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ABSTRACT

The COVID-19 pandemic has had a profound impact on the global

community, and vaccination has been recognized as a crucial in-

tervention. To gain insight into public perceptions of COVID-19

vaccines, survey studies and the analysis of social media platforms

have been conducted. However, existingmethods lack consideration

of individual vaccination intentions or status and the relationship

between public perceptions and actual vaccine uptake. To address

these limitations, this study proposes a text classification approach

to identify tweets indicating a user’s intent or status on vaccina-

tion. A comparative analysis between the proportions of tweets

from different categories and real-world vaccination data reveals

notable alignment, suggesting that tweets may serve as a precursor

to actual vaccination status. Further, regression analysis and time

series forecasting were performed to explore the potential of tweet

data, demonstrating the significance of incorporating tweet data in

predicting future vaccination status. Finally, clustering was applied

to the tweet sets with positive and negative labels to gain insights

into underlying focuses of each stance.

CCS CONCEPTS

· Information systems→Clustering and classification; ·Com-

puting methodologies→ Information extraction; · Human-

centered computing → Social media.
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1 INTRODUCTION

The Coronavirus (COVID-19) pandemic has had a far-reaching and

enduring impact on the global community over the past few years,

resulting in millions of cases of infection and death and leading

to a significant socio-economic crisis [5]. As a means to curb the

progression of the pandemic, vaccination has been recognized as a
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crucial intervention. The success of the vaccination effort is contin-

gent not only on the efficacy and safety of the vaccine, but also on

the level of acceptance among the population. To gain insight into

COVID-19 vaccination acceptance rates and the factors that influ-

ence them, survey studies have been conducted extensively across

a variety of countries and regions [18]. However, these studies are

often costly and may not be able to keep pace with the dynamic

changes as the pandemic and the vaccination process evolve. Given

that a substantial number of individuals are now inclined to share

their views and activities on social media platforms, these platforms

provide a wealth of information regarding individual behaviors and

attitudes towards vaccination.

A multitude of studies have been conducted in recent times

to understand public perceptions of COVID-19 vaccines through

the analysis of Twitter data [6, 7, 11, 17, 20]. While these studies

provide valuable insights into public perceptions, they also exhibit

several limitations. Firstly, they lack the consideration of individual

vaccination intentions or status in the analysis of tweets, which is

a crucial aspect of determining the actual level of vaccine uptake

and the extent to which public perception influences vaccination

behavior. Secondly, there is limited information available on the

relationship between public perceptions and the actual trend in

vaccine uptake, which is a critical factor in ensuring the effective

distribution and coverage of vaccines.

Tomitigate the limitations of existing methods, we propose a text

classification approach for the identification of tweets that reveal a

user’s intent or status on vaccination. Our approach involves the

geolocation of tweets related to vaccination after the widespread

vaccine rollout in December 2020, with a focus on tweets originat-

ing within the United States. A total of 1,600 tweets were annotated

into four categories based on their vaccination intent or status

(vaccinated, positive, neutral, or negative), and a text classifier was

trained on this data, achieving an AUC of 0.81. Using the US tweets

labeled by our classifier, we conducted a comparative analysis be-

tween the proportions of tweets from different identified classes

and real-world vaccination data, revealing notable alignment (up

to a correlation of 0.84) between data trends. This suggests that

tweets related to vaccination may serve as a precursor to the actual

vaccination status. Moreover, regression analysis was performed

using state-level tweet and vaccination data, demonstrating a mod-

erate association between the proportions of tweets and future

vaccination rates. To further explore the potential of tweet data,

we also proposed a time series forecasting model for predicting fu-

ture vaccination status, and our results indicate that incorporating

tweet data significantly reduces forecasting error. Additionally, we

applied a simple clustering method to the tweet sets with positive

and negative labels to gain insights into the underlying focuses of

each stance.
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2 RELATED WORK

As the Internet has emerged as a prevalent source of health informa-

tion, individuals frequently resort to obtaining vaccine information

from social media platforms [8]. In addition to acquiring informa-

tion on vaccines, individuals often use social media to seek social

support and engage in conversations with their peers [24]. Hence,

social media can be viewed as a crucial channel through which re-

searchers can gain insights into public perceptions of vaccines and

public health practitioners can disseminate accurate information

to facilitate informed decision-making regarding vaccination.

Studies have revealed that social media has a substantial impact

on public attitudes towards vaccines, particularly in contributing

to vaccine hesitancy [15, 23]. Given the role played by online mis-

information in fostering vaccine hesitancy [10], researchers are

making sustained efforts to understand its influence. For instance,

Muric et al. [12] constructed a dataset concerning anti-vaccine con-

tent and COVID-19 vaccine misinformation by analyzing historical

tweets from Twitter accounts that posted tweets containing anti-

vaccine keywords. Pierri et al. [14] evaluated the impact of online

misinformation on U.S. COVID-19 vaccinations by determining

the prevalence of misinformation based on geolocated tweets ref-

erencing low-credibility sources, and comparing the results with

vaccine survey and uptake data. Additionally, Sharma et al. [19]

investigated the characteristics of misinformation and conspiracy

groups by identifying suspicious coordinated accounts in Twitter

data collected on COVID-19 vaccines.

Gaining an understanding of public perceptions of vaccines

is essential for devising effective strategies to influence vaccine

decision-making. To that end, many researchers have sought to

capture public perceptions from various angles by using social me-

dia data. For instance, Saleh et al. [17] analyzed 2.4 million English

tweets related to the COVID vaccine during its development, using

sentiment and emotion analysis, demographic inference, and topic

modeling to examine the evolution of public perception. Huangfu

et al. [7] adopted a similar sentiment-based topicmodeling approach

to study COVID-19 vaccine tweets following vaccine rollout. Lappe-

man et al. [9] investigated tweets expressing negative sentiment

towards COVID-19 vaccines in the U.S. and U.K. to reveal the un-

derlying themes. Luo et al. [11] explored public perceptions of the

COVID-19 vaccine by identifying prominent discussion topics on

social media platforms using semantic network analysis. Shi et al.

[20] compared the psycho-linguistic features of anti-vaxxers on

Twitter with those of pro-vaxxers, with the two competing groups

being identified by confirming the top users in each community

cluster detected. Di Giovanni et al. [6] constructed a tweet dataset

that was semi-automatically labeled based on selected hashtags,

and then trained a binary classifier to predict the stance of tweets

towards vaccines. Zhou and Li [25] devised a framework utilizing

autoregressive models to forecast vaccination uptake rates, which

draws on both conventional clinical data and innovative web search

queries gleaned from Google Trends.

The identification of attitudes towards vaccines in online posts

has primarily relied on lexicon and rule-based sentiment analy-

sis tools. However, these methods do not effectively capture the

individual’s intent or stance on vaccination. While some studies

have conducted temporal analysis of sentiment polarity towards

COVID-19 vaccines, there is a lack of understanding about the rela-

tionship between these discourses and actual vaccination trends.

In this context, this paper contributes to the field by presenting

a methodology for identifying tweets expressing vaccine intent,

conducting temporal and regression analysis to understand factors

impacting vaccine decisions, and proposing a forecasting model to

predict future vaccination status.

3 DATA

3.1 Twitter data

In order to gain insight into public perceptions of COVID-19 vac-

cines in the US following the vaccine roll-out, we utilized Twitter

content as our primary source of information. To collect tweets re-

lated to individual vaccination intent, we employed the full-archive

search endpoint provided by the Twitter API [22] to search for

all public tweets from December 19, 2020 to August 6, 2021 con-

taining specific keywords, including "vaccine", "vaccinated", "second

shot", "my shot", and "vaxxed". The choice of these keywords was

predicated on their ability to capture vaccination intent, notwith-

standing the possibility of missing out on negative aspects such

as misinformation or conspiracy theories that may also influence

public perception. To ensure that the tweets reflected users’ own

opinions and thoughts, we filtered out retweets, tweets containing

URLs, and only retained tweets written in English for consistency

in processing. The initial retrieval resulted in 26.9 million tweets

from across the world, of which only 2% were accompanied by

real-time location information.

In order to focus on tweets originating from the US, we utilized

the Carmen library [16] to determine the location of each user

based on the geo-coordinates provided in the tweets, as well as the

location field in the user’s Twitter profile. As a result, 11.1 million

tweets were successfully geolocated, of which 6.4 million were

from the US and were posted by 1.4 million unique users during

the specified time period.

3.1.1 Annotation. Based on a preliminary examination of the col-

lected data, four categories were identified to classify tweets accord-

ing to the expressed vaccination intent. The categories include: 1)

vaccinated, indicating that the user has received or will soon receive

a COVID-19 vaccine; 2) positive, conveying support or a favorable

view of the vaccine or vaccination without mentioning the user’s

own status; 3) negative, reflecting distrust and concerns about the

vaccine; 4) neutral, lacking a clear indication of the user’s inclina-

tion towards the vaccine. A sample of 1,600 tweets was randomly

selected from all US tweets and annotated for these categories.

The quadratic weighted kappa between the annotations made by

two annotators was found to be 0.795 for 100 of these tweets. The

annotation resulted in 351 tweets classified as vaccinated, 631 as

positive, 280 as negative, and 338 as neutral in terms of vaccination

intent. These labeled tweets were then used to train a classifier for

categorizing the remaining unlabeled data.

3.2 Vaccination and census data

We utilize the vaccination trend data in the United States provided

by the Centers for Disease Control and Prevention (CDC) [4] to

compare with our tweet data. This data contains daily updated
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national and jurisdictional level statistics, such as the total num-

ber of administered doses by date of administration, the percent

of the population with at least one dose, and so forth. Given that

demographic characteristics play a significant role in determining

vaccine uptake across different locations [21], we also use several

state-level census data as supplementary information for our tweet

data. These data include: 1) uninsured rate: the percent of the pop-

ulation without health insurance [3]; 2) rate 65+: the rate of the

population over 65 [1]; 3) poverty rate: the percent of the popu-

lation below poverty level [2]; and 4) non-metro score: the mean

of Rural-Urban Continuum Codes [13] of all counties in a state

divided by 10.

4 METHODS AND RESULTS

4.1 Classification

With the limited annotated data set (ğ3.1.1), our objective is to train a

classifier and apply it to the remaining unlabeled tweets, in order to

analyze the temporal trends in individuals’ vaccination intentions.

To this end, we compare two classification approaches: Logistic

Regression and Bidirectional Encoder Representations from Trans-

formers (BERT). For Logistic Regression, we experiment with two

input feature settings: binary (LogReg) and tf-idf (Tf-idf+LogReg)

features, both using unigrams and bigrams. In the tokenization

process, mentions, hashtags, and emojis are identified and trans-

formed into distinct tokens. Additionally, we incorporate simple

negation features to capture polarity (e.g., the phrase "not getting

vaccinated" becomes łNOT_getting, NOT_vaccinatedž).

For the BERT model, we utilized a pre-trained uncased English

language model, which was fine-tuned with our annotated data to

perform the sequence classification task. The model architecture

comprised of 12 hidden layers with a size of 768 and 12 attention

heads, resulting in a total of 110 million parameters. In the tokeniza-

tion process, we included 181 additional tokens to accommodate

for the representation of emojis in the vocabulary, which originally

consisted of 30,522 tokens. The model was fine-tuned by training it

for 3 epochs with a learning rate of 5 × 10−5.

Table 1 presents a summary of the accuracy of the models, which

were evaluated using 10-fold cross-validation. The precision, recall,

and F1 scores represent the weighted average across the four classes

identified, with the exception of the 3-class LogReg model, where

the vaccinated and positive tweets were consolidated into a single

class. Additionally, we present the class-specific accuracy of the

Tf-idf+LogRegmodel towards the end. It is evident that the model

performs better for the vaccinated and positive classes as compared

to the neutral and negative classes.

Due to the limitation of the available labeled data, it was chal-

lenging to enhance the overall accuracy further. As a result, the

4-class Tf-idf+LogReg regression model was selected as the final

classifier on account of exhibiting the highest accuracy while also

being the easiest to interpret. Upon applying the classifier to the

unlabeled data, we obtained the following class distribution: 3.1

million positive tweets, 1.3 million vaccinated tweets, 1.1 million

neutral tweets, and 0.9 million negative tweets.

Table 1: Cross-validation accuracy for the classification task

regarding vaccination intent.

method precision recall f1 acc auc

LogReg(3-class) 0.62 0.64 0.63 0.64 0.75

LogReg 0.56 0.57 0.56 0.57 0.79

BERT 0.58 0.59 0.58 0.59 0.80

Tf-idf+LogReg 0.58 0.60 0.58 0.60 0.81

- negative 0.51 0.37 0.43 - 0.80

- neutral 0.51 0.29 0.37 - 0.75

- positive 0.58 0.75 0.66 - 0.77

- vaccinated 0.72 0.79 0.75 - 0.94

4.2 Temporal Analysis

Drawing on the results of the classification procedure described

in ğ4.1, we present the trend in tweets in relation to the national

vaccination data over time. The tweets in each class were grouped

on a daily basis with respect to Eastern Standard Time (EST) and a 7-

day rolling average was calculated to account for daily fluctuations,

i.e. the mean value of the previous 7 days as of that day.

An examination of the tweet trend (Figure 1) reveals three dis-

tinct peaks, particularly within the positive tweet class: 1) the initial

distribution and administration of COVID-19 vaccines in December

2020, 2) the confirmation of the first case of the Delta variant in the

US in May 2021, and 3) the rapid growth of both daily test cases and

positive cases starting in July 2021, following a sustained period of

declining trends. The evolution of the vaccination trend exhibited

similar changes to the trends observed in tweets at each of the

three stages. Furthermore, there appears to be a correspondence

between fluctuations in the vaccination curve, marked by a valley

in late February and a peak in April, and similar fluctuations in

the tweet curves. To quantify the relationship between the tweet

and vaccination trends, we calculated the Pearson correlation coef-

ficient (PCC) between each pair of curves. The correlation between

the volume of tweets expressing that the user has been vaccinated

has a correlation of .773 with the total number of administered

doses; .641 with the number of first dose vaccination; and -.413

with the number of new cases of COVID-19. Thus, the results indi-

cate a strong correlation between the vaccinated tweet trend and

the actual vaccination trends.

While Figure 1 depicts the absolute number of tweets in various

categories, Figure 2 aims to provide a more nuanced perspective

by presenting the proportion of tweets across categories, thereby

eliminating the influence of the overall number of tweets on the

analysis. The tweet proportion curves demonstrate a strong align-

ment with the overarching trend as well as with certain fluctuations

in the vaccination curve. Our analysis reveals a robust positive

correlation between the proportions of tweets categorized as "vac-

cinated" and the daily number of doses administered, as indicated

by a PCC of 0.843. A corresponding decrease in positive tweet pro-

portion is observed as the vaccinated tweet proportion increases,

resulting in negative correlations with the vaccination trend (PCC

−0.779). Additionally, the neutral and negative tweet proportions

also demonstrate negative correlations, as indicated by the PCC

values.
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Figure 1: A comparison of the daily tweet trend by class with the vaccination trend (red) and the trend in COVID-19 cases

(blue) at a national level. The vaccination trend encompasses both 1) daily administered doses and 2) the number of individuals

receiving their first dose of the vaccine. All of the curves in the figure are based on a 7-day moving average calculation. The

Pearson correlation coefficients between the number of vaccinated tweets and a) administered doses, b) first dose vaccinations,

and c) new cases of COVID-19 are 0.773, 0.641, and -0.413, respectively.

Figure 2: A comparison of the national tweet trend in terms of the proportions of tweets from different classes with the trend

in vaccination. The Pearson correlation coefficients between the proportions of each tweet class and the daily administered

doses are presented as follows: a) negative, -0.655; b) vaccinated, 0.843; c) neutral, -0.502; d) positive, -0.779.

4.3 Simple Regression Analysis

As an initial analysis to assess whether Twitter trends can serve

as a leading indicator of future vaccination activity in the United

States, we conducted a simple linear regression analysis. The re-

sponse variable was the vaccination rate on a specified future date,

referred to as the "target date", and the sample was drawn from

state-level jurisdictions, including all 50 states and Washington D.C.

The explanatory variables can be categorized into three groups.

For the census data (3.2), samples were generated for each variable

of interest (e.g., poverty rate) in a straightforward manner. In the

case of tweet data, a "source date" was selected prior to the target

date and all classified tweets posted on or before that date were

utilized to determine the proportion of tweets classified as a spe-

cific category (e.g., "vaccinated"). The vaccination rate at the source

date was also considered as an explanatory variable (e.g., ł2021-

02-28_vr"" indicates the vaccination rate of a state as of February

28th, 2021). Ordinary least-squares models were applied to each

explanatory variable based on samples collected from all states. The

results of the two date pair settings are depicted in Figure 3, with
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Figure 3: Estimated coefficients of simple linear regressions for the vaccination rate at the target date. The figure displays the

results of two regression models: 1) source date: February 28, target date: May 1 (left subfigure); 2) source date: April 30, target

date: July 1 (right subfigure). The explanatory variables include: a) census features, b) tweet proportions as of the source date,

and c) vaccination rate at the source date.

Figure 4: Relationship between the vaccination rates among states as of May 1st, 2021 and the percentage of positive(PCC

0.411)/negative(PCC -0.273) tweets on Twitter as of the end of February, 2021.

the estimated coefficients and 95% confidence intervals presented

for comparison.

In both the analyzed settings, we found that the proportion of

positive tweets on the source date had the strongest correlation

with the future vaccination rate on the target date among different

states. Conversely, the proportion of negative tweets demonstrated

a contrary influencewith a larger variance. This trend can be further

observed through the plotting of the vaccination rates of all states

on the target date against each of the tweet proportions Figure 4).

Additionally, we found that the proportion of neutral tweets was

positively correlated with higher vaccination rates among states

with large deviation, while the proportion of vaccinated tweets

appeared to be a negative indicator in predicting the vaccination

rates.

4.4 Forecasting

To more rigorously assess the utility of the Twitter data for building

real-time estimates of future vaccination activity, we next present

a vaccine administration forecasting model based on a single-step

time series forecasting approach. Our model utilizes aggregated in-

formation within a designated time window to predict the number

of vaccine doses administered in a given region within a specified

time range in the near future (as depicted in Figure 6). The time

window is comprised of multiple consecutive time steps of uni-

form length (e.g., one week). In a given time step 𝑡𝑖 , the known

information, such as tweet trend and census data, is combined to

form a feature vector x𝑖 , while the number of administered doses,

normalized by the population of the corresponding region, is rep-

resented as 𝑦𝑖 . We aim to fit a model F𝑠,𝑔,𝑤 that approximates the
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Figure 5: Forecasting on normalized doses using ARLSTM model (𝑠 = 6, 𝑔 = 0,𝑤 = 2).

Figure 6: A time-series sample in the vaccine administration

forecasting model.

relationship between the normalized number of administered doses

in a future time range 𝑡 , denoted by y, and the aggregated infor-

mation in a specified time window, represented by a set of feature

pairs (x𝑖 , 𝑦𝑖 ) for each time step. The width of the time window,

represented by 𝑠 , is the number of time steps it encompasses. The

forecasting gap, represented by 𝑔, is the number of time steps be-

tween the final time step 𝑡𝑠 and the target time 𝑡 . The width of the

target time range 𝑡 is denoted by𝑤 and is expressed in number of

time steps. To generate training data, we consider input instances

of the model z𝑗 = {(x𝑖 , 𝑦𝑖 )}
𝑠+1− 𝑗

𝑖=𝑗
and their corresponding output

values y𝑗 . We can generate 𝑛 such pairs {(z𝑗 , y𝑗 )}
𝑛
𝑗=1 for a region

by incrementally shifting the time window forward one step at a

time, starting with an initial example.

4.4.1 Input features. As previously mentioned, at each time step

𝑡𝑖 , the input consists of two components, x𝑖 and 𝑦𝑖 , where 𝑦𝑖 repre-

sents the quantity of doses administered. To assess the efficacy of

tweet-related features, three distinct configurations of x𝑖 have been

formulated. In the first configuration, referred to as the baseline

setting (baseline pred), only𝑦𝑖 is utilized as the input for each time

step, and x𝑖 is excluded. In the second configuration (census pred),

census data is incorporated into the input, such that x𝑖 encompasses

several census features of the region in question. It should be noted

that the census features remain constant across different time steps.

In the third configuration, referred to as the complete setting

(full pred), the tweet features are added to x𝑖 . These features are

obtained through a procedure that is similar to the one described

in ğ4.3. For a specific region and time step, the cumulative num-

ber of tweets in each class is tallied from an initial date to the

end date of that time step. Subsequently, the proportions of tweets

among all four classes are calculated and employed as feature val-

ues. This means that the resulting features not only depict the

situation within the given time step, but also encompass historical

information pertaining to the region in question.

4.4.2 Experiments and results. We implement a time-rolling ap-

proach for the model’s training and testing, which commences on

December 19, 2020 with a time step length of one week. Given the

consideration of 51 state-level jurisdictions, a training example can

be generated for each time window from each jurisdiction. As the

time window advances by one step, an additional 51 examples are

added to the training data set, and the model is refitted using the

augmented training data. The testing is carried out concurrently by

utilizing the trained model on examples from the subsequent time

window and calculating the errors between the obtained results

and the actual values.

In recognition of the varying scales of the input features, stan-

dardization is performed prior to training and testing by normaliz-

ing the features using the standard score. To be more specific, the

mean and standard deviation of each feature are calculated based

on all time steps included in the current training data, taking into

account that each time step is only counted once, even if it appears

in multiple successive time windows.

In our efforts to evaluate the efficacy of forecasting, we test a

range of models, including linear regression (LinearReg), Ridge



Forecasting COVID-19 Vaccination Rates using Social Media Data WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Figure 7: Performance of ARLSTM for various forecasting settings (𝑠 = 6), where 𝑠 is the width of the time window in weeks, 𝑔 is

the forecasting gap in weeks, and𝑤 is the width of the target time range in weeks.

Figure 8: Performance of different forecasting models mea-

sured by MAEs with 95% bootstrap confidence interval across

all states and queried time ranges (𝑠 = 6,𝑤 = 2, 𝑔 = 0).

regression (RidgeReg), deep neural network (DNN), convolutional

neural network (ConvNN), Long short-term memory (LSTM), and

auto-regressive LSTM (ARLSTM). For the initial three models, each

input example (z𝑗 ) is first transformed into a feature vector before

being fit to the model. The DNN model consists of two hidden

layers, each containing 64 units. In the ConvNN model, the inputs

are first passed through a convolutional layer with 32 filters, where

each kernel has a size of 3, before being flattened and fed into a

hidden layer of 32 units. The LSTM model comprises an LSTM

layer of 32 units and a 32-unit hidden layer. In the ARLSTM model,

(𝑔 +𝑤) LSTM steps are executed to produce the final prediction,

whereas only one step is performed in the LSTM model. The mean

squared error is employed as the loss function for the four neural

network models, which are trained for 40 epochs using the Adam

optimizer with a learning rate of 0.005.

The performance of the models is evaluated using mean absolute

errors (MAEs) under different forecasting and feature settings. In

order to reduce the impact of randomness in the results, the training

and testing processes for the neural network models are repeated

three times and the average predictions are used. Figure 5 illustrates

the testing results of the ARLSTM model for the case when 𝑠 = 6,

𝑔 = 0, and 𝑤 = 2. The upper plot shows the mean true/predicted

normalized administered doses for all states in the queried time

range, with the error bars indicating the standard deviation among

the states. The lower plot reports the prediction errors over time

for different input settings. The results indicate that the full pred

setting generally yields the best predictions, especially when the

actual vaccination trend is decreasing. The baseline estimates are

calculated as ŷ𝑗,baseline = F baseline
𝑠,𝑔,𝑤 (z𝑗 ) = 𝑤 · x𝑠+1− 𝑗 , where the

normalized doses of the last time step in the input time window

are simply multiplied by the width of the queried time range.

Figure 8 shows the comparison of different models under various

feature settings using the same forecasting parameter setting. The

empirical bootstrap is applied to calculate 500 MAEs and the 95%

confidence interval is determined for each group of predictions

under the same model and input settings. The results indicate that

only the LSTM and the ARLSTM models outperform the baseline

estimate for all feature settings. The input setting with tweet fea-

tures (full pred) significantly improves the performance of LSTM

and ARLSTM, demonstrating the benefits of incorporating tweet

information in the forecasting procedure.

Figure 7 shows the evaluation results of ARLSTM under differ-

ent forecasting parameter settings with 95% bootstrap confidence

intervals. The results suggest that the MAE increases as the fore-

casting time span (𝑤 ) expands and the error of full pred rises the

slowest. However, when the forecasting gap (𝑔) is fixed to 0 and

the forecasting time span is one week, the forecasting model does

not outperform the baseline estimates, indicating that it is difficult

to make accurate predictions within a short time range when the

normalized doses of different states differ greatly. As the forecasting

time span increases, the variance across different states decreases,

enabling the forecasting model to effectively predict the future

values. Additionally, the results also demonstrate that the tweet-

related features (full pred) consistently improve the accuracy of

the forecasts under most settings.

4.5 Clustering

To gain insights into the key factors affecting people’s intent to-

wards COVID vaccines, we conducted a clustering analysis of the

classified tweets. The clustering was performed using a 𝐾-means

algorithm, where each tweet was represented as a vector of term

frequencies and normalized using the L2 norm. For this analysis, we
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sampled 50,000 tweets from both the positive and negative classes

from the classified tweets.

The tokenization process was similar to that used in the clas-

sification task and involved removing stop words and frequently

occurring terms. The resulting clusters were characterized by their

size and center vector, and the top terms were identified by sorting

the coefficients of the center vector. To determine the best number

of clusters for the 𝐾-means algorithm, several settings were tested,

with the aim of obtaining meaningful top terms for the majority

of clusters and as many clusters as possible. The smallest cluster

was also required to have a sufficient number of tweets. With these

considerations, the number of clusters was set to 32 for both classes.

The results of the clustering analysis are presented in Table 2 in

the Appendix, which lists the clusters in descending order of size

and shows the top 4 terms for each cluster. For both the positive and

negative classes, the largest cluster was omitted as it was sparse

due to its extremely large size.

The examination of positive tweets sheds light on several preva-

lent themes that are frequently mentioned by individuals who ex-

press their support for or hold positive views towards vaccination.

These themes are a reflection of the general sentiment of individu-

als who support vaccination, and highlight the key reasons behind

their positive outlook. Some of the most common expressions in-

clude łending the pandemicž, which underscores the importance of

vaccination in bringing an end to the ongoing COVID-19 pandemic.

łCountering anti-vaxxersž is another common expression that high-

lights the need for individuals to stand up against misinformation

and negative propaganda surrounding vaccination. łLife-savingž is

a testament to the crucial role that vaccination plays in saving lives,

while łfeeling betterž reflects the improved health and well-being

that individuals experience after being vaccinated.

On the other hand, the analysis of negative tweets provides

insights into the key concerns that individuals have regarding vac-

cination. These concerns are reflected in the presence of terms such

as łexperimentalž, which highlights the uncertainty surrounding

the long-term effects of the COVID vaccines. łPassportž is another

term that is frequently mentioned, and reflects the worries that

individuals have regarding the potential use of vaccination as a

form of coercion or discrimination. łLong-term effectsž, łFDA ap-

provedž, and łblood clotsž are expressions that reflect the general

unease that individuals have regarding the safety and efficacy of

the vaccines.

It is worth noting that certain terms, such as łmaskž, łdeathž,

łschoolž, and łimmunityž, are present in both positive and negative

tweets. However, the contexts in which these terms are used differ,

with terms such as łherd immunityž appearing in positive tweets,

while łnatural immunityž is found in negative tweets. This high-

lights the importance of considering the wider context in which

these terms are used, and underscores the need for a nuanced and

sophisticated analysis of the data.

5 CONCLUSION

In this paper, we present an approach for text classification to

identify tweets related to COVID-19 vaccination status or intent.

The results of our subsequent temporal and regression analysis

reveal strong correlations between tweet proportions of different

classes and the actual vaccination trend. Furthermore, our forecast-

ing model shows that tweet-related features significantly enhance

the accuracy of state-level vaccination forecasts, suggesting that

tweet trends may serve as a useful precursor of the actual vacci-

nation status. Finally, our clustering analysis uncovers recurring

themes and key concerns among individuals regarding vaccination.

It is important to acknowledge the limitations of our study, as

is common with many studies based on social media data. First,

it is necessary to recognize that Twitter users may not be a rep-

resentative sample of the general population, which can limit the

generalizability of our findings, particularly for specific states due

to the large variation in the number of tweets among them. In

addition, our study’s analysis is restricted to the English language,

potentially excluding data from non-English speaking populations.

Furthermore, our text classification approach relied on a classifier

trained on data sampled through select keywords, and not validated

on all Twitter messages. Additionally, the classifier’s accuracy is

imperfect, which may influence the subsequent analysis and inter-

pretation of the data. Finally, it is crucial to consider the limitations

of self-reporting and the potential for disparities between attitudes

expressed on social media and those held in real life.

In future work, a promising direction is to broaden the scope of

data sources beyond Twitter to include other social media platforms.

This could provide a more comprehensive understanding of public

attitudes related to vaccination and address the potential biases of

a single platform. Additionally, incorporating region-specific data,

such as public health policies, may provide a more nuanced under-

standing of vaccination behaviors and allow for the identification of

reasons for variations in vaccination rates between different states.

Moreover, exploring domain adaptation techniques may improve

the accuracy of vaccination status classification considering the

evolving vaccination practices and policies. Overall, these future

directions may enhance our comprehension of public attitudes and

behaviors towards vaccination and lead to more effective vaccina-

tion campaigns.
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APPENDIX

Table 2 below shows the results of the clustering analysis on positive

and negative tweets.
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Table 2: Top terms of clusters in positive and negative tweets derived using 𝐾-means. For each cluster, the terms are in descending order of importance.

positive negative

size top terms size top terms

23206 mask,better,state,help 21971 spread,@potus,biden,live

3635 mask,wear,wear mask,fully 2753 death,death death,hospitalized,cases

1725 death,sick,cases,americans 2082 effect,death,pfizer,second

1203 trump,president,biden,credit 1567 experimental,gene,therapy,gene therapy

1049 risk,high,high risk,death 1534 passport,id,vote,voter

986 fully,mask,cdc,weeks 1443 work,mask,death,mask work

978 safe,effective,stay,safe effective 1264 mask,wear,wear mask,cdc

970 vaccination,proof,rates,mask 1236 long,term,long term,effect

915 home,wait,stay,stay home 1100 risk,death,high,high risk

911 pandemic,end,mask,end pandemic 1044 wait,effect,long,death

899 second,sense,wrong,common 923 sick,death,sick death,work

846 kids,school,parents,mask 845 approved,fda,fda approved,approved fda

838 actually,protect,mask,help 836 school,kids,choice,personal

831 anti,vaxxers,anti vaxxers,vax 833 government,passport,money,death

781 appointment,available,appointment available,#covid9 818 trump,biden,president,death

756 life,saving,life saving,normal 815 actually,blood,clots,blood clots

743 line,love,workers,@marcorubio 771 flu,death,flu flu,shots

739 feel,better,feel better,comfortable 760 better,cdc,fully,cases

710 spread,mask,death,prevent 688 world,understand,china,rest

701 family,friends,members,family members 642 immune,dose,antibodies,immune systems

700 immunity,herd,herd immunity,natural 637 children,school,death,experimental

656 population,fully,million,half 601 trust,government,science,trust government

599 likely,death,spread,likely death 558 body,choice,body choice,abortion

566 effective,preventing,effective preventing,death 545 believe,death,work,effect

548 pfizer,moderna,pfizer moderna,moderna pfizer 525 ones,shots,hospital,loved

535 soon,possible,soon possible,available 513 chance,wrong,reaction,adverse

532 teachers,school,schools,staff 508 test,positive,test positive,negative

463 variant,delta,delta variant,mask 457 safe,effect,death,effective

459 free,donut,krispy,mask 445 forced,experimental,work,choice

435 mom,dad,appointment,week 365 immunity,natural,natural immunity,herd immunity

416 gotten,sick,death,fully 268 mandate,mask,mask mandate,school

316 rate,survival,survival rate,recovery 207 johnson,johnson johnson,blood,clots
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