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Abstract 26 

Improving accuracy to assess crop phenology and their space-time fluctuations are 27 

essential for farmers, policy makers, and government agencies. Weekly field survey data 28 

from extension agricultural agents is currently utilized to generate reports on progress 29 

estimates of crop phenology. Although this data is critical, it is labor-intensive, time-30 

consuming, and prone to human error. Remote sensing can improve the accuracy of 31 

these estimates via reducing bias and missing data, but this process requires gathering 32 

high observational frequency and spatial resolution, combining multi-sensor data 33 

streams. Robust classifiers (e.g., random forest, RF) are also a key component for 34 

handling large datasets with acceptable trade-off and stability. The aim of this manuscript 35 

focuses on comparing the output of RF classifier model (dealing with imbalanced 36 

datasets) testing two different satellite sources (Planet Fusion, PF and Sentinel-2, S-2) in 37 

combination with weather data to improve maize (Zea mays L.) crop phenology 38 

classification evaluated in two regions (southwest and central) in Kansas (US) during the 39 

2017 season. Our findings showed that the use of very high temporal resolution resulted 40 

on higher classification metrics (f1-score = 0.94) in both regions when compared to 41 

Sentinel-2 (S-2) (f1-score = 0.86). In addition, a temporal sensitivity analysis over S-2, 42 

showed a drop in f1-score with values of 0.74 and 0.60. This research establishes the 43 

value of having access to very high temporal resolution (daily basis) for crop monitoring 44 

and its effect on actionable insights in the agricultural decision-making process. 45 
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1. Introduction 49 

Crop phenology is the study of biological processes such as emergence, flowering, 50 

and senescence, linked and in response to environmental growing conditions (Liang et 51 

al., 2011). Understanding changes in crop phenology and their response to climatic 52 

conditions are critical for production-beneficial management practices measures (Ruml 53 

and Vulic, 2005). Thus, understanding crop phenology is a critical step in ensuring our 54 

ecosystems' long-term sustainability and viability. 55 

Current official phenology crop progress estimates in the United States are based on 56 

weekly survey data obtained from a large network of regional extension agricultural 57 

agents based on their periodic field observations (Gao and Zhang, 2021). Although this 58 

is a valuable source of knowledge, the data collection process is a time-consuming and 59 

labor-intensive task that may not accurately represent, with a high level of fidelity, a county 60 

or district (Gao et al., 2017). 61 

In addition to ground-based field observations, implementing remote sensing 62 

technologies for Earth observation has been proved to be a useful tool, giving spatial and 63 

temporal information for vegetation monitoring across vast regions of land (White et 64 

al.,1997; Zhang et al., 2003; Vina et al., 2004). Current sensors and future missions result 65 

in a large amount of available data with countless temporal, spectral, and spatial 66 

resolutions (Houborg et al., 2015; Rast and Painter, 2019; Wulder et al., 2019). This 67 

observational frequency is one of the most important factors to address crop phenology 68 

progress and monitor changes in vegetation dynamics at both spatial and temporal level 69 

(Gao and Zhang, 2021).  70 



Although a large progress for monitoring crop phenology has been achieved, sensors 71 

with daily or close to daily coverage are not available at the spatial resolution needed for 72 

field analysis, while those sensors with high spatial resolution present a low revisit period. 73 

Several efforts are being conducted to merge those characteristics, scattered through 74 

different sensors, into one product capable to retrieve high temporal and spatial resolution 75 

(Gao et al., 2017; Claverie et al., 2018; Liao et al., 2019). Data fusion is currently the best 76 

path to achieve within season analysis capable of characterizing vegetation dynamics in 77 

both large- and small-scale environments or landscapes (Gao and Zhang, 2021).  78 

Robust classifiers are needed to manage large datasets with acceptable trade-offs 79 

and stability while remaining computationally feasible (Gislason et al., 2006). For 80 

decades, Random Forest (RF, Breiman, 2001) has been proved to be useful for remote 81 

sensing applications (Pal, 2005; Rodriguez-Galiano et al., 2012; Belgiu and Drăguţ, 2016) 82 

producing superior classification metrics relative to other classifiers, mainly when dealing 83 

with large and unbalanced datasets (Fernández-Delgado et al., 2014). These 84 

characteristics, along with their simplicity and processing speed, make RF the classifier 85 

of choice in a wide variety of scenarios. 86 

This manuscript focuses on comparing the output of RF classifier model testing two 87 

different sources of satellite varying in their temporal and spatial resolution in combination 88 

with weather data to improve maize (Zea mays L.) crop phenology classification. The 89 

specific objectives for this study were: i) to utilize surface reflectance data from Planet’s 90 

data fusion product (PF-SR) and ESA's Sentinel-2 sensors to quantify performance for 91 

crop phenology classification; and ii) to evaluate the universality of the model by testing 92 

its performance in two distinct maize production regions, southwest: mainly irrigated with 93 



average yields >11 Mg ha-1; and central: rainfed, yields <9 Mg ha-1, within the state of 94 

Kansas (US) during the 2017 growing season. 95 

2. Materials and methods  96 

2.1. Study area 97 

The present study was conducted in the State of Kansas (US), with the southwest 98 

(SW) region comprising the counties of Morton, Stanton, Grant, and Stevens and the 99 

central (CK) region constituted by the counties of Stafford and Pratt (Figure 1, a)  100 

The precipitation pattern in Kansas is highly uneven in both quantities and distribution, 101 

ranging from over 1000 millimeters from the southeast to less than 300 millimeters in the 102 

west region of the State. For the two regions selected in this study, these levels ranged 103 

from 500 to 800 mm for the CK (rainfed region) and from 300 to 500 mm for the SW region 104 

(Lin et al., 2017). The size of the fields, as well as standard management practices such 105 

ground water irrigation, differ in these two regions. The SW region is mostly dominated 106 

by larger fields relative to the CK, and more concentration of irrigation pivots (fed from the 107 

Ogallala Aquifer), resulting in higher maize yields, average 11 Mg ha-1 for year 2019 108 

(USDA-NASS, n.d.). In contrast, CK region is characterized for smaller fields and mainly 109 

dominated by rainfed agriculture, with average maize yield of 9 Mg ha-1 for the year 2019 110 

(USDA-NASS, ). 111 



 112 

Figure 1. a) Area of study (a.1) state of Kansas (US), a.2) southwest (SW) region; large 113 

orange rectangle representing Sentinel-2 tile covering the area; green rectangle 114 

corresponds with the Planet fusion (PF) tiles over the area; pink dots correspond to the 115 

ground truth field data collection, a.3) central KS (CK) region; green square corresponds 116 

with the PF tile over the area; yellow dots correspond to the ground truth field data 117 

collection. b) Maize phenology stages, scale used during ground truth data collection, 118 

following Ciampitti et al. (2011). c) Sentinel-2 and PF data imagery and GRIDMET data 119 

from Google Earth Engine (GEE) repository, data availability differs temporally with 8 120 

images collected for Sentintel-2, and daily temporal data for both PF and weather data 121 

during the 2017 growing season, varying with the day of the year (DOY). 122 

 123 

2.2. Data characteristics  124 

2.2.1. Reference ground field data 125 

Acquiring quality environmental data may be challenging and expensive, even more 126 

so when dealing with extensive geographic areas (Hanks et al., 2011; Ruiz‐Gutierrez et 127 

a 

b c 



al., 2016). This requires not just data collection and subsequent storage, but also the 128 

training of a person capable of delivering the information with minimal to no bias or errors. 129 

Despite these substantial obstacles, ground-truth field data continues to be the most 130 

reliable and closest to the true condition of the system(Hooten et al., 2007; Dickinson et 131 

al., 2012). For this study, we were able to acquire a valuable source of ground-truth data 132 

from Crop Quest Inc., which included geolocated fields spanning many States in the 133 

central region of the United States. This dataset was developed during a five-year period, 134 

from 2013 to 2017, by conducting repeated trips to each farmer field to document maize 135 

crop phenology changes during the growing season. 136 

To demonstrate contrasting case studies for maize crop production, two regions were 137 

selected for presenting geographical proximity but different productivity, SW and CK 138 

regions, during the 2017 growing season (Figure 1a). On average, each field was visited 139 

5 times during the season, although this varies greatly within all field observation collected 140 

and summarized in this large database. The crop phenology stages present in the dataset 141 

followed the scale described on Figure 1, b, based on Ciampitti et al. (2011). The final 142 

database included geolocated fields for both regions, crop phenology measurements per 143 

field, and the date for data collection (time stamp). 144 

2.2.2. Remote sensing data and weather variables 145 

Google Earth Engine (GEE) was used to retrieve and analyze spectral remote sensing 146 

data, as well as for the weather information (Figure 1c). This cloud-based platform 147 

enabled the processing of large datasets and provided access to a wide library of pre-148 

processed satellite images, climate, and land cover data, as well as built-in algorithms 149 

and vector data (Gorelick, 2017; Kumar and Mutanga, 2018). 150 



2.2.2.1. Planet fusion product 151 

For the 2017 season, our industry partner provided daily Planet Fusion (PF) 152 

harmonized product. This product combines public and commercial sensors (data from 153 

multi-constellation Planet Scope, Sentinel-2, and Landsat 8) to provide a daily, gap-filled, 154 

temporally consistent, radiometrically robust surface reflectance with 3-meter spatial 155 

resolution and four spectral bands: blue (0.45 – 0.51 μm), green (0.53 – 0.59 μm), red 156 

(0.64 – 0.67 μm) and near infrared (0.85 – 0.88 μm). Due to the high temporality, spatial 157 

resolution, and quality of data, this product can be an excellent resource for dealing with 158 

detailed crop phenology and its temporal variation. For the SW region, tiles 11E-172 N 159 

and 11E-173 N were utilized, as well as tile 21E-174 N for CK region, with each tile 160 

covering an area of 24 by 24 km. Both spectral and metadata from each imagery were 161 

uploaded to GEE via a Google Cloud Repository and organized into a collection for 162 

convenient access during feature extraction. 163 

2.2.2.2. Sentinel-2 164 

Sentinel-2 (S-2) is an optical satellite developed by the European Space Agency 165 

(ESA) that is composed of two complementary spacecraft that work together to collect 166 

data (S-2A and S-2B). This satellite was selected to create a comparison between the PF 167 

product and a publicly available and extensibility-enabled satellite with high temporal (5 168 

to 10 days) and spatial resolution (10, 20 and 60 m, Drusch et al., 2012). Level-1C 169 

orthorectified reflectance product, from GEE archives was used, particularly the tile 170 

T14SKG covering SW Kansas.  Even though the 2017 growing season had 12 images, 171 

only eight of them presented less than 20% cloud cover, and only five of them matched 172 

in time to those observed in the ground truth field data collection. 173 



2.2.2.3. Spectral bands and Vegetation indices 174 

Vegetation indices (VI) such as the Normalized Difference Vegetation Index (NDVI), 175 

Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation Index (GCVI), 176 

Chlorophyll Vegetation Index (CVI) and Normalized Green Index (NGI) were calculated 177 

on GEE based on the spectral bands from both products (PF and S-2). Extensive 178 

literature is associated to these indices and its capacity to monitor vegetation dynamics 179 

(Tucker 1977; 1979; Turner et al., 1999; Gitelson et al., 2003; Viña et al., 2011). 180 

Briefly, the NDVI is determined because healthy plants often have a higher reflectance 181 

in the near infrared (NIR) than in the visible bands (red) (Tucker, 1979). While extensively 182 

utilized, it is widely documented that this index saturates at large biomass levels due 183 

mainly to its sensitivity to chlorophyll concentration. The EVI is an index that incorporates 184 

the blue band to mitigate the impact of certain atmospheric effects, more accurately 185 

representing changes in plant canopy, including high productivity regions (Liu and Huete, 186 

1995; Huete et al., 2002). The GCVI has been proven to present a greater linear 187 

connection with the leaf area index of maize than other indices and, unlike NDVI, does 188 

not saturate at high biomass levels (Gitelson et al., 2003). Lastly, both CVI and NGI were 189 

suggested as adequate vegetation indices due to their responsiveness to changes in the 190 

chlorophyll content of the crop (Vincini and Frazzi, 2011; Sripada et al., 2006).  191 

2.2.2.4. Weather variables 192 

Weather variables were derived from the GEE archives based on gridded surface 193 

meteorological data (GRIDMET, Abatzoglou, 2013). This dataset integrates high-194 

resolution spatial data from PRISM (2.5 arc minute, 4 km) with regular temporal resolution 195 

data from the North American Land Data Assimilation System (NLDAS) (Abatzoglou et 196 



al., 2014). The main meteorological variables retrieved for the analysis were mean, 197 

minimum, and maximum temperatures, precipitation, and vapor pressure deficit (VPD), 198 

all on a daily temporal scale. 199 

2.3. Data preparation 200 

To extract circular fields linked to irrigated pivot operations, the Canny edge detector 201 

method was implemented on the GEE platform. Using this mask, in conjunction with the 202 

fields under study, we were able to construct a layer that included information about the 203 

geolocation and phenology of each irrigation field in the dataset. As a result, the mean 204 

values of the spectral bands (red, green, blue, NIR), VIs (NDVI, EVI, GCVI, CVI, NGI), 205 

and the weather parameters (precipitation, minimum temperature, maximum 206 

temperature, VPD) associated with each field for each given date were all gathered to 207 

construct the main database.  208 

Even though PF is available daily, only images matching to the exact same day in the 209 

phenology collection (a total of 91 dates) were utilized (Figure 2).  When the same method 210 

was applied for S-2 data, cloud masking and filtering images based on cloud cover were 211 

included. Images with less than 20% cloud cover remained in the dataset. Following this 212 

procedure, only five images (dates: June 15, June 30, July 5, July 25, and August 14) 213 

were found to match the crop collection (same day) (Figure 2). Due to this temporal 214 

limitation on availability of S-2 imagery, we decided to explore more images including 215 

three and ten days before and after the crop phenology data was collected. Therefore, 216 

three datasets were created for this study: i) containing the spectral band values, VI, and 217 

weather parameters for the exact phenology date, ii) spanning three days before and after 218 



the crop phenology collection date (7 days total), and iii) ranging ten days before and after 219 

the crop phenology collection date (21 days total). 220 

 221 

 222 

Figure 2. EVI temporal series for the 2017 maize growing season for SW fields using 223 

Sentinel-2 (solid green line) and PF (dash blue line). Shady area round both lines 224 

represents the standard deviation for the EVI values corresponding to each field under 225 

study (pink dots Figure a.2). Phenology progress is illustrated at the bottom of the image 226 

showing the progression of crop growth and the relation with EVI values. 227 

 228 

2.4. Random Forest 229 

The Random Forest (RF) classifier was implemented with the Scikit-Learn 230 

implementation (Pedregosa et al., 2011). This is a supervised classifier that learns from 231 

training samples, thus the quality of training instances is a key component in the 232 

classification process. The RF classifier, in addition, is an ensemble classifier, in which 233 



multiple decision trees are utilized to improve generalizability and, therefore, resilience by 234 

using a randomly selected subset of training samples and variables (Dietterich, 2000). All 235 

these aspects contribute to the creation of accurate classifications, as well as the 236 

generation of high metrics and the processing of large amounts of data rapidly. It has 237 

been utilized in remote sensing for more than two decades, helping in the handling of 238 

high-dimensional data, unbalanced datasets, and multi-target problems, while staying 239 

simple and flexible using multiple hyperparameters to accommodate the scenario (Pal, 240 

2005; Rodriguez-Galiano et al., 2012; Belgiu and Drăguţ, 2016; Gomez et al., 2016; 241 

Pelletier et al., 2016; Tatsumi et al., 2015). 242 

To produce a more robust model in this study, the hyperparameters linked with it were 243 

chosen using an exhaustive grid search checking for various values. The dataset for this 244 

test was created by combining the variables in their final configuration (further details 245 

presented in the section below). This resulted in the following hyperparameter values: 246 

bootstrap: True; maximum tree depth: 10; maximum number of features required to do 247 

the best split: 'auto'; minimum sample size per leaf: 2; minimum sample size required to 248 

execute the split: 2; number of estimators: 1000. To evaluate performance, the datasets 249 

(PF and S-2) were split into training, validation, and test sections for each experiment. 250 

70% of the total was reserved for training and validation (70% for training, 30% for 251 

validation), and 30% for model assessment. 252 

2.4.1. Performance metrics 253 

When evaluating the performance of RF, the most commonly used metrics are overall 254 

accuracy, precision, recall, and F-score (Congalton, 1991). Most of the literature studying 255 

the performance of these metrics, centers in balance binary classifications, a not 256 



commonly scenario find in remote sensing with real-world data. In this paper the ground-257 

truth dataset presents more than 18 classes, with considerable unbalance frequency of 258 

members. According to Branco et al. (2016), f1-score, defined as the harmonic mean of 259 

precision and recall, results in a useful metric to deal with unbalanced dataset. In contrast, 260 

the use of overall accuracy, total of correctly identified elements divided by total, can be 261 

misleading since it will favor the most represented class; precision summarizes the 262 

fraction of samples assigned to the class that in fact are part of the class; and recall 263 

summarizes how well the class was predicted.  264 

Even though all of these measures were calculated in this analysis, the majority of the 265 

findings are focused on the f1-score, precision, and recall for the reasons that were 266 

previously stated about the nature of the dataset. 267 

2.4.2. Feature importance 268 

In classification problems, feature selection is commonly used to reduce the 269 

dimensionality of the dataset (Gislason et al., 2004b; Rodriguez-Galeano et al., 2012) 270 

informing on the influence of each variable in the model. To narrow down the possible 271 

combinations of variables to address the best classifier, a feature importance analysis 272 

was conducted over the PF dataset, for both the SW and CK regions, composed by all 273 

the variables (VI, bands, weather, geolocation of the field and day of the year). 274 

 275 

3. Results:  276 

3.1. Best combination of variables 277 

The analysis of the feature importance from the SW region dataset revealed that the 278 

most distinguishing variables, NIR band (B4) and EVI, as well as the minimum and 279 



maximum temperatures (Tmin, Tmax), VPD, and DOY, were associated with the highest 280 

scores. There were fewer disparities in the variables in the dataset from the CK region, 281 

but the components stated above were still the most important ones. When all the 282 

variables were combined, we found that the best f1-scores were 0.94 for the SW region 283 

and 0.93 for the CK region. In addition, other combinations of these factors were 284 

examined (only spectral data; only weather parameters; EVI and weather; B4 and 285 

weather, etc.). The lowest f1-scores were derived when the model was only driven by 286 

weather variables, with 0.79 for SW and 0.76 for CK regions. Lastly, the final model 287 

consisted of B4, EVI, Tmin, Tmax, VPD, and DOY was selected to study the performance 288 

across crop phenological stages, in both geographical regions. 289 

3.2. Model performance over the space using PF data 290 

The final model including satellite, weather, and date of data collection was utilized to 291 

classify regions, yielding f1 values of 0.94 for the SW and 0.93 for the CK regions (Figure 292 

3 a, b). The classification results for each crop phenological stage are presented as a 293 

confusion matrix, where all the components that were correctly identified are along the 294 

main diagonal, as well as the resulting precision and recall along the X and Y axes. When 295 

examining the SW area in detail, most of stages produced values between 1.0 and 0.75 296 

(recall) and 1.0 to 0.80 (precision), whereas certain stages, such as R1, R3, and V15, 297 

showed poor metrics ranging from 0 to 0.66. In a similar manner, the findings for the CK 298 

region showed that most stages had recall values ranging from 1.0 to 0.87, but some (R2, 299 

V10, V11, V12, and V13) exhibited recall values ranging below 0.67. When the precision 300 

is considered, all stages ranged from 0.76 to 1.0.  301 

3.3. Model performance using Sentinel-2 data 302 



When the same final model was applied to S-2 data, the findings were inferior to those 303 

previously discussed in this paper. To begin, the dataset included just three crop 304 

phenological stages, matching satellite data with field collection. The categorization 305 

resulted in an overall high f1-score (0.86), but inconsistent metrics for each stage, for 306 

example for VT stage both recall and precision were zero (Figure 4, a). In addition, we 307 

tested the performance of this S-2 data for 3 days before and after the time for field data 308 

collection, overall f1-score was reduced to 0.74 but included more phenological stages. 309 

However, this f1-score is considerably lower when we compare this metric with the one 310 

obtained when using the PF product (Figure 4, b). Lastly, this test was repeated by 311 

expanding our search for satellite imagery data from 3 to 10 days before and after the 312 

field data collection time. Overall, the final f1-score was 0.58 but several crop phenology 313 

stages were not classified (null metrics) and of those stages presenting f1-scores never 314 

outperform the value obtained when using the PF data product (Figure 4c). 315 



Figure 3: (a) Confusion matrices with classification results for the southwest region (SW) 316 

and for (b) central KS region (CK), both using PF product, including recall and precision 317 

for each crop phenology stage, and f1-score and overall accuracy (OA). 318 

 319 
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 327 

Figure 4: Confusion matrices with classification results for the southwest (SW) region, 328 

using Sentinel 2, (a) when matching image with the data of data collection, (b) 3 days 329 

before and after, (c) 10 days before and after. All matrices include recall and precision for 330 

each crop phenology stage, and f1-score and overall accuracy (OA). 331 



4. Discussion 332 

This study portrays the benefits of accessing high-resolution in both spatial and 333 

temporal scales to achieve high-quality crop phenology classification to develop a simple 334 

model integrating key (easy-to-access) weather variables. In addition, it is worth noticing 335 

the importance of collecting and having available relevant ground truthing data (with 336 

adequate labels) to train more complex models. The findings presented in this study are 337 

in accordance with those observed when tracking crop phenology (White et al., 1997; 338 

Liang et al., 2011; Peng et al., 2018; Bandaru et al., 2020; Nieto et al., 2021), most notably 339 

the importance of enhanced temporal resolution (Gao et al., 2017; Gao et al., 2020; Gao 340 

and Zhang, 2021). 341 

One of the first lessons learned from this study relates to the variables selected in the 342 

model, reflecting the complexity for describing biological processes, integrating satellite 343 

imagery data (NIR band, EVI) with weather (minimum and maximum temperature, VPD), 344 

and with proper field labels (DOY). Previous studies highlighted the importance of VIs 345 

when monitoring changes in crop phenology, EVI has been found to outperform a broad 346 

variety of VIs in maize fields (Tatsumi et al., 2015; Zhong et al., 2016a; Zhong et al., 347 

2016b, Cai et al., 2019). In addition, promising results were achieved by Cai et al. (2018) 348 

regarding NIR band performance. On the other side, inclusion of relevant weather 349 

variable is key to describe changes in crop phenology or development, particularly 350 

demonstrated in modeling scenarios (Bai et al., 2010; Joshi et al., 2021), with air 351 

temperature among the most relevant (Azzari et al., 2017). In addition, VPD has been 352 

strongly associated with water stress and the consequent impact in crop development 353 

(Zhang et al., 2017; Hsiao et al., 2019). 354 



A second lesson was linked to the relevancy of daily satellite data from the same day 355 

of field data collection to classify crop phenology more accurately. One disadvantage of 356 

our study is that just a few images for S-2 were available during the 2017 growing season. 357 

This scenario reduced the likelihood of finding an image acquired on the same day as the 358 

timing for field data collection, and the consequent impact on the ability to classify more 359 

crop phenology stages. To emphasize the importance of temporal resolution, we 360 

introduce here a new sensitivity test using PF data only, evaluating a departure for the 361 

timing of satellite data in 1-, 2-, and 3-days before and after the field data collection. The 362 

ability of the classifier to achieve high metrics was substantially reduced by 12% with the 363 

2-day and by roughly more than 40% with the 3-day departure, especially during crop 364 

developmental phases around flowering time (e.g., V12, V13, V19). These results 365 

emphasized the importance of acquiring “timely” daily spectral data, particularly during 366 

periods of rapid crop growth. 367 

Other caveats from the analysis are related to problems associated with multiclass 368 

classification and imbalance dataset. Most of the methods to treat imbalance datasets 369 

rely on binary problems (Hoens et al., 2012) and solutions are not extensively proven. 370 

Obtaining access to daily spectral data as well as increasing the number of ground truth 371 

samples are key factors to build more reliable predictions. In this study, this was partially 372 

overcome using the PF product, demonstrating the impact that daily availability has in the 373 

classification. More efforts are being conducted towards the development and availability 374 

of fusion products, such as the Harmonized Landsat-Sentinel (HLS), although it was not 375 

implemented on this analysis since, at the time, it was suggested to not be yet used for 376 

scientific purposes (LP DAAC – HLSL30, n.d.).  377 



Future research should focus on testing the developed model in different scale of 378 

agriculture (e.g., small holder farmers) and under changes in management approaches 379 

and expanding the temporal evaluation via adding more years for sampling seasonal 380 

weather environments relevant for current climate conditions (e.g., heat and drought 381 

conditions). Lastly, not only more quantity of ground truth data is required but the quality 382 

(labeled-field data) is equally relevant for future progress on developing satellite, weather, 383 

and field-based mechanistic and predictive models relevant for the different scale of 384 

farming operations.  385 

 386 

5. Conclusions  387 

The proposed model combining NIR spectral band with EVI, weather (maximum and 388 

minimum temperatures, VPD), and day of the year permitted to obtain a high-quality crop 389 

phenology classification for maize crop under two contrasting production regions. 390 

Furthermore, the effect of having a daily satellite data was highlighted when comparing 391 

the outcomes of limited temporal availability with the metrics produced by a daily product, 392 

particularly when the same image is used to make inferences about the future or the past.  393 

This study was successful at providing evidence using two case study regions that the 394 

developed model can be most likely transferred to other relevant regions. Improving both 395 

classification and reporting of crop phenology has a large impact on every step of the 396 

food production chain, enabling farmers, stakeholders, and policymakers to take a 397 

proactive, rather than reactive, approach at both the regional and field level. 398 

 399 
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