

b0
. Note that fp(m) is the decreasing

function and fp(m1)
fp(m2)

≥ 1.
By using (41), we formulate the exponential function

ϵ0e
−γ1m1 in such a way to follow the penalty function in

the beginning point m⋆, and its tails behavior. Therefore, the
boundary (38) is reformulated for m ≥ m⋆ as

E
{
∥Xi −X⋆∥2F

}
≤ qi ∥X0 −X⋆∥2F + ϵ0e

−γ1m. (43)

C. Lower Bound on the Number of Measurements

The algorithm termination criterion is considered to be

E
{
∥Xi −X⋆∥2F

}
≤ ϵ1. (44)

Based on this criterion and (43), the following theorem is
presented in order to find a lower bound for the number of
required measurements in OPeRA.

Theorem 2. To recover the desired PSD matrix X⋆ in
accordance to (44) in one-bit phase retrieval by OPeRA with

a probability of at least 1 − inf {MT e
−at}, the number of

measurements m must obey

m ≥ 1

γ1
ln

(
ϵ0

ϵ1 − qiω0

)
, (45)

where ϵ0 and γ1 are determined via (42), ω0 = ∥X0 −X⋆∥2F
is the initial squared-error, and i is the number of iterations.

Proof. To satisfy (44), the inequality in (43) is adjusted
to capture the upper bound ϵ1. As a result, the following
inequality is obtained:

qi ∥X0 −X⋆∥2F + ϵ0e
−γ1m ≤ ϵ1. (46)

Note that ω0 is a constant scalar that only depends on the
initial and optimal signals. According to (43), we can write

e−γ1m ≤ ϵ1 − qiω0

ϵ0
, (47)

or equivalently,

m ≥ 1

γ1
ln

(
ϵ0

ϵ1 − qiω0

)
. (48)

which proves the theorem.

The sufficient number of measurements m is sought to
create a finite-volume in the PSD cone X ⪰ 0 for the input
signal x with the size n. It is easy to verify that the dimension
of the PSD cone is equal to n2+n

2 in both real-valued and
complex valued cases. The infimum number of the hyperplanes
creating a finite-volume space in a n′-dimensional region is
n′ + 1. Consequently, we can write:

inf K =
n2 + n

2
+ 1, K ⊆ J . (49)

Therefore, to form the finite-volume space, the sample size m
must be lower bounded by inf K:

m ≥
(
n2 + n

2
+ 1

)
. (50)

The above bound helps us to establish a clear connection
between the sample size and the problem dimension. However,
since the boundary in (45) is concerned with containing the
error after a finite-volume is formed, it is asymptotically tighter
than (50). Therefore, by satisfying (45), the lower bound in
(50) is typically met as well. To achieve the accuracy ϵ1 with
OPeRA, the finite volume space must be created inside the
cone. Thus, the chosen number of measurements m⋆ satisfying
the inequality (43), can satisfy (48) as well, since to create a
finite volume space, we need at least n2+n

2 samples.

V. COMPLEXITY INVESTIGATION

We examine the computational cost associated with the
use of more samples by comparing our approach (OPeRA)
with the PhaseLift method, its one-bit extension (one-bit
PhaseLift) as defined in (14) and Wirtinger flow (WirtFlow).
This comparison is based on the required computational time
for different sample sizes.
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Figure 5: Comparing the PhaseLift method and OPeRA per
CPU time when both methods use the stopping criterion
E
{
∥Xi −X⋆∥2F

}
≤ 10−2. Note that PhaseLift is applied to

the high-resolution samples whereas only the one-bit version
of the samples are made available to OPeRA.

A. Comparing PhaseLift and OPeRA

To compare the computational time for the SDP-based
PhaseLift approach and our proposed method, the iterative
algorithms are terminated according to (44) with ϵ1 = 10−2.
The unknown signal x lies within R10. The number of samples
m is set to be 100, 1000, 3000, 4000, 5000, 10000, 30000,
50000, 80000, and 100000. Each CPU time is obtained by
averaging over 5 experiments. PhaseLift is applied to the
high-resolution samples, whereas OPeRA is applied to their
one-bit sampled data counterpart, which means only partial
information is made available to OPeRA.

As can be seen in Fig. 5, due to the growing number of
samples, the cost of the PhaseLift algorithm has an increasing
trend. Nevertheless, the CPU time for OPeRA experiences a
significant decline rate from m = 100 up until m = 50000,
while it starts increasing afterwards. The reason behind this
behavior is hidden in the application of RKA. As discussed in
Section IV, to create a finite-volume space around the optimal
point X⋆, and to capture error upper bound ϵ1, the number
of samples has to move to the large-scale regimen. One may
simply verify that, according to Theorem 2, by increasing
the number of measurements m, the RKA may achieve the
error upper bound with fewer iterations i. Additionally, the
computational cost of the RKA used to solve (19) behaves as
O
(
in2

)
. As a result, the CPU time for OPeRA may initially

decrease with a growing number of samples.
Surpassing m = 3000, the CPU time for OPeRA becomes

smaller than that of the PhaseLift method; i.e. by employing
sufficient number of samples, less complexity is achievable
which is facilitated by dropping the PSD constraint. How-
ever, after approaching m = 50000, we have increased the
number of inequalities in such a way that the contribution
to signal recovery is negligible, while at the same time, the
extra measurements will still need processing. These extra
inequalities may require more iterations to take them into
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T
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e
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Figure 6: Comparing OPeRA, the PhaseLift method and the
Wirtinger flow per CPU time when all methods use the
stopping criterion E

{
∥Xi −X⋆∥2F

}
≤ 10−2.

Table II: Comparing CPU times of the PhaseLift method, the
Wirtinger flow and OPeRA with their optimal sample sizes.

Algorithm m⋆ CPU time (s)

PhaseLift 30 0.0850

Wirtinger flow 30 0.0116

OPeRA 500 0.0045

account which is undesirable and increases the CPU time; see
Fig. 5. Interestingly, OPeRA can satisfy the recovery criterion
(44) with less CPU time and less input information compared
to PhaseLift which is useful for the high-resolution scenario.

To further investigate the complexity of OPeRA, we com-
pare it with that of the SDP and a popular local (non-convex)
phase retrieval algorithm, the Wirtinger flow (WirtFlow) (see
[14]) for different sample sizes in Fig. 6. In this comparison,
we deploy the close time-varying thresholds to the measure-
ments y; i.e., τ = y+ ϵ, where ϵ is a normal random vector
ϵ ∼ N (0, 0.02I). As can be observed, after m = 500, the
performance of OPeRA has a lower CPU time compared to
that of the SDP and the WirtFlow method. By comparing
Fig. 5 and Fig. 6, one may conclude the importance of
choosing time-varying sampling thresholds in OPeRA. When
random thresholds are selected to be near the values of the
measurements, they capture more information to use in the
signal recovery which leads to employ less number of one-bit
samples to achieve the termination criterion.

In Table II, CPU times of OPeRA, PhaseLift and WirtFlow
methods are reported when the optimal number of samples are
utilized where m⋆ = 3n log n and m⋆ = 500 are considered
for high-resolution methods and OPeRA, respectively. Herein,
optimal sample sizes mean the number of samples utilized by
algorithms to show their best performance, i.e. the algorithm
criterion ∥Xi −X⋆∥2F ≤ 10−4 ∥X⋆∥2F. By this comparison,
we remove the burden of the large number of samples from the
SDP and the WirtFlow method to compare fairly their optimal
shape deploying incomplete measurements, with OPeRA. As
can be seen in Table II, OPeRA by using 500 one-bit samples
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Figure 7: Comparing the one-bit PhaseLift method and OPeRA
based on their CPU time when both algorithms are terminated
using the criterion E

{
∥Xi −X⋆∥2F

}
≤ 10−2.

can recover the signal with the lower CPU time compared to
that of the SDP and the WirtFlow method at which they are
using incomplete measurements.

B. Comparing One-bit PhaseLift and OPeRA

Next, we compare the CPU time of the one-bit PhaseLift
defined in (14) and that of OPeRA. As mentioned before, the
one-bit PhaseLift problem is a SDP similar to the problem (6).

To compare the relaxation-based formulation of the one-
bit PhaseLift with our approach, we aim at the recov-
ery of a signal x ∈ R10 with sample sizes m ∈
{1000, 3000, 5000, 8000, 10000}. The termination criterion of
both algorithms is exactly similar to the one in Section V-A.
As can be seen in Fig. 7, by growing the number of one-bit
samples, the CPU time of the one-bit PhaseLift is increasing.
On the other hand, the CPU time of OPeRA is decreasing.
One may conclude that in the large sample size regimen,
the proposed one-bit phase retrieval approach has a lower
computational burden than one-bit PhaseLift. This due to
enjoying the advantages of using more samples to make both
the rank-one constraint and the PSD constraint redundant. We
hypothesis that the computation time rise due to unhelpful
extra samples (in achieving the error bound) occur well beyond
m = 10000, which is presumably why the increase is not
observed in our experiment.

VI. ADAPTIVE TIME-VARYING THRESHOLDING

Hereafter, we propose an adaptive threshold design strategy
for the task of one-bit phase retrieval. By the spirit of using
the iterative RKA, a suitable time-varying threshold can be
chosen in order to find the optimal solution with enhanced
accuracy. As discussed earlier, with sample abundance, we
have an overdetermined linear system of inequalities creating
a finite-volume space. To capture the desired signal matrix X⋆

more efficiently, the right-hand side of the inequalities in (19),
i.e. rjτ2j , must be determined in a way that each associated
hyperplane passes through the desired feasible region within

Figure 8: The signal of interest (shown by yellow circle) is
located in the finite-volume space which presents itself as the
red semi-rectangular. The new shrunken feasible region created
by the blue hyperplane captures the desired signal. However,
the other two sampling hyperplanes are non-informative.

the PSD cone. Therefore, an algorithm is proposed to ensure
that this occurs. To give an illustration, we suppose the solution
is the yellow point in Fig. 8. Geometrically, with an adaptive
time-varying threshold algorithm, our goal is to generate an in-
formative sampling threshold creating the inequality constraint
corresponding to the hyperplane shown by the blue line.

Unlike the other two inequality constraints (hyperplanes
illustrated by green and purple lines in Fig. 8), the blue
hyperplane will further shrink the feasible region for signal
recovery. From this viewpoint, the other hyperplanes (green
and purple lines) constitute extra inequality constraints that
are not informative. As discussed in Section V-A, such extra
samples (the extra inequality constraints) only increase the
computational burden of the phase retrieval task.

A. Adaptive Threshold Design for OPeRA

In light of previous discussion, to achieve a better recovery
accuracy for a specific sample size m, one may use the idea
of shrinking the space imposed by the set of inequalities in
(19) around the optimal solution X⋆. To make this happen, we
propose an iterative algorithm generating an adaptive threshold
to accurately obtain the desired solution. To diminish the area
of the finite-volume space around the optimal point, we update
the time-varying threshold as

Tr
(
VjX

(k)
)
− r

(k)
j ϵ

(k)
j =

(
τ
(k+1)
j

)2

, j ∈ J , (51)

where
{
ϵ
(k)
j

}
at the j-th element of a positive vector ϵ(k)

in the k-th iteration. This updating process is based on the
fact that when rj = +1, we have Tr (VjX) ≥ (τj)

2, and
Tr (VjX) ≤ (τj)

2 otherwise. The reason behind updating the
one-bit measurements

{
r
(k)
j

}
, is to ensure that the optimal

solution X⋆ satisfies (19) in iteration k, i.e. the inequalities

r
(k)
j vec

(
V ⊤
j

)⊤
vec (X⋆) ≥ r

(k)
j

(
τ
(k)
j

)2

for j ∈ J . Our
proposed iterative method to update the time-varying threshold
is summarized in Algorithm 1.
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B. Numerical Study of Adaptive Thresholding

To present the efficacy of the adaptive time-varying thresh-
old algorithm in comparison with a non-negative random
threshold, the unknown signal x and the sensing ma-
trix A are generated using the same settings as in Sec-
tion III-C. As can be seen in Fig. 9, the performance
of our proposed algorithm is evaluated by the NMSE de-
fined in (26) which is considerably enhanced in comparison
with adopting a non-negative random threshold according to
Lognormal (0, 1). The results are obtained for the sample sizes
m ∈ {1000, 5000, 10000, 50000, 100000} and δ = 10−3. Each
presented data point is averaged over 5 experiments.

In the following, we compare the number of measurements
m required to recover the rank-one and PSD matrix X⋆ using
the OPeRA with (i) our proposed adaptive threshold algorithm,
as well as (ii) a random non-negative threshold. The result can
be summarized as follows.

Theorem 3. OPeRA with the adaptive sampling threshold
proposed in Algorithm 1 can recover the rank-one and PSD
matrix X⋆ with a high probability of at least 1−inf {MT e

−at}
by using a smaller number of measurements m in comparison
to OPeRA with a random threshold.

Proof. Let mf denote the number of inequalities in (19)
creating a finite-volume space around the desired matrix X⋆,
which is not necessarily inside the PSD cone. As discussed in
Section VI-A, our proposed adaptive thresholding algorithm
shrinks the finite-volume space around the optimal solution
X⋆ in a stronger way than the random thresholds. As a
result, {Hj} defined in (27) as well as their moments µ

(k)
Hj

,
will further diminish which leads to a smaller value for
MT . Therefore, according to Theorem 1 and Theorem 2, a
similar recovery performance can be expected with a smaller
sample size when the adaptive sampling threshold proposed
in Algorithm 1 is utilized. In other words, when time-varying
sampling thresholds become closer to the measurements, their
associated hyperplanes will be closer to the desired signal X⋆.
As a result, the volume of created finite space will further
diminish as well. Therefore, due to the fact that the final
solution of the RKA Xi is inside the created finite space,
it gets closer to the desired point X⋆, which leads to smaller
distances Hj (X

⋆,Xi), and subsequently smaller moments.

To numerically scrutinize our claim in Theorem 3, Table III
illustrates that the sufficient number of samples m required
for OPeRA to recover a PSD matrix with adaptive sampling
thresholds proposed in Algorithm 1 is much less than that of
OPeRA with a random threshold. The result is obtained for
the input signal x, a random time-varying threshold τ , and
the sensing matrix A originating from the same settings as
presented in Section III-C. The number of samples examined
in our experiments are same as Section V-A, plus m = 500.

To further investigate the effectiveness of Algorithm 1, we
show that the average of all eigenvalues {ℓi} of X̄ except
the maximum eigenvalue (spectral radius) approaches zero
by increasing the number of measurements—see Fig. 10.

Algorithm 1 Adaptive Algorithm for Sampling Threshold
Selection

Input: One-bit data: r, sensing matrix: A, initial time-
varying thresholds: τ (0) ∼ Lognormal (0, 1) (with the
same length as r), small positive number: δ.
Output: Adaptive threshold: τ ⋆.
Note: X(k), τ (k), r(k) and ϵ(k) denote their associated
values at iteration k.

1: Set r(0) = r.
2: Calculate the matrix V with the rows {vec

(
aja

H
j

)⊤}.
3: Initiate the following loop by setting k = 0.
4: while

∥∥τ (k+1) − τ (k)
∥∥
2
≤ δ do

5: Find a point inside the following polyhedron with the
RKA for τ = τ (k):

P =
{
X(k) |

(
R(k) ⊙ V

)
vec

(
X(k)

)
≥ b(k)

}
,

where R(k) denotes the replica form of r(k) and b(k) =

r(k) ⊙
(
τ (k)

)2
.

6: Update τ (k+1) as:

r(k) ⊙
(
τ (k+1)

)2

=
(
R(k) ⊙ V

)
vec

(
X(k)

)
− ϵ(k)

2
,

where ϵ(k) is computed as:

ϵ(k) =
(
R(k) ⊙ V

)
vec

(
X(k)

)
− r(k) ⊙

(
τ (k)

)2

.

7: Update r(k+1) based on (12).
8: Increase k by one.
9: end while

Table III: The number of samples required to recover a PSD
matrix.

Proposed Algorithm m

OPeRA with a random threshold 30000

OPeRA with the adaptive threshold 500

Interestingly, Fig. 10 reaffirms that the number of measure-
ments used to recover the rank-one and PSD matrix X⋆ by
OPeRA with adaptive thresholding, is much less than the
same result reported in Fig. 3 where OPeRA with a random
threshold is adopted. The results are obtained for the number
of samples m ∈ {300, 500, 1000, 2000}, they are averaged
over 5 experiments, and the non-dominant eigenvalues are
arranged in a decreasing order.

It is worth noting that by considering the adaptive thresh-
olding process in OPeRA, the overall complexity is O

(
kin2

)
,

where k is the number of iterations in Algorithm 1, which
is k = 3 in our numerical results. For the results reported in
Table III, the CPU time of OPeRA with the adaptive threshold
is obtained as 0.0135 which is still less than that of the
PhaseLift method reported in Table II, 0.0850.

VII. ONE-BIT PHASE RETRIEVAL WITH NOISY
MEASUREMENTS

In this section, we extend our study to signal recovery from
noisy one-bit data in the phase retrieval problem. In most
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Figure 9: Comparing the average NMSE for the Frobenius
norm between the desired matrix X⋆ and its recovered matrix
using OPeRA when (i) a random threshold and (ii) the adaptive
sampling threshold proposed in Algorithm 1, are adopted.

practical applications, we must rely on noisy measurements
[23], [35], [45]. In particular, we will examine whether the
computational advantages provided by sample abundance in
the noiseless scenario will also be observed under the presence
of noise.

A. Problem Formulation

Define the positive-valued vector µ = [µ1, · · · , µm] by

µj = Tr (VjX) , j ∈ J . (52)

Let λ and z denote the time-varying threshold vector and
the noise vector, respectively. The noisy one-bit samples are
generated as

rj =

{
+1 µj + zj > λj ,

−1 µj + zj < λj .
(53)

The occurrence probability vector p for the noisy one-bit
measurement r is given as [45],

pj =

{
Φ(µj − λj) for {rj = +1},
1− Φ(µj − λj) for {rj = −1},

(54)

where Φ(.) is the CDF of −z. Since {µj} are linear function of
X , the CDF of noise {Φ(µj − λj)} can be written as Φ (X).
The log-likelihood function of the sign data r is given by

Lr(µ,X) =

m∑
j=1

{
I(rj=+1) log (Φ(µj − λj))

+I(rj=−1) log (1− Φ(µj − λj))
}
.

(55)

Interestingly, by solving the maximum log-likelihood esti-
mation (MLE) problem associated with (55), our desired
matrix X⋆ can be immediately approximated. The proposed
algorithm is called Noisy OPeRA.

500 1000 1500 2000

Total Number of One-Bit Samples
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0
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0.1

Figure 10: All eigenvalues {ℓi} of X̄ except the dominant
eigenvalue (spectral radius), averaged over 5 experiments. As
can be seen, deploying OPeRA with the adaptive sampling
thresholds, leads to obtaining a nearly rank-one and PSD
matrix with significantly enhanced accuracy as the number
of samples grows large.

B. Noisy One-Bit Phase Retrieval via Convex Programming

A preliminary formulation of our optimization problem
based on the MLE may be cast as:

min
µ,X

− Lr(µ,X)

s.t. µj = Tr (VjX) , j ∈ J ,

rank (X) = 1,

X ⪰ 0.

(56)

This problem is the one-bit version of its counterpart for-
mulated in [23]. However, as discussed in previous sections,
because of employing one-bit sampling, the large number
of samples can be adopted which leads to the availability
of a large number of sign data {rj} and the correspond-
ing inequality constraints; since when rj = +1, we have
Tr (VjX) ≥ (τj)

2, and Tr (VjX) ≤ (τj)
2 otherwise.

These inequalities are collected to form the polyhedron (19).
However, these constraints may be equivalently absorbed in
the objective function to facilitate the one-bit phase retrieval
formulation in the noisy case. Therefore, the problem (56) can
be reformulated as

min
µ,X

− Lr(µ,X)

s.t. µj = Tr (VjX) , j ∈ J .
(57)

In many cases, Lr(µ,X) is a concave function and thus the
above programs becomes convex. One can readily verify this
in the case of a Gaussian noise [35]. In the rest of our paper,
−z is assumed to be an i.i.d. zero-mean Gaussian process
z ∼ N

(
0, σ2

zIm
)
, for which Φ(.) is given in (1).

C. Numerical Investigation of Noisy OPeRA

To examine the performance of Noisy OPeRA in practice,
and to validate the theoretical results described in this section,
we consider signal recovery with different values of σz ∈
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Figure 11: Average NMSE (dB) in the results obtained by the
MLE problem (57) over different SNRs and for two different
sample sizes m ∈ {5000, 10000}. It is observed that by
increasing SNR and the number of one-bit measurements, the
recovery performance of Noisy OPeRA is enhanced.

{0.1, 0.2, 0.4, 0.5, 0.7, 1}, where the unknown signal x was
generated in a similar manner as in Section III-C. The stochas-
tic threshold λ was generated according to λ ∼ N (0, Im).
The signal to noise ratio (SNR) is evaluated as:

SNR =
1
m

∑m
j=1 µ

2
j

σ2
z

. (58)

In Fig. 11, the recovery performance is illustrated by using the
NMSE defined in (26), with the results averaged over 10 ex-
periments. We report both SNR and NMSE in dB (10 log(.)).
As expected, by increasing the SNR, the performance of
our method is improved. Furthermore, the performance of
the estimation problem formulation in (57) is enhanced by
increasing the number of one-bit samples m ∈ {5000, 10000}.
In this approach, since the desired matrix X⋆ is recovered
statistically from MLE, we compare Φ (X) and Φ(X̄) by
resorting to a widely used statistical distance, known as the
Hellinger distance, which was defined in (2). The vector entry-
wise formula of the Hellinger distance is given as

d2
H

(
Φ (X) ,Φ(X̄)

)
=

1

m

m∑
j=1

d2H (Φ (µj − λj) ,Φ(µ̄j − λj)) ,

(59)
where {µ̄j} is the estimated version of {µj} obtained from
(57). As was previously observed, by increasing the value of
SNR, Noisy OPeRA performs better in terms of the NMSE .
A similar behavior occurs with the Hellinger distance shown
in Fig. 12. The Hellinger distance is obtained is very small for
all SNR values in this experiment, However, it is decreasing
for an increasing SNR, which appears to confirm the recovery
of the desired matrix in statistical (noisy) environments by
taking advantage of a large number of samples—thus without
considering the rank-one and the PSD constraints.

To show the sustained benefit of sample abundance in the
noisy case, we compare Noisy OPeRA with Noisy PhaseLift

5 10 15

SNR (dB)

-29

-28

-27

-26

-25

-24

-23

Figure 12: Comparing the CDF of the desired matrix Φ (X)
and the CDF of the recovered matrix Φ

(
X̄

)
using the

Hellinger distance (59). Although the Hellinger distance of
our estimation is very small overall, it shows a decreasing
behavior as the SNR grows large.

Table IV: Comparing Noisy PhaseLift and Noisy OPeRA in
terms of CPU time and NMSE.

Noisy PhaseLift [23] m = 5000 m = 10000 m = 20000

CPU time (s) 1.4698 2.0305 3.7529
NMSE 0.0045 0.0041 0.0035

Noisy OPeRA m = 5000 m = 10000 m = 20000

CPU time (s) 0.9497 1.4436 2.3137
NMSE 0.0040 0.0015 3.8875e-04

formulation firstly introduced in [23] as

min
µ,X

−Υµ(X) + αTr (X)

s.t. µj = Tr (VjX) , j ∈ J ,

X ⪰ 0,

(60)

where Υµ(X) = log (f (s|µ)), with the noisy measure-
ment vector {sj} is sampled from a probability distribution
f(.|µ), and α is a positive scalar. For our numerical ex-
aminations, we assume the measurement noise is distributed
as z ∼ N (0, 0.25Im) and the termination criterion is
∥Xi −X⋆∥2F ≤ 5×10−3 ∥X⋆∥2F. Table IV shows that by us-
ing a large number of samples (and making rank-one and PSD
constraints redundant) in the noisy one-bit sampling scenario,
Noisy OPeRA can recover the signal with a better CPU time
for sample sizes m ∈ {5000, 10000, 20000} compared to the
noisy PhaseLift method. This is similar to our discussion in the
noiseless scenario; see Section V. Interestingly, by growing the
number of samples, the NMSE is enhanced more significantly
by Noisy OPeRA than that of the noisy PhaseLift method. The
results are averaged over 5 experiments. The settings of the
input signal, time-varying thresholds and the sensing are also
chosen in the same way as in Section III-C.

VIII. CONCLUSION

We showed that the abundance of samples that naturally
occurs in one-bit sampling scenarios has significant implica-
tions in lowering the computational cost of phase retrieval by
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making costly constraint redundant. The problem then boils
down to a set of linear inequalities that may be solved by RKA
within the proposed OPeRA signal recovery framework. The
numerical results showcased the effectiveness of the proposed
approaches for phase retrieval.
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