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Abstract

Improving accuracy to assess crop phenology and their space-time fluctuations are
essential for farmers, policy makers, and government agencies. Weekly field survey data
from extension agricultural agents is currently utilized to generate reports on progress
estimates of crop phenology. Although this data is critical, it is labor-intensive, time-
consuming, and prone to human error. Remote sensing can improve the accuracy of
these estimates via reducing bias and missing data, but this process requires gathering
high observational frequency and spatial resolution, combining multi-sensor data
streams. Robust classifiers (e.g., random forest, RF) are also a key component for
handling large datasets with acceptable trade-off and stability. The aim of this manuscript
focuses on comparing the output of RF classifier model (dealing with imbalanced
datasets) testing two different satellite sources (Planet Fusion, PF and Sentinel-2, S-2) in
combination with weather data to improve maize (Zea mays L.) crop phenology
classification evaluated in two regions (southwest and central) in Kansas (US) during the
2017 season. Our findings showed that the use of very high temporal resolution resulted
on higher classification metrics (f1-score = 0.94) in both regions when compared to
Sentinel-2 (S-2) (f1-score = 0.86). In addition, a temporal sensitivity analysis over S-2,
showed a drop in f1-score with values of 0.74 and 0.60. This research establishes the
value of having access to very high temporal resolution (daily basis) for crop monitoring

and its effect on actionable insights in the agricultural decision-making process.

Key words: maize phenology; Planet Fusion; Sentinel-2; Random Forest classifier.
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1. Introduction

Crop phenology is the study of biological processes such as emergence, flowering,
and senescence, linked and in response to environmental growing conditions (Liang et
al., 2011). Understanding changes in crop phenology and their response to climatic
conditions are critical for production-beneficial management practices measures (Ruml
and Vulic, 2005). Thus, understanding crop phenology is a critical step in ensuring our
ecosystems' long-term sustainability and viability.

Current official phenology crop progress estimates in the United States are based on
weekly survey data obtained from a large network of regional extension agricultural
agents based on their periodic field observations (Gao and Zhang, 2021). Although this
is a valuable source of knowledge, the data collection process is a time-consuming and
labor-intensive task that may not accurately represent, with a high level of fidelity, a county
or district (Gao et al., 2017).

In addition to ground-based field observations, implementing remote sensing
technologies for Earth observation has been proved to be a useful tool, giving spatial and
temporal information for vegetation monitoring across vast regions of land (White et
al.,1997; Zhang et al., 2003; Vina et al., 2004 ). Current sensors and future missions result
in a large amount of available data with countless temporal, spectral, and spatial
resolutions (Houborg et al., 2015; Rast and Painter, 2019; Wulder et al., 2019). This
observational frequency is one of the most important factors to address crop phenology
progress and monitor changes in vegetation dynamics at both spatial and temporal level

(Gao and Zhang, 2021).
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Although a large progress for monitoring crop phenology has been achieved, sensors
with daily or close to daily coverage are not available at the spatial resolution needed for
field analysis, while those sensors with high spatial resolution present a low revisit period.
Several efforts are being conducted to merge those characteristics, scattered through
different sensors, into one product capable to retrieve high temporal and spatial resolution
(Gao et al., 2017; Claverie et al., 2018; Liao et al., 2019). Data fusion is currently the best
path to achieve within season analysis capable of characterizing vegetation dynamics in
both large- and small-scale environments or landscapes (Gao and Zhang, 2021).

Robust classifiers are needed to manage large datasets with acceptable trade-offs
and stability while remaining computationally feasible (Gislason et al., 2006). For
decades, Random Forest (RF, Breiman, 2001) has been proved to be useful for remote
sensing applications (Pal, 2005; Rodriguez-Galiano et al., 2012; Belgiu and Dragut, 2016)
producing superior classification metrics relative to other classifiers, mainly when dealing
with large and unbalanced datasets (Fernandez-Delgado et al.,, 2014). These
characteristics, along with their simplicity and processing speed, make RF the classifier
of choice in a wide variety of scenarios.

This manuscript focuses on comparing the output of RF classifier model testing two
different sources of satellite varying in their temporal and spatial resolution in combination
with weather data to improve maize (Zea mays L.) crop phenology classification. The
specific objectives for this study were: i) to utilize surface reflectance data from Planet’s
data fusion product (PF-SR) and ESA's Sentinel-2 sensors to quantify performance for
crop phenology classification; and ii) to evaluate the universality of the model by testing

its performance in two distinct maize production regions, southwest: mainly irrigated with
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average yields >11 Mg ha™'; and central: rainfed, yields <9 Mg ha!, within the state of
Kansas (US) during the 2017 growing season.

2. Materials and methods

21. Study area

The present study was conducted in the State of Kansas (US), with the southwest
(SW) region comprising the counties of Morton, Stanton, Grant, and Stevens and the
central (CK) region constituted by the counties of Stafford and Pratt (Figure 1, a)

The precipitation pattern in Kansas is highly uneven in both quantities and distribution,
ranging from over 1000 millimeters from the southeast to less than 300 millimeters in the
west region of the State. For the two regions selected in this study, these levels ranged
from 500 to 800 mm for the CK (rainfed region) and from 300 to 500 mm for the SW region
(Lin et al., 2017). The size of the fields, as well as standard management practices such
ground water irrigation, differ in these two regions. The SW region is mostly dominated
by larger fields relative to the CK, and more concentration of irrigation pivots (fed from the
Ogallala Aquifer), resulting in higher maize yields, average 11 Mg ha™ for year 2019
(USDA-NASS, n.d.). In contrast, CK region is characterized for smaller fields and mainly
dominated by rainfed agriculture, with average maize yield of 9 Mg ha* for the year 2019

(USDA-NASS, ).
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Figure 1. a) Area of study (a.1) state of Kansas (US), a.2) southwest (SW) region; large
orange rectangle representing Sentinel-2 tile covering the area; green rectangle
corresponds with the Planet fusion (PF) tiles over the area; pink dots correspond to the
ground truth field data collection, a.3) central KS (CK) region; green square corresponds
with the PF tile over the area; yellow dots correspond to the ground truth field data
collection. b) Maize phenology stages, scale used during ground truth data collection,
following Ciampitti et al. (2011). c¢) Sentinel-2 and PF data imagery and GRIDMET data
from Google Earth Engine (GEE) repository, data availability differs temporally with 8
images collected for Sentintel-2, and daily temporal data for both PF and weather data

during the 2017 growing season, varying with the day of the year (DOY).

2.2, Data characteristics
2.2.1. Reference ground field data
Acquiring quality environmental data may be challenging and expensive, even more

so when dealing with extensive geographic areas (Hanks et al., 2011; Ruiz-Gutierrez et
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al., 2016). This requires not just data collection and subsequent storage, but also the
training of a person capable of delivering the information with minimal to no bias or errors.
Despite these substantial obstacles, ground-truth field data continues to be the most
reliable and closest to the true condition of the system(Hooten et al., 2007; Dickinson et
al., 2012). For this study, we were able to acquire a valuable source of ground-truth data
from Crop Quest Inc., which included geolocated fields spanning many States in the
central region of the United States. This dataset was developed during a five-year period,
from 2013 to 2017, by conducting repeated trips to each farmer field to document maize
crop phenology changes during the growing season.

To demonstrate contrasting case studies for maize crop production, two regions were
selected for presenting geographical proximity but different productivity, SW and CK
regions, during the 2017 growing season (Figure 1a). On average, each field was visited
5 times during the season, although this varies greatly within all field observation collected
and summarized in this large database. The crop phenology stages present in the dataset
followed the scale described on Figure 1, b, based on Ciampitti et al. (2011). The final
database included geolocated fields for both regions, crop phenology measurements per
field, and the date for data collection (time stamp).

2.2.2. Remote sensing data and weather variables

Google Earth Engine (GEE) was used to retrieve and analyze spectral remote sensing
data, as well as for the weather information (Figure 1c). This cloud-based platform
enabled the processing of large datasets and provided access to a wide library of pre-
processed satellite images, climate, and land cover data, as well as built-in algorithms

and vector data (Gorelick, 2017; Kumar and Mutanga, 2018).
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2.2.21. Planet fusion product

For the 2017 season, our industry partner provided daily Planet Fusion (PF)
harmonized product. This product combines public and commercial sensors (data from
multi-constellation Planet Scope, Sentinel-2, and Landsat 8) to provide a daily, gap-filled,
temporally consistent, radiometrically robust surface reflectance with 3-meter spatial
resolution and four spectral bands: blue (0.45 — 0.51 um), green (0.53 — 0.59 pm), red
(0.64 — 0.67 um) and near infrared (0.85 — 0.88 um). Due to the high temporality, spatial
resolution, and quality of data, this product can be an excellent resource for dealing with
detailed crop phenology and its temporal variation. For the SW region, tiles 11E-172 N
and 11E-173 N were utilized, as well as tile 21E-174 N for CK region, with each tile
covering an area of 24 by 24 km. Both spectral and metadata from each imagery were
uploaded to GEE via a Google Cloud Repository and organized into a collection for
convenient access during feature extraction.

2.2.2.2. Sentinel-2

Sentinel-2 (S-2) is an optical satellite developed by the European Space Agency
(ESA) that is composed of two complementary spacecraft that work together to collect
data (S-2A and S-2B). This satellite was selected to create a comparison between the PF
product and a publicly available and extensibility-enabled satellite with high temporal (5
to 10 days) and spatial resolution (10, 20 and 60 m, Drusch et al., 2012). Level-1C
orthorectified reflectance product, from GEE archives was used, particularly the tile
T14SKG covering SW Kansas. Even though the 2017 growing season had 12 images,
only eight of them presented less than 20% cloud cover, and only five of them matched

in time to those observed in the ground truth field data collection.
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2.2.2.3. Spectral bands and Vegetation indices

Vegetation indices (VI) such as the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation Index (GCVI),
Chlorophyll Vegetation Index (CVI) and Normalized Green Index (NGI) were calculated
on GEE based on the spectral bands from both products (PF and S-2). Extensive
literature is associated to these indices and its capacity to monitor vegetation dynamics
(Tucker 1977; 1979; Turner et al., 1999; Gitelson et al., 2003; Vina et al., 2011).

Briefly, the NDVI is determined because healthy plants often have a higher reflectance
in the near infrared (NIR) than in the visible bands (red) (Tucker, 1979). While extensively
utilized, it is widely documented that this index saturates at large biomass levels due
mainly to its sensitivity to chlorophyll concentration. The EVI is an index that incorporates
the blue band to mitigate the impact of certain atmospheric effects, more accurately
representing changes in plant canopy, including high productivity regions (Liu and Huete,
1995; Huete et al., 2002). The GCVI has been proven to present a greater linear
connection with the leaf area index of maize than other indices and, unlike NDVI, does
not saturate at high biomass levels (Gitelson et al., 2003). Lastly, both CVI and NGI were
suggested as adequate vegetation indices due to their responsiveness to changes in the
chlorophyll content of the crop (Vincini and Frazzi, 2011; Sripada et al., 2006).

2.2.2.4. Weather variables

Weather variables were derived from the GEE archives based on gridded surface
meteorological data (GRIDMET, Abatzoglou, 2013). This dataset integrates high-
resolution spatial data from PRISM (2.5 arc minute, 4 km) with regular temporal resolution

data from the North American Land Data Assimilation System (NLDAS) (Abatzoglou et
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al., 2014). The main meteorological variables retrieved for the analysis were mean,
minimum, and maximum temperatures, precipitation, and vapor pressure deficit (VPD),
all on a daily temporal scale.

23. Data preparation

To extract circular fields linked to irrigated pivot operations, the Canny edge detector
method was implemented on the GEE platform. Using this mask, in conjunction with the
fields under study, we were able to construct a layer that included information about the
geolocation and phenology of each irrigation field in the dataset. As a result, the mean
values of the spectral bands (red, green, blue, NIR), VIs (NDVI, EVI, GCVI, CVI, NGI),
and the weather parameters (precipitation, minimum temperature, maximum
temperature, VPD) associated with each field for each given date were all gathered to
construct the main database.

Even though PF is available daily, only images matching to the exact same day in the
phenology collection (a total of 91 dates) were utilized (Figure 2). When the same method
was applied for S-2 data, cloud masking and filtering images based on cloud cover were
included. Images with less than 20% cloud cover remained in the dataset. Following this
procedure, only five images (dates: June 15, June 30, July 5, July 25, and August 14)
were found to match the crop collection (same day) (Figure 2). Due to this temporal
limitation on availability of S-2 imagery, we decided to explore more images including
three and ten days before and after the crop phenology data was collected. Therefore,
three datasets were created for this study: i) containing the spectral band values, VI, and

weather parameters for the exact phenology date, ii) spanning three days before and after
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the crop phenology collection date (7 days total), and iii) ranging ten days before and after

the crop phenology collection date (21 days total).
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Figure 2. EVI temporal series for the 2017 maize growing season for SW fields using
Sentinel-2 (solid green line) and PF (dash blue line). Shady area round both lines
represents the standard deviation for the EVI values corresponding to each field under
study (pink dots Figure a.2). Phenology progress is illustrated at the bottom of the image

showing the progression of crop growth and the relation with EVI values.

24, Random Forest

The Random Forest (RF) classifier was implemented with the Scikit-Learn
implementation (Pedregosa et al., 2011). This is a supervised classifier that learns from
training samples, thus the quality of training instances is a key component in the

classification process. The RF classifier, in addition, is an ensemble classifier, in which
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multiple decision trees are utilized to improve generalizability and, therefore, resilience by
using a randomly selected subset of training samples and variables (Dietterich, 2000). All
these aspects contribute to the creation of accurate classifications, as well as the
generation of high metrics and the processing of large amounts of data rapidly. It has
been utilized in remote sensing for more than two decades, helping in the handling of
high-dimensional data, unbalanced datasets, and multi-target problems, while staying
simple and flexible using multiple hyperparameters to accommodate the scenario (Pal,
2005; Rodriguez-Galiano et al., 2012; Belgiu and Dragut, 2016; Gomez et al., 2016;
Pelletier et al., 2016; Tatsumi et al., 2015).

To produce a more robust model in this study, the hyperparameters linked with it were
chosen using an exhaustive grid search checking for various values. The dataset for this
test was created by combining the variables in their final configuration (further details
presented in the section below). This resulted in the following hyperparameter values:
bootstrap: True; maximum tree depth: 10; maximum number of features required to do
the best split: 'auto’; minimum sample size per leaf: 2; minimum sample size required to
execute the split: 2; number of estimators: 1000. To evaluate performance, the datasets
(PF and S-2) were split into training, validation, and test sections for each experiment.
70% of the total was reserved for training and validation (70% for training, 30% for
validation), and 30% for model assessment.

2.4.1. Performance metrics

When evaluating the performance of RF, the most commonly used metrics are overall
accuracy, precision, recall, and F-score (Congalton, 1991). Most of the literature studying

the performance of these metrics, centers in balance binary classifications, a not
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commonly scenario find in remote sensing with real-world data. In this paper the ground-
truth dataset presents more than 18 classes, with considerable unbalance frequency of
members. According to Branco et al. (2016), f1-score, defined as the harmonic mean of
precision and recall, results in a useful metric to deal with unbalanced dataset. In contrast,
the use of overall accuracy, total of correctly identified elements divided by total, can be
misleading since it will favor the most represented class; precision summarizes the
fraction of samples assigned to the class that in fact are part of the class; and recall
summarizes how well the class was predicted.

Even though all of these measures were calculated in this analysis, the majority of the
findings are focused on the f1-score, precision, and recall for the reasons that were
previously stated about the nature of the dataset.

2.4.2. Feature importance

In classification problems, feature selection is commonly used to reduce the
dimensionality of the dataset (Gislason et al., 2004b; Rodriguez-Galeano et al., 2012)
informing on the influence of each variable in the model. To narrow down the possible
combinations of variables to address the best classifier, a feature importance analysis
was conducted over the PF dataset, for both the SW and CK regions, composed by all

the variables (VI, bands, weather, geolocation of the field and day of the year).

3. Results:
3.1. Best combination of variables
The analysis of the feature importance from the SW region dataset revealed that the

most distinguishing variables, NIR band (B4) and EVI, as well as the minimum and
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maximum temperatures (Tmin, Tmax), VPD, and DOY, were associated with the highest
scores. There were fewer disparities in the variables in the dataset from the CK region,
but the components stated above were still the most important ones. When all the
variables were combined, we found that the best f1-scores were 0.94 for the SW region
and 0.93 for the CK region. In addition, other combinations of these factors were
examined (only spectral data; only weather parameters; EVI and weather; B4 and
weather, etc.). The lowest f1-scores were derived when the model was only driven by
weather variables, with 0.79 for SW and 0.76 for CK regions. Lastly, the final model
consisted of B4, EVI, Tmin, Tmax, VPD, and DOY was selected to study the performance
across crop phenological stages, in both geographical regions.

3.2. Model performance over the space using PF data

The final model including satellite, weather, and date of data collection was utilized to
classify regions, yielding f1 values of 0.94 for the SW and 0.93 for the CK regions (Figure
3 a, b). The classification results for each crop phenological stage are presented as a
confusion matrix, where all the components that were correctly identified are along the
main diagonal, as well as the resulting precision and recall along the X and Y axes. When
examining the SW area in detail, most of stages produced values between 1.0 and 0.75
(recall) and 1.0 to 0.80 (precision), whereas certain stages, such as R1, R3, and V15,
showed poor metrics ranging from 0 to 0.66. In a similar manner, the findings for the CK
region showed that most stages had recall values ranging from 1.0 to 0.87, but some (R2,
V10, V11, V12, and V13) exhibited recall values ranging below 0.67. When the precision
is considered, all stages ranged from 0.76 to 1.0.

3.3. Model performance using Sentinel-2 data
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When the same final model was applied to S-2 data, the findings were inferior to those
previously discussed in this paper. To begin, the dataset included just three crop
phenological stages, matching satellite data with field collection. The categorization
resulted in an overall high f1-score (0.86), but inconsistent metrics for each stage, for
example for VT stage both recall and precision were zero (Figure 4, a). In addition, we
tested the performance of this S-2 data for 3 days before and after the time for field data
collection, overall f1-score was reduced to 0.74 but included more phenological stages.
However, this f1-score is considerably lower when we compare this metric with the one
obtained when using the PF product (Figure 4, b). Lastly, this test was repeated by
expanding our search for satellite imagery data from 3 to 10 days before and after the
field data collection time. Overall, the final f1-score was 0.58 but several crop phenology
stages were not classified (null metrics) and of those stages presenting f1-scores never

outperform the value obtained when using the PF data product (Figure 4c).
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Figure 3: (a) Confusion matrices with classification results for the southwest region (SW)
and for (b) central KS region (CK), both using PF product, including recall and precision

for each crop phenology stage, and f1-score and overall accuracy (OA).
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Figure 4: Confusion matrices with classification results for the southwest (SW) region,
using Sentinel 2, (a) when matching image with the data of data collection, (b) 3 days
before and after, (c) 10 days before and after. All matrices include recall and precision for

each crop phenology stage, and f1-score and overall accuracy (OA).
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4. Discussion

This study portrays the benefits of accessing high-resolution in both spatial and
temporal scales to achieve high-quality crop phenology classification to develop a simple
model integrating key (easy-to-access) weather variables. In addition, it is worth noticing
the importance of collecting and having available relevant ground truthing data (with
adequate labels) to train more complex models. The findings presented in this study are
in accordance with those observed when tracking crop phenology (White et al., 1997;
Liangetal., 2011; Peng et al., 2018; Bandaru et al., 2020; Nieto et al., 2021), most notably
the importance of enhanced temporal resolution (Gao et al., 2017; Gao et al., 2020; Gao
and Zhang, 2021).

One of the first lessons learned from this study relates to the variables selected in the
model, reflecting the complexity for describing biological processes, integrating satellite
imagery data (NIR band, EVI) with weather (minimum and maximum temperature, VPD),
and with proper field labels (DOY). Previous studies highlighted the importance of Vs
when monitoring changes in crop phenology, EVI has been found to outperform a broad
variety of Vis in maize fields (Tatsumi et al., 2015; Zhong et al., 2016a; Zhong et al.,
2016b, Cai et al., 2019). In addition, promising results were achieved by Cai et al. (2018)
regarding NIR band performance. On the other side, inclusion of relevant weather
variable is key to describe changes in crop phenology or development, particularly
demonstrated in modeling scenarios (Bai et al., 2010; Joshi et al., 2021), with air
temperature among the most relevant (Azzari et al., 2017). In addition, VPD has been
strongly associated with water stress and the consequent impact in crop development

(Zhang et al., 2017; Hsiao et al., 2019).
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A second lesson was linked to the relevancy of daily satellite data from the same day
of field data collection to classify crop phenology more accurately. One disadvantage of
our study is that just a few images for S-2 were available during the 2017 growing season.
This scenario reduced the likelihood of finding an image acquired on the same day as the
timing for field data collection, and the consequent impact on the ability to classify more
crop phenology stages. To emphasize the importance of temporal resolution, we
introduce here a new sensitivity test using PF data only, evaluating a departure for the
timing of satellite data in 1-, 2-, and 3-days before and after the field data collection. The
ability of the classifier to achieve high metrics was substantially reduced by 12% with the
2-day and by roughly more than 40% with the 3-day departure, especially during crop
developmental phases around flowering time (e.g., V12, V13, V19). These results
emphasized the importance of acquiring “timely” daily spectral data, particularly during
periods of rapid crop growth.

Other caveats from the analysis are related to problems associated with multiclass
classification and imbalance dataset. Most of the methods to treat imbalance datasets
rely on binary problems (Hoens et al., 2012) and solutions are not extensively proven.
Obtaining access to daily spectral data as well as increasing the number of ground truth
samples are key factors to build more reliable predictions. In this study, this was partially
overcome using the PF product, demonstrating the impact that daily availability has in the
classification. More efforts are being conducted towards the development and availability
of fusion products, such as the Harmonized Landsat-Sentinel (HLS), although it was not
implemented on this analysis since, at the time, it was suggested to not be yet used for

scientific purposes (LP DAAC — HLSL30, n.d.).
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Future research should focus on testing the developed model in different scale of
agriculture (e.g., small holder farmers) and under changes in management approaches
and expanding the temporal evaluation via adding more years for sampling seasonal
weather environments relevant for current climate conditions (e.g., heat and drought
conditions). Lastly, not only more quantity of ground truth data is required but the quality
(labeled-field data) is equally relevant for future progress on developing satellite, weather,
and field-based mechanistic and predictive models relevant for the different scale of

farming operations.

5. Conclusions

The proposed model combining NIR spectral band with EVI, weather (maximum and
minimum temperatures, VPD), and day of the year permitted to obtain a high-quality crop
phenology classification for maize crop under two contrasting production regions.
Furthermore, the effect of having a daily satellite data was highlighted when comparing
the outcomes of limited temporal availability with the metrics produced by a daily product,
particularly when the same image is used to make inferences about the future or the past.

This study was successful at providing evidence using two case study regions that the
developed model can be most likely transferred to other relevant regions. Improving both
classification and reporting of crop phenology has a large impact on every step of the
food production chain, enabling farmers, stakeholders, and policymakers to take a

proactive, rather than reactive, approach at both the regional and field level.
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