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Abstract. We introduce reductions of knowledge, a generalization of ar-
guments of knowledge, which reduce checking knowledge of a witness in
one relation to checking knowledge of a witness in another (simpler) rela-
tion. Reductions of knowledge unify a growing class of modern techniques
as well as provide a compositional framework to modularly reason about
individual steps in complex arguments of knowledge. As a demonstration,
we simplify and unify recursive arguments over linear algebraic state-
ments by decomposing them as a sequence of reductions of knowledge.
To do so, we develop the tensor reduction of knowledge, which generalizes
the central reductive step common to many recursive arguments. Under-
lying the tensor reduction of knowledge is a new information-theoretic
reduction, which, for any modules U , U1, and U2 such that U ∼= U1⊗U2,
reduces the task of evaluating a homomorphism in U to evaluating a
homomorphism in U1 and evaluating a homomorphism in U2.
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1 Introduction

Arguments of knowledge [27] are powerful cryptographic primitives that allow a
verifier to efficiently check that a prover knows a satisfying witness for a claimed
statement. Such arguments provide strong integrity and privacy guarantees that
enable a large class of cryptographic applications [21,28,37,40,43].

However, a growing body of work challenges the traditional paradigm by
describing interactions in which the verifier does not fully resolve the prover’s
statement to true or false, but rather reduces it to a simpler statement to be
checked:

– The well-studied inner-product argument [10] (along with subsequent opti-
mizations [13] and generalizations [11, 16]) relies on recursively applying an
interactive reduction from the task of checking knowledge of size n vectors
to the task of checking knowledge of size n/2 vectors.

1 Abhiram Kothapalli was supported by a fellowship from Protocol Labs, a gift from
Bosch, NSF Grant No. 1801369, and the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation program sponsored by DARPA.
An extended version of this work is available on the Cryptology ePrint Archive [30].
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– Aggregation schemes for polynomial commitments [9, 12] and unbounded
aggregation schemes for linear-map vector commitments [18] can both be
viewed as interactive reductions from checking proofs of several openings of
a commitment to checking a proof of a single opening of a commitment.

– Split-accumulation schemes [14] can be viewed as interactive reductions from
checking several proofs of knowledge and several accumulators to checking
a single accumulator. Folding schemes [31] can be viewed as interactive re-
ductions from checking knowledge of two instances in a relation to checking
knowledge of a single instance in the relation.

– As observed by Ràfols and Zapico [35], most argument systems with universal
and updatable trusted setups [17,19,29,39] construct an interactive reduction
from the task of checking knowledge of a preimage of a matrix evaluation to
the task of checking knowledge of a preimage of a vector evaluation.

Such interactive reductions, although central to modern arguments, lack a
unifying theoretical foundation. As evidenced above, these reductions typically
have case-by-case security definitions (if any at all) that are tailored towards
the larger systems that rely on them. The lack of a common language makes
it difficult to relate comparable techniques hidden under incomparable abstrac-
tions. Moreover, stitching together various techniques requires remarkably deli-
cate (and often tedious) reasoning for how the soundness of the larger protocol
reduces to the soundness of each subprotocol.

Contributions Towards a unifying language, we formalize the notion of an inter-
active reduction over statements of knowledge, in which the verifier reduces the
task of checking the original statement to the task of checking a new (simpler)
statement. We refer to such a protocol as a reduction of knowledge. We prove
that reductions of knowledge can be composed sequentially and in parallel. As
such, reductions of knowledge serve as both a crisp abstraction and a theory of
composition. In particular, they can be stitched together to modularly construct
complex arguments of knowledge. Under this treatment, each step of an argu-
ment is instilled with a meaningful (and composable) soundness guarantee. This
enables significantly simpler soundness proofs and allows each subcomponent to
be reused independently in other protocols.

As a technical contribution, we employ reductions of knowledge to unify
recursive algebraic arguments and simplify the corresponding analysis. In par-
ticular, we develop the tensor reduction of knowledge as a generalization of the
central recursive step for arguments in this class. By instantiating and recursively
composing the tensor reduction of knowledge over appropriate spaces, we derive
both new and existing arguments of knowledge for various linear algebraic struc-
tures. Most notably, we derive a new argument of knowledge for bilinear forms
which are expressive enough to encode weighted (and permuted) inner-products
and more generally any degree-two gate over vectors of inputs.

Throughout our development, we provide various examples to demonstrate
how reductions of knowledge offer a promising route towards taming the com-
plexity of modern arguments. Most notably, we compose our linear algebraic
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reductions to construct an argument of knowledge for NP with logarithmic com-
munication with minimal additional reasoning.

1.1 Reductions of Knowledge

Recall that arguments of knowledge are defined over a relation R and allow a
prover to show for some statement u that it knows witness w such that (u,w) ∈
R. In contrast, a reduction of knowledge is defined over a pair of relations R1

and R2, and enables a verifier to reduce the task of checking knowledge of a
satisfying witness for a statement in R1 to the task of checking knowledge of a
satisfying witness for a new statement in R2.

Definition 1 (Reduction of Knowledge, Informal). A reduction of knowl-
edge from R1 to R2 is an interactive protocol between a prover and a verifier.
Both parties take as input a claimed statement u1 to be checked, and the prover
additionally takes as input a corresponding witness w1 such that (u1, w1) ∈ R1.
After interaction, the prover and verifier together output a new statement u2 to
be checked in place of the original statement, and the prover additionally outputs
a corresponding witness w2 such that (u2, w2) ∈ R2. A reduction of knowledge
satisfies the following properties.

(i) Completeness: If the prover is provided a satisfying witness w1 for the
verifier’s input statement u1, then the prover outputs a satisfying witness
w2 for the verifier’s output statement u2.

(ii) Knowledge Soundness: If an arbitrary prover provides a satisfying witness
w2 for the verifier’s output statement u2, then the prover almost certainly
knows a satisfying witness w1 for the verifier’s input statement u1.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge
from R1 to R2.

There are two ways to conceptually reconcile reductions of knowledge with
arguments of knowledge. First, arguments of knowledge can be viewed as a
special case of reductions of knowledge where the second relation R2 is fixed to
encode true or false. This interpretation helps naturally translate existing tooling
used to study arguments of knowledge to study reductions of knowledge. For
instance, we can expect reductions of knowledge to be compatible with idealized
soundness models such as the random oracle model [5] and the algebraic group
model [23], idealized communication models such as interactive oracle proofs [6]
and variants [15,17,19], and heuristic transformations such as Fiat-Shamir [22].

Second, reductions of knowledge can be interpreted as arguments for condi-
tional statements in which a prover shows for some u1 that it knows w1 such
that (u1, w1) ∈ R1 contingent on the fact that for u2 output by the verifier it
knows w2 such that (u2, w2) ∈ R2. Put more plainly, reductions of knowledge are
arguments for statements of the form “If you believe that I know a witness for
statement u2 in R2, then you should believe that I know a witness for statement
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u1 in R1”. This interpretation helps characterize statements that reductions of
knowledge can handle more naturally than arguments of knowledge.

Reductions of knowledge can also be viewed as a probabilistic variant of Levin
reductions [2] (i.e., Karp reductions [2] that map witnesses as well as statements)
that verifiably proceed through interaction. Under this interpretation, Levin re-
ductions can be understood as deterministic reductions of knowledge with no
interaction. Just as standard reductions are used for principled algorithm de-
sign, reductions of knowledge are intended for principled argument design.

Under any interpretation, we are interested in proving that reductions of
knowledge can be composed sequentially and in parallel. Such a requirement
holds immediately for standard notions of reductions, but requires subtle rea-
soning when considering knowledge soundness: To ensure that sequential com-
posability holds, we additionally require that reductions of knowledge are publicly
reducible. That is, given the input statement u1 and the interaction transcript,
any party should be able to reconstruct the output statement u2. As we detail in
Section 4, this seemingly innocuous requirement becomes the linchpin in arguing
sequential composability. With public reducibility, we have the following.

Theorem 1 (Sequential Composition, Informal). Consider relations R1,
R2, and R3. For reductions of knowledge Π1 : R1 → R2 and Π2 : R2 → R3

we have that Π2 ◦Π1 is a reduction of knowledge from R1 to R3 where Π2 ◦Π1

denotes the protocol that first runs Π1, and then runs Π2 on the statement and
witness output by Π1.

By parallel composition, we do not mean running both protocols at the same
time, but rather that the composed protocol takes as input instance-witness
pairs in parallel and and outputs instance-witness pairs in parallel. For relations
R1 and R2, let relation R1 ×R2 be such that ((u1, u2), (w1, w2)) ∈ R1 ×R2 if
and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2. Then, we have the following.

Theorem 2 (Parallel Composition, Informal). Consider relations R1, R2,
R3, and R4. For reductions of knowledge Π1 : R1 → R2 and Π2 : R3 → R4 we
have that Π1 ×Π2 is a reduction of knowledge from R1 ×R3 to R2 ×R4 where
Π1×Π2 denotes the protocol that runs Π1 on the statement-witness pair in R1,
runs Π2 on the statement-witness pair in R3, and outputs the pair of results.

1.2 A Theory of Composition for Arguments of Knowledge

Reductions of knowledge can be viewed as a minimal compositional framework
that can feasibly capture and tame the growing complexity of modern arguments.
Regardless of how reductions are stitched together, our composition results ab-
stract out the pedantic reasoning for how exactly to use the soundness of each
subcomponent to prove the soundness of the composed reduction. We develop
several examples to concretely demonstrate how the reductions of knowledge
framework opens up new possibilities.

In more detail, the requirement that the prover knows a witness is formally
stated as an extractability property: Given an expected polynomial-time prover
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that can produce a satisfying interaction, there must exist a corresponding ex-
pected polynomial-time extractor that can extract the alleged witness (e.g., by
running and rewinding the prover internally). This definition, while undoubtedly
natural, requires subtle reasoning when constructing large arguments which rely
on several sub-arguments: In general, the soundness analysis must meticulously
detail how to use the successful prover to construct successful provers for each
sub-argument and then use the corresponding extractors to derive an extractor
for the overall argument.

In the public-coin setting (where the verifier only sends random challenges),
Bootle et al. [10] abstract away some low-level reasoning by proving that tree spe-
cial soundness implies the standard notion of knowledge soundness. Tree special
soundness holds when a tree of accepting transcripts contains sufficient informa-
tion to reconstruct the witness, with each path representing a unique transcript
and each branch representing diverging verifier randomness. Both Lee [32] and
Attema and Cramer [3] show that tree special soundness implies modularity
by observing that tree special sound protocols can be sequentially composed to
produce a tree special sound protocol.

As demonstrated by these works, tree special soundness is a remarkably use-
ful abstraction for simplifying sequentially composed, uniformly structured ar-
guments (e.g., arguments that recursively invoke themselves). However, when
dealing with larger arguments that invoke various independent sub-arguments,
such as modern arguments for NP, tree special soundness is no longer an appro-
priate abstraction: having a single transcript that weaves through all such sub-
arguments and globally forks with each local challenge undermines the intended
semantics and unnecessarily blows up the knowledge error (i.e., the extractor’s
failure probability).

Reductions of knowledge are designed precisely to reason about such argu-
ments. Unlike prior work, our parallel composition operator enables us to capture
arguments with arbitrary dependence topologies. For instance, most argument
systems for NP, such as Spartan [39], Poppins [29], and Marlin [19], reduce a
statement in an NP-complete relation such as R1CS [25] to several simpler linear
algebraic statements (such as inner-product and polynomial evaluation claims),
each of which is then checked using a tailored argument [35]. As a concrete ex-
ample, we show that an argument for NP can be captured modularly in our
framework by utilizing both sequential and parallel composition.

Moreover, because we demonstrate that any two publicly verifiable reduc-
tions can be composed, this opens up the ability to modularly reason about
knowledge-assumption-based succinct non-interactive arguments of knowledge
(SNARKs [7,26]) and incrementally verifiable computation [41], which currently
fall back on composing extractors in intricate ways [14, 29, 31]. As a concrete
example, we demonstrate how to succinctly express non-interactive `-folding
schemes [31, 36] (i.e, folding schemes reducing ` initial instances) by utilizing a
tree-like dependence topology in our reductions of knowledge framework.
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In the public-coin setting, we incorporate prior progress into our framework
by proving that tree special soundness implies our notion of knowledge sound-
ness. As such, public-coin reductions can be analyzed using standard techniques.

1.3 A Unified Theory for Recursive Algebraic Arguments

Reductions of knowledge provide the necessary abstraction to view various tech-
niques under a unifying lens. As a demonstration, we consolidate recursive ar-
guments over homomorphic structures by recasting their central recursive step
as instantiations of the tensor reduction of knowledge.

In more detail, modern arguments are designed around leveraging homomor-
phic structure to achieve better asymptotics and concrete efficiency. An influ-
ential line of work [3, 4, 10, 13, 32] studies the consequences of arguments over
structurally nested homomorphic objects such as vectors, matrices and hyper-
cubes. A key insight is that such objects contain sufficient algebraic structure
for recursive arguments in which larger composed statements can be reduced to
smaller constituent statements of the same form. For instance, Bootle et al. [10]
show that the task of checking an inner-product over committed size n vec-
tors can be split into the task of checking two inner-products over committed
size n/2 vectors which can then be “folded” into the task of checking a single
inner-product over committed size n/2 vectors. Homomorphic structures that
enable recursive techniques have become a staple in constructing efficient argu-
ment systems for NP [13, 29, 39, 42]. However, while arguments over recursive
homomorphic structures have become an essential tool in practice, the literature
detailing such techniques is becoming increasingly dissonant with sparse progress
on unifying the disparate approaches.

Bünz et al. [16] initiate the study of a unified theory by observing that
existing inner-product arguments [10,13] only require a commitment scheme that
is homomorphic over both the commitment keys and messages. Thus, such inner-
product arguments can be viewed as instantiations of a generic inner-product
argument that only leverages these properties. Bootle, et al. [11] further relax
this requirement by observing that split-and-fold style techniques in general [3,
13,15,16] only require a commitment scheme that can be computed by summing
over a hypercube. Leveraging this insight, Bootle et al. show that such techniques
can be interpreted as instantiations of the familiar sum-check protocol [33].

We considerably sharpen the sufficient conditions with the following observa-
tion: Protocols such as the sumcheck protocol and the inner-product argument
only require that the underlying linear-algebraic objects (e.g., polynomials, vec-
tors, and matrices) form a module (i.e., have a notion of addition and scalar
multiplication). Abstracting away the specific details of the associated modules,
all such protocols reduce a claim in a “tensored” module to claims in constituent
modules. Leveraging this insight, we design an information-theoretic protocol,
the tensor reduction, as a sweeping generalization of protocols in this class. Con-
ceptually, the tensor reduction explains why such a broad class of protocols look
different but feel the same.
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Theorem 3 (Tensor Reduction, Informal). For modules U , U1, and U2

such that U ∼= U1⊗U2, there exists an interactive reduction that reduces the task
of evaluating a homomorphism in U to the task of evaluating a homomorphism
in U1 and evaluating a homomorphism in U2.

We explain in detail how the tensor reduction generalizes familiar patterns
in Section 5. Essentially, the versatility of the tensor reduction stems from its
ability to work over any pair of modules and any valid notion of a tensor product
between these modules. In particular, the tensor product can be defined as any
operator that satisfies the prescribed universality property: the tensor product of
any two modules U1 and U2 must result in a new module, denoted U1⊗U2, such
that any bilinear mapping ϕ : U1 × U2 → V induces a unique homomorphism
ϕ̃ : U1 ⊗ U2 → V such that ϕ̃(u1 ⊗ u2) = ϕ(u1, u2).

For instance, for field F, let the tensor product denote the outer product and
consider an arbitrary vector in Fn. This vector can be interpreted as a matrix
in F(n/2)×2 or equivalently as an element of Fn/2 ⊗ F2 which consists of sums of
outer products of vectors in Fn/2 and F2. Thus, the tensor reduction can reduce
a claim over a vector in Fn to a claim over a vector in Fn/2 and a vector in
F2. Similarly, by taking the tensor product to be polynomial multiplication, the
tensor reduction can reduce a claim over a degree (m,n) bivariate polynomial in
F[X,Y ] ∼= F[X]⊗F[Y ] to a claim over a degree m univariate polynomial in F[X]
and a degree n univariate polynomial in F[Y ]. By taking the tensor product to
be the Kronecker product, the tensor reduction can reduce a claim over a matrix
in Fmp×nq to a claim over a matrix in Fm×n and a matrix in Fp×q. By taking
the tensor product to be a pairing operation mapping groups G1 and G2 to GT,
the tensor reduction can reduce a claim over GT to claims over G1 and G2.

Just as the sum-check protocol can be used to design arguments of knowl-
edge, the tensor reduction can be used to design reductions of knowledge. By
instantiating the tensor reduction over vector spaces, we derive the tensor re-
duction of knowledge, an unconditionally secure protocol that generalizes the
central reductive step common to most recursive algebraic arguments.

Theorem 4 (Tensor Reduction of Knowledge, Informal). For vector space
hom(W,V ), denoting homomorphisms from vector space W to vector space V ,
and length n, there exists a reduction of knowledge that reduces the task of
checking knowledge of w ∈ Wn such that u(w) = v for u ∈ hom(Wn, V ) and
v ∈ V to the task of checking knowledge of w′ ∈ W such that u′(w′) = v′ for
u′ ∈ hom(W,V ) and v′ ∈ V .

Leveraging our composition result, we show that tensor reductions of knowl-
edge can be recursively composed to recover various recursive arguments. In
particular, we appropriately instantiate the vector spaces to recover a family of
reductions of knowledge for vector commitments [9–11], and linear forms [3, 4].
Table 1 summarizes the concrete protocols synthesized under the various instan-
tiations of the tensor reduction of knowledge.

We also develop a new family of arguments for bilinear forms which falls
out naturally from our prior generalizations. In particular, consider prime order
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group G and corresponding scalar field F. For public key G ∈ Gm, public matrix
M ∈ Fm×m, commitments A,B ∈ G, and scalar σ ∈ F, a bilinear forms argument
allows a verifier to check that a prover knows A,B ∈ Fm such that A>MB = σ,
〈G,A〉 = A (i.e., the inner-product of G and A is A), and 〈G,B〉 = B.

In practice, the matrix M in the bilinear forms relation can encode a variety
of constraints. For instance, if M is the identity matrix then the verifier can
check the inner-product of A and B (and more generally the inner product of
any rearrangement of A and B). If instead M assigns weights to the diagonal,
then the verifier can check a weighted inner-product [16,20]. More generally, M
can encode any degree-two custom-gate [24], enabling an expressive constraint
system for NP as we show in Section 7.

Structure Module Decomposition

k = 2 k = 4
√
n

Vector Commitment PO Groups [10] X

Bil Groups [11] X

Linear Forms PO Groups [3] [3]

Bil Groups [4] X

Bilinear Forms Bil Groups X X

Table 1: Protocols synthesized by instantiating the tensor reduction of knowledge.
We denote previously unexplored protocols with X. PO Group indicates prime order
groups and Bil Group indicates symmetric bilinear groups. The parameter k denotes the
number of chunks tensors are decomposed into in the tensor reduction of knowledge.
For vectors of size n, k = 2 results in protocols with O(log n) rounds of communication
and O(1) messages per round. Alternatively, k = 4

√
n results in protocols with O(1)

rounds of communication and O(
√
n) messages per round.

1.4 Overview of the Upcoming Sections

The remainder of this work formally treats all of the introduced concepts. In
Section 2, we study two concrete examples, the vector commitment argument [10]
and `-folding schemes [31,36], to both preface the tensor reduction of knowledge
and demonstrate how our framework simplifies the corresponding analysis. In
Section 4, we formally treat reductions of knowledge and the corresponding
composition results. In Section 5, we formally introduce the tensor reduction,
followed by the tensor reduction of knowledge as a generalization of the core
reductive step common to most recursive algebraic arguments. In Section 6, we
instantiate the tensor reduction of knowledge to derive arguments for vector
commitments, linear forms, and bilinear forms. In Section 7, we show that the
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linear algebraic reductions derived from the tensor reduction of knowledge can
be composed to derive an argument of knowledge for NP with minimal effort.

2 Technical Overview

In this section, we demonstrate how reductions of knowledge can be used to mod-
ularly reason about the vector commitment argument of Bootle et al. [10] and
folding schemes [31] in the non-interactive setting [36]. The former example, be-
ing a special case of the tensor reduction of knowledge, provides an introductory
overview of its mechanics. The latter example demonstrates how the reductions
of knowledge framework can significantly simplify arguments with non-linear de-
pendence topologies. We additionally demonstrate how reductions of knowledge
provide a unifying language by formally defining arguments of knowledge and
folding schemes as particular types of reductions.

2.1 First Example: A Vector Commitment Argument

The vector commitment argument allows a prover to show that it knows the
opening to a Pedersen vector commitment [34]. In particular, consider group G
of prime order p and corresponding scalar field F = Zp. Consider some public key
G ∈ Gn where n = 2i for some i ∈ N. Suppose a prover would like to succinctly
demonstrate to a verifier that it knows A ∈ Fn such that 〈G,A〉 = A (i.e., the
inner-product of G and A is A). That is, we would like to design an argument
of knowledge for the following relation.

Definition 2 (Vector Commitment Relation). The vector commitment re-
lation is defined as RVC(n) = {((G,A), A) ∈ ((Gn,G),Fn) | 〈G,A〉 = A}.

Bootle et al. [10] provide an argument system with sublinear communication
cost for the above relation. At a high level, the verifier splits the task of checking
knowledge of vector A into the task of checking knowledge of the first and second
half of A. Instead of checking each separately, the verifier “folds” the two checks
into a single check using a random linear combination. The prover computes
the corresponding random linear combination of the first and second half of A
to produce a folded witness vector that is half the original size. This folding
procedure is recursively run until the length of the vector to be checked is 1. At
this point the prover directly sends the vector to the verifier.

While the vector commitment argument can be described in a straightfor-
ward manner, proving its soundness is considerably more involved. Recursive
arguments typically require recursive extractors, and the vector commitment ar-
gument is no exception. To prove knowledge soundness, the malicious prover,
which produces a length one witness vector as its final message, is used to build
an extractor that can produce a length two folded witness vector (which is al-
legedly the result of folding the original witness vector log n − 1 times). Such
an extractor is recursively used to produce an extractor that can produce a
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length four vector, and so on. Ensuring that the extractor can successively un-
fold in each recursive step while also ensuring that its runtime remains expected
polynomial-time requires tedious low-level reasoning. Bootle et al. [10] and fol-
lowing works [3,13,32] use tree special soundness precisely to avoid such reason-
ing.

We show that the reductions of knowledge framework is equally as effective
in simplifying the analysis for the vector commitment argument. In particular,
we start with the simpler goal of designing a reduction of knowledge that reduces
the task of checking knowledge of a size n vector to checking knowledge of a size
n/2 vector. We can recursively compose such a reduction to design an argument
of knowledge for the vector commitment relation.

Construction 1 (Vector Commitment Reduction of Knowledge). We
construct a reduction of knowledge from RVC(n) to RVC(n/2) for n = 2i where
i ≥ 1. Suppose that the prover P and verifier V take as input statement (G,A) ∈
(Gn,G) and that the prover additionally takes as input alleged witness vector
A ∈ Fn such that

((G,A), A) ∈ RVC(n).

The reduction proceeds as follows.

1. P: Let G1 and G2 (respectively A1 and A2) denote the first and second half
of vector G (respectively A). The prover begins by sending Aij ← 〈Gi, Aj〉
for i, j ∈ {1, 2}. Here, A11 and A22 represent the first and second “half” of
the original commitment A, and A12 and A21 represent cross terms which
will assist the verifier in folding the original statement.

2. V: The verifier first checks the consistency of A11 and A22 with A by checking
that A11 +A22 = A. The verifier must still check that the prover knows A1

and A2 such that A11 = 〈G1, A1〉 and A22 = 〈G2, A2〉. Instead of checking
each individually, the verifier folds them into a single check by using a random
linear combination. In particular, the verifier sends random r ∈ F to P.

3. P,V: Together, the prover and verifier output the folded key and corre-

sponding commitment (G′, A
′
) ∈ (Gn/2,G) where G′ ← G1 + r · G2 and

A
′ ← A11 + r · (A12 +A21) + r2 ·A22.

4. P: The prover outputs the folded witness A′ ∈ Fn/2 where A′ ← A1 + r ·A2.

Now, to check the original statement, it is sufficient for the verifier to check that
the prover knows A′ such that

((G′, A
′
), A′) ∈ RVC(n/2).

To prove knowledge soundness, we must show that given a prover that pro-
duces a witness for the output statement with non-negligible probability, we
can derive an extractor that can use this prover to derive a witness for the in-
put statement with nearly the same probability. Because the above reduction is
public-coin, it suffices to show that there exists an extractor that can derive a
satisfying input witness given a tree of transcripts and corresponding satisfying
outputs (Lemma 6). Intuitively, the original extractor can generate such a tree
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by repeatedly rewinding the prover and collecting transcripts in which the prover
outputs a satisfying witness.

Lemma 1 (Vector Commitment Reduction of Knowledge). For n = 2i

where i ≥ 1, Construction 1 is a reduction from RVC(n) to RVC(n/2).

Proof. We reason via tree extractability (Lemma 6). Suppose an extractor is
provided with a tree of transcripts which consists of three transcripts, where the
kth transcript has the same initial message Aij for i, j ∈ {1, 2}, random challenge

rk, and satisfying output instance-witness pairs ((G′k, A
′
k), A′k) ∈ RVC(n/2). The

extractor first solves for ak for k ∈ {1, 2, 3} such that 1 1 1

r1 r2 r3

r21 r
2
2 r

3
3


a1a2
a3

 =

1

0

1


using an inverse Vandermonde matrix. The extractor then computes and out-
puts the unfolded witness A =

(∑
k ak ·A′k,

∑
k akrk ·A′k

)
. Indeed, by textbook

algebra, we have that 〈G,A〉 = A (we explicitly demonstrate this in the extended
version [30]). Thus, we have that ((G,A), A) ∈ RVC(n).

Later, in Section 6, we show that the vector commitment reduction of knowl-
edge is precisely the tensor reduction of knowledge from homomorphisms in
Gn ∼= (Gn/2)2 to homomorphisms in Gn/2.

We are still tasked with isolating the base case of the original vector com-
mitment argument. Below we specify an argument of knowledge for RVC(1). An
argument of knowledge can be succinctly formalized as a reduction of knowledge
that reduces to the relation R> encoding true. A verifier reducing to R> can
output true if it accepts and any other string (e.g., false) otherwise.

Definition 3 (Argument of Knowledge). Let R> = {(true,⊥)}. An argu-
ment of knowledge for relation R is a reduction of knowledge from R to R>.

Construction 2 (Base Case). We construct an argument of knowledge for
RVC(1). Given statement (G,A) and corresponding witness A, the prover sends
A directly to the verifier. The verifier outputs true if 〈G,A〉 = A.

We can compose the above reductions to modularly recover the original argu-
ment of knowledge for the vector commitment relation. By formalizing each step
as a reduction of knowledge, our composition result abstracts away the brunt of
the proof effort. In particular, the following corollary holds immediately.

Corollary 1 (Vector Commitment Argument of Knowledge). Let ΠVC

denote a reduction of knowledge from RVC(n) to RVC(n/2) and let Πbase denote
an argument of knowledge for RVC(1). Then

Πbase ◦ΠVC ◦ . . . ◦ΠVC︸ ︷︷ ︸
logn times

is an argument of knowledge for RVC(n) where n = 2i for i ∈ N.
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2.2 Second Example: Folding Schemes

The vector commitment reduction of knowledge can be further decomposed
into two reductions of knowledge: The first reduction of knowledge splits the
original instance into two half-sized instances (i.e., a reduction from RVC(n) to
RVC(n/2)×RVC(n/2)). The second folds the two instances into a single instance
of the same size (i.e., a reduction from RVC(n/2)×RVC(n/2) to RVC(n/2)).

Kothapalli, Setty, and Tzialla [31] abstract the latter pattern to arbitrary
relations and refer to such protocols as folding schemes. In particular, a folding
scheme is an interactive protocol that reduces the task of checking two instances
in a relation to the task of checking a single instance in the relation. Folding
schemes provide a minimal abstraction for various protocols in the literature.
For instance, Kothapalli et al. show that there exists a folding scheme for NP
instances with some fixed size and show that such a construction implies incre-
mentally verifiable computation [41].

More recently, Ràfols and Zacharakis [36] provide non-interactive `-folding
schemes (i.e., folding schemes for ` initial statements) for the vector commitment
relation, inner-product relation, and polynomial commitment relation. Such fold-
ing schemes help amortize the verifier’s work over multiple instances in larger
non-interactive arguments of knowledge which typically involve checking multi-
ple instances of the same form.

As these folding schemes rely on knowledge assumptions rather than in-
teraction, prior techniques cannot help modularize the corresponding soundness
analysis. As promised, we can still achieve modularity by decomposing them as a
sequence of non-interactive reductions of knowledge. Formally, a non-interactive
reduction of knowledge is one in which the interaction only consists of messages
from the prover. Non-interactive `-folding schemes can be succinctly formalized
as a particular class of non-interactive reductions of knowledge. Letting R` de-
note R× . . .×R for ` times, we define the following.

Definition 4 (`-Folding Schemes). A (non-interactive) `-folding scheme for
relation R is a (non-interactive) reduction of knowledge from R` to R.

Ràfols and Zacharakis achieve `-folding schemes for various relations by re-
cursively composing 2-folding schemes in a tree-like fashion. In particular, `
instances are treated as leaves in a tree. A 2-folding scheme is then used to fold
each pair of adjacent instances to produce a total of `/2 instances. These `/2
instances are once more folded in a pairwise fashion to produce `/4 instances
and so on until a single instance remains.

Once again, as demonstrated by Ràfols and Zacharakis, while the tree-folding
protocol can be stated in a straightforward manner, the corresponding knowl-
edge soundness analysis requires careful attention to detail. In particular, the
corresponding proof involves demonstrating that the malicious prover induces
a corresponding expected polynomial-time extractor that unfolds once. Such an
extractor is then shown to induce a pair of expected polynomial-time malicious
provers for the previous layer of the tree, and so on. Alternatively, by working in
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the reductions of knowledge framework, nearly all of this reasoning is abstracted
away. Indeed, we condense the original three-page proof into several lines.

Lemma 2 (`-Folding Scheme). Consider a (non-interactive) 2-folding scheme
ΠTF for relation R and ` = 2i for i ∈ N where i ≥ 1. Then, Π`, inductively de-
fined as follows, is a (non-interactive) `-folding scheme for R.

Π` = ΠTF ◦ (Π`/2 ×Π`/2)

Π2 = ΠTF

Proof. We reason inductively over i. In the base case, suppose i = 1. Then, by
construction, Π2 is a 2-folding scheme. Suppose instead i ≥ 2. Suppose that
for ` = 2i we have that Π`/2 is a (`/2)-folding scheme. Then, Π`/2 ×Π`/2 is a

reduction of knowledge from R`/2×R`/2 = R` to R2. Thus, ΠTF ◦ (Π`/2×Π`/2)

is a reduction of knowledge from R` to R.

3 Preliminaries

3.1 Module Theory

In this section, we introduce our notation, intuit the direct sum and tensor
product, and recall several useful properties. In the extended version [30], we
present formal definitions for rings, modules, direct sums, and tensor products.

Notation (Module Theory). We assume finite, unital, commutative rings and
modules with a finite basis throughout. We use ∼= to denote that two modules
are isomorphic. For ring R and R-modules W and V , let hom(W,V ) denote the
R-module of homomorphisms from W to V . For n ∈ N, we let Wn denote W⊗Rn
(equivalently W ⊕ . . .⊕W for n times). We use {δi} to denote an orthonormal
basis. We refer to elements of modules as tensors. As we use tensors to represent
both homomorphisms and objects, for tensors g and a, we use g(a) to denote
evaluating the homomorphism tensor g on the object tensor a. For n ∈ N, let
[n] denote {1, 2, . . . , n} and let [i, n] for i ≤ n denote {i, i + 1, . . . , n}. When
summing over a variable, we will omit the bounds when clear from context. We
write 〈a, b〉 to denote the inner-product of a and b.

Modules Intuitively, modules are vector spaces over rings. That is, they support a
notion of addition, can be scaled by ring elements, and have an identity element.
We say a module is an R-module if it is scaled by ring R. Vectors, polynomials,
matrices, tensors and scalars all form modules.

The Direct Sum Intuitively, a direct sum of two R-modules U and V , forms a
new R-module denoted U ⊕ V , which is essentially a Cartesian product of the
original modules. Elements of U ⊕ V consist of pairs of elements in U and V
which are denoted as u ⊕ v for u ∈ U and v ∈ V . For example, for field F, if
U ∼= Fn and V ∼= Fm we have that U ⊕V ∼= Fn+m. We have that U ⊕V forms a
module, because we can naturally compute u1⊕v1+u2⊕v2 = (u1+u2)⊕(v1+v2)
and r · (u⊕ v) = (r · u)⊕ (r · v) for r ∈ R.
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The Tensor Product Intuitively, the tensor product, denoted ⊗, can be con-
sidered a generalized outer-product that distributes with respect to the direct
sum. The tensor product of two modules U and V , forms a new module denoted
U ⊗ V . Elements of U ⊗ V include simple tensors which are outer products of
elements in U and V and are denoted as u ⊗ v for u ∈ U and v ∈ V . The
module U ⊗ V also contains arbitrary sums of these simple tensors, which are
denoted as

∑
i∈[`] ui ⊗ vi for u1, . . . , u` ∈ U and v1, . . . , v` ∈ V . If U ∼= Fn and

V ∼= Fm we have that U ⊗ V ∼= Fn×m (i.e., n × m matrices over F). Simple
tensors in Fn ⊗ Fm consist of outer products of vectors in Fn and Fm; however,
the entire space is generated by sums over such outer products. We have that
U ⊗ V forms a module because we can naturally add two sums and compute
r ·
∑
i ui ⊗ vi =

∑
i(r · ui)⊗ vi =

∑
i ui ⊗ (r · vi).

Abstracting the Direct Sum and Tensor Product Formally, the particular defi-
nitions of the direct sum and tensor product depend on the particular modules
they are working over. For instance, the tensor product could mean the outer
product when working over vectors and the Kronecker product when working
over matrices. Even for a fixed pair of modules, there could exist multiple valid
definitions. For instance, for vectors v1, v2 ∈ Fn, we can define v1 ⊕ v2 to be a
vector in F2n or a matrix in F2×n. To account for these considerations, we treat
the direct sum and tensor product as abstract operations that can be imple-
mented by any concrete operations that satisfy certain axioms (which we detail
in the extended version [30]). In practice, much like how abstract groups and
rings must be instantiated with concrete objects such as elliptic curves and poly-
nomials, the direct sum and tensor product must be instantiated with concrete
operations that respect the prescribed properties.

For the majority of our development, we are interested in taking the direct
sum and tensor product of homomorphisms (represented as tensors). In this
situation, we do not need to invoke the abstract definitions of these operations,
but rather the identities that follow from their axioms.

Lemma 3 (Direct Sum of Homomorphisms). Consider homomorphisms
r ∈ hom(U1, V ) and s ∈ hom(U2, V ) over R-modules (where R is a commutative
ring). Then r ⊕ s ∈ hom(U1 ⊕ U2, V ) is a homomorphism where (r ⊕ s)(u1 ⊕
u2) = r(u1) + s(u2). Symmetrically, homomorphisms r ∈ hom(U, V1) and s ∈
hom(U, V2) over R-modules induce a homomorphism r ⊕ s ∈ hom(U, V1 ⊕ V2)
where (r ⊕ s)(u) = r(u)⊕ s(u).

Example 1 (Direct Sum of Homomorphisms). Consider group G of prime
order p and corresponding scalar field F ∼= Zp. We can interpret Gn as the
module of homomorphisms from Fn to G. In particular, for g ∈ Gn we can
define g(a) = 〈g, a〉 for a ∈ Fn. Then, for g ∈ Gn and h ∈ Gm we have that
g⊕h ∈ Gn⊕Gm ∼= Gn+m can be interpreted as a map from Fn+m ∼= Fn⊕Fm to
G. By definition, for u ∈ Fn and v ∈ Fm, we have (g⊕h)(u⊕v) = 〈g⊕h, u⊕v〉 =
〈g, u〉+ 〈h, v〉 = g(u) + h(v).
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Lemma 4 (Tensor Product of Homomorphisms). Homomorphisms r ∈
hom(U,X) and s ∈ hom(V, Y ) over R-modules (where R is a commutative ring)
induce a homomorphism r⊗ s ∈ hom(U ⊗ V,X ⊗ Y ), such that (r⊗ s)(u⊗ v) =
r(u)⊗ s(v). By linearity, we have that(∑

i∈[I]

ri ⊗ si
)( ∑

j∈[J]

ui ⊗ vi
)

=
∑

i∈[I],j∈[J]

ri(uj)⊗ si(vj).

Example 2 (Tensor Product of Homomorphisms). Let ⊗ denote the outer
product. For prime p and field F ∼= Zp we can interpret Fn as the module of
homomorphisms from Fn to F. In particular, for f ∈ Fn we can define f(a) =
〈f, a〉 for a ∈ Fn. Then, f ∈ Fn and g ∈ Fm induce a new map f⊗g ∈ Fn⊗Fm ∼=
Fnm from Fnm to F ⊗ F ∼= F. By definition, for u ∈ Fn and v ∈ Fm, we have
(f ⊗g)(u⊗v) = (f ·g1⊕ . . .⊕f ·gm)(u ·v1⊕ . . .⊕u ·vm) =

∑
j∈[m] f(u) ·gi(vi) =

f(u)⊗ g(v).

Lemma 5 (Useful Identities). For commutative ring R and R-modules U ,
V , and W , we have that (U ⊗ V ) ⊗ W ∼= U ⊗ (V ⊗ W ), U ⊗ V ∼= V ⊗ U ,
U ⊗ (V ⊕W ) ∼= (U ⊗ V )⊕ (U ⊗W ), and R⊗ U ∼= U ⊗ R ∼= U .

3.2 Cryptographic Preliminaries

Notation (Cryptography). We use λ globally to denote the security pa-
rameter, and negl to denote negligible functions. For events A and B, we let
Pr[A] ≈ Pr[B] denote that |Pr[A]− Pr[B]| = negl(λ). We let PPT denote prob-
abilistic polynomial-time. We write to denote unused terms.

For soundness to hold when randomly sampling over rings, the set of admis-
sible values must be constrained. We define a valid sampling set over rings.

Definition 5 (Sampling Set [11]). For ring R and R-module M , subset Q ⊆ R
is a sampling set for M if for every q1, q2 ∈ Q, the map ϕq1,q2(m) = (q1− q2) ·m
for m ∈M is injective.

For certain relations, to be able to prove knowledge soundness, we will need
to rely on computational hardness assumptions. We adapt the bilinear relation
assumption [11], which can be viewed as a generalization of the discrete logarithm
assumption, and the double pairing assumption [1].

Definition 6 (Bilinear Relation Assumption). For ring R, length parame-
ter n, and security parameter λ, consider R-modules U and V such that |U | =
O(2λ) and |V | = O(2λ). The bilinear relation assumption holds for (U, V ) (w.r.t.
tensor product ⊗) if given random u1, . . . , un ∈ U , there exists no polynomial-
time algorithm to find non-trivial v1, . . . , vn ∈ V such that

∑
i∈[n] ui ⊗ vi = 0.

Symmetrically, we can consider composite spaces such that given elements
from both of the constituent spaces, it is easy to check that they satisfy the
above relation. This ensures that that the verifier is able to perform its requisite
checks efficiently. Throughout our development, we assume the coset equality
assumption holds as necessary.



16 A. Kothapalli et al.

Definition 7 (Coset Equality Assumption). For ring R and length param-
eter n, consider R-modules U and V . The coset equality assumption holds for
(U, V ) (w.r.t. tensor product ⊗) if for any u1, . . . , un ∈ U and v1, . . . , vn ∈ V ,
there exists a polynomial-time algorithm to check

∑
i∈[n] ui ⊗ vi = 0.

Example 3 (Bilinear Relation Assumption). Suppose U is a group of prime
order p and V is the corresponding scalar field Zp. Let the tensor product be-
tween these two modules be defined as scalar multiplication. In this setting, the
bilinear relation assumption is equivalent to the discrete logarithm assumption.
Alternatively, suppose U and V are prime order groups such that there exists a
corresponding pairing operation e from U × V into some target group. Let the
tensor product be defined as this pairing operation. In this setting, the bilinear
relation assumption is equivalent to the double pairing assumption.

4 Reductions of Knowledge

Recall that in contrast to arguments of knowledge, reductions of knowledge are
defined over a pair of relations R1 and R2. A prover can use a reduction of
knowledge to show for some u1 that it knows w1 such that (u1, w1) ∈ R1 con-
tingent on the fact that it knows w2 for some statement u2 (derived from its
interaction with the verifier) such that (u2, w2) ∈ R2. We start by intuiting the
desired notion of knowledge soundness needed to capture such an interaction,
before presenting a formal definition (Definition 8). We show that any two re-
ductions of knowledge that respect this definition can be composed sequentially
and in parallel (Theorems 5 and 6). We then observe that a more restricted —
but simpler — notion of soundness, known as tree extractability, implies our def-
inition of knowledge soundness (Lemma 6). In the following sections, we leverage
this observation to prove that our reductions of knowledge for linear-algebraic
statements are secure.

4.1 Defining Reductions of Knowledge

Intuitively, we would like that if a prover is able to convince a verifier on input
u1 to output some derived statement u2 such that it knows a corresponding
satisfying witness w2, then it must have known a corresponding satisfying witness
w1 for u1. We can capture this notion formally by stating that if a malicious
prover can output a satisfying witness w2 for the verifier’s output statement u2,
then there must exist a corresponding extractor that can output a satisfying
witness w1 for the verifier’s input statement u1.

While this presents a stand-alone notion of knowledge soundness, we require
a more nuanced definition to capture technical difficulties that arise when reason-
ing about sequential composability. In particular, existing definitions implicitly
assume that the environment is provided access to the inputs and outputs of the
prover and the verifier, and that some of this material (such as an adversarially
chosen statement) is forwarded to the extractor. Unfortunately, when composing
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such arguments, we end up in situations where intermediate inputs expected by
the extractor are never exposed to the environment.

Concretely, consider a reduction of knowledge Π1 with prover P1, verifier V1,
and extractor E1, and a second reduction of knowledge Π2 with corresponding
P2, V2, and E2. Ideally, we would want to use E1 and E2 in a black-box manner
to construct an extractor E for Π2 ◦Π1. A typical knowledge soundness defini-
tion would dictate that the statement provided to the verifier is forwarded to
the extractor as well. Unfortunately, in the composed setting, the statement u2
output by V1 as input to V2 is never exposed to the environment, and thus it is
unclear how E can simulate the intermediate statement u2 expected by E2.

To alleviate this issue, we stipulate an additional requirement that the veri-
fier’s output statement can be deterministically recovered from the mutual view
of both the prover and verifier. Specifically, the mutual view consists of the pub-
lic parameters, initial input statement, and interaction transcript. We refer to
this property as public reducibility, which can be viewed as analogous to the
public verifiability property common to most modern arguments. With public
reducibility, we are afforded sequential composability.

We formally define reductions of knowledge as interactive protocols in the
global common reference string model.

Definition 8 (Reduction of Knowledge). Consider ternary relations R1

and R2 consisting of public parameters, statement, witness tuples. A reduction
of knowledge from R1 to R2 is defined by PPT algorithms (G,P,V) denoting the
generator, the prover, and the verifier respectively with the following interface.

– G(λ)→ pp: Takes security parameter λ. Outputs public parameters pp.
– P(pp, u1, w1)→ (u2, w2): Takes as input public parameters pp, and statement-

witness pair (u1, w1). Interactively reduces the statement (pp, u1, w1) ∈ R1

to a new statement (pp, u2, w2) ∈ R2.
– V(pp, u1) → u2: Takes as input public parameters pp, and statement u1

associated with R1. Interactively reduces the task of checking u1 to the task
of checking a new statement u2 associated with R2.

Let 〈P ,V〉 denote the interaction between P and V. We treat 〈P ,V〉 as a
function that takes as input (pp, u1, w1) and runs the interaction on prover input
(pp, u1, w1) and verifier input (pp, u1). At the end of the interaction, 〈P ,V〉
outputs the verifier’s statement u2 and the prover’s witness w2. A reduction of
knowledge (G,P,V) satisfies the following conditions.

(i) Completeness: For any PPT adversary A, given pp← G(λ) and (u1, w1)←
A(pp) such that (pp, u1, w1) ∈ R1, we have that the prover’s output state-
ment is equal to the verifier’s output statement and that

(pp, 〈P ,V〉(pp, u1, w1)) ∈ R2.

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗, there exists an expected polynomial-time extractor E such that given
pp← G(λ) and (u1, st)← A(pp), we have that

Pr[(pp, u1, E(pp, u1, st)) ∈ R1] ≈ Pr[(pp, 〈P∗,V〉(pp, u1, st)) ∈ R2].
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(iii) Public Reducibility: There exists a deterministic polynomial-time function
ϕ such that for any PPT adversary A and expected polynomial-time adver-
sary P∗, given pp← G(λ), (u1, st)← A(pp), and (u2, w2)← 〈P∗,V〉(pp, u1, st)
with interaction transcript tr, we have that ϕ(pp, u1, tr) = u2.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge
from relation R1 to relation R2.

Definition 9 (Public-Coin). A reduction of knowledge is public-coin if the
verifier only sends uniformly random challenges to the prover.

4.2 Composing Reductions of Knowledge

We now prove sequential and parallel composition theorems for reductions of
knowledge. This allows us to construct complex arguments by stitching together
simpler reductions sequentially and in parallel. In the case of sequential com-
position, much like recursive composition techniques [8, 14, 31, 41], each compo-
sition step induces a polynomial blowup in the corresponding extractor. Thus,
sequential composition cannot be used more than a constant number of times
without additional computational assumptions.1 Our parallel composition oper-
ator is not parallel in the sense that both protocols are being run at the same
time, but rather parallel in the sense that the composed protocol takes incoming
instance-witness pairs in parallel and produces outgoing instance-witness pairs
in parallel.

Theorem 5 (Sequential Composition). Consider ternary relations R1, R2,
and R3. For reductions of knowledge Π1 = (G,P1,V1) : R1 → R2 and Π2 =
(G,P2,V2) : R2 → R3, we have that Π2 ◦ Π1 = (G,P,V) is a reduction of
knowledge from R1 to R3 where

P(pp, u1, w1) = P2(pp,P1(pp, u1, w1))

V(pp, u1) = V2(pp,V1(pp, u1, w1)).

Proof Intuition. Completeness and public reducibility follow by observation. As
for knowledge soundness, assume there exists an adversarial prover P∗ for Π
that succeeds in producing an accepting witness w3 with non-negligible prob-
ability. Using the second half of P∗ (i.e., the part that interacts with V2), we
can construct an adversary P∗∗2 for Π2 that succeeds in producing an accept-
ing witness w3 with the same probability. By the knowledge soundness of Π2,
this implies an extractor E2 that succeeds in producing an intermediate witness
w2 with nearly the same probability. We can then leverage E2 to construct an
adversary P∗∗1 for Π1 that succeeds in producing an accepting witness w2 with
nearly the same probability. In particular, P∗∗1 first runs the first half of P∗ and
then runs extractor E2 on the intermediate statement u2 (derived by the pub-
lic reducibility of Π1) and the intermediate state of P∗ to produce the output

1 We recommend Bitansky et al. [8, Remark 6.3] for details on such assumptions.
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w2. By the knowledge soundness of Π1, this implies the desired extractor E1
that succeeds in producing the witness w1 with nearly the same probability. We
present a formal proof in the extended version [30].

Definition 10 (Relation Pair). Consider ternary relations R1 and R2 over
public parameters, statement, witness tuples. We define the relation R1 ×R2 =
{(pp, (u1, u2), (w1, w2)) | (pp, u1, w1) ∈ R1, (pp, u2, w2) ∈ R2}. We let R` denote
R× . . .×R for ` times.

Theorem 6 (Parallel Composition). Consider ternary relations R1, R2,
R3, and R4. For reductions of knowledge Π1 = (G,P1,V1) : R1 → R2 and
Π2 = (G,P2,V2) : R3 → R4, we have that Π1×Π2 = (G,P,V) is a reduction of
knowledge from R1 ×R3 to R2 ×R4 where

P(pp, (u1, u3), (w1, w3)) = (P1(pp, u1, w1),P2(pp, u3, w3))

V(pp, (u1, u3)) = (V1(pp, u1),V2(pp, u3)).

Proof Intuition. For i ∈ {1, 2}, we leverage a malicious prover P∗ for Π to
construct a prover P∗i for protocol Πi that succeeds in producing a satisfying
output witness with the same probability. By the knowledge soundness of Πi, this
implies a corresponding extractor Ei that succeeds in producing a satisfying input
witness with nearly the same probability. These extractors imply the desired
extractor E . We present a formal proof in the extended version [30].

4.3 Knowledge Soundness from Tree Extraction

When proving constructions secure, reasoning about knowledge soundness di-
rectly is typically cumbersome. To alleviate this issue, prior work [10] observes
that most protocols are algebraic: The corresponding extractor typically runs the
malicious prover multiple times with refreshed verifier randomness to retrieve ac-
cepting transcripts, which can be interpolated to retrieve the witness. Leveraging
this insight, Bootle et al. [10] provide a general extraction lemma, which states
that to prove knowledge soundness for algebraic protocols, it is sufficient to show
that there exists an extractor that can produce a satisfying witness when pro-
vided a tree of accepting transcripts with refreshed verifier randomness at each
layer. This proof technique has been adapted to various settings [11, 13, 14, 31],
and we similarly provide the corresponding lemma for reductions of knowledge.

Definition 11 (Tree of Transcripts). Consider an m-round public-coin in-
teractive protocol (G,P,V) that satisfies the interface described in Definition 8.
A (n1, . . . , nm)-tree of accepting transcripts for statement u1 is a tree of depth
m where each vertex at layer i has ni outgoing edges such that (1) each vertex in
layer i ∈ [m] is labeled with a prover message for round i; (2) each outgoing edge
from layer i ∈ [m] is labeled with a different choice of verifier randomness for
round i; (3) each leaf is labeled with an accepting statement-witness pair output
by the prover and verifier corresponding to the interaction along the path.
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Lemma 6 (Tree Extraction [11]). Consider an m-round public-coin interac-
tive protocol (G,P,V) that satisfies the interface described in Definition 8 and
satisfies completeness. Then (G,P,V) is a reduction of knowledge if there exists
a PPT extractor χ that, for all instances u1, outputs a satisfying witness w1 with
probability 1− negl(λ), given an (n1, . . . , nm)-tree of accepting transcripts for u1
where the verifier’s randomness is sampled from space Q such that |Q| = O(2λ),
and

∏
i ni = poly(λ).

Proof Intuition. Our proof closely follows that of Bootle et al. [10]. At a high
level, we construct an expected polynomial-time extractor E that repeatedly
runs the malicious prover P∗ and collects corresponding accepting transcripts
and associated output statement-witness pairs. The extractor then passes these
collected transcripts to χ which retrieves the desired witness by assumption. We
present a formal proof in the extended version [30].

5 The Tensor Reduction of Knowledge

We start by defining a general tensor-based language to capture a large class
of linear algebraic statements. We then design a general reduction, the tensor
reduction, for such statements, by extending the sum-check protocol [33]. Next,
we leverage the tensor reduction to construct the tensor reduction of knowledge,
which, for any length vector space of homomorphisms hom(W,V ) and length n,
reduces the task of checking knowledge of a preimage of a vector in hom(Wn, V )
to checking knowledge of a preimage in hom(W,V ).

5.1 Tensor Evaluation Statements

We observe that arguments of knowledge built around statements over linear
algebraic objects — such as matrices, vectors, polynomials, and homomorphisms
— typically share hints of symmetry. Our goal is to generalize such statements,
and more interestingly generalize interactive reductions for such statements.

Regardless of the underlying linear-algebraic objects, arguments over them
tend to only rely on the fact they support some notion of addition and that they
can be scaled by elements in a field (and more generally rings). This seems to
suggest that designing a reduction over the most general objects that support
these operations, namely tensors, would give a single universal protocol for such
objects. From an algebraic standpoint, tensors unify objects such as scalars,
vectors, matrices, and polynomials. More generally, tensors provide a unifying
algebraic object for describing both functions (when viewed as homomorphisms)
and objects (when viewed as elements of a module).

Take for instance the vector commitment relation: Given a prime order group
G and an underlying scalar field Fn, a prover claims that for public commitment
key G ∈ Gn and commitment A, it knows a vector A ∈ Fn such that 〈G,A〉 = A.
As the spaces Gn, Fn and G are all modules, we can build a corresponding “tensor
evaluation” statement

G(A) = A
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where G is a tensor in Gn that maps tensors in Fn to tensors in G.
Alternatively, suppose in addition to claiming that it knows a vector A un-

derlying a commitment A with respect to commitment key G, the prover addi-
tionally claims that taking the inner-product of A against some public vector
B ∈ Fn results in a scalar σ ∈ F. Following our prior reasoning, this can be
represented as two tensor evaluation statements: A claim that G(A) = A and
a claim that B(A) = σ. But, under the rules of the direct sum (which can be
interpreted as a Cartesian product), this is equivalent to applying the tensor
G⊕B ∈ Gn⊕Fn to A and checking that this results in A⊕ σ ∈ G⊕F. Namely,
we have that the composite statement can be encoded as the following tensor
evaluation statement:

(G⊕B)(A) = A⊕ σ.

The flexibility of tensor evaluation statements becomes more salient with
the sum-check protocol [33]. In the sum-check protocol, the prover claims for
multivariate polynomial P : Fn → F with degree d in each variable that∑

x1,...,xn∈{0,1}

P (x1, . . . , xn) = σ (1)

for some claimed sum σ ∈ F. For i ∈ [n], consider the tensor
⊕

j∈[0,d] x
j
i which is

just shorthand for the vector (x0i , x
1
i , . . . , x

d
i ). Now, consider

⊗
i∈[n]

⊕
j∈[0,d] x

j
i ,

which is an n-dimensional matrix populated with all possible products of powers
of x1, . . . , xn. We can now define a tensor X =

∑
x1,...,xn∈{0,1}

⊗
i∈[n]

⊕
j∈[0,d] x

j
i ∈

(Fd+1)n which encodes all desired evaluation points. Additionally, let P ∈ (Fd+1)n

denote an n-dimensional tensor constituting of the coefficients of P . Specifically,
let P contain at index (j1, . . . , jn) the coefficient of P associated with term
xj11 x

j2
2 . . . xjnn . Now, we have that checking the original sum-check statement is

equivalent to checking the tensor evaluation statement

P (X) = σ.

The three examples above suggest that seemingly disparate linear-algebraic
claims can be uniformly viewed as tensor evaluation claims. In light of this, we
are interested in designing a reduction for statements of the form u(w) = v for
tensors u, w, and v.

5.2 The Tensor Reduction

To design a general reduction for tensor statements of the form u(w) = v, we
start by generalizing the sum-check protocol for tensor evaluation statements.
Recall that the sum-check protocol reduces the task of checking the claim in
Equation (1) to the task of checking a sum-check claim over a polynomial with
one less variable. In particular, the prover begins by sending

p(X) =
∑

x1,...,xn−1∈{0,1}

P (x1, . . . , xn−1, X)
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The verifier then checks that p(0)+p(1) = σ. The verifier must now check that p
is consistent with P . To do so, the verifier samples a random r ← F, and reduces
to checking ∑

x1,...,xn−1

P (x1, . . . , xn−1, r) = p(r).

In essence, the sum-check protocol leverages the nested structure of polyno-
mials to reduce the task of checking n-variate polynomials to checking (n− 1)-
variate polynomials. This intuition can be more lucidly expressed with the corre-
sponding tensor evaluation statements: the sum-check protocol reduces the task
of checking the evaluation of P ∈ (Fd+1)n ∼= (Fd+1)n−1 ⊗ Fd+1 (representing
P ) to the task of checking the evaluation of P r ∈ (Fd+1)n−1 (representing P
evaluated on r) and p ∈ Fd+1 (representing p). That is, the sum-check protocol
factors the original statement with respect to the tensor product.

The tensor reduction, which we detail below, follows from generalizing the
involved spaces to handle arbitrary tensor evaluation statements: for any mod-
ules U , U1, and U2 such that U ∼= U1 ⊗ U2, we derive a mechanism to reduce
an evaluation claim in U to an evaluation claim in U1 and an evaluation claim
in U2. In the extended version [30], we show that we can recover the sum-check
protocol when instantiating the tensor reduction over multivariate polynomials.

Construction 3 (Tensor Reduction). Suppose for tensors u ∈ hom(W1, V1)⊗
hom(W2, V2) of rank I, w ∈W1 ⊗W2 of rank J , and v ∈ V1 ⊗ V2 over ring R, a
verifier would like to check

u(w) = v (2)

where u =
∑
i∈[I] u1,i ⊗ u2,i, and w =

∑
j∈[J] w1,j ⊗ w2,j . By definition, the

verifier can check (2) by checking
∑
i,j u1,i(w1,j)⊗u2,i(w2,j) = v. Therefore, the

prover begins by computing and sending v1,ij ← u1,i(w1,j) and v2,ij ← u2,i(w2,j)
for all i ∈ [I], j ∈ [J ]. The verifier directly checks∑

i∈[I],j∈[J]

v1,ij ⊗ v2,ij = v.

The verifier must still check that v1,ij = u1,i(w1,j) and v2,ij = u2,i(w2,j) for all
i, j. To do so, the verifier takes a random linear combination of these checks by
sending random α, β from a valid sampling set Q ⊆ R, and computing v1 =∑
i,j α

iβjv1,ij and v2 =
∑
i,j α

iβjv2,ij . The verifier then outputs (α, β, v1, v2),
reducing the original check to the task of checking(∑

i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2.

Theorem 7 (Tensor Reduction). For tensors u =
∑
i u1,i⊗u2,i ∈ hom(W1, V1)⊗

hom(W2, V2) of rank I, w =
∑
j w1,j⊗w2,j ∈W1⊗W2 of rank J , and v ∈ V1⊗V2

over ring R, the tensor reduction reduces the task of checking

u(w) = v
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to the task of checking(∑
i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2

for verifier output (α, β, v1, v2). Formally, if the former is true, then the latter
is true with probability 1, and if the former is false, then the latter is false
with probability at least 1− IJ

|Q| . The prover complexity, verifier complexity, and

communication complexity are all proportional to IJ .

Proof. This follows from the Schwartz-Zippel Lemma [38] extended to mod-
ules [11].

At first glance, it may seem that the communication cost of the tensor re-
duction is greater than the size of the witness: the witness only consists of J
elements in W1 ⊗W2, but the prover sends IJ elements in V1 and V2. This is
reconciled by the fact that elements of V1 and V2 are intended to be significantly
smaller than elements in W1 ⊗W2. For instance, elements in W1 ⊗W2 may be
long vectors that are mapped to short commitments in V1 and V2.

To build intuition for where tensor reductions are useful, we explain how to
instantiate the tensor reduction to reconstruct the vector commitment reduction
of knowledge presented in Section 2.

Example 4 (Vector Commitment Reduction of Knowledge). We con-
struct a reduction of knowledge from RVC(n) to RVC(n/2) for n = 2i where
i ≥ 1. Consider group G of prime order p, and corresponding scalar field F ∼= Zp.
Consider some public key G ∈ Gn. Suppose a verifier would like to check for some
commitment A ∈ G, that the prover knows vector A ∈ Fn such that G(A) = A
where G(A) is defined to be 〈G,A〉.

We observe that Gn ∼= Gn/2 ⊗ F2 and Fn ∼= Fn/2 ⊗ F2. Let {δ1, δ2} be
an orthonormal basis for F2 (i.e., we have that δi(δj) = 1 when i = j and 0
otherwise). Then, we have that G = G1⊗δ1 +G2⊗δ2 and A = A1⊗δ1 +A2⊗δ2
for some G1, G2 ∈ Gn/2 and A1, A2 ∈ Fn/2. These terms can be interpreted as the
first and second half of vectors G and A. Therefore, the verifier can equivalently
check (∑

i

Gi ⊗ δi
)(∑

j

Aj ⊗ δj
)

= A.

Applying the tensor reduction with respect to this decomposition, we have
that the prover sends to the verifier Gi(Aj), δi(δj) for i, j ∈ {1, 2}. Explicitly,
letting Aij = Gi(Aj), the prover sends the terms (A11, 1), (A12, 0), (A21, 0), and
(A22, 1). We recognize that the first and last terms correspond with the first and
second half of commitment A, and the middle two terms are cross terms.

Upon receiving these terms, the verifier checks that

A11 ⊗ 1 +A12 ⊗ 0 +A21 ⊗ 0 +A22 ⊗ 1 = A.
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The verifier then samples and sends random α, β ← F, and sets the new state-
ments to be checked to be (G1 + αG2)(A1 + βA2) =

∑
i,j∈{1,2}Aij · αiβj and

(δ1 +αδ2)(δ1 +βδ2) = 1+(β+α) ·0+αβ ·1. The latter check holds immediately.
As for the former check, the prover and verifier compute and output the new
statement G′ ← G1 + α ·G2 ∈ Gn/2 and A ←

∑
i,j∈{1,2}Aij · αiβj . The prover

privately computes and outputs the new witness vector A′ ← A1 + βA2 ∈ Fn/2.
Now, it is sufficient for the verifier to check that the prover knows A′ ∈ Fn/2

such that G′(A′) = A
′
.

5.3 The Tensor Reduction of Knowledge

By generalizing Example 4 for arbitrary tensor statements, we arrive at the ten-
sor reduction of knowledge, which is unconditionally secure. We start by defining
the tensor relation which fixes the homomorphism and image as a statement and
the preimage as the witness.2 We then construct the tensor reduction of knowl-
edge, which for a vector space of homomorphisms U and length n, reduces the
task of checking knowledge of a preimage of a homomorphism in Un to the task
of checking knowledge of a preimage of a homomorphism in U . In the upcoming
section, we show that the tensor reduction of knowledge can be instantiated to
derive reductions of knowledge for various linear algebraic statements.

Definition 12 (Tensor Relation). For R-modules U , W and V , such that
U ∼= hom(W,V ) we define the tensor relation for U as follows

R(U) =

{
((u, v), w)

∣∣∣∣∣u ∈ U, v ∈ V,w ∈W,u(w) = v

}
Construction 4 (Tensor Reduction of Knowledge). Consider field F, length
parameter n, and F-modules W and V . We construct a reduction of knowledge
from R(hom(Wn, V )) to R(hom(W,V )). Let {δi} be an orthonormal basis for
Fn. Suppose the prover and verifier are provided statement u =

∑
i ui ⊗ δi ∈

hom(Wn, V ), and v ∈ V . Additionally, suppose the prover is provided an alleged
witness w =

∑
j wj ⊗ δj ∈Wn such that

((u, v), w) ∈ R(hom(Wn, V )).

The prover and verifier run a single tensor reduction on the equivalent statement( ∑
i∈[n]

ui ⊗ δi
)( ∑

j∈[n]

wj ⊗ δj
)

= v.

At the end of tensor reduction, the verifier outputs (α, β, v′, ). The prover and
verifier compute u′ =

∑
i α

i · ui and set the output statement to be (u′, v′). The

2 The tensor relation can be formally understood as a ternary relation where any pub-
lic parameters are ignored. This makes it compatible with the reductions of knowl-
edge framework which works over ternary relations defined over public parameter,
statement, and witness tuples.
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prover additionally computes the output witness w′ =
∑
j β

j ·wj as dictated by
the tensor reduction. Now, to check the original statement, it is sufficient for the
verifier to check that the prover knows w′ such that

((u′, v′), w′) ∈ R(hom(W,V )).

Theorem 8 (Tensor Reduction of Knowledge). For field F, length param-
eter n, and F-modules W and V , Construction 4 is a reduction of knowledge
from R(hom(Wn, V )) to R(hom(W,V )).

We present a formal proof of Theorem 8 in the extended version [30].

6 Instantiating the Tensor Reduction of Knowledge

In this section, we demonstrate a unifying view of existing recursive algebraic
arguments by deriving them by instantiating the tensor reduction of knowledge
over the appropriate structures. We additionally derive new reductions of knowl-
edge for bilinear forms by extending our techniques. In the extended version [30],
we additionally discuss concrete modules each of these reductions can be instan-
tiated over. In Section 7, we show how to stitch together these reductions to
derive an argument for NP.

6.1 Vector Commitments and Linear Forms

We start by generalizing the vector commitment relation from Section 2 and then
discuss how succinctly derive the vector commitment reduction of knowledge
via the tensor reduction of knowledge. We then adapt the vector commitment
reduction for linear forms. The high level approach is to first split all checks over
size n vectors into k checks over size n/k vectors. These checks are then folded
using a random linear combination. How exactly the vectors are split and folded
is abstracted away by the tensor reduction of knowledge.

Consider size parameter n ∈ N, and consider F-modules G and H for field
F such that G ∼= hom(H,G ⊗ H). For public key G ∈ Gn, and commitment
H ∈ G⊗H, suppose a verifier would like to check that a prover knows H ∈ Hn
such that

∑
iGi ⊗Hi = H. For example, suppose G is a group of prime order p

where the discrete logarithm is hard, H and F are Zp, and ⊗ represents scalar
multiplication. Then, this amounts to checking knowledge of the opening for a
Pedersen commitment. Recall that the prover’s claim can be expressed as a ten-
sor statement G(H) = H. Therefore, because G ∈ Gn, we define the generalized
vector commitment relation as the tensor relation over homomorphisms in Gn.

Definition 13 (Generalized Vector Commitment Relation). For length
n ∈ N and group G, the vector commitment relation is defined to be R(Gn).

Construction 5 (Vector Commitment Reduction of Knowledge). Be-
cause Gn ∼= (Gn/k)k, we can directly apply the tensor reduction of knowledge to
get a reduction from R(Gn) to R(Gn/k).
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Suppose that in addition to checking that the prover knows a vector opening
to a commitment, the verifier would like to additionally check some public linear
combination of the prover’s opening. In particular, for public vector A ∈ Fn,
and σ ∈ H, suppose the verifier would like to additionally check that A(H) = σ
where A(H) is defined to be

∑
i∈[n]Ai⊗Hi. For example, if ⊗ represents scalar

multiplication, then this amounts to checking an inner-product. Recall, from
Section 5, that this is equivalent to checking (G ⊕ A)(H) = H ⊕ σ. Because
G⊕A ∈ Gn ⊕ Fn, we define the linear forms relation as follows.

Definition 14 (Linear Forms Relation). For length n and F-module G for
field F, let LFn = Gn ⊕ Fn. The linear forms relation is defined to be R(LFn).

Construction 6 (Linear Forms Reduction of Knowledge). Consider n, k ∈
N such that k divides n. We construct a reduction of knowledge from R(LFn)
to R(LFn/k). In particular, we have that LFn = (G ⊕ F)n ∼= (G ⊕ F)(n/k)·k =

(LFn/k)k. Therefore, the prover and verifier can apply the tensor reduction of
knowledge with respect to this decomposition to reduce the task of checking a
statement in R(LFn) to the task of checking a statement in R(LFn/k).

Lemma 7 (Linear Forms Reduction of Knowledge). Construction 6 is a
reduction of knowledge from LFn to LFn/k with O(n) prover and verifier time
complexity and O(k2) communication complexity.

As discussed in Section 2, we can construct a base case argument for LF1

where the prover directly reveals the witness. Thus, we have the following.

Corollary 2 (Linear Forms Argument of Knowledge). Consider n, k ∈ N
such that k divides n. Let ΠLF be a reduction of knowledge from R(LFn) to
R(LFn/k). Let Πbase be an argument of knowledge for R(LF1). Then

Πbase ◦ΠLF ◦ . . . ◦ΠLF︸ ︷︷ ︸
logk n times

is an argument of knowledge for LFn with O(n) prover and verifier time com-
plexity and O(k2 · logk n) communication complexity.

6.2 Bilinear Forms

We extend the above methodology to develop a new reduction for bilinear forms.
Recall that the public parameters consist of public key G ∈ Gm, and the state-
ment consists of matrix M ∈ Fm×m, commitments A,B ∈ G, and scalar σ ∈ F.
A witness (A,B) ∈ Fm is satisfying if A>MB = σ, 〈G,A〉 = A, and 〈G,B〉 = B.

Below, we define a slight generalization where the length n of the vector B
is some fraction of the length m. The key G is first (partially) compressed with
respect to some public random vector r ∈ Fm/n to produce a new key H ∈ Gn.
This key is instead used to commit to the vector B. Our bilinear forms reduction
will recursively compress G and B until n = 1. At this point the bilinear forms
statement can be reduced to a linear forms statement.
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Definition 15 (Bilinear Forms, Original). Consider F-module G for field
F. We define the bilinear forms relation, RBil, characterized by m rows and n
columns as follows. The public parameters consist of key G ∈ Gm. The state-
ment consists of matrix M ∈ Fm×n, public randomness r ∈ Fm/n, commitments
(A,B) ∈ G, and σ ∈ F. A witness (A,B) is satisfying if A>MB = σ, G(A) = A,
and G(r ⊗B) = B.

Unlike vector commitments and linear forms, the bilinear forms relation can-
not be encoded directly as a tensor evaluation statement. Our approach is to
encode the original statement as the related statement,

(G⊗H ⊕M)(A⊗B) = (A⊗B ⊕ σ), (3)

where M ∈ Fm ⊗ Fn is a tensor such that M(A ⊗ B) = A>MB and H =
G(r) ∈ Gn. The tensor-based statement implies checking the original statement
so long as we additionally stipulate that the bilinear relation assumption holds
for (G,F), and (G,G). Then, we can utilize the tensor reduction of knowledge
to reduce the corresponding tensor relation R(Gm ⊗Gn ⊕ Fm ⊗ Fn).

In practice, G can be a symmetric bilinear group with the pairing operation
acting as the tensor product and G ⊗ G denoting the target group. In this
setting, the bilinear relation assumptions are equivalent to the discrete logarithm
assumption over G and the double pairing assumption [1] over (G,G).

The computational hardness assumptions are a critical detail for arguing that
checking Equation (3) is sufficient to check the original relation: the uncondi-
tional knowledge soundness property of the tensor reduction of knowledge only
guarantees that the prover knows some satisfying witness in Fm⊗Fn which may
be of the form

∑
iAi⊗Bi (i.e., not a simple tensor). While this is a valid witness

for the corresponding tensor statement, it is not a valid witness for the original
statement. However, by assuming that the commitment scheme is computation-
ally binding, we can argue that all Ai values must be the same. Leveraging this,
we can show that the prover must know a single A and B vector that satisfies
the statement. Formally, we define the bilinear forms relation as follows.

Definition 16 (Bilinear Forms, Tensor). Consider n,m ∈ N, and consider
F-module G for field F such that the bilinear relation assumption holds for (G,F),
and (G,G). Let BFm,n = (Gm ⊗Gn)⊕ (Fm ⊗ Fn). We define the (tensor-based)
bilinear form relation as the corresponding tensor relation R(BFm,n).

Next, we show how to recursively reduce RBil(m,n) to R(LFm). To do so,
we construct a reduction from RBil(m,n) to RBil(m,n/k), which internally uses the
tensor reduction of knowledge from R(BFm,n) toR(BFm,n/k). We then construct
a base case reduction from RBil(m,1) to R(LFm).

Construction 7 (Bilinear Forms Reduction of Knowledge). Consider
n, k ∈ N such that k divides n. We reduce from RBil(m,n) to RBil(m,n/k).

The generator samples public key G ← Gm. Suppose that the prover and
verifier take as input statement (M, r,A,B, σ) and the prover additionally takes
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as input and witness (A,B) such that

(G, (M, r,A,B, σ), (A,B)) ∈ RBil(m,n)

The prover and verifier begin by encoding the statement and witness as

((G⊗H ⊕M , A⊗B ⊕ σ), A⊗B) ∈ R(BFm,n)

where M ∈ Fm ⊗ Fn is such that M(A⊗B) = A>MB and H = G(r) ∈ Gn.
We observe that

BFm,n = Gm ⊗Gn ⊕ Fm ⊗ Fn ∼= (Gm ⊗Gn/k ⊕ Fm ⊗ Fn/k)k = (BFm,n/k)k.

Therefore, the prover and verifier can apply the tensor reduction of knowledge
with respect to this decomposition and reduce to the task of checking a statement
in R(BFm,n/k). At a high level, the tensor reduction prover and verifier partition
M and H into k sets of columns and the prover partitions B into k corresponding
sets of rows. The prover and verifier then take a random linear combination of
these sets against weights (s, s2, . . . , sk) for some randomness s ∈ F. By linearity,
we have that the output statement is of the form

((G⊗H ′ ⊕M ′, A⊗B′ ⊕ σ′), A⊗B′) ∈ R(BFm,n/k)

for some H ′ = H((s, . . . , sk)) ∈ Gn/k, M ′ = M((s, . . . , sk)) ∈ Fm ⊗ Fn/k,

B
′ ∈ G, σ′ ∈ F, and B′ ∈ Fn/k. Together, the prover and verifier output the

decoded statement (M ′, (r ⊗ (s, . . . , sk)), A,B
′
, σ′) and witness (A,B′). Now it

is sufficient for the verifier to check that the prover knows (A,B′) such that.

(G, (M ′, (r ⊗ (s, . . . , sk)), A,B
′
, σ′), (A,B′)) ∈ RBil(m,n/k).

Lemma 8 (Bilinear Forms Reduction of Knowledge). Construction 7 is
a reduction of knowledge from RBil(m,n) to RBil(m,n/k) with O(mn) prover and
verifier time complexity and O(k2) communication complexity.

We present a formal proof of Lemma 8 in the extended version [30]. We now
present the base case reduction.

Construction 8 (Bilinear Forms Base Case). We construct a reduction of
knowledge from RBil(m,1) to R(LFm). Once again the generator samples public

key G← Gm. Consider statement (M, r,A,B, σ) and alleged witness (A,B). The
prover begins the reduction by directly sending B to the verifier. The verifier
immediately checks that H(B) = B for H = G(r). Additionally, as M ∈ Fm
and B ∈ F, the verifier computes the vector V ←M ·B. The verifier is left with
checking that the prover knows A ∈ Fm such that G(A) = A and V (A) = σ.
This is equivalent to checking that ((G⊕ V,A⊕ σ), A) ∈ R(LFm).

Lemma 9 (Bilinear Forms Base Case). Construction 8 is a reduction of
knowledge from RBil(m,1) to R(LFm) with O(m) prover and verifier time com-
plexity and O(1) communication complexity.



Algebraic Reductions of Knowledge 29

Corollary 3 (Bilinear Forms to Linear Forms). Consider n, k ∈ N such
that k divides n. Let ΠBil be the reduction of knowledge from RBil(m,n) to RBil(m,n/k).
Let Πbase be the reduction of knowledge from R(Bil(m, 1)) to R(LFm). Then

Πbase ◦ΠBil ◦ . . . ◦ΠBil︸ ︷︷ ︸
logk n times

is a reduction of knowledge from RBil(m,n) to R(LFm) with O(mn) prover and
verifier time complexity and O(k2 · logk n) communication complexity.

7 An Argument of Knowledge for NP

In this section, we develop an argument of knowledge for NP with logarithmic
communication by leveraging our reductions of knowledge for linear algebraic
statements. In particular, we first show that an NP-complete relation, RACS, can
be encoded as a sequence of linear and bilinear forms constraints over the same
commitment. We then develop helper reductions of knowledge that reduce the
task of checking many linear and bilinear forms over the same commitment to a
single linear and bilinear form. We then apply our reductions of knowledge for
linear forms and bilinear forms.

Definition 17 (Algebraic Constraint System [29]). Consider group G and
corresponding field F such that the bilinear relation assumption holds for (G,F)
and (G,G). We define the NP-complete algebraic constraint relation, RACS, char-
acterized by n variables, m = O(n) constraints, and ` inputs as follows. The pub-
lic parameters consist of G ∈ Gn. The statement consists of m sparse constraint
matrices M1, . . . ,Mm ∈ Fn×n such that the total number of non-zero values in
all matrices combined is O(n), public inputs and outputs vector X ∈ F`, and
witness commitment Z ∈ G. A witness vector W ∈ Fn−` is satisfying if for
Z = (X,W ), Z>MiZ = 0 for all i ∈ [m], and G(Z) = Z.

We can encode RACS to tensor relations as follows: First, the verifier can
check that ((G ⊕ δi, Z ⊕ Xi), Z) ∈ R(LFn) for all i ∈ [`] to ensure that Z
contains public vector X. To check the commitment and constraints, it is suf-
ficient for the verifier to check that the prover knows Z1, Z2 ∈ Fn such that
(G, (Mi, 1, Z, Z, 0), (Z1, Z2)) ∈ RBil(n,n) for all i ∈ [m]. The bilinear relation
assumptions ensure that Z, Z1 and Z2 are equal.

Next, we leverage the fact that all linear form checks and all bilinear form
checks are over the same commitment to reduce these checks. We formally cap-
ture the set of linear and bilinear form checks over the same commitment as the
multiple linear and bilinear forms relations.

Definition 18 (Multiple Linear Forms). We define RMLF(n,`) such that

((G, (V1, . . . , V`), (σ1, . . . , σ`), Z), Z) ∈ RMLF(n,`) if and only if ((G ⊕ Vi, Z ⊕
σi), Z) ∈ R(LFn) for all i in [`].
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Definition 19 (Multiple Bilinear Forms). We define RMBil(m,n,`) such that

(G, ((M1, . . . ,M`), r, (σ1, . . . , σ`), Z1, Z2), (Z1, Z2)) ∈ RMBil(m,n,`) if and only if

(G, (Mi, r, Z1, Z2, σi), (Z1, Z2)) ∈ RBil(m,n) for all i in [`].

With these relations, the above encoding can be captured as a reduction
of knowledge in which the prover and verifier do not interact but rather take
as input an RACS statement-witness pair and output the corresponding tensor-
based statements and witnesses in the multiple linear forms and bilinear forms
relations. This step can be interpreted as a Levin reduction.

Lemma 10 (Encoding NP as Tensor Relations). There exists a reduction
of knowledge from RACS(m,n,`) to RMBil(n,n,m) ×RMLF(n,`) with O(n) prover and
verifier complexity, and no communication.

Because all ` checks for RMLF(n,`) concern the same committed value, we
observe that they can be batched into a single check for R(LFn) using a random
linear combination. In particular, the verifier can send a random challenge r ∈ F.
Together the prover and verifier can compute V ←

∑
i Vi · ri and σ ←

∑
i σi ·

ri and reduce to checking that the prover knows Z such that ((G ⊕ V, Z ⊕
σ), Z) ∈ R(LFn). Similarly, we can reduce multiple bilinear forms over the same
commitment to a single bilinear form. Formally, we have the following reductions.

Lemma 11 (Linear Forms Batch Reduction). For n,m, ` ∈ N, there exists
a reduction of knowledge from RMLF(n,`) to RLF(n) with O(n`) prover and verifier
time complexity, and O(1) communication complexity.

Lemma 12 (Bilinear Forms Batch Reduction). For n,m, ` ∈ N, there ex-
ists a reduction of knowledge from RMBil(m,n,`) to RBil(m,n) with O(mn`) prover
and verifier time complexity, and O(1) communication complexity.

Putting everything together, we arrive at an argument of knowledge for NP.

Corollary 4 (An Argument of Knowledge for NP). Let Πencode be the re-
duction of knowledge from RACS(n,m,`) to RMBil(n,n,m) ×RMLF(n,`) (Lemma 10).
Let ΠbatchLF be the batching scheme for linear forms (Lemma 11). Let ΠbatchBil be
the batching scheme for bilinear forms (Lemma 12). Let ΠLFn

be the argument
of knowledge for R(LFn) with decomposition parameter k (Construction 2). Let
ΠBil(n,n) be the reduction of knowledge from RBil(n,n) to RLF(n) with decomposi-
tion parameter k (Corollary 3). Let Πid be the identity reduction of knowledge
(i.e., the prover and verifier output their inputs). Let ΠfoldBool be a 2-folding
scheme for R> (i.e., the verifier outputs true if both its inputs are true). Then

ΠfoldBool ◦ (Πid ×ΠLFm
) ◦ (ΠLFn

×ΠBil(n,n)) ◦ (ΠbatchLF ×ΠbatchBil) ◦Πencode

is an argument of knowledge for RACS(n,m,`) with O(n) prover and verifier time
complexity, and O(k2 logk n) communication complexity.
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[18] Campanelli, M., Nitulescu, A., Ràfols, C., Zacharakis, A., Zapico, A.:
Linear-map vector commitments and their practical applications. In:
Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022.
pp. 189–219. Springer Nature Switzerland, Cham (2022)

[19] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin:
Preprocessing zkSNARKs with universal and updatable srs. In: Advances in
Cryptology–EUROCRYPT 2020: 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10–14, 2020, Proceedings, Part I 39. pp. 738–768. Springer (2020)

[20] Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: Shorter
proofs for a privacy-enhanced distributed ledger. IEEE Access 10, 42067–
42082 (2022)

[21] Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella:
Turning shabby x. 509 certificates into elegant anonymous credentials with
the magic of verifiable computation. In: 2016 IEEE Symposium on Security
and Privacy (SP). pp. 235–254. IEEE (2016)



Algebraic Reductions of Knowledge 33

[22] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Advances in Cryptology—CRYPTO’86:
Proceedings 6. pp. 186–194. Springer (1987)

[23] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its ap-
plications. In: Advances in Cryptology–CRYPTO 2018: 38th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part II 38. pp. 33–62. Springer (2018)

[24] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953 (2019)

[25] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Advances in Cryptology–
EUROCRYPT 2013: 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings 32. pp. 626–645. Springer (2013)

[26] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Proceedings of the forty-third annual ACM
symposium on Theory of computing. pp. 99–108 (2011)

[27] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, pp. 203–225 (2019)

[28] Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
In: 2016 IEEE symposium on security and privacy (SP). pp. 839–858. IEEE
(2016)

[29] Kothapalli, A., Masserova, E., Parno, B.: Poppins: A direct construction
for asymptotically optimal zkSNARKs. Cryptology ePrint Archive, Report
2020/1318 (2020)

[30] Kothapalli, A., Parno, B.: Algebraic reductions of knowledge. Cryptology
ePrint Archive, Paper 2022/009 (2022)

[31] Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge argu-
ments from folding schemes. In: Advances in Cryptology–CRYPTO 2022:
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV. pp. 359–388.
Springer (2022)

[32] Lee, J.: Dory: Efficient, transparent arguments for generalised inner prod-
ucts and polynomial commitments. In: Theory of Cryptography: 19th Inter-
national Conference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021,
Proceedings, Part II. pp. 1–34. Springer (2021)

[33] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for inter-
active proof systems. Journal of the ACM (JACM) 39(4), 859–868 (1992)

[34] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Advances in Cryptology—CRYPTO’91: Proceedings. pp.
129–140. Springer (2001)
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