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ABSTRACT: We propose a hybrid quantum-classical algorithm for solving the time-
independent Schrödinger equation for atomic and molecular collisions. The algorithm is based
on the S-matrix version of the Kohn variational principle, which computes the fundamental
scattering S-matrix by inverting the Hamiltonian matrix expressed in the basis of square-
integrable functions. The computational bottleneck of the classical algorithm�symmetric
matrix inversion�is addressed here using the variational quantum linear solver (VQLS), a
recently developed noisy intermediate-scale quantum (NISQ) algorithm for solving systems of
linear equations. We apply our algorithm to single- and multichannel quantum scattering
problems, obtaining accurate vibrational relaxation probabilities in collinear atom−molecule
collisions. We also show how the algorithm could be scaled up to simulate collisions of large
polyatomic molecules. Our results demonstrate that it is possible to calculate scattering cross
sections and rates for complex molecular collisions on NISQ quantum processors, opening up
the possibility of scalable digital quantum computation of gas-phase bimolecular collisions and
reactions of relevance to astrochemistry and ultracold chemistry.

The development of novel algorithms for the digital1,2 and
analog2,3 quantum simulation of molecular structure and

dynamics is a rapidly expanding field of research spanning a
wide array of topics, including electronic structure,2,4−6

vibrational structure and spectroscopy,2,4−6 and excitonic
energy transfer in model biological systems.7,8 Quantum
computers rely on the concepts of quantum superposition
and entanglement to process information in more efficient
(and in many cases, exponentially more efficient) ways
compared to classical computers.9 Quantum phase estimation
(QPE)10 is the foremost algorithm for solving the Schrödinger
equation on fault-tolerant quantum computers.11,12 While QPE
can provide an exponential speedup over classical algorithms,
current hardware limitations have prevented its widespread
use. More promising for current applications are hybrid
quantum algorithms, such as the variational quantum
eigensolver (VQE),13−15 which combines classical and
quantum computation to take full advantage of today’s limited
noisy intermediate-scale quantum (NISQ) resources.16

The VQE algorithm consists of four steps13−15 and begins
with the preparation of a trial quantum state (or ansatz)
|ψ(θi)⟩, followed by the calculation of the expectation value
⟨Ô⟩(θi) = ⟨ψ(θi)|Ô|ψ(θi)⟩ of a quantum observable Ô over the
trial state. The optimal values of the variational parameters θi
are then found using a classical optimization algorithm, and the
entire procedure is repeated until convergence of the
expectation value. The VQE has been successfully applied to
the electronic structure problem1,2 and to the calculation of
molecular vibrational levels,17 dynamics,18 and spectra.19 An
alternate approach is based on mapping the vibrational

eigenvalue problem onto a quadratic unconstrained binary
optimization problem, which could be solved efficiently on
quantum annealers.20,21 The resulting quantum annealer
eigensolver was used to obtain the vibrational energy levels
of ozone21 and excited electronic states of NH3.

22 Efficient
quantum circuits have been proposed for VQE calculations of
rovibrational energy levels in a discrete variable representation
basis.23

Quantum scattering phenomena play a fundamental role in
physical and theoretical chemistry, being at the heart of gas-
phase chemical reaction mechanisms,24−26 astrochemistry,27,28

combustion simulations,29,30 mode-selective chemistry,31,32

and atmospheric chemistry.33 In addition, molecular scattering
experiments, particularly those performed at low and ultralow
temperatures, provide the most detailed information about
intermolecular interactions.34−37 Molecular collisions and
chemical reactions at ultralow temperatures determine the
stability of ultracold molecular gases, with “good” (elastic)
collisions leading to desirable thermalization and “bad”
(inelastic) collisions responsible for undesirable trap losses,
which limits the stability of trapped molecules.38−41 A detailed
understanding of the quantum dynamics of binary collisions
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and chemical reactions in ultracold environments may lead to
novel ways to control them using, e.g., external electromagnetic
fields38−41 and/or quantum interference effects.42,43

To model quantum scattering phenomena, one can use
either time-independent or time-dependent (wavepacket)
approaches.24,26,44 Numerically exact quantum scattering
simulations, in which the time-independent Schrödinger
equation is solved directly via, e.g., coupled-channel methods
or basis set expansion techniques,24−26 are the “gold standard”
of chemical physics, similar to the full configuration interaction
or high-order coupled-cluster methods in quantum chemistry.
When such simulations are performed on classical computers,
their computational complexity scales exponentially with the
number of molecular degrees of freedom. As such, rigorous
calculations are presently limited to systems containing a few
atoms.26

To address the curse of dimensionality problem in quantum
scattering simulations, QPE-based quantum algorithms have
been developed for chemical reactions,45,46 atomic and
molecular resonances,47 and nuclear scattering.48,49 While
these algorithms achieve exponential speedup over their
classical counterparts, they are designed for fault-tolerant
quantum computers, rather than NISQ devices.17 Very
recently, a hybrid VQE-based quantum algorithm has been
proposed for solving the real-time chemical dynamics at low
energies.50 Yet, to our knowledge, no general-purpose
quantum algorithm exists for solving the time-independent
quantum scattering problem for atoms and molecules on NISQ
processors.
Here, we propose and implement such an algorithm based

on the S-matrix version of the Kohn variational principle
(KVP).51,52 Our quantum KVP (Q-KVP) algorithm is
conceptually simple and has the ability to handle a wide
range of elastic, inelastic, and reactive scattering problems on
an equal footing using square-integrable (L2) basis set
expansions. The fundamental scattering S-matrix, which
encodes all scattering observables, is computed in the KVP
using only matrix multiplications and inversions. The most
computationally intensive step of the algorithm involves the
inversion of a real symmetric Hamiltonian matrix in the basis
of real-valued L2 basis functions. In the Q-KVP algorithm, the
inversion problem is solved using the variational quantum
linear solver (VQLS), a recently developed NISQ variational
algorithm.53 We illustrate the Q-KVP algorithm by applying it
to nontrivial single- and multichannel quantum scattering
problems. We finally demonstrate how the Q-KVP algorithm
can be scaled up to larger molecular collision systems, which
are currently beyond the capabilities of classical computers.
Reaching quantum advantage would be a long-term goal, given
the maturity of the field of time-independent quantum
scattering and the existence of efficient classical algorithms.24

Our intention here is rather to propose an algorithm that could
potentially compete with the classical algorithms. For
completeness, we also discuss the issues that can affect the
Q-KVP algorithm as one gets close to realizing quantum
advantage, such as dealing with very large Hamiltonian
matrices.
The key quantity in quantum scattering theory is the

multichannel S-matrix with elements Sn df n di
, which encode the

transition amplitudes between the initial and final channels ni
and nf. In the framework of the KVP, the S-matrix element is
obtained by extremizing the expression54

= [ + | | ]S c c i H E( ) extn n lm n n n n n, 1f i f i f i (1)

with respect to the parameters {cl m,n} of the trial wave
functions for the initial and final scattering channels
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where Ĥ is the Hamiltonian of the system (see below), E is the
total energy, R is the scattering or reaction coordinate, r are the
internal coordinates of the colliding molecules (such as their
vibrational and rotational modes), and ϕn(r) is an internal
wave function. The L2 basis functions uln(R), l = 2, 3, ..., and
Nl, describe the collision complex at short R, and thus uln(R)
→ 0 as R → ∞. The total number of scattering channels N
includes both open (energetically allowed) and closed
(energetically forbidden) channels.
At large R, the last terms on the right-hand side of eq 2

vanish, but the continuum basis functions u0n(R) and u1n(R) =
u0n* (R) do not. We parametrize these functions as54 (in atomic
units, where ℏ = 1)

=

= =

u R f R v

u R F R l N

( ) ( )e ,
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l R

l
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n
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where =k E E2 ( )n n is the asymptotic wavenumber in
channel n with asymptotic energy En, vn = kn/μ is the
asymptotic velocity, and μ is the reduced mass for the collision.
Equation 3 ensures that our trial wave functions (2) behave

properly in the limit R → ∞, as linear combinations of
incoming and outgoing waves (for open channels). The
purpose of the cutoff function f(R) = 1 − e−γR in the first line
of eq 3 is to regularize the continuum basis functions u0n(R)
and u1n(R) = u0n* (R) at the origin, i.e., to ensure that u0n(R = 0)
= 0. In eq 3, γ > 0 is a parameter for the bound-state basis
functions uln(R) with l ≥ 2 and Fl is a normalization factor. We
note that the functions uln(R) are not necessarily orthogonal,
i.e., ⟨uln | ul′n⟩ ≠ δll′ (l, l′ ≥ 2).
By extremizing the expression in eq 1 with respect to the

variational parameters of the trial wave function (2),
[ + | | ] =c i H E 0

c n n n n1
l 2 1 2 1

, and applying the Löwdin-

Feshbach projection technique to separate the matrix
operations involving the real and complex matrix elements,
we obtain the S-matrix as52

= *iS B C B C( ),T 1 (4)

where S, B, and C are square matrices in the channel index n

=

= *

B M M M M

C M M M M .

T

T

0,0 0
1

0

1,0 0
1

0 (5)

Here, M0,0 and M1,0 have the dimensions No × No, where No is
the number of open channels (those, for which kn2 > 0). These
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are small square matrices with elements (M0,0)nn′ = ⟨u0nϕn|Ĥ −
E|u0n′ϕn′⟩ and (M1,0)nn′ = ⟨u0n* ϕn|Ĥ − E|u0n′ϕn′⟩ with n, n′ = 1,
2, ..., No, where the basis functions are defined in eq 2. We
follow the convention of ref 54 in assuming that the continuum
basis functions u0n(R) and u1n(R) are not complex conjugated
in the bra vectors. The (Nl − 1)N × No complex rectangular
matrix M0 is composed of the elements (M0)ln,n′ = ⟨ulnϕn|Ĥ −
E|u0n′ϕn′⟩ with n ranging from 1 to N and n′ from 1 to No.
Finally, M is a real symmetric matrix with dimensions (Nl − 1)
N × (Nl − 1)N and elements (M)ln,l′n′ = ⟨ulnϕn|Ĥ−E|ul′n′ϕn′⟩.
Because eq 4 involves the inversion and multiplication of

small No × No matrices B and C, it may seem that the S-matrix
can be computed efficiently on a classical computer. However,
computing B and C using eq 5 requires the inversion of a large
real symmetric matrix M, which is the main computational
bottleneck in computing the S-matrix in classical KVP.51,54

Here, we overcome this bottleneck by using the VQLS, a
recently proposed hybrid quantum-classical algorithm for
solving linear systems of equations.53

The central strategy of the VQLS algorithm is to
variationally prepare a quantum state |x⟩ satisfying A|x⟩ ∝
|b⟩ or, equivalently, | | | |†x x x bA A A/ , where A is a real
symmetric matrix and |b⟩ is a normalized version of a vector b⃗.
The Q-KVP method involves both the real and complex types
of quantum linear systems in eqs 4 and (5): B*|x⟩ = |b⟩ and
M|x⟩ = |b⟩.
Inverting the matrix M amounts to solving a quantum linear

systems problem, = =x b kM , 1, 2, ..., 2k k
n, where n is the

number of qubits, M is a real symmetric 2n × 2n matrix, and b⃗k
is a unit vector of 2n

such that b⃗1 = (1, 0, 0, ..., 0), b⃗2 = (0, 1, 0,
..., 0), etc. Then, the vector xk⃗ = M−1b⃗k forms the k-th column
ofM−1. Using Dirac’s notation, xk⃗ → |xk⟩ and b⃗k → |bk⟩, we can
recast the matrix M−1 as

| | | | | |
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Thus, we need to solve a system of 2n linear equations to get
the complete representation of M−1.
In the framework of the VQLS algorithm,53 we initially

prepare four fundamental inputs: matrices P, a gate U, an
ansatz V(θ), and a cost function C. First, we decompose M
into a linear combination of unitary matrices Ml.
The variational ansatz V(θ) is a unitary operator acting on n

qubits, which depends on several parameters denoted
collectively by θ. V(θ)|0⟩ represents an approximation to
|xk⃗⟩, which solves the system of linear equations Mxk⃗ = b⃗k, k =
1, 2, ..., 2n. The most common types of VQE ansatzes used in
computational quantum chemistry are hardware-efficient and
chemically inspired ansatzes.2,17,55−57 Here, as shown below,
we employ a multiply layered hardware efficient ansatz
composed of a sequence of single-qubit rotations (Ry gates)
and two-qubit entangling CX gates as described in ref 58.
Quantum gates realize single-qubit and two-qubit unitary
transformations, which are elementary building blocks of any
unitary transformation used in quantum algorithms.9 Only the
Ry gates contain parameters, whereas the CX gates do not. For
an ansatz including one layer and three qubits, there are three
variational parameters, θ1, θ2, and θ3. Increasing the number of
layers of ansatz will increase the numbers of parameters.
In general, we can choose Ml in the form of products of

Pauli matrices Pl ∈ { I, X, Y, Z }⊗ n

= cM P,
l

l l
(6)

where the expansion coefficients are given by cl = (1/2n)
Tr(MPl).
Second, we create a parametrized quantum circuit using a

multiply layered hardware efficient ansatz V(θ) such that our
trial solution is of the form |x(θ)⟩ = V(θ)|0⟩, where θ
represents a set of variational parameters and |0⟩= |0⟩⊗n is the
initial state of n qubits (see Figure 1). A single layer in the
dashed box in Figure 1 is a repeated sequence of quantum
gates used in hardware-efficient ansatzes.2,17 The number of
layers gives the number of repeated gates sequences. While
using more layers involves more parameters, which allows for
more efficient optimization of the cost function C(θ), it also
increases the computational cost (see Table 1). Each layer of
the ansatz consists of single-qubit Ry gates and two-qubit CX
gates. The number of layers is adjustable depending on the
problem and also represents the depth of the ansatz.
Third, we prepare the quantum states |b⟩ proportional to the

vectors b⃗ on the right-hand side of Mxk⃗ = b⃗k (omitting the
index k for simplicity) on a quantum circuit using an efficient
gate sequence U shown in Figure 1b. The unitary trans-
formation U is composed of only single-qubit identity (I) and

Figure 1. Quantum circuits. (a) The hardware efficient ansatz V (θ) consists of alternating layers of single-qubit rotations Ry(θn) and controlled-
NOT gates.9 A single repeatable layer is encircled by a dashed box. (b) The unitary U is efficiently implemented with the X and I (identity) gates,
as described in the main text.
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X gates. The structure of U depends on the number of qubits
and the binary form of the number k. Specifically, we apply the
I gate to each 0 digit in the binary representation of k and the
X gate to each “1” digit. For instance, for 3 qubits, we have U =
IXI for k = 2 (010), U = XXX for k = 7 (111), and so on (the
binary representation of k is given in parentheses).
F ina l l y , t o ob t a in an op t ima l θ t o en su r e

| | | |†x x x bM M M( ) / ( ) ( ) , we use the local version
of the cost function in the VQLS algorithm53

= | |
| |†C
b

x xM M
1

( ) ( )
.

2

(7)

where |Φ⟩ = M |x(θ)⟩. Combining eqs 6 and 7, the cost
function becomes

=
* | | | |

* | |

† † †

† †C
c c U V V U

c c V V

P P

P P
1

0 ( ) 0 0 ( ) 0

0 ( ) ( ) 0
ll l l l l

ll l l l l (8)

Here, U |0⟩ and |0⟩⟨0 | are replaced by |b⟩ and
= + =O Z

n j
n

j
1
2

1
2 0

1 , respectively, in order to make the
estimation of expectation values easier, and the Pauli Z
operator is locally implemented on the j-th qubit (j = 0, 1, ...,
n − 1).
By minimizing the cost function, we obtain the optimal

variational parameters θ and the optimal solution |x⟩= |x(θ)⟩=
V (θ) |0⟩, which satisfies | | | |†x x x bM M M( ) / ( ) ( ) .
As the ansatz V (θ) is unitary, |x(θ)⟩ has a unit norm.
The vector = |x x( )q has the quantum norm

= ||| || || | ||b xM/ ( )q , which is expected to be close to the
exact classical norm = || ||xc (the difference between q and

c is quantified by the fidelity, see below). Finally, we assemble
matrix M−1 from the solution vectors. The sign of x ⃗ is
determined by requiring MMq

−1 = I. The above-mentioned
steps of the Q-KVP method are illustrated in Figure 2.
We begin by applying the Q-KVP algorithm to a model

single-channel quantum scattering problem described by the
Hamiltonian

= +H
R

V R
1

2
d

d
( ),

2

2 (9)

where V(R) = −e−R.54 To this end, we define a single-channel
ansatz

= + +
=

R u R c u R c u R( ) ( ) ( ) ( ),t
l

N

l l0 1 1
2

l

(10)

where =k E2 is the wavenumber, E is the total energy, v =
k/μ is the asymptotic velocity, u0 = f(R)eikRv−1/2, f(R) is the
cutoff function defined above, and u1(R) = u0(R)*. We take
the bound-state basis functions to be ul(R) = FlRl−1e−γ R (l = 2,
3, ..., Nl), and define the matrix elements

= | | = | |M u H E u M u H E u, ;00 0 0 10 1 0

= | | = | |u H E u u H E uM M( ) , ( ) ,l l ll l l0 0

where M00 and M10 are complex scalars, M0 is a complex
vector, and M is a real symmetric square matrix (see above).
Substituting these expressions into eq 5, we obtain the S matrix
element, which, for single-channel scattering, is a complex
number of unit magnitude (|S|2 = 1). The bound-state basis
functions ul(R) are parametrized by γ = 1.5, and we take μ = 1
au.
To compute the S-matrix using the Q-KVP algorithm, we

start by inverting the M-matrix in the framework of the VQLS
algorithm on the Qiskit platform. The quality of the unit
vectors |xq⟩= |x(θ)⟩ obtained using VQLS is measured by the
fidelity

= | | |x x ,qc q c
2

(11)

which is a squared overlap between |xq⟩ and the exact result,
| =x x/c c, obtained by a classical inversion method. We
obtain fidelities very close to 1 using an ansatz with two layers
as discussed in more detail in the Supporting Information.9

Figure 3 shows the collision energy dependence of the real
and imaginary parts of the S-matrix calculated using our Q-
KVP approach. The quantum results are in excellent agreement
with the benchmark values obtained by direct numerical
integration of the Schrödinger equation on a classical computer
using the numerically exact coupled channel (CC) method59

over the whole range of collision energies. As a point of
reference, at k = 0.55, our Q-KVP calculations give
S = −0.65714 + i0.75633 for Nl = 2, which compares
favorably with the exact CC result (S = − 0.65769 + i0.75328).
Increasing the number of basis functions to 4 changes the
imaginary part of the S-matrix element by only 0.4% (and its
real part by much less), indicating good convergence of the Q-
KVP results.

Table 1. Fidelity and Computing Time τ of Inverting the
M Matrix for E = 3.8 for the SJ Problem with Two Open
Channelsa

k 1 2 3 τ1 (s) τ2 (s) τ3 (s)
1 0.1588 0.5834 0.9999 63.8 1355.4 2699.6
2 0.6446 0.9988 0.9999 84.5 1411.6 2657.3
3 0.8731 0.9884 0.9999 55.3 1865.9 3267.6
4 0.0925 0.9785 0.9999 80.7 1681.9 3872.4
5 0.0101 0.9999 0.9999 41.9 2155.7 2536.6
6 0.1232 0.9866 0.9999 105.4 2104.1 2227.5
7 0.9264 0.9967 0.9999 69.6 1787.7 3197.0
8 0.0058 0.9911 0.9999 55.7 1936.7 2838.1

aThe superscript d of d( ) and τ(d) indicates the number of layers in
the ansatz. The dimension of the M matrix is 8 × 8.

Figure 2. Schematic diagram of the hybrid Q-KVP algorithm.
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To explore the applicability of the Q-KVP algorithm to more
realistic (and more complex) multichannel quantum scattering
problems, we apply it to solve a two-dimensional Secrest−
Johnson (SJ) model,60,61 which describes collinear collisions of
a diatomic molecule with a structureless atom. The molecule is
approximated by a harmonic oscillator, and a model two-
dimensional (2D) potential function is used to describe the
atom−molecule interaction (see below). Because of these
features, the SJ model is significantly more complex than the
one-channel problem considered in the previous section, and it
continues to serve as a benchmark for testing new methods for
solving CC equations of quantum scattering theory.62

The Hamiltonian of the SJ model is, in reduced
coordinates60,61
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where R is the scaled distance between the atom and the
molecule’s center of mass, r is the scaled internuclear distance
in the molecule, μ is proportional to the reduced mass of the
atom−molecule system, and we use the values m = 1 and μ =
0.6667, which correspond to He + H2 collisions.60,61 The
Hamiltonian includes the kinetic energy of the atom relative to
the molecule (the first term), the atom−molecule interaction
potential (the second term), and the vibrational energy of the
diatomic molecule (the third and fourth terms).
The atom−molecule interaction potential V(R, r) in the SJ

model has the form

= +V R r A( , ) e ,R r (13)

where A is a constant, which defines the classical turning point
for the collision, and the parameters α and β characterize the
exponential decay of the potential with R and its dependence
on the diatomic stretching coordinate r. To parametrize the
interaction potential, we choose the values A = 10, β = 2, and α
= 0.3. The scattering wave function |ψt⟩ satisfies the time-
independent Schrödinger equation | = |H Et t

1
2

, where the
total energy E is expressed in units of the zero-point vibrational
energy of the diatomic molecule.60

We choose the Q-KVP ansatz for |ψt⟩ in the form of eq 2
with the transitional wave functions given by eq 3 with γ = 0.5.
The internal wave functions ϕn(r) are the vibrational wave
functions of the harmonic oscillator ϕv(r), where v is the
vibrational quantum number. Because V (R, r) → 0 as R → ∞,
the threshold energies of the vibrational channels are given by
the energy levels of the one-dimensional harmonic oscillator, ϵv
= v + 1/2. As noted above, the dimension of the S matrix is
equal to the number of open channels, No. To avoid the
overcompleteness problem caused by nonorthogonality of the
basis functions |ulnϕn⟩, we transform the matrix M to an
orthonormal basis as described in the SI.9 The transformed
matrices have the dimensions Nq × Nq for M and Nq × No for
M0, where Nq is the number of orthogonalized basis functions.
Table 1 lists the fidelities for inverting the M-matrix using

VQLS in the basis of 8 orthogonalized functions. The fidelity
d( ) is computed for ansatzes in Figure 1a with varying

numbers of layers d (for depth). We observe that a single-layer
ansatz cannot provide consistently good fidelity for all columns
k of M−1. The values of (1) vary from 0.0925 to 0.9264.
Increasing the depth of the ansatz leads to a dramatic
improvement in inversion fidelity; values of = 0.9999(3) are
obtained using only three layers. A downside of using the d ≥ 3
ansatzes is that their computational time increases rapidly. As
shown in Table 1, the computational cost of τ(3) is nearly 50
times greater than that of τ(1). Thus, inverting a general (i.e.,
nonsparse) 2n × 2n M matrix using the VQLS algorithm on the
Qiskit platform is very costly for n ≥ 4. This is partly because
for a general, nonsparse matrix M the number of terms in its
expansion in products of Pauli matrices (6) grows exponen-
tially with matrix size. In order to avoid the explosive scaling,
one should ensure that the number of Pauli terms grows only
polynomically with the system size. This important question is
addressed below.
Figure 4 compares the quantum and classical transition

probabilities for collision-induced vibrational relaxation
(|S10|2). We consider the case of a diatomic molecule initially
in the v = 1 vibrational state colliding with a spherically
symmetric atom, where the molecule can either scatter

Figure 3. Real and imaginary parts of the S-matrix plotted as a
function of the relative wavevector k. Symbols: Q-KVP results
calculated with Nl = 2. Solid lines: benchmark results computed using
the CC method on a classical computer. The error bars on the
quantum results are much smaller than the size of the symbols.

Figure 4. Transition probability for the inelastic collisional relaxation
plotted as a function of collision energy for the case of two open
channels (v = 0, 1). The size of the M matrix is 8 × 8. Solid symbols:
Q−KVP results. Solid lines: reference results computed using exact
CC.
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elastically or undergo vibrational relaxation to the v = 0 ground
state. The Q-KVP calculations use the M matrix in a basis of 8
orthogonalized basis functions, each of which is expanded in
12 primitive basis functions |ulnϕn⟩ (see the Supporting
Information9). The quantum probabilities are in very good
agreement with exact CC calculations at all collision energies,
validating our Q-KVP approach. In particular, the monotonic
increase in the transition probability with collision energy is
well reproduced by quantum calculations.
Having compared the inelastic transition probabilities, we

now turn to the underlying complex transition amplitudes.
Figure 5 shows the real and imaginary parts of the elastic and

inelastic amplitudes (S11 and S10) obtained from our Q-KVP
calculations. As in the case of transition probabilities (Figure
4), we observe excellent agreement between the Q-KVP and
exact CC inelastic S-matrix elements at all collision energies.
However, the elastic S-matrix element (Re(S11)) deviates
slightly from the exact CC result at lower energies. This is
likely due to the limited size of our basis set, which contains 8
orthogonalized basis functions.
To demonstrate the scalability of the Q-KVP algorithm, (i.e., its

ability to solve large-scale molecular scattering problems with
exponential speedup over classical algorithms) we need to find
a representation of the scattering Hamiltonian (or, equiv-
alently, of M) that is k-local, i.e., with each Pl term in eq 6
acting in a nontrivial way on no more than k qubits.1 If this
condition is met, the number of Pauli terms will grow
polynomially with the size of the system, enabling efficient
digital quantum simulation.1,2,17 To this end, consider the
Cartesian reaction path Hamiltonian that describes a wide
range of molecular quantum scattering processes, including
inelastic collisions, quantum reactive scattering, and isomer-
ization63−66
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where the Cartesian coordinates R = (R1, R2, ...) describe the
large-amplitude motion of molecular fragments responsible for

the chemical reaction or inelastic scattering, whereas the
coordinates y describe the majority of molecular degrees of
freedom that only exhibit small (nearly harmonic) displace-
ments described by the harmonic Hamiltonians

= +H m y y( )i
p

m i i i i2
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2 2i

i

2

0
. Accordingly, the adiabatic inter-

action potential energy surface can be expanded in these
displacements63,67 (assuming the validity of the Born−
Oppenheimer approximation)
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where V (R, y0) is the value of the interaction potential at the
reference geometry with all vibrational degrees of freedom
frozen at their equilibrium positions yid0

, NM is the number of
vibrational modes, and Ki d1i d2... i dn

(n) are the expansion coefficients
given by the n-th order derivatives of the interaction potential

with respect to yi d1
, yi d2

, ..., yi dn
, i.e. = | =Kij

V
y y

R y
y y

(2) 1
2

( , )

i j

2

0
. Because

the Cartesian reaction path Hamiltonian (14) is an extension
of the vibrational Hamiltonian describing small-amplitude
vibrations of polyatomic molecules, solving it beyond the
harmonic approximation is a hard problem for classical
computers.17

To recast the Hamiltonian (14) into a k-local form, we
choose an orthonormal direct-product basis set
|ul⟩|ϕv d1

(1)ϕv d2

(2)...ϕv dM

(NM)⟩ composed of NR scattering basis
functions ⟨R |ul⟩ = ul (R) and Nv

NM vibrational basis functions
|ϕv d1

(1)⟩, |ϕvd2

(2)⟩, ..., |ϕvdM

(NM)⟩ (with Nv functions per each
vibrational mode). For simplicity, we consider the case of a
single scattering variable, R, which describes inelastic scattering
or chemical reactions dominated by a single reaction
coordinate. The operator Ĥ − E = Ĥ(E) then becomes

= | | | | |

| | |
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with the matrix elements of the Hamiltonian (14) given by
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Figure 5. Real and imaginary parts of the S-matrix plotted as a
function of collision energy for the SJ model. Two channels are open
(v = 0, 1), and the size of the M matrix is 8 × 8. Symbols: Q−KVP
results. Solid lines: reference results computed using exact CC.
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where we have included all the terms up to the second order
[higher-order anharmonic terms have a similar structure
involving sums of products of the matrix elements of
Ki d1i d2,..., i dn

(n)(R)]. In eq 17, δv d1,vd2...; vd1′v d2′...
(i) denotes the product of

NM − 1 Kronecker delta symbols δv d1v d1′δv d2 v d2′..., which does not
include δvdiv di′ and δv d1,v d2...; v d1′v d2′...

(ij) stands for the product of NM − 2
Kronecker delta symbols, which does not include δv divdi′ and δvdjv dj′.
Combining eqs 16 and 17, we obtain the Pauli decomposition
of the scattering Hamiltonian
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where 1R and 1(vi) are unit operators in the scattering space
spanned by N(R) basis functions |ul⟩, and in the Hilbert space of
the vi-th vibrational mode spanned by Nv vibrational basis
functions |ϕv di

(i)⟩, = uH ...R
i i

i i i i( )
, , ...
, ,... ...

...
1 2
1 2

1 2
1 2

1
1

2
2 is the matrix

representation of the first term of the Hamiltonian (17)
expanded in Pauli matrices acting on nS = log(NR) “scattering”
qubits α1, α2, .... Further, = E EE diag( , , ...)v i i( )

0
( )

1
( )i are the

diagonal matrices of vibrational energies of the i-th mode, and
ki,αd1α d2...

(i) i1i2... and kij,α d1α d2...
(2) i1i2... are the expansion coefficients in

the Pau l i decompos i t ion (6) o f the mat r i ce s
= | |u K R uK( ) ( )i

ll l i l
( ) (1) and = | |u K R uK( ) ( )ij

ll l ij l
( ) (2) . The

number of terms in these expansions generally scales as O(NT
R)

= O(2NR). This does not pose a fundamental problem,
however, because the number of reaction coordinates typically
ranges from one to three for most chemical reactions of
interest63 regardless of system size. Importantly, therefore, the
presence of a large number of terms in the Pauli expansions of
H(R), K(i), and K(ij) does not affect the overall scaling with the
system size of the number of terms in eq 18, which is
determined instead by the much more numerous vibrational
modes (see below). Finally, the Nv × Nv matrices (yin)(vi) in eq
18 are given by { } = | |y yy( ) ( )i

n v
vv v

i
i i

n
v

i( ) ( ) ( )i
i i i i0

.
To encode vibrational modes into the “vibrational qubits”

labeled (v1), (v2), ..., we will use a compact mapping, which
requires nv = log Nv qubits per mode,17 where the Pauli
decompositions of matrices E(i) and (yin)(vi) contain only O(Nv

2)
and O(Nv

2n) terms, respectively. This implies that the total
number of terms in the Pauli expansion of the scattering
Hamiltonian (18) scales polynomially as O(NT

R) × NM
2 ×

O(Nv
2n) with the number of vibrational modes NM and the

number of vibrational basis functions per mode Nv. The k-
locality of the Cartesian reaction path Hamiltonian (14)
suggests that it could be efficiently simulated on a quantum
computer. If m-th order anharmonic terms are included in the
expansion of the interaction potential (15), then the scaling
becomes steeper [O(NT

R) × NM
m × O(Nv

2m)] but remains
polynomial for any finite m. The inclusion of anharmonic
effects is important for large polyatomic molecules; therefore,
it will be essential to keep m as small as possible to reduce the
computational cost.
Table 2 lists the estimated number of qubits and Pauli terms

required for the digital quantum simulation of quantum

collision dynamics of medium-to-large molecules ethylene
(C2H4), benzene (C6H6), and naphthalene (C10H8). Collisions
involving such hydrocarbon molecules play an important role
in combustion and possibly in the interstellar medium,27 and
pose an intriguing “sticking” problem68−70 concerning the role
of molecular vibrations in the formation of long-lived collision
complexes. The problem is described by a single scattering
coordinate, R, the distance between the molecules’ centers of
mass. The number of small-amplitude vibrational modes of the
collision complex is thus NM = (3Na − 3) − 1 − NA, where Na
is the total number of nuclei and NA = 8 is the number of
angular variables, including six Euler angles that specify the
position of each nonlinear molecule with respect to the
intermolecular axis R and the two angles that determine the
orientation of R in the laboratory frame.
An important future challenge to achieving quantum

advantage for large scattering problems will be the storage of
2n × 2n M−1 matrices, which are too large to be handled on a
classical computer. To begin to address this challenge, we note
that storing the entire matrix M−1 is not necessary because
what is needed for the calculation of the S-matrix is the
product B = M0

TM−1M0, where M0 is a rectangular matrix of
dimension 2n × No, and No is a small number of open channels.
The columns of the rectangular matrix X = M−1M0 are
solutions to the system of linear equations MX = M0. Thus, if
one can prepare the rectangular matrix M0 (composed of No
vectors of dimension 2n) on a quantum computer, then the
VQLS algorithm can be used to obtain the circuit
representation of X and then of B and S without explicitly
inverting the 2n × 2n matrix M. To prepare the columns of M0
on a quantum computer, one can use the recently developed

Table 2. Estimated Number of Qubits nq = nS + NM nv and
Pauli Terms NP = NT

RNM
2 Nv

4 for Simulating Collisions of
Ethylene (C2H4), Benzene (C6H6), and Naphthalene
(C10H8) Moleculesa

collision nq NP × 103

C2H4 + C2H4 26 147.5
C6H6 + C6H6 62 921.6
C10H8 + C10H8 98 2,560

aThe basis set includes 4 scattering states (NR = 2, NT
R = 16) encoded

in 2 scattering qubits (nS = 2), and 2 vibrational basis functions (Nv =
2) encoded into 1 qubit per vibrational mode (nv = 1). eq 18 is
truncated at the harmonic level (m = 2). Rotational degrees of
freedom are neglected for simplicity since they are greatly out-
numbered by vibrations already for medium-size molecules,63 and
thus do not affect the scaling of scattering computations with system
size.
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algorithms for quantum state initialization.71−73 While this is a
nontrivial task beyond the scope of this work, it may be
possible to leverage the properties of M0 to increase the
efficiency of the initialization procedure.
Another way to avoid reconstructing the fullM−1 matrix is to

bypass the matrix inversion procedure altogether. Instead, we
can begin with the S-matrix functional (1) and directly vary the
parameters of the trial functions ψ̃n di

(cln,n di
) and ψ̃n df

(cln,n df
) until an

extremum of Sn df n di
is found. This direct extremization procedure

is similar in spirit to the original VQE approach13 with one
significant difference: To find the S-matrix, we need to
extremize the complex functional (1), rather than to minimize
a real functional as done in the VQE. This can be achieved by
extremizing the real and imaginary parts of Sndf n di

(clm,n) in eq 1
while maintaining its unitarity, ∑kSn k

† Skn′ = ∑kSnkSkn′
† = δnn′.

One can implement the previously developed trial functions to
calculate the expectation value in eq 1 such as the unitary
vibrational coupled cluster (UVCC) ansatz proposed for
calculating the eigenstates of the vibrational Hamiltonian using
the VQE.17

In conclusion, we proposed a hybrid classical-quantum
algorithm for the solution of multichannel quantum scattering
problems, which are ubiquitous not only in physical chemistry
but also in atomic and molecular physics. The Q-KVP
algorithm combines the S-matrix version of the Kohn
variational principle (KVP)54 and the recently developed
VQLS algorithm53 to address the major computational
bottleneck of the classical KVP algorithm, the inversion of a
large real symmetric matrix M. The use of VQLS to accomplish
the inversion represents the key connection between the
scattering theory and quantum computing parts of this work.
The inverted matrix M−1 is then used to obtain the scattering
S-matrix using eqs 4 and 5.
In our initial implementation of the Q-KVP methodology on

a classical emulator of quantum hardware using Qiskit in
Python, we construct a 2n × 2n matrix M using an
orthogonalized finite basis set and invert it using hardware-
efficient multilayered ansatzes. This procedure gives accurate
results for both single- and multichannel quantum scattering.
We applied Q-KVP methodology to study vibrational energy
transfer in collinear atom−diatom collisions using the
archetypal SJ model. The vibrational transition probabilities
computed using Q-KVP are in excellent agreement with the
exact CC calculations, demonstrating the validity and accuracy
of the Q-KVP methodology. A current limitation of our
approach is the large computational cost of inverting M-
matrices of dimensions ≥ 16 on the Qiskit platform, which
precludes scattering computations at collision energies higher
than those shown in Figure 4. We note that few-qubit
implementations of other quantum inversion algorithms have
also been limited to 8 × 8 matrices.74 This is partly due to the
exponentially increasing number of terms in the Pauli matrix
expansion of M. To address this limitation, we propose a
scenario of how the Q-KVP algorithm could be scaled up to
larger inelastic collisions or reactive scattering problems
involving larger polyatomic molecules. This is achieved by
explicitly expanding the few anharmonic (scattering) degrees
of freedom in Pauli matrices and using the compact mapping
for the remaining harmonic degrees of freedom as done in
previous work on the digital quantum simulation of vibrational
energy levels.17
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(3) Argüello-Luengo, J.; González-Tudela, A.; Shi, T.; Zoller, P.;
Cirac, J. I. Analogue quantum chemistry simulation. Nature 2019,
574, 215−218.
(4) Otten, M.; Hermes, M. R.; Pandharkar, R.; Alexeev, Y.; Gray, S.
K.; Gagliardi, L. Localized Quantum Chemistry on Quantum
Computers. J. Chem. Theory Comput. 2022, 18, 7205−7217.
(5) Fan, Y.; Liu, J.; Li, Z.; Yang, J. Equation-of-Motion Theory to
Calculate Accurate Band Structures with a Quantum Computer. J.
Phys. Chem. Lett. 2021, 12, 8833−8840.
(6) Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-
Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c00985
J. Phys. Chem. Lett. 2023, 14, 6224−6233

6231

https://pubs.acs.org/doi/10.1021/acs.jpclett.3c00985?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.3c00985/suppl_file/jz3c00985_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timur+V.+Tscherbul"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5689-040X
https://orcid.org/0000-0001-5689-040X
mailto:ttscherbul@unr.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaodong+Xing"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6933-7048
https://orcid.org/0000-0001-6933-7048
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alejandro+Gomez+Cadavid"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Artur+F.+Izmaylov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8035-6020
https://orcid.org/0000-0001-8035-6020
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c00985?ref=pdf
https://doi.org/10.1021/acs.chemrev.8b00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1038/s41586-019-1614-4
https://doi.org/10.1021/acs.jctc.2c00388?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00388?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.1c02153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.1c02153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.3c00985?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Computation of Molecular Spectra on a Quantum Processor with an
Error-Resilient Algorithm. Phys. Rev. X 2018, 8, No. 011021.
(7) Parrish, R. M.; Hohenstein, E. G.; McMahon, P. L.; Martínez, T.
J. Quantum Computation of Electronic Transitions Using a
Variational Quantum Eigensolver. Phys. Rev. Lett. 2019, 122, 230401.
(8) Leontica, S.; Tennie, F.; Farrow, T. Simulating molecules on a
cloud-based 5-qubit IBM-Q universal quantum computer. Commun.
Phys. 2021, 4, 112.
(9) See the Supporting Information associated with this article for
details of convergence tests, additional information on the
implementation of the VQLS, and for the basis set orthogonalization
procedure.
(10) Kitaev, A. Yu., Quantum measurements and the Abelian
Stabilizer Problem. arXiv:quant-ph/9511026
(11) Nielsen, M. A.; Chuang, I. L. Quantum Computation and
Quantum Information: 10th Anniversary Edition; Cambridge University
Press: 2010.
(12) Pezze,̀ L.; Smerzi, A. Quantum Phase Estimation Algorithm
with Gaussian Spin States. PRX Quantum 2021, 2, No. 040301.
(13) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-
Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational
eigenvalue solver on a photonic quantum processor. Nat. Commun.
2014, 5, 4213.
(14) McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The
theory of variational hybrid quantum-classical algorithm. New J. Phys.
2016, 18, No. 023023.
(15) Romero, J.; Babbush, R.; McClean, J. R.; Hempel, C.; Love, P.
J.; Aspuru-Guzik, A. Strategies for quantum computing molecular
energies using the unitary coupled cluster ansatz. Quantum Sci.
Technol. 2019, 4, No. 014008.
(16) Preskill, J. Quantum Computing in the NISQ era and beyond.
Quantum 2018, 2, 79−99.
(17) McArdle, S.; Mayorov, A.; Shan, X.; Benjamin, S.; Yuan, X.
Digital quantum simulation of molecular vibrations. Chem. Sci. 2019,
10, 5725−5735.
(18) Sparrow, C.; Martín-López, E.; Maraviglia, N.; Neville, A.;
Harrold, C.; Carolan, J.; Joglekar, Y. N.; Hashimoto, T.; Matsuda, N.;
O’Brien, J. L.; et al. Simulating the vibrational quantum dynamics of
molecules using photonics. Nature 2018, 557, 660−667.
(19) Sawaya, N. P. D.; Huh, J. Quantum Algorithm for Calculating
Molecular Vibronic Spectra. J. Phys. Chem. Lett. 2019, 10, 3586−3591.
(20) Johnson, M. W.; Amin, M. H. S.; Gildert, S.; Lanting, T.;
Hamze, F.; Dickson, N.; Harris, R.; Berkley, A. J.; Johansson, J.;
Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature
2011, 473, 194−198.
(21) Teplukhin, A.; Kendrick, B. K.; Babikov, D. Calculation of
Molecular Vibrational Spectra on a Quantum Annealer. J. Chem.
Theory Comput. 2019, 15, 4555−4563.
(22) Teplukhin, A.; Kendrick, B. K.; Mniszewski, S. M.; Zhang, Y.;
Kumar, A.; Negre, C. F. A.; Anisimov, P. M.; Tretiak, S.; Dub, P. A.
Computing molecular excited states on a D-Wave quantum annealer.
Sci. Rep. 2021, 11, 18796.
(23) Asnaashari, K.; Krems, R. Compact quantum circuits for
variational calculations of ro-vibrational energy levels of molecules on
a quantum computer. arXiv:2303.09822
(24) Althorpe, S. C.; Clary, D. C. Quantum Scattering Calculations
on Chemical Reactions. Annu. Rev. Phys. Chem. 2003, 54, 493−529.
(25) Clary, D. C. Quantum Dynamics of Chemical Reactions. Science
2008, 321, 789.
(26) Zhang, D. H.; Guo, H. Recent Advances in Quantum Dynamics
of Bimolecular Reactions. Annu. Rev. Phys. Chem. 2016, 67, 135−158.
(27) Kaiser, R. I.; Mebel, A. M. The reactivity of ground-state carbon
atoms with unsaturated hydrocarbons in combustion flames and in
the interstellar medium. Int. Rev. Phys. Chem. 2002, 21, 307−356.
(28) Herbst, E.; Yates, J. T. Introduction: Astrochemistry. Chem.
Rev. 2013, 113, 8707−8709.
(29) Jasper, A. W.; Pelzer, K. M.; Miller, J. A.; Kamarchik, E.;
Harding, L. B.; Klippenstein, S. J. Predictive a priori pressure-
dependent kinetics. Science 2014, 346, 1212−1215.

(30) Klippenstein, S. J. From theoretical reaction dynamics to
chemical modeling of combustion. Proc. Combust. Inst. 2017, 36, 77−
111.
(31) Flynn, G. W.; Parmenter, C. S.; Wodtke, A. M. Vibrational
Energy Transfer. J. Phys. Chem. 1996, 100, 12817−12838.
(32) Liu, K. Vibrational Control of Bimolecular Reactions with
Methane by Mode, Bond, and Stereo Selectivity. Annu. Rev. Phys.
Chem. 2016, 67, 91−111.
(33) Yang, D.; Huang, J.; Hu, X.; Guo, H.; Xie, D. Breakdown of
energy transfer gap laws revealed by full-dimensional quantum
scattering between HF molecules. Nat. Commun. 2019, 10, 4658.
(34) Kim, J. B.; Weichman, M. L.; Sjolander, T. F.; Neumark, D. M.;
Kłos, J.; Alexander, M. H.; Manolopoulos, D. E. Spectroscopic
observation of resonances in the F + H2 →HF + H reaction. Science
2015, 349, 510.
(35) Wang, T.; Chen, J.; Yang, T.; Xiao, C.; Sun, Z.; Huang, L.; Dai,
D.; Yang, X.; Zhang, D. H. Dynamical Resonances Accessible Only by
Reagent Vibrational Excitation in the F + HD →HF + D Reaction.
Science 2013, 342, 1499.
(36) Perreault, W. E.; Mukherjee, N.; Zare, R. N. Quantum control
of molecular collisions at 1 Kelvin. Science 2017, 358, 356.
(37) Vogels, S. N.; Onvlee, J.; Chefdeville, S.; van der Avoird, A.;
Groenenboom, G. C.; van de Meerakker, S. Y. T. Imaging resonances
in low-energy NO-He inelastic collisions. Science 2015, 350, 787.
(38) Krems, R. V. Cold Controlled Chemistry. Phys. Chem. Chem.
Phys. 2008, 10, 4079−4092.
(39) Carr, L. D.; DeMille, D.; Krems, R. V.; Ye, J. Cold and ultracold
molecules: science, technology and applications. New J. Phys 2009, 11,
No. 055049.
(40) Balakrishnan, N. Perspective: Ultracold molecules and the
dawn of cold controlled chemistry. J. Chem. Phys. 2016, 145, 150901.
(41) Bohn, J. L.; Rey, A. M.; Ye, J. Cold molecules: Progress in
quantum engineering of chemistry and quantum matter. Science 2017,
357, 1002−1010.
(42) Devolder, A.; Brumer, P.; Tscherbul, T. V. Complete Quantum
Coherent Control of Ultracold Molecular Collisions. Phys. Rev. Lett.
2021, 126, 153403.
(43) Devolder, A.; Tscherbul, T. V.; Brumer, P. Coherent Control of
Ultracold Molecular Collisions: The Role of Resonances. J. Phys.
Chem. Lett. 2023, 14, 2171−2177.
(44) Nyman, G.; Yu, H.-G. Quantum theory of bimolecular chemical
reactions. Rep. Prog. Phys. 2000, 63, 1001.
(45) Kassal, I.; Jordan, S. P.; Love, P. J.; Mohseni, M.; Aspuru-Guzik,
A. Polynomial-time quantum algorithm for the simulation of chemical
dynamics. Proc. Natl. Acad. Sci. USA 2008, 105, 18681−18686.
(46) Kassal, I.; Whitfield, J. D.; Perdomo-Ortiz, A.; Yung, M.-H.;
Aspuru-Guzik, A. Simulating Chemistry Using Quantum Computers.
Annu. Rev. Phys. Chem. 2011, 62, 185−207.
(47) Bian, T.; Kais, S. Quantum computing for atomic and
molecular resonances. J. Chem. Phys. 2021, 154, 194107.
(48) Roggero, A.; Carlson, J. Dynamic linear response quantum
algorithm. Phys. Rev. C 2019, 100, No. 034610.
(49) Du, W.; Vary, J. P.; Zhao, X.; Zuo, W. Quantum simulation of
nuclear inelastic scattering. Phys. Rev. A 2021, 104, No. 012611.
(50) Lee, C.-K.; Hsieh, C.-Y.; Zhang, S.; Shi, L. Variational Quantum
Simulation of Chemical Dynamics with Quantum Computers. J.
Chem. Theory Comput. 2022, 18, 2105−2113.
(51) Zhang, J. Z. H.; Miller, W. H. Quantum reactive scattering via
the S-matrix version of the Kohn variational principle: Integral cross
sections for H + H2 (v1 = j1 = 0) →H2 (v2 = 1, j2 = 1,3) + H in the
energy range Etotal = 0.9 − 1.4eV. Chem. Phys. Lett. 1988, 153, 465−
470.
(52) Zhang, J. Z. H.; Miller, W. H. Quantum reactive scattering via
the S-matrix version of the Kohn variational principle: Differential and
integral cross sections for D + H2 →HD + H. J. Chem. Phys. 1989, 91,
1528−1547.
(53) Bravo-Prieto, C.; LaRose, R.; Cerezo, M.; Subasi, Y.; Cincio, L.;
Coles, P. J. Variational Quantum Linear Solver. arXiv:1909.05820

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c00985
J. Phys. Chem. Lett. 2023, 14, 6224−6233

6232

https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1038/s42005-021-00616-1
https://doi.org/10.1038/s42005-021-00616-1
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.3c00985/suppl_file/jz3c00985_si_001.pdf
https://doi.org/10.1103/PRXQuantum.2.040301
https://doi.org/10.1103/PRXQuantum.2.040301
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1039/C9SC01313J
https://doi.org/10.1038/s41586-018-0152-9
https://doi.org/10.1038/s41586-018-0152-9
https://doi.org/10.1021/acs.jpclett.9b01117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature10012
https://doi.org/10.1021/acs.jctc.9b00402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-021-98331-y
https://doi.org/10.1146/annurev.physchem.54.011002.103750
https://doi.org/10.1146/annurev.physchem.54.011002.103750
https://doi.org/10.1126/science.1157718
https://doi.org/10.1146/annurev-physchem-040215-112016
https://doi.org/10.1146/annurev-physchem-040215-112016
https://doi.org/10.1080/01442350210136602
https://doi.org/10.1080/01442350210136602
https://doi.org/10.1080/01442350210136602
https://doi.org/10.1021/cr400579y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.1260856
https://doi.org/10.1126/science.1260856
https://doi.org/10.1016/j.proci.2016.07.100
https://doi.org/10.1016/j.proci.2016.07.100
https://doi.org/10.1021/jp953735c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953735c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-physchem-040215-112522
https://doi.org/10.1146/annurev-physchem-040215-112522
https://doi.org/10.1038/s41467-019-12691-8
https://doi.org/10.1038/s41467-019-12691-8
https://doi.org/10.1038/s41467-019-12691-8
https://doi.org/10.1126/science.aac6939
https://doi.org/10.1126/science.aac6939
https://doi.org/10.1126/science.1246546
https://doi.org/10.1126/science.1246546
https://doi.org/10.1126/science.aao3116
https://doi.org/10.1126/science.aao3116
https://doi.org/10.1126/science.aad2356
https://doi.org/10.1126/science.aad2356
https://doi.org/10.1039/b802322k
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1063/1.4964096
https://doi.org/10.1063/1.4964096
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1103/PhysRevLett.126.153403
https://doi.org/10.1103/PhysRevLett.126.153403
https://doi.org/10.1021/acs.jpclett.3c00146?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.3c00146?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0034-4885/63/7/201
https://doi.org/10.1088/0034-4885/63/7/201
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1146/annurev-physchem-032210-103512
https://doi.org/10.1063/5.0040477
https://doi.org/10.1063/5.0040477
https://doi.org/10.1103/PhysRevC.100.034610
https://doi.org/10.1103/PhysRevC.100.034610
https://doi.org/10.1103/PhysRevA.104.012611
https://doi.org/10.1103/PhysRevA.104.012611
https://doi.org/10.1021/acs.jctc.1c01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0009-2614(88)85244-8
https://doi.org/10.1016/0009-2614(88)85244-8
https://doi.org/10.1016/0009-2614(88)85244-8
https://doi.org/10.1016/0009-2614(88)85244-8
https://doi.org/10.1063/1.457650
https://doi.org/10.1063/1.457650
https://doi.org/10.1063/1.457650
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.3c00985?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(54) Zhang, J. Z. H.; Chu, S.; Miller, W. H. Quantum scattering via
the S-matrix version of the Kohn variational principle. J. Chem. Phys.
1988, 88, 6233−6239.
(55) Ryabinkin, I. G.; Yen, T.-C.; Genin, S. N.; Izmaylov, A. F. Qubit
Coupled Cluster Method: A Systematic Approach to Quantum
Chemistry on a Quantum Computer. J. Chem. Theory Comput. 2018,
14, 6317−6326.
(56) Anand, A.; Schleich, P.; Alperin-Lea, S.; Jensen, P. W. K.; Sim,
S.; Díaz-Tinoco, M.; Kottmann, J. S.; Degroote, M.; Izmaylov, A. F.;
Aspuru-Guzik, A. A quantum computing view on unitary coupled
cluster theory. Chem. Soc. Rev. 2022, 51, 1659−1684.
(57) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An
adaptive variational algorithm for exact molecular simulations on a
quantum computer. Nat. Commun. 2019, 10, 3007.
(58) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.;
Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nature 2017,
549, 242−246.
(59) Johnson, B. R. The multichannel Lod-Derivative Method for
Scattering Calculations. J. Comput. Phys. 1973, 13, 445.
(60) Secrest, D.; Johnson, B. R. Exact Quantum-Mechanical
Calculation of a Collinear Collision of a Particle with a Harmonic
Oscillator. J. Chem. Phys. 1966, 45, 4556−4570.
(61) Stechel, E. B.; Walker, R. B.; Light, J. C. R-matrix solution of
coupled equations for inelastic scattering. J. Chem. Phys. 1978, 69,
3518−3531.
(62) Manolopoulos, D. E.; Gray, S. K. Symplectic integrators for the
multichannel Schrödinger equation. J. Chem. Phys. 1995, 102, 9214−
9227.
(63) Ruf, B. A.; Miller, W. H. A new (Cartesian) reaction-path
model for dynamics in polyatomic systems, with application to H-
atom transfer in malonaldehyde. J. Chem. Soc., Faraday Trans. 1988,
84, 1523−1534.
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