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Hyper-Dimensional Modulation for
Robust Short Packets in Massive
Machine-Type Communications

Chin-Wei Hsu and Hun-Seok Kim , Senior Member, IEEE

Abstract— In this paper, we introduce Hyper-Dimensional
Modulation (HDM) for massive machine-type communications
(mMTC). HDM enables robust communication of short pack-
ets by spreading information bits across many elements in a
hyper-dimensional vector and superimposing a set of such non-
orthogonal vectors. The proposed CRC-aided K-best decoding
algorithm for HDM can achieve a very low packet error rate
(PER) in additive white Gaussian noise (AWGN) channels for
short packets. Furthermore, extended decoding algorithms are
proposed to combat overwhelming interference in an mMTC
network. Comprehensive simulation and real-world experiment
results show that HDM outperforms sparse superposition codes
in AWGN channels and state-of-the-art short codes such as polar
and tail-biting convolutional codes in interference-heavy channels
for short packet transmissions.

Index Terms— Massive machine-type communications
(mMTC), multiple access (MA) interference.

I. INTRODUCTION

THE ITU-R categorizes the 5G and beyond technologies
into three classes: enhanced Mobile Broadband (eMBB),

massive Machine-Type Communications (mMTC), and Ultra-
Reliable and Low Latency Communications (URLLC), while
each targets different applications [4]. mMTC use-case exam-
ples include transportation, utilities, health, environment, and
security [5]. Packets for these mMTC applications usually
carry relatively small amount of information such as control
commands or sensor readings. However, the number of nodes
in mMTC networks can be much greater than that of consumer
(non-machine) mobile cellular networks. Thus it poses new
challenges in the physical layer (PHY) design for reliable com-
munication of short packets in interference-heavy channels [6].

Up to 4G, the main focus of the development had been
to boost the data rate with high spectral efficiency for
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human-oriented communications. However, novel applications
in mMTC usually convey relatively short information as small
as a few bytes per packet. The conventional PHY and network
design optimized for large amount of information is not nec-
essarily efficient in those applications. First, the overhead of
preamble and pilot symbols is no longer negligible compared
to the small number of information bits. Therefore, the frame
structure needs to be re-designed with consideration of the
overhead [7]. Second, the efficiency of modern codes such as
Turbo and LDPC codes greatly relies on the long block-length
and when the packet size is small, reliability of these codes sig-
nificantly degrades. To quantify the efficiency of short codes,
Polyanskiy showed that the normal approximation [8] provides
a closed-form expression that tightly follows the achievability
and converse bounds for short blocklength. Motivated by this,
new coding schemes have been recently investigated [9], [10]
to approach the limit for short codes.

Another challenge in mMTC is the interference especially
when many nodes share the same unlicensed ISM (industrial,
scientific and medical) band with heterogeneous PHY and
multiple access (MA) protocols. Since grant-based multiple
access protocols are often inefficient when the number of
nodes is large [6], grant-free non-orthogonal multiple access
schemes that allow multiple nodes accessing the channel at
the same time have been investigated to support more nodes
in a network [11], [12], [13], [14]. However, these schemes
still require slot-based time synchronization among nodes.

The overhead of control signals for network coordination
often offsets the potential benefits of being synchronous.
Moreover, precise synchronization in time and frequency is
impractical for many narrowband low power mMTC nodes
because of accuracy limitations in carrier frequency and sam-
pling frequency generation. When an asynchronous mMTC
network without strict synchronization among nodes operates
in an unlicensed ISM band shared with heterogeneous net-
works such as WiFi, Bluetooth, Zigbee, etc., it is inevitable
to observe severe intra- and inter-network interference. There-
fore, it is a critical task for mMTC to design a novel PHY and
multiple access scheme for short packets to mitigate severe
interference from both intra- and inter-network traffic.

We propose Hyper-Dimensional Modulation (HDM)
[1], [2], [3] as a potential solution to address aforementioned
challenges in mMTC. HDM is a non-orthogonal modulation
scheme that can provide excellent reliability with short
packet lengths, and it is inherently tolerant to interference.
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HDM is a special case of sparse superposition codes
(SPARC) [15], [16]. For the encoding/modulation of SPARC,
multiple columns from a dictionary matrix are selected and
superimposed together based on multiple sparse vectors that
convey information. This modulation process is equivalent
to projecting sparse vectors onto a hyper-dimensional
space. For HDM, such projection is defined by a fast
linear transformation and pseudo-random permutation. This
resembles the principles of compressive sensing [17], whereas
the unique modulation structure of HDM makes it feasible to
apply efficient decoding algorithms. Moreover, its robustness
against interference makes HDM appealing to low cost
mMTC networks where many low power mMTC nodes
transmit short packets in an asynchronous (grant-free) manner
to a more resourceful (computation capability and energy)
gateway receiver to form a star network with pure ALOHA
random access [18].

The main contributions of this paper are summarized as
follows:

1) We propose HDM with a cyclic redundancy check
(CRC)-aided K-best decoding algorithm that can achieve very
low error rate for short packets in additive white Gaussian
noise (AWGN) channels. The proposed algorithm traverses
a tree structure with pruning to find a candidate list for
transmitted vectors with higher likelihood probabilities. CRC
is then used to check all the candidates to find a valid
codeword.

2) We propose extended algorithms to further combat
both intra- and inter-network interference caused by packet
collisions from unsynchronized transmissions. We evaluate
different objective metrics in the K-best tree pruning algorithm
to make the proposed scheme more robust when the system
performance is limited by the interference, not by the channel
noise.

3) We evaluate the packet error rate (PER) performance of
HDM with extensive simulations and real-world experiments
using a software-defined radio platform. Results show that
HDM greatly outperforms SPARC and is on par with state-
of-the-art short codes in AWGN channels. HDM outperforms
TBCC and polar codes in interference-heavy scenarios.

The rest of the paper is organized as follows. In Section II,
HDM is introduced and related prior works are discussed.
We propose a CRC-aided K-best decoding algorithm for HDM
in Section III. Then we extend the decoding algorithm in
Section IV to combat interference in various mMTC net-
work scenarios. Section V discusses practical considerations
of HDM including the complexity, peak-to-average power
ratio (PAPR), and choices of linear transform. Evaluation
with computer simulations and hardware measurements in the
real-world are provided in Section VI. Finally, Section VII
concludes the paper.

II. HYPER-DIMENSIONAL MODULATION

HDM [1], [2], [3] is inspired by hyper-dimensional comput-
ing [19] where hyper-dimensional vectors are used to represent
information and perform cognitive computing. The hyper-
dimensional presentation is tolerant of component failure, and

thus is suitable for communicating message through wireless
channels where excessive noise and interference can cause
signal corruption. This robustness comes from redundant rep-
resentation, in which information symbols are spread across
many components in the hyper-dimensional vector [19].

The modulation process of HDM utilizes two observations
from using hyper-dimensional vectors: near-orthogonality and
linearity. Consider a hyper-dimensional vector space CD

where D is the dimension of the hyper-dimensional vector.
Similarity between two energy-normalized vectors x and y
can be measured by cross-correlation xHy. Here, xH stands
for transpose conjugate of x. Two identical vectors result in
a cross-correlation output that is equal to the vector energy
xHx = ||x||2. The first observation that motivates HDM is
the fact that two hyper-dimensional vectors whose components
are i.i.d. zero-mean random variables have nearly-orthogonal
cross-correlation; xHy ≈ 0 for a large D (hyper-dimension).
Randomly-selected two vectors in the hyper-dimensional space
have very small cross-correlation with high probability. The
second observation is that the sum of two random vectors
have high correlation with both vectors being added together.
That is, the vector x+y has high cross-correlation with both x
and y since xH(x+y) ≈ ∥x∥2 because of near-orthogonality
between x and y. In other words, addition/superimposition
of multiple independent hyper-dimensional vectors preserves
the information that each vector carries without significant
interference from each other although they are not strictly
orthogonal. Based on these observations, HDM superimposes
multiple (near-orthogonal) vectors to transmit numerous infor-
mation bits using a single D-dimensional vector.

A. Modulation Process

The HDM modulation process is expressed by

s =
V∑

i=1

Aixi =
V∑

i=1

PiWxi =
V∑

i=1

PiW(siepi
) (1)

where s denotes the complex-valued transmitted vector with
dimension of D × 1 (s ∈ CD) and V is defined as the
number of non-orthogonal vectors Aixi, i = 1, · · · , V , that
are transmitted at the same time. Each Aixi is obtained by
projecting an information vector xi onto a hyper-dimensional
space using a matrix Ai ∈ CD×D.

The information vectors xi ∈ CD for i = 1, · · · , V
have ‘sparse’ representations with only one non-zero element,
embedding information bits in the position of the non-zero
element by epi and its non-zero value (phase) si. The sparse
vector epi = [e0, · · · , eD−1]T is a D×1 unit vector with ep =
0 ∀ p ̸= pi and epi

= 1. The non-zero position pi is selected
based on the information bits. We use a QPSK symbol si ∈
{±

√
Ei/2,±j

√
Ei/2} for each non-zero element where Ei

is the energy allocated to xi. The results in [16] (and our prior
work [1]) show that QPSK is more efficient than other M-ary
phase shift keying (PSK) schemes for SPARC (and HDM) to
attain a lower PER given the same energy, bandwidth, and
throughput. E{∥s∥2} = D and Ei = D/V, i = 1, · · · , V
hold for energy-normalized HDM using equal-energy for each
superimposed vector. In SPARC point of view, this modulation
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Fig. 1. HDM modulation process visualization.

process is equivalent to selecting a column from a dictionary
Ai based on the position index pi, and multiplying it with a
QPSK symbol si.

In HDM, the projection matrix Ai = PiW is obtained by
a fast linear transformation W such as fast Fourier transform
(FFT) or fast Walsh–Hadamard transform (FWHT) followed
by a pseudo-random permutation Pi. Note that Pi is different
for each i but W is common to all i’s. Since HDM uses a
fast linear transform whose complexity is O(D log2 D), it can
be efficiently implemented in low power mMTC transmitters
without explicitly computing costly matrix-vector multiplica-
tions with W that has a large dimension of D × D.

The modulation process along with signal visualization of
each step (only showing the real part) is summarized in
Figure 1. In the modulation process, each independent vector
goes through a separate layer/path with a different permutation
pattern Pi. Since HDM adds V i.i.d. vectors, elements of the
final output vector s approximately follow a complex Gaussian
distribution as shown in Figure 1 (bottom right).

One problem of using typical fast linear transform such
as FFT or FWHT is that the first column of W has all
ones, which makes the pseudo-random permutation mean-
ingless and therefore violates the near-orthogonal property
with other vectors. To avoid this problem, we use a pseudo-
random vector whose elements are randomly selected from
the set {exp(j2π n

D ), n = 0, · · · , D − 1} to replace the all-
ones column in W for FFT. Similarly, a pseudo-random
vector with random 1 and −1 is used to replace that column
for FWHT.

Parameters D and V determine the length and rate of
transmission. For a given D, the number of information bits
is proportional to V and each vector xi conveys log2 D infor-
mation bits by the non-zero element position and additional
2 bits by the phase of the non-zero QPSK symbol. The
modulation rate (or coding rate) CR is the ratio of the number
of information bits to the dimension of the transmitted vector,

thus it is given by

CR =
V (log2 D + 2)

D
. (2)

With a unit energy constraint, the energy allocated to a
vector Aixi decreases as V increases and the inter-vector
interference also increases at the same time because of non-
orthogonality among vectors. Therefore, there is a fundamental
trade-off between the rate CR and the error probability.
Vector dimension D also affects the performance of HDM
transmission. Since the near-orthogonality improves as D
increases, larger D results in lower error rate for a fixed rate
CR. However, it also leads to higher demodulation/decoding
complexity, which poses another trade-off between complexity
and performance. It is worth noting that as the information
length increases with a larger D, the relative advantage of
HDM diminishes compared to other schemes such as LDPC,
Turbo, and polar codes which are capacity achieving when the
message length is sufficiently long.

B. Related Works

The modulation process of HDM involves sparse vector
mapping via index modulation. There are related prior works
that also use sparse vectors with a random dictionary or index-
based modulation for robust communication, thus they possess
similar properties as in HDM. Here we describe prior schemes
and their differences compared to our scheme.

Sparse Superposition Codes (SPARC): [15], [16], [20] are
capacity achieving schemes in the AWGN channel. Their
codewords are constructed by sparse linear combinations
of entries in a dictionary, or equivalently, superposition of
matrix-(sparse)vector products as in (1). Therefore, HDM can
been considered as a special case of SPARC. For decoding
of SPARC, approximate message passing algorithm [20] is
widely used. SPARC is proven to achieve the channel capacity
if the size of the dictionary is large enough under some
parameter constraints. The main distinctions between HDM
and SPARC are the size of the codeword and the design of the
dictionary. SPARC typically uses a very long codeword length
(e.g., 5000 bits) to achieve low error rates and the dictionary
is constructed with randomly generated entries. On the other
hand, HDM is designed for a relative short message length
(e.g., D = 128) and it uses a structured modulation process
that combines sparse index encoding, fast linear transform,
and vector permutation to enable computationally-efficient yet
powerful algorithms to achieve superior (compared to general
SPARC schemes) error rate performance for short packets.
Whereas SPARC typically operates with a relatively long
outer code such as LDPC, the proposed HDM adopts a CRC-
assisted error correction scheme which is more efficient for
short packets.

Multi-Dimensional Modulation (MDM): [21], [22] is a
modulation scheme that uses multi-dimensional lattices.
By exploiting coding gain from the lattice and shaping gain,
a well-designed constellation for MDM can outperform con-
ventional QAM schemes with less energy per information
bit for the same error rate without sacrificing bandwidth
efficiency. Although higher dimensions improve both coding
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and shaping gain, a practical well-designed multi-dimensional
modulation scheme usually has a moderate dimension M
because it becomes very difficult to design a good constellation
in a high dimension space as the demodulation complexity dra-
matically increases with M . MDM is more beneficial in high
SNR conditions when the constellation size can be relatively
large and the spectral efficiency is ≥1 bps/Hz. Whereas, HDM
is designed to operate in a low SNR or interference-dominated
channel with a relatively low spectral efficiency of <1 bps/Hz
for reliable communications of short messages. Unlike MDM
that requires a deliberately designed codebook/constellation
for a specific, relatively small dimension space of size M ,
HDM uses a fast linear transform and random permutation
defined with a much larger dimension D ≫ M .

Sparse Vector Coding (SVC): [23] is a non-orthogonal
encoding scheme based on the theory of compressive sensing.
The encoding process is similar to HDM as it selects columns
from a dictionary according to a sparse vector. Dictionar-
ies in SVC are typically constructed by randomly sampling
from Gaussian or Bernoulli distribution without any elaborate
structure, which is widely assumed for compressive sensing.
A predefined table is used for mapping information bits to a
sparse vector, whose non-zero elements are not restricted to
be placed in different layers/sections as in HDM or SPARC.
Multipath matching pursuit for sparse recovery [24] is a
popular algorithm to decode SVC. In contrast, HDM uses an
elaborate layer structure with a common linear transformation
across all layers for efficient encoding and decoding. Sparse
recovery algorithms generally do not work well for HDM
because of its unique structure and elaborate constraints, which
lead to dedicated (and efficient) decoding algorithms.

Orthogonal Frequency Division Multiplexing With Index
Modulation (OFDM-IM): [25] uses indices of active subcar-
riers and modulated symbols on these subcarriers to embed
information message bits via OFDM. Since index selection is
followed by IFFT for OFDM, the modulation process resem-
bles HDM. The goal of OFDM-IM is to improve robustness
to inter-carrier interference caused by high mobility in OFDM
systems. However, OFDM-IM only involves strictly orthogo-
nal subcarriers and does not combine multiple non-orthogonal
vectors. Thus its demodulation process consists of finding
the most probable active subcarriers and demodulating their
symbols without considering any interference caused by the
superposition of non-orthogonal vectors. On the other hand,
HDM is a non-orthogonal modulation scheme that applies
element-wise permutations to fast linear transform (which does
not have to be FFT) results before combining non-orthogonal
vectors. And it employs a dedicated decoding algorithm to
mitigate interference among superimposed vectors within the
same packet.

Integer-HDM: [26] is a modulation scheme inspired by
our original HDM [1] and thus it has a modulation structure
similar to this work. Instead of using fast linear transforma-
tion on complex-valued vectors, Integer-HDM constrains the
superimposed vectors to take values only from the binary set
{1,−1}. This enables an even simpler decoding algorithm

without compromising the error rate compared to the original
HDM in [1].

Despite that all these prior schemes share some similarities
in the modulation structure, their decoding algorithms signif-
icantly differ because of differences in their design principle
and target operating scenarios. In this work, we propose
advanced decoding methods for HDM to further improve the
performance in AWGN and also in interference-limiting sce-
narios which are not explicitly considered in aforementioned
prior schemes.

III. K-BEST DECODING ALGORITHM

In this paper, we use decoding and demodulation inter-
changeably for HDM. Although HDM does not employ an
explicit error correction scheme (except for CRC-based code-
word selection), it exhibits superior or similar performance
compared to conventional error correction codes applied to
orthogonal modulation such as B/QPSK for short messages.
Using the term decoding emphasizes the aspect of HDM
imposing redundancy to increase robustness against signal
corruption by noise or interference during transmission.

We consider an AWGN channel or narrowband frequency
flat fading channel with perfect channel estimation. The
received signal y can be represented by a model in (3),
assuming the flat fading channel is equalized.

y = s + n =
V∑

i=1

Aixi + n (3)

In (3), n ∼ CN (0, N0I) is the complex Gaussian noise vector
with zero mean and element-wise variance N0. Note that under
this model with an energy-normalized packet, the SNR is
defined as 1/N0. The decoding process in AWGN can be
considered as finding the optimal solution of the non-convex
minimization problem:

P1: argmin
xi∈X ,i=1,··· ,V

∥y −
V∑

i=1

Aixi∥2
2, (4)

where X represents the set of all possible sparse information
vectors xi (i.e., each xi contains only one non-zero QPSK
symbol encoding log2D + 2 bits by the position and phase).

A successive interference cancelling (SIC)-based decoding
algorithm was proposed in the original HDM paper [1]. It first
finds the vectors with the largest probability ignoring the
interference and then performs interference cancellation for
the next iteration of decoding.

While the SIC-based decoding algorithm in [1] is efficient,
it does not directly solve the optimization problem of (4).
A brute-force method to find the minimum of (4) by trying all
possible combinations of xi, i = 1, · · · , V is practically infea-
sible due to excessive complexity. Therefore, in this section we
propose a tree-based algorithm that finds a suboptimal solution
of (4) through a K-best breath-first search that is similar to a
variant in MIMO decoding [27].
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Fig. 2. The tree structure of K-best algorithm. M = 4D is the total number
of candidates xl at each layer.

First observe that the objective in (4) can be expressed as

∥y −
V∑

i=1

Aixi∥2
2

= ∥y −
V −1∑
i=1

Aixi∥2
2 + ∥AV xV ∥2

2

−2ℜ{yHAV xV } + 2ℜ{(
V −1∑
i=1

Aixi)HAV xV )}, (5)

where ℜ{} and ℑ{} are the operations of taking real and
imaginary parts of a complex number or vector, respectively.
In (5), the right-hand side consists of four terms. The first term
∥y −

∑V −1
i=1 Aixi∥2

2 has the same form as the left-hand side
except that the summation is now from 1 to V −1. The second
term ∥AV xV ∥2

2 is constant regardless of xV as long as the
fast linear transformation matrix W has equal norm columns
(as in FFT and FWHT). The third term is the correlation
between y and AV xV . Finally, the last term is the correlation
between AV xV and the accumulative vector

∑V −1
i=1 Aixi.

With recursion, the first term can be further decomposed until
only y remains.

Subtracting constant terms ∥Aixi∥2
2 for i = 1, · · · , V and

division by 2 does not change the solution of (4). Hence we
define the score metric at recursion layer l as s(l) = 1

2 (∥y −∑l
i=1 Aixi∥2

2 −
∑l

i=1 ∥Aixi∥2
2), which can be expressed in

an iterative form:

s(l) = s(l−1) −ℜ{xH
l AH

l y} + ℜ{xH
l AH

l u(l−1)}, (6)

where u(l) =
∑l

i=1 Aixi. This score metric depends on
the selection of sparse vectors up to layer l, i.e., xi for
i = 1, · · · , l.

The objective is to minimize (6) for the last layer V , s(V ).
Thus we find the minimum metric through a tree structure
by evaluating candidate sparse vectors xl for each layer. Note
that at each node of the tree, we calculate the metric (6) for
each candidate of xl with given candidates determined by all
previous layers from 1 to l − 1 (i.e., s(l−1) and u(l−1)).

The tree structure is illustrated in Figure 2. For each node,
we calculate its children’s metric based on its parent and

ancestor path using an iterative equation given as

s
(l)
i,j = s

(l−1)
i −ℜ{xH

l,jA
H
l y} + ℜ{xH

l,jA
H
l u(l−1)

i } (7)

where j is the candidate index of possible xl, and i =
{i1, i2, · · · , il−1} is the index list of previously chosen
paths/vectors by its ancestor nodes. The accumulative vector
u(l−1)

i is the interference term given by candidates chosen by
parent/ancestor layers.

Without pruning, the number of nodes and the size of
possible xl candidates grow exponentially as we go deeper
into the tree. Since the paths with relatively large metrics
are very unlikely to be part of the transmitted vector set that
minimizes the metric, they can be pruned without degrading
the performance much. Therefore, at the i-th layer we only
keep best Ki candidates with lowest metrics and prune all
the others. The value Ki is dynamically chosen to include
all nodes whose metrics are not greater than the minimum
metric of the i-th layer plus a pre-determined threshold. Our
algorithm also defines a pre-determined Kmax to prevent the
dynamic Ki being too large so that Ki ≤ Kmax when more
than Kmax nodes satisfy the aforementioned condition. The
iteration continues until the last layer, where no pruning
happens. We denote the average number of candidates kept
at each layer as K = 1

V −1

∑V −1
i=1 Ki.

There are efficient ways to calculate the metric (7). Since
only one element of xl is a non-zero QPSK symbol, evaluating
the last two terms in (7) is equivalent to simply choosing
a single real or imaginary number multiplied with different
signs from the elements of AH

l (y − u(l−1)
i ), which can be

computed by a fast linear transform of (y− u(l−1)
i ) followed

by permutation (without matrix–vector multiplication).
One potential issue of the K-best algorithm is that a wrong

pruning decision made in an upper layer can not be recovered
in lower layers. To mitigate this issue, we propose a strategy
to (re-)sort the order of decoding layers based on the score
metric along the tree traversal. At each layer, we first evaluate
minimum metrics of all remaining layers as the possible next
layer based on (7) using the up-to-now best candidate. Then
the layer with the lowest metric is selected as the next layer
to proceed. This per-layer re-sorting approach significantly
(up to 2 dB at PER=10−3 compared to no sorting) improves
the error rate performance of the K-best HDM decoding.

Finally, CRC-assisted error correction is applied to further
increase the error rate performance of the proposed decoding
algorithm. Since the K-best algorithm produces a list of
candidates at the end, one can try each of them with the
order of ascending metric until the candidate passes CRC.
The error rate is improved because even in the event that the
correct vector does not minimize the metric (6), it is still highly
probable to be contained in the final candidate list.

IV. HDM FOR MASSIVE MACHINE-TYPE
COMMUNICATION NETWORKS

A. mMTC Network Model

In a star topology mMTC network that allows grant-
free transmissions, plenty of devices can transmit packets
simultaneously, thus causing overwhelming interference at the
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Fig. 3. mMTC network and interference. Left: Star network topology with
pure ALOHA. Right: Grey blocks are HDM packets and blue stripes are
wideband interference packets.

gateway receiver. In this case, the channel noise may not be the
performance limiting factor when the interference is stronger
than the noise. An AWGN channel model may not capture the
performance of a system in such a scenario, and the decod-
ing algorithm designed for AWGN channels may experience
significant performance degradation with interference. In this
section, we propose modified versions of the K-best decoding
algorithm to make HDM more robust against interference in
mMTC networks.

We consider an narrowband uplink star network with mul-
tiple transmitters and one receiver. This network topology is
widely adopted in mMTC networks because of its simplicity
and efficiency [18]. Each device can transmit a packet at
any time (i.e., grant-free) without considering other devices.
Moreover, carrier frequencies of transmitters are assumed to
be uniformly distributed in a pre-defined frequency range [28].
This is because the frequency uncertainty may extend over
multiple times of the signal bandwidth of narrowband systems.
For example, a low cost crystal with 50 ppm accuracy results
in 120kHz carrier frequency offset for the 2.4GHz carrier
frequency, which is much larger than the bandwidth of an
(ultra) narrowband scheme that often operates with <1kHz
bandwidth [29]. In the considered scenario, the network adopts
a pure unslotted (grant-free) ALOHA scheme in both time
and frequency domains, thus multiple packet transmissions can
(partly) collide in time and frequency.

In practice, not just transmitters in the same network but also
transmitters in other heterogeneous networks using the same
band can cause interference. A narrowband mMTC network
operating in the 2.4GHz ISM band, for example, experiences
inter-network interference from other technologies such as
WiFi, Bluetooth Low Energy (BLE), etc. Since the WiFi and
BLE bandwidth is ≥20MHz and 1MHz, respectively, with
a typical packet duration of ≤2ms, interference from these
networks are wideband and short compared to narrowband
mMTC packets as illustrated in Figure 3. While the relatively
wideband interference can easily overlap with the desired
narrowband mMTC signal, it may only affect a few symbols
of an mMTC packet because of its wideband (short symbol)
nature.

In our scenario depicted in Figure 3, we categorize the
interference into two types: intra-network and inter-network
interference. Intra-network interference comes from other

transmitters in the same mMTC network and the statistics
of this interference is known to the gateway. On the other
hand, inter-network interference is introduced by other het-
erogeneous networks and the statistics is unknown although it
can be modeled as a random arrival process of wideband short
pulses/packets.

The receiver signal y in this mMTC network model with
potential interference can be expressed as

y = s + n + w =
V∑

i=1

Aixi + n + w (8)

where w denotes the sum of all potential interference sources,
including intra-network and inter-network interference. Note
that elements in w may not have constant power, and do
not necessarily behave as i.i.d. Gaussian random variables.
We assume that the receiver is aware of its presence, but
may or may not know its statistics. The proposed algorithms
try to decode xi’s without jointly decoding the interference
source w.

B. Dealing With Intra-Network Interference

The P1 formulation of (4) assumes an AWGN channel with
constant noise variance given observed signal y. However,
when the interference exists, the variance of interference plus
noise is no longer constant across y (i.e., a packet). Under this
scenario, the solution of (4) is no longer optimal for estimating
the transmitted vector.

Considering the case that all devices in the network are
transmitting HDM signals, interference can be approximated
as a Gaussian random variable as discussed in Section II.
And, in a star network where the gateway is listening to all
transmitting devices, it is possible that the gateway receiver
first identifies the timing and average received power of the
signal from each device (via packet detection) before decoding
individual packets that are collided.

Assuming the receiver has the information of timing and
power level of the interference caused by each collided trans-
mission, the problem statement in (4) can be modified to match
this scenario by using weighted L2-norm as in (9)

P2: argmin
xi∈X ,i=1,··· ,V

∥y −
V∑

i=1

Aixi∥2
C, (9)

where ∥x∥C = ∥C 1
2 x∥2 and C is a diagonal matrix. As the

interference plus noise has element-dependent variance, each
diagonal element of C can be found by adding the average
interference power level to the noise variance at a correspond-
ing sample index, and then taking the inverse such that (10)
holds.

Cj,j =
1∑

k∈Ij
Pk + N0

(10)

In (10), Ij is the set containing all packets colliding with
the desired signal at time index j, and Pk is the average
interference power from interfering device k. A more detailed
derivation of obtaining Pk in a star network with a pure
ALOHA scheme in both time and frequency domain can be
found in [2].
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To modify the K-best decoding algorithm for weighted
L2-norm, observe that the objective function (5) now
changes to

∥y −
V∑

i=1

Aixi∥2
C

= ∥C 1
2 y − C

1
2

V∑
i=1

Aixi∥2
2

= ∥C 1
2 y − C

1
2

V −1∑
i=1

Aixi∥2
2 + ∥C 1

2 AV xV ∥2
2

−2ℜ
{

(C
1
2 y)HC

1
2 AV xV

−(C
1
2

V −1∑
i=1

Aixi)HC
1
2 AV xV )

}
= ∥y −

V −1∑
i=1

Aixi∥2
C + ∥AV xV ∥2

C

−2ℜ{ỹHAV xV } + 2ℜ{(ũ(V −1))HAV xV )} (11)

where ỹ = Cy and ũ(V −1) = Cu(V −1).
Notice that

∥Aixi∥2
C = xH

i AH
i CAixi

= xH
i WHPH

i CPiWxi = xH
i WHΛWxi

= xH
i Qxi =

D

V
· Qj,j

holds where j denotes the non-zero position of xi, Λ =
PH

i CPi is a diagonal matrix, and Q = WHΛW.
As we choose a fast linear transformation matrix W

with constant magnitude elements such as FFT or FWHT,
∥Aixi∥2

C is constant regardless of the choice of xi. Therefore,
the metric update rule in (6) can be re-written with minor
modifications:

s(l) = s(l−1) −ℜ{xH
l AH

l ỹ} + ℜ{xH
l AH

l ũ(l−1)}. (12)

Moreover, the computation complexity does not increase much
since ỹ and ũ can be obtained by element-wise multiplications
since C is diagonal. Except for this updated metric calculation,
the remaining K-best algorithm is identical to the AWGN
channel case.

C. Dealing With Inter-Network Interference

When the inter-network interference is involved, the opti-
mization problem P1 in (4) does not yield the optimal per-
formance. For a narrowband mMTC scenario, we assume the
inter-network interference burst length is much shorter than the
length of the desired HDM packet, and independent random
arrival processes can cause multiple interference sources col-
lide with a single HDM packet. In this scenario, it is reasonable
to assume the receiver does not know properties of interference
such as the average/instantaneous power level and position of
interference bursts within a desired packet. This assumption
holds for an example scenario where a narrowband mMTC
network using HDM operates in the 2.4GHz ISM band with
heavy interference coming from WiFi and BLE. A packet from
WiFi or BLE is much shorter (≤ 2 ms) than a narrowband
(e.g., D = 128 with 1 kHz symbol rate) mMTC packet, and the
HDM receiver does not have the capability of demodulating

all WiFi and Bluetooth packets that collide with the HDM
packet.

Performance of decoding algorithms under such severe
interference can significantly degrade because of sporadic
interference causing occasional large deviation (in Euclidean
distance) from the transmitted samples. These events can result
in large L2-norm during the objective function evaluation.
One technique to alleviate this problem is to set a saturation
threshold on the received sample to prevent large offsets
from the transmitted signal caused by the sporadic strong
interference [30]. Another strategy is to use an alternative
metric to replace the L2-norm. We propose to use L1-norm as
an alternative metric because it is less sensitive than L2-norm
to sporadic outlier elements. The optimization in this case
changes from L2- to L1-norm objective:

P3: argmin
xi∈X ,i=1,··· ,V

∥y −
V∑

i=1

Aixi∥1. (13)

Note that the solution of P3 is indeed optimal when the noise
plus interference follows Laplace distribution, which has a
longer tail compared to Gaussian distribution.

The L1-norm in (13) can not be decomposed in the same
form as the L2-norm in (4) with iterative equations. Thus we
reformulate (13) with real-valued vectors and matrices with a
goal to obtain an iterative additive form to replace (13).

Consider two real-valued scalars a, b ∈ R and observe that
|a + b| = |a| + |b| − 2 · 1(ab < 0) · min(|a|, |b|) holds, where
1(·) is the indicator function. Using this, we decompose the
L1-norm of the sum of two real-value vectors as

∥a + b∥1

= ∥a∥1 + ∥b∥1 − 2
D∑

i=1

1(aibi < 0) · min(|ai|, |bi|) (14)

where a,b ∈ RD, and ai, bi denotes the i-th element
of a,b.

Now, the objective function (13) can be decomposed as

∥y −
V∑

i=1

Aixi∥1

= ∥y −
V −1∑
i=1

Aixi∥1 + ∥AV xV ∥1

−2 · 1T
(
1(rV −1 ◦ AV xV > 0) ◦ min(|rV −1|, |AV xV |)

)
(15)

where rV −1 = y −
∑V −1

i=1 Aixi, 1 is a vector with all
ones, and ◦ denotes element-wise multiplication. The term
∥AV xV ∥1 is constant if AV has constant L1-norm columns.
Hence, the iterative metric calculation for L1-norm has the
form:

s(l)

= s(l−1) − 1T
(
1(rl−1 ◦ Alxl > 0) ◦ min(|rl−1|, |Alxl|)

)
.

(16)

The same K-best algorithm can be used with this recur-
sive L1-norm metric in (16) replacing the previous L2-norm
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metric updating. Note that (16) does not involve matrix-vector
multiplications since xl has only one non-zero element and the
other terms are evaluated by just selecting sign and magnitude
values from two vectors.

However, the formulation of (16) only works for real-valued
vectors, and this L1-norm metric cannot be directly applied to
HDM that involves complex-valued vectors. Addressing this
issue, we relax the problem and minimize an upper bound of
the L1-norm.

Observe that for a complex-valued vector z,

∥z∥1 =
∑

i

√
ℜ{zi}2 + ℑ{zi}2

≤
∑

i

|ℜ{zi}| + |ℑ{zi}| = ∥
[
ℜ{z}
ℑ{z}

]
∥1

holds. Then by denoting y′ = [ℜ{y}T ℑ{y}T ]T , x′
i =

[ℜ{xi}T ℑ{xi}T ]T and A′
i =

[
ℜ{A} −ℑ{A}
ℑ{A} ℜ{A}

]
, a relaxed

problem of (13) can be expressed as

P3′: argmin
xi∈X ,i=1,··· ,V

∥y′ −
V∑

i=1

A′
ix

′
i∥1, (17)

which is now real-valued and can be solved with the proposed
K-best algorithm via L1-norm minimization. Note that, this
L1 optimization formulation requires a fast linear transform
matrix W whose real and imaginary parts have constant
L1-norm columns. Because of this requirement, we use FWHT
instead of FFT when the L1-norm metric is adopted. An alter-
native method (with worse performance) that separates the
I and Q channels and sends two independent real-valued HDM
vectors is described in our prior work [3].

V. DISCUSSION

A. Decoding Complexity and Latency

Besides the error rate performance, decoding complexity
is a crucial factor when choosing a practical scheme. In this
section we discuss the complexity of the K-best based HDM
decoding algorithm proposed in Section III.

The complexity of the proposed K-best decoding algorithm
can be estimated by summing the number of operations of the
following four parts: 1) Sorting and selecting the next layer
for decoding, 2) Calculating metrics, 3) Selecting survivor
nodes, and 4) Calculating cumulative interference vector. Note
that these steps are repeated for each layer processing. For
simplicity, we assume that all layers has the same Ki = K
which is the average value. FFT is used for the fast linear
transform.

1) Sorting and Selecting the Next Layer: At the beginning
of each layer, we evaluate ℜ{xH

l AH
l (y−u)} for all remaining

layers as a potential l-th layer and select the one with the
highest value for the l-th layer processing. This requires
Vrem(4D log2 D − 5D + 8) operations, where Vrem indicates
the number of remaining layers to decode. The value inside
the parentheses can be obtained in a similar way in the next
step 2).

2) Calculating Metrics: Metric calculation is performed for
every node to evaluate (7). Starting with K surviving nodes
from the last layer, we first calculate −ℜ{xH

l AH
l (y−uk)} in

(7) for the k-th node among K. To get the vector (y−uk) we
need D additions. Since HDM utilizes a fast linear transforma-
tion and xl has only one non-zero element, all xl candidates
can be evaluated by performing FFT (and pseudo-random
permutation), which requires 4D log2 D− 6D + 8 operations.
Phase rotation due to the QPSK modulation is equivalent to
taking real and imaginary parts of the result with different
signs without additional operations. Finally, the results are
added to the metric of the parent node, which requires another
4D additions. Therefore, the total number of operations for
this step is K(4D log2 D − D + 8).

3) Selecting Survivor Nodes: To select K nodes out of
4KD, we use partial QuickSort [31]. This step requires
8KD + (ln KD + 1.27)(2K − 4) − 6K + 6 comparisons on
average.

4) Cumulative Interference Vector: For each surviving
node, we calculate the cumulative interference vector uk =
uold,k +unew,k, where the former is the interference from pre-
vious layers, and the latter is the newly introduced interference
from the current layer. This requires KD additions.

In summary, the total number of operations required to
process all V layers is

Nop = K(V − 1)
(
4D log2 D + 2 ln KD + 8D + 4.54

)
+2(V 2 + V )D log2 D − D

2
(5V 2 + 5V − 8)

+2(V − 1)(ln KD + 1.27) + 4V 2 + 10V − 6. (18)

It has O(V KD log2 D) complexity as the first term dominates
when K is large. For a {D = 128, V = 8} HDM packet with
64 information bits (excluding CRC), the number of operations
per bit is about 505K + 1667. Note, for comparison, that the
number of operations required for polar and TBCC decoding
for the same rate is on the order of 103 − 104 per information
bit depending either on the list size of the successive cancel-
lation list (SCL) polar decoder or the constraint length of the
TBCC [32].

For practical systems, the number of operations is not the
only complexity indicator and it is not necessarily proportional
to the latency (or run-time) in modern parallel computing
processors and accelerators. While the HDM decoding com-
plexity scales with V KD log2 D, the decoder can take the
advantage of a fully parallelizable structure of K-best decoding
to reduce the decoding latency in practical implementations
on many-core processors and hardware accelerators. When
the gateway has sufficient compute resources, steps 2) and 4)
can be calculated in parallel for different candidates, removing
the computation latency dependency on K. Moreover, step 3)
can also use a parallelized version of the algorithm [33]
to achieve the latency of O(V log log KD). The resulting
decoding time complexity, or latency, becomes O(V D log D+
V log log KD), which only grows with log log K. This implies
that increasing K for better PER performance does not
significantly increase the latency as long as the receiver has a
proportional number of parallel processing elements.
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It is worth noting that, although SCL decoding for polar
codes can also be parallelized [34], the number of newly
generated paths increases exponentially at each time step with
the number of parallel decoders. This makes parallel execution
of the algorithm practically difficult, unlike the proposed
K-best decoding for HDM.

B. PAPR and Clipping

Peak-to-average power ratio (PAPR) is an important metric
for a practical modulation scheme because a high PAPR
requires a wide dynamic range power amplifier (PA). A PA
typically exhibits the highest power efficiency at its peak
output power but a large PAPR forces the PA to mostly
operate around the average power where power efficiency is
significantly reduced. A constant envelope (baseband PAPR
is 1) or low PAPR modulation scheme such as BPSK/QPSK
is generally preferred to achieve higher PA efficiency.

However, the use of a fast linear transform and superposition
of V vectors results in a relatively high PAPR of the HDM
signal. When a normalized HDM vector has the element-wise
average power of 1, the worst case peak value may occur when
all V superimposed vector Aixi’s have the same phase on the
same element after the fast linear transformation and pseudo-
random permutation. As each element of superimposed vector
Aixi has the average amplitude of

√
1/V , the worst case

PAPR of HDM is 10 log10 V dB. Note that most practical
systems apply an additional pulse shaping filter before the
signal goes into a PA to tighten the spectrum. This further
(by ≈2.5 dB) increases the PAPR regardless of the modulation
type.

One practical method to constrain the PAPR to a lower
target level is to apply intentional deliberate clipping to the
signal as discussed in [35]. Consider a power normalized HDM
vector whose unclipped samples have the form of s = Aejϕ

where A is the sample amplitude, ϕ is the sample phase,
and E{A2} = 1 holds. The clipped sample s̃ after the signal
clipping at a pre-defined level c is obtained by

s̃ =
{

Aejϕ, if A ≤ c
cejϕ, otherwise. (19)

The clipped signal can be regarded as the combination of
the desired signal and distortion. With an assumption that
HDM samples are approximated by complex Gaussian random
variables, the PAPR after clipping (but before pulse shaping)
can be calculated [36] by

PAPR =
c2

1 − e−c2 . (20)

The PAPR after pulse shaping depends on the pulse shaping
function itself. Since it is not straightforward to characterize
the impact of pulse shaping on PAPR with deliberate clip-
ping [36], we use numerical analysis in Section VI to quantify
the HDM’s PAPR with pulse shaping.

Denoting the after clipping average signal power Es and
noise variance N0, the signal-to-noise-plus-distortion ratio
(SNDR) after clipping is obtained [36] by

SNDR =
KEs/N0

(1 −K)Es/N0 + 1
, (21)

Fig. 4. ECDF of interference magnitude. The size of W is 128 × 128.

where K is the signal attenuation factor given by

K =

(
1 − e−c2

+
√

πc
2 erfc(c)

)2
1 − e−c2 . (22)

The parameter c determines the tradeoff between PAPR reduc-
tion and SNDR degradation.

Since HDM is designed to operate in relatively high
noise/interference scenarios, it can tolerate moderate clip-
ping distortion as long as it does not dominate the channel
noise. One can choose the clipping parameter c such that
the corresponding SNDR (21) is comparable to the original
(pre-clipping) SNR given N0 without significant PER degra-
dation. The impact of signal clipping with various levels of c
on PER is evaluated in Section VI.

C. Linear Transforms for HDM

There are multiple options for the (fast) linear transform
matrix W in HDM. In this section, we discuss the impact
of choosing different transforms. While there is no strict con-
straint on the orthogonality among transform matrix columns
for HDM, we only consider common discrete linear transforms
whose matrices have orthogonal columns. This means that all
valid HDM vectors that belong to the same layer are also
orthogonal and the HDM performance is governed by the
interference between different layers that use different pseudo-
random permutations. This can be seen in (5), where the last
term is due to the interference from the other layers.

To determine the ‘effectiveness’ of a certain (fast) linear
transform, we quantify its inter-layer interference by analyzing
the statistics of the last term in (5). Roughly speaking, a linear
transform that does not have large amplitude realizations of
ℜ{xH

i AH
i Ajxj} = ℜ{xH

i WHPH
i PjWxj} leads to a lower

error rate for HDM decoding. Note that xi,xj ,Pi,Pj are
random variables/matrices.

Figure 4 plots the empirical CDF of ℜ{xH
i WHPH

i

PjWxj} for different linear transform matrices W. We test
the following five discrete linear transforms that allow
fast/efficient algorithms such as FFT: discrete Fourier trans-
form (DFT), discrete cosine transform (DCT), discrete Walsh-
Hadamard transform (DWHT), discrete Slant transform (DST),
and discrete Haar transform (DHT) [37]. As shown in the
figure, DFT has fewest large amplitude values, while DWHT
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and DCT are behind it. DST and DHT have much more large
amplitude values than the others. Based on this observation,
we use DFT (i.e., FFT) for all cases except for the L1-norm
minimization algorithm (i.e., P3 formulation in (13)). Recall
that the L1-norm minimization algorithm cannot use DFT/FFT
because the real and imaginary parts of a DFT matrix do not
satisfy the constant L1-norm column condition. Hence we use
DWHT/FWHT instead as it is more computationally efficient
than DCT which exhibits a similar CDF.

VI. EVALUATION

A. Simulation Results

The proposed HDM schemes are compared with QPSK
modulation protected by a 3GPP specified CRC-aided polar
code with an SCL decoding algorithm [38], [39] and a
tail-biting convolutional code (TBCC) decoded by a wrap-
around viterbi algorithm (WAVA) [40]. Both polar code and
TBCC configurations are known to be very robust for short-
length codes [41]. For the fast linear transformation in HDM,
we use FFT for HDM with (weighted) L2-norm minimiza-
tion (in AWGN and intra-network interference-heavy scenar-
ios) and FWHT for L1-norm minimization (in inter-network
interference-heavy scenarios).

For the narrowband mMTC scenario, we assume a short
packet with length D = 128. The number of information bits is
either 64 for a rate-1/2 packet, or 43 for a rate-1/3 packet. For
HDM and polar codes, additional CRC bits are concatenated
with the information bits before modulation/encoding. Polar
codes use an 11-bit CRC as in the 3GPP uplink setting, while
HDM use an 8-bit and 11-bit CRC for rate-1/2 and rate-1/3
packet, respectively. These additional CRC-bits require the
information bits to be coded with a higher rate (to keep the
effective rate unchanged with and without the CRC) which
could potentially lead to a worse error rate. However, the
SNR gain of CRC-based valid codeword/vector identification
offsets the loss of using a higher rate for information bits.
TBCC does not utilize any CRC bits as the decoding algorithm
does not create a list (unlike polar and HDM decoding) and
thus CRC is not directly usable to correct decoding errors.
Regardless of the CRC-usage, the rate of HDM, polar-QPSK
and TBCC-QPSK schemes is identical as we send the same
number of information bits (64 or 43) with the same number
of complex-valued channel use: D = 128 for HDM and 128
QPSK symbols for polar-QPSK and TBCC-QPSK. Note that
for the rate-1/3 TBCC-QPSK, 2-bit punctuation is used to
change the length of (258,43)-TBCC to 256 bits before QPSK
transmission. HDM superimposes V = 8 and V = 6 layers
of vectors for rate-1/2 and rate-1/3 settings, respectively.
Constraint lengths for TBCC are 9 and 8 for rate-1/2 and
rate-1/3 packet, respectively. We also show the comparison
to complex modulated SPARC [16] with the same length
and similar rates (0.4922 and 0.3515 to be precise). AMP
decoding is adopted for SPARC, but no outer code or CRC is
utilized.

Figure 5 shows the packet error rate (PER) of two rate
settings. One packet corresponds to a single transmit vector

Fig. 5. PER performance comparison in the complex AWGN channel.

in HDM/SPARC, or a single codeword in polar-QPSK/
TBCC-QPSK. The list size of polar SCL decoding is set to 8
and the maximum iteration number for WAVA is set to 10.
For HDM, we test different values of K for the proposed
K-best decoding algorithm with L2-norm minimization by
setting a proper threshold and Kmax for each SNR. As shown
in Figure 5, the proposed HDM decoding algorithm greatly
outperforms AMP decoder for SPARC, and its performance
is on par with polar-QPSK and TBCC-QPSK in the AWGN
channel. While the HDM performance is moderately worse
than polar-QPSK and TBCC-QPSK with the rate-1/2 setting,
HDM can slightly outperform them in the AWGN channel
with the rate-1/3 setting. Normal approximations [8], [42] for
both rate settings are also shown in the figures. Although K
for HDM is larger than the list size of the SCL decoding,
the runtime of HDM decoding is substantially faster (about
5× on Intel Core i7-7700 CPU for K = 50) than polar-
QPSK SCL decoding (implementation in a Matlab toolbox)
due to the computation-friendly parallel processing nature of
the proposed K-best decoding. The runtime of TBCC-QPSK
(our own implementation) is similar to that of HDM with
K = 50.

Next we examine the trade-off between PAPR reduction and
SNR loss caused by intentional clipping on the transmitted
HDM signal. Figure 6 shows the resulting PAPR and SNR
loss at different clipping levels c for a power normalized
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Fig. 6. PAPR and SNR loss with intentional clipping.

HDM vector. A root-raised-cosine (RRC) filter with roll-
off factor 0.5 is used for pulse shaping. Different operating
conditions regarding SNR (after clipping) are tested and the
corresponding SNR losses are plotted. SNR loss is defined
as the difference between original SNR before clipping and
the resulting SDNR after clipping. Figure 6 shows that the
PAPR can be reduced to ≤6.5 dB with only 0.5 dB S(D)NR
degradation. It is observed that with RRC filter, the PAPR is
further increased by roughly a constant 2.5 dB. Note that PSK
signaling also undergoes the same/similar PAPR increase after
pulse shaping. Hence the PAPR gap (in dB) in maintained the
same with or without RRC filtering. It confirms that aggressive
intentional clipping can be applied to HDM without significant
degradation in PER performance.

We also quantify the performance degradation caused by
the quantization during analog-to-digital conversion (ADC).
Any value whose amplitude is outside the quantization range
is saturated to the highest quantization point, and thus it
can be interpreted as signal clipping in the receiver. In the
simulation, the largest amplitude of the quantized signal is
determined by the clipping level that results in 0.1 dB SNR
degradation using the analysis in the previous PAPR tradeoff
simulation. Given this saturation level, the number of ADC
bits determines the other quantized levels which are uniformly
spaced. Figure 7 shows the PER with different numbers of
ADC bits. We observe that 4 or 5 ADC bits are sufficient
for PER ∼ 10−3 at 0 dB SNR. Note that constant-envelope
BPSK / QPSK schemes require a similar number of ADC bits
in order to reliably operate without excessive signal distortion
in a low SNR condition where PAPR is increased and set by
the noise.

To evaluate the robustness of HDM against intensive inter-
ference in an mMTC network, we consider a narrowband
mMTC system with 1kHz bandwidth that coexists with rel-
atively wideband systems such as WiFi and BLE. Following a
star network topology with grant-free pure ALOHA, an HDM
packet may collide with one or more packets from other
devices in the network, leading to intra-network interference
whose timing and power information is available (estimated)
at the receiver. Packets from other non-mMTC networks may
also cause interference to an HDM packet. Each inter-network

Fig. 7. PER performance with ADC quantization.

interference packet is assumed to have a fixed length of
2 ms, which is much shorter than the length of 128 ms for
1kHz-bandwidth HDM (D = 128) and polar/TBCC-QPSK
(128-symbol) packets. We evaluate PER for intra- and inter-
network interference cases separately using different HDM
decoding algorithms.

Figure 8a shows the PER when a desired packet collides
with another interference packet with different overlapping
ratios (1 indicates complete overlap and 0.5 means one half
of the packet is overlapped). The interference packet is set to
have 2 times stronger power than the desired packet to sim-
ulation an interference dominated scenario. The background
(interference-free) SNR is set to 1 dB, which is sufficient
for all schemes to achieve PER less than 10−3 when the
interference is absent. The timing and power information of the
interference is assumed to be perfectly estimated at the receiver
so it can either adopt the weighted-L2 K-best algorithm
for HDM, or calculate a more accurate log-likelihood ratio
(LLR) for each bit for polar codes and TBCC. Note that for
QPSK packets, the resulting noise plus interference is not
Gaussian distributed, thus the LLR calculation is not exact
even if the interference power variance is known. As shown
in the figure, HDM with the weighted-L2 K-best algorithm
and polar-QPSK outperform TBCC, which turns out to be
significantly more vulnerable to a packet collision. This is
because of its trellis-based structure, which is vulnerable
to consecutive corrupted symbols observed during collision.
Note that for all three schemes, the performance (in dotted
lines) significantly degrades when interference information is
unavailable.

Figure 8b shows the PER in strong inter-network inter-
ference scenarios. The background (interference-free) SNR
of the desired packet is set to 3 dB for this simulation to
evaluate an interference-dominant condition. The power of
interference packet follows a log-normal distribution with
variance of 10 dB [3] while their mean power is set by
the simulated signal-to-interference ratio (SIR), which is the
ratio between average signal power of the desired packet
and average interference power. Note that SIR is defined by
only the part where the interference burst overlaps with the
desired packet. The arrival of interference packets follows a
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Fig. 8. PER performance in interference-heavy scenarios. Note that HDM
is robust for both cases whereas TBCC-QPSK is vulnerable to intra-network
interference and polar-QPSK suffers in the inter-network interference scenario.

Poisson arrival process with a mean interval of 5 ms while
each interference packet is 2 ms long. Each sample in an
interference packet is an i.i.d. Gaussian random variable that
emulates the amplitude of OFDM signals. The desired signal
has 1kHz bandwidth, thus each sample/symbol in the desired
packet spans 1 ms. To increase the robustness against the
outlier samples caused by strong short interference packets,
HDM with the L2-norm minimization K-best algorithm sets an
amplitude saturation threshold of 2 for each I and Q channel
for a power-normalized HDM packet. For polar codes and
TBCC, an LLR mapping method [30] designed to works with
a wide range of interference-to-noise ratio (INR) between
−5 and 40 dB is used to enhance the robustness to pulse-like
interference. Note that HDM does not require SI(N)R informa-
tion for decoding while polar/TBCC-QPSK uses the (average)
SNR information for LLR computation. Using the (average)
SINR for LLR computation degrades PER for polar/TBCC-
QPSK since interference is short and sporadic.

Figure 8b confirms that HDM with the L1-norm mini-
mization K-best algorithm yields the best performance. It is
observed that the LLR mapping method improves polar codes
very little while it can be even harmful when SIR is high.
This is related to the polar decoding process, where the effects
of inaccurate LLR propagates through successive cancellation,
often causing unrecoverable errors. On the other hand, HDM

Fig. 9. PER measurement at 915MHz.

and TBCC are more robust to the sporadic outliers. Note
that the gap between L1- and L2-norm minimizations for
HDM reduces as SIR increases and eventually the L2-norm
minimization scheme outperforms the L1-norm counterpart
when interference does not dominate the channel noise any
more.

From Figures 5 and 8, we have shown that HDM works reli-
ably for all scenarios unlike polar and TBCC-based schemes
which are vulnerable to some scenarios. Specifically, TBCC is
relatively more vulnerable to heavy intra-network interference
scenarios (Fig. 8a) whereas polar codes suffer in inter-network
interference scenarios (Fig. 8b).

B. Real-World Experiments

To evaluate the performance in real-world scenarios, a wire-
less end-to-end system testing setup is constructed using a soft-
ware define radio platform, USRP X310 [43]. Two USRPs are
used as a transmitter and receiver pair for wireless communi-
cation in uncontrolled real-world channels which may corrupt
the signal by noise and interference. The signal has 10kHz
bandwidth and each packet contains a pre-defined preamble.
The payload is modulated either by HDM or QPSK with
polar/TBCC encoding for the length of 128 symbols (12.8 ms)
to contain 64 information bits with 1/2 rate. The preamble is
used for packet detection and channel estimation. We assume
the channel is block fading with a constant amplitude and
phase over one packet. We then use the estimated channel
to equalize the received packet. We design the preamble to
be sufficiently long (60 ms) so that the packet detection
and channel estimation does not limit the decoding error
performance. The USRP transmitter and receiver pair exhibits
inevitable small carrier frequency offset which causes slow
phase rotation of the received signal. Hence the transmitter
also sends an unmodulated pilot tone on a different carrier
frequency along with the signal to assist frequency offset
tracking. To control the transmit power of the packet, signal
attenuators are used in addition to the digital gain control
feature provided by the USRP.

We first test the performance in the 915MHz ISM band,
which is less crowded with fewer interference sources com-
pared to the 2.4GHz ISM band. Figure 9 shows that HDM
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Fig. 10. Spectrogram at 2.44GHz.

outperforms polar/TBCC-QPSK even with a moderate K = 10
in the real-world channel, unlike the simulated AWGN case
shown in Figure 5a. This may be due to the uncontrolled inter-
ference and inaccurate SNR (consequently, inaccurate LLR)
estimation, which cause more significant performance degra-
dation to polar codes and TBCC than HDM. The presence of
interference and/or other non-idealities can be observed by the
offset between the expected sensitivity of −134 dBm (in ideal
AWGN) and the measured sensitivity of -126.75 dBm for the
PER of 10−3.

Next, we test the performance in the 2.4GHz ISM band,
which contains severe uncontrolled interference including
WiFi and Bluetooth. Figure 10 shows an example spectrogram
of the signal captured in the 2.4GHz band with 20MHz
sampling rate, where wideband WiFi signals (≥20MHz) and
frequency hopping Bluetooth signals (≥1MHz) dominate the
spectrum. These interference sources are both wideband and
short compared to the desired narrowband (10kHz) signal,
which justifies our assumption made in the previous sections.
Although not visible in the spectrogram because of the limited
time resolution, there are also many very short (≪1ms)
interference signals, which may be short Bluetooth control
packets or other wireless devices operating in the university
campus network.

Since the interference in the environment is not controlled,
it is not practically feasible to completely distinguish the
interference from the noise. Therefore, in our experiments
we define the interference any signal that has 10 dB higher
power than average noise power. By definition, INR is >10dB
for our experiment. The power distribution of the measured
interference signal is shown in Figure 11, which reveals that
the instantaneous INR can be higher than 30 dB in the real-
world 2.4GHz channel.

Figure 12 shows the distribution of the interference duration
and the interval between two closest interference signals. It is
observed that most of the interference is short (≤1 ms).
The intervals between interference are also relatively short
compared to the narrowband HDM and polar/TBCC-QPSK
packets. This implies that one packet may encounter more than
one interference burst with high probability. Although this

Fig. 11. Power distribution of the interference.

Fig. 12. Duration and interval statistics of the interference.

Fig. 13. PER measurement at 2.4GHz.

observation is based on our own definition of interference with
INR > 10dB, it is generalizable for a busy 2.44GHz band such
as on-campus networks where WiFi and Bluetooth dominate
the wireless traffic.

Figure 13 shows the PER measurement in the 2.4GHz ISM
band. Both L2-norm and L1-norm minimization algorithms
are shown for HDM with a modest K = 10 setting. The
LLR mapping method [30] is adopted and verified to improve
the performance during the real-world experiments. Figure 13
shows that, for the same PER, the required received signal
power is higher for the 2.4GHz band than that of the 915MHz
band because of the stronger background interference. It is
observed that HDM with L1-norm minimization K-best algo-
rithm has the best performance for the target PER of <10−3.
For HDM, no error is observed for at least 5000 packets
when the received power is ≥−113 dBm. The results do
not closely follow the simulated results in Figure 8b because
of the mismatch in interference characteristics between the
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uncontrolled real-world environment and our simulation setup.
More burst errors are observed in this real-world experiment
that cause more degradation for TBCC and HDM with the
L2-norm minimization algorithm.

VII. CONCLUSION

In this paper, we propose hyper-dimensional modulation
(HDM) specifically designed for interference-heavy mMTC
networks. HDM is a special case of sparse superposition codes
as a non-orthogonal modulation scheme that superimposes
multiple independent vectors for concurrent transmission. The
proposed decoding scheme uses a CRC-aided K-best algorithm
with L2-norm minimization to achieve robust performance in
the AWGN channel. Furthermore, the algorithm is extended to
weighted L2- and L1-norms to combat intra- and inter-network
interference, respectively. Both simulations and real-world
experiments are provided to show that the proposed schemes
greatly improves SPARC for short packets and HDM can
outperform conventional orthogonal transmission schemes that
use strong channel coding such as polar codes and TBCC. The
proposed HDM is particularly advantageous in interference-
heavy scenarios as a promising solution for practical mMTC
networks.
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[41] M. C. Coşkun et al., “Efficient error-correcting codes in the
short blocklength regime,” Phys. Commun., vol. 34, pp. 66–79,
Jun. 2019.

[42] W. Yang, Y. Wang, J. Soriaga, T. Ji, and K. Mukkavilli, “Coding
performance modeling for short-packet communications,” in Proc. 53rd
Asilomar Conf. Signals, Syst., Comput., Nov. 2019, pp. 820–826.

[43] Ettus Research X310. Accessed: Dec. 3, 2022. [Online]. Available:
https://www.ettus.com/all-products/x310-kit/

Chin-Wei Hsu received the B.S. degree in electrical
engineering and the M.S. degree in communication
engineering from the National Taiwan University,
Taipei, Taiwan, in 2015 and 2017, respectively. He
is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI,
USA. His research interests include novel modu-
lation, coding schemes, and low power design for
wireless communications.

Hun-Seok Kim (Senior Member, IEEE) received
the B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2001,
and the Ph.D. degree in electrical engineering
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2010. He is currently an
Associate Professor with the University of Michigan,
Ann Arbor, MI, USA. His research interests include
system analysis, novel algorithms, and VLSI archi-
tectures for low-power/high-performance wireless
communications, signal processing, computer vision,

and machine learning systems. He was a recipient of the DARPA Young
Faculty Award in 2018 and the NSF CAREER Award in 2019. He is an
Associate Editor of IEEE TRANSACTIONS ON MOBILE COMPUTING.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 11,2023 at 20:32:07 UTC from IEEE Xplore.  Restrictions apply. 


