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ABSTRACT: Owing to their rich internal structure and significant long-range
interactions, ultracold molecules have been widely explored as carriers of quantum
information. Several different schemes for encoding qubits into molecular states, both
bare and field-dressed, have been proposed. At the same time, the rich internal structure
of molecules leaves many unexplored possibilities for qubit encodings. We show that all
molecular qubit encodings can be classified into four classes by the type of the effective
interaction between the qubits. In the case of polar molecules, the four classes are
determined by the relative magnitudes of matrix elements of the dipole moment
operator in the single-molecule basis. We exemplify our classification scheme by
considering the encoding of the effective spin-1/2 system into nonadjacent rotational states (e.g., N = 0 and 2) of polar and nonpolar
molecules with the same nuclear spin projection. Our classification scheme is designed to inform the optimal choice of molecular
qubit encoding for quantum information storage and processing applications, as well as for dynamical generation of many-body
entangled states and for quantum annealing.

1. INTRODUCTION
Recent experimental progress toward the high-fidelity quantum
control of ultracold molecules trapped in optical lattices1 and
tweezers2 has stimulated much interest in using ultracold
molecular gases for quantum information science (QIS)
applications. The key advantage offered by ultracold molecules
lies in their numerous and diverse degrees of freedom, which
include not only electronic and hyperfine states (which are also
present in atoms), but also vibrational and rotational modes, all
of which could be used to encode a qubit. Additionally, these
degrees of freedom allow one to encode quantum information
into higher-dimensional Hilbert spaces, which could be used
either for high-dimensional quantum computing3 or quantum
error correction.4 Another crucial advantage of ultracold polar
molecules for QIS is afforded by their strong, anisotropic, and
tunable electric dipolar (ED) interactions, which can be used
to engineer quantum logic gates5−7 and to generate many-body
entangled states.8−12 Very recently, two-qubit gates between
trapped polar molecules were demonstrated experimentally11,12

via spin-exchange of CaF molecules in optical tweezers.
Several types of molecular qubit encodings have been

proposed, including into adjacent rotational states (N = 0 and
1) of the same nuclear/electron spin projection,5,6 nuclear/
electron spin sublevels of a single (N = 0) rotational
state,6,13−16 nuclear/electron spin sublevels of adjacent rota-
tional states (N = 0 and 1),10 and vibrational states.17,18 Robust
QI storage is favored by qubits that are not affected by the

long-range ED interaction,13,14 whereas high-fidelity QI
processing (via two-qubit quantum gates) is easier to achieve
with strongly interacting qubits.6,7 The ability to switch
between encodings yielding noninteracting and interacting
qubits by means of, e.g., microwave pulses19,20 is a key
component of QIS protocols based on ultracold molecules.7

This motivates the ongoing search of new qubit encoding
schemes. At the same time, the discovery of new qubit
encodings may give rise to novel applications of ultracold
molecules for quantum computing, such as quantum annealing
based on molecules.21

Despite the recent proposals,6,7,10,14−18,21 there remains a
wealth of possibilities for unexplored encodings of qubits into
molecular states. For example, qubits can be encoded into
nonadjacent rotational levels (e.g., N = 0 and 2) of the same or
different vibronic states, into hyperfine-Zeeman sublevels of
the rovibronic states or even into different rovibrational and
hyperfine states in different electronic manifolds. This gives
rise to the following question: What are the advantages and
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limitations of a given molecular qubit encoding for QI storage
and processing? This question is relevant because, as
mentioned, QI storage and processing impose conflicting
requirements on the type of encoding. Specifically, good
memory qubits must be well-isolated from an external
environment, and their interactions with each other must be
minimized to avoid decoherence.22 By contrast, good qubits
for processing quantum information must be strongly
interacting, with the interactions controllable by external
electromagnetic fields.23

Motivated by this question, we propose a classification of
molecular qubit encodings based on the ED interaction
between the qubits. We show that, given the matrix elements
of the dipole moment operator in the single-molecule basis, it
is possible to assess the potential utility of any given molecular
qubit for QI storage and processing applications. As an
example, in Section 3, we explore molecular qubit encoding
into nonadjacent rotational states (N = 0 and 2), which gives
rise to several types of encoding according to our classification
scheme. The encodings into the N = 0, 2 and 0, 3 rotational
states were briefly mentioned by Gorshkov and co-workers24 in
the context of minimizing tensor ac Stark shifts of trapped
molecules. However, to our knowledge, neither single-
molecule matrix elements of the electric dipole moment nor
the effective ED interactions between the molecules have been
explored in the nonadjacent rotational state encoding.
In Section 4, we show that similar arguments can be made

for higher-order long-range couplings by considering electric
quadrupole and magnetic dipole−dipole interactions. The
former are essential for qubit encodings in nonpolar
homonuclear molecules. Section 5 concludes with a brief
summary of our main results and discusses several directions
for future work.

2. CLASSIFICATION OF MOLECULAR QUBIT
ENCODINGS

We consider an effective spin-1/2 system with the eigenstates
|↓⟩ and |↑⟩ comprising a qubit. A particular encoding identifies
|↓⟩ and |↑⟩ with the physical states of a diatomic molecule,
such as electronic, vibrational, rotational, fine, hyperfine, Stark,
or Zeeman states. The two-qubit and many-qubit Hamil-
tonians inherit the properties of the molecular states used for
the encoding.
As the strong, anisotropic, and tunable electric dipole−

dipole (ED) interaction between molecular qubits is central to
their applications in QIS,1,25 we use the ED interaction as a
basis of our classification. The effective ED interaction between
two isolated spin-1/2 systems encoded in molecules i and j
takes the form of the XXZ Hamiltonian25,26 (see Appendix A
for a derivation)
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where Ŝiα and Ŝjα are the effective spin operators acting in the
two-dimensional Hilbert spaces of the ith and jth molecules (α
= ±, z), respectively, Rij is the distance between the molecules,
and θij is the angle between the quantization vector and the
vector connecting the two molecules.

To derive eq 1, we assume that the ED interaction between
molecules is much weaker than the energy difference between
|↑⟩ and |↓⟩. This is a realistic assumption for most molecules
trapped in optical lattices and tweezers, for which |Rij| ≥ 500
nm, and the ED interaction rarely exceeds 1 kHz. As a result,
couplings that change the total angular momentum projection
of two molecules give rise to energetically off-resonant
transitions and can be neglected.25 Examples of such processes
include transitions, which transfer angular momentum from
molecular rotation to their relative (orbital) motion (q = ±1
and q = ±2, see Appendix A). We further assume that the qubit
states |↑⟩ and |↓⟩ are isolated, whether by symmetry or by
energy detuning, from other molecular states. This is an
essential requirement for any QIS protocol.
As shown in previous work (see, e.g., refs 25, 26) and

detailed in Appendix A for the present discussion, the coupling
constants in the effective spin−spin interaction Hamiltonian
(1)

J d d( )z
2= (2)

J d d d2 2 2 2= | | | |+
(3)

can be expressed in terms of the matrix elements of the electric
dipole moments (EDMs) of the individual molecules with the
spherical tensor components d̂p (d̂0 = d̂z, d̂±1 = ∓(d̂x ± id̂y)/
√2)

d d d d,0 0| | | | (4)

d d d d,0 1| | | |±
±

(5)

Significantly, the Ising coupling constant Jz depends on the
difference between the diagonal matrix elements of the EDM
in the qubit basis, and the spin-exchange coupling J⊥ scales
with the square of the off-diagonal (or transition) matrix
element. In practice, in the absence of mixing between angular
momentum projection states, either d↑↓ or d↑↓

± vanishes, so
either the first or the last two terms on the right-hand side of
eq 3 are different from zero. The terms parameterized by the
constants W = (d↑

2 − d↓
2)/2 and V = (d↑ + d↓)2/4 in eq 1 result

in the overall energy shift for a homogeneous ensemble of
pinned molecules,25 so we neglect them in the following.
The effective ED interaction in the form of eq (1) can be

used in combination with eqs 2 and 3 to classify the different
qubit encodings. To this end, we first note that if Jz = 0 and J⊥
= 0, the ED interaction between the qubits is identically zero.
According to eq 1, the vanishing of the ED interaction requires
the following two conditions to be simultaneously fulfilled: d↑
= d↓ and d↑↓ = 0. Thus, all qubit encodings, for which the
diagonal elements of the EDM are equal and the off-diagonal
matrix elements vanish, will have zero ED interaction. Because
of this, we expect such qubit encodings to have long coherence
times, which can be advantageous for long-term quantum
information storage (memory qubits).
We use a pair of categorical variables Z and X to characterize

the encodings based on eq (1). The variable Z takes the value
of 0 if the Ising interaction is zero (Jz = 0) and 1 otherwise.
Similarly, the variable X takes the value of 0 if the spin-
exchange interaction is zero (J⊥ = 0) and 1 otherwise. This
gives rise to four possible encodings listed in Table 1. For
example, the encoding, for which Jz = J⊥ = 0, is classified as
0/0. We can also refer to it as noninteracting because, as
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shown above, the qubit states are not coupled by the long-
range ED interaction.
As an example of the 0/0 encoding, consider the nuclear spin

sublevels of the ground (N = 0) rotational state of alkali‑dimer
molecules. In the high magnetic field limit, the eigenstates of
these molecules can be written as |NMN⟩|I1MI d1

⟩|I2MId2
⟩ = |NMN,

M⟩, where |NMN⟩ are the eigenstates of rotational angular
momentum N̂ and its z-component N̂z, |Iα MI dα

⟩ are the
eigenstates of the nuclear spin operators Iα̂2 and Iα̂ dz

of the α-th
nucleus (α = 1, 2), and M = {MI d1

, MI d2
} is a collective nuclear

spin quantum number.27 The nuclear spin qubit states are then
encoded as |↑⟩ = |00, M⟩ and |↓⟩ = |00, M′⟩ with M ≠ M′.
With this encoding, d↑ = d↓ because both the |↑⟩ and |↓⟩ states
have N = 0 and d↑↓ = 0 because the EDM operators d̂ and d̂±
are diagonal in the nuclear spin quantum number (for
concreteness, we focus on the q = 0 spherical tensor
component of the EDM operator d̂ = d̂0, noting that the q =
±1 components can be treated in a similar way)

NM M d N M M NM d N M, ,N N N N MM| | = | | (6)

and the nuclear spin qubit states have M ≠ M′. In the presence
of an external dc electric field E, the expectation values d↑ and
d↓ are different from zero, but d↑ = d↓, so both Jz and J⊥ vanish
even at E > 0. This effectively cancels the long-range ED
interactions, leading to long coherence times of several seconds
or longer, as observed experimentally for ultracold trapped
KRb,19,28 RbCs,14 NaK,13 and NaRb29 molecules.
As noted above, in order for two qubits to interact via the

long-range ED interaction (1), either Jz or J⊥ (or both) must
be nonzero. This leads to three other types of encodings listed
in Table 1, which we now proceed to analyze.
First, if Jz = 0 and J⊥ ≠ 0, the effective spin−spin interaction

between the ith and jth qubits (1) takes the form of the long-
range spin-exchange interaction24−26

H
R

J
S S

1 3 cos

2
( h. c. )ij

ij

ij
i j

2

3= ++
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (7)

Because J⊥≠0 and Jz = 0, this encoding can be classified as 0/1
(see Table 1). This is by far the most common type of
encoding considered in the literature to date. As an example,
the encoding into adjacent rotational states |↑⟩ = |00, M⟩ and
|↓⟩ = |1MN, M′⟩ with M = M′ was originally proposed in a
seminal paper by DeMille.5 It follows from eq 6 that the off-
diagonal EDM matrix element does not vanish

d M d M M d M00, 1 , 00 1 0N N= | | = | | (8)

and hence, J⊥ ∝ d↑↓
2 ≠ 0. The diagonal EDM matrix elements

in the adjacent rotational state encoding are zero in the
absence of an external E-field because the two rotational states
have a definite parity. As a result, Jz = 0 and the adjacent
rotational state encoding can be classified as 0/1. In a nonzero
electric field, d↑ ≠ d↓, and thus, Jz ≠ 0 and the type of encoding
changes to 1/1 (see below). This demonstrates that applying
an external E-field can cause interconversion between the
different types of encodings. We will see another example of
this “encoding crossover” in Section 3.
Second, if Jz ≠ 0 and J⊥ = 0, the effective spin−spin

interaction between the ith and jth qubits 1 takes the form of
the long-range Ising interaction10

H
R

J S S
1 3 cos

ij
ij

ij
z i

z
j
z

2

3=
(9)

Because Jz ≠ 0 and J⊥ = 0, this is a 1/0 encoding (see Table 1).
Until very recently, this type of encoding has been virtually
unexplored, unlike the standard 0/0 and 0/1 encodings.5,14

One example of such encoding, which we will refer to as
rotational-spin, can be realized by the lowest two rotational
states with dif ferent nuclear spin projections,10 i.e., |↑⟩ = |00,
M⟩ and |↓⟩ = |1MN, M′⟩ with M ≠ M′ (note that in the
standard encoding into adjacent rotational states, M = M′).
Equation 9 shows that encodings of the 1/0 type, such as the

rotational-spin encoding, naturally give rise to the long-range
Ising interaction.10 Dynamical evolution of quantum many-
body systems interacting via the Ising Hamiltonian generates
cluster-state entanglement.30 Cluster states are universal
entangled resource states for measurement-based quantum
computation.30,31 The Ising interaction (9) can also be used to
implement universal two-qubit quantum logic gates (Ising
gates), which have been explored in the context of nuclear
magnetic resonance (NMR)-based quantum computation.32

These interactions can also be used for more complex QI
protocols, such as, for example, protocols based on qubits
encoded into states of multiple molecules, which can be used
for engineering transverse-field Ising models for applications
such as quantum annealing.21

Finally, when both J⊥ and Jz are nonzero, the effective spin−
spin interaction contains both the Ising and spin-exchange
terms, leading to the 1/1 type encoding, in which all of the
terms in the XXZ Hamiltonian are nonzero. As stated above,
one common example of such encoding is furnished by the
adjacent rotational states with the same nuclear spin projection
(|↑⟩ = |00, M⟩ and |↓⟩ = |1MN, M′⟩ with M = M′) in a nonzero
electric field (in Section 3, we will consider a less familiar
example of encoding into nonadjacent rotational states). In this
encoding, d↑↓ ≠ 0 and the presence of the field ensures that d↑

Table 1. Qubit Encoding Classification Based on the
Effective ED Interqubit Coupling

qubit type examples advantages limitations

0/0 (noninteracting) nuclear spin
sublevels
(N = 0)

coherence time two-qubit
gates

d↑ = d↓, d↑↓ = 0 nonadjacent
rotational states,
E = 0

QI storage

0/1 (spin-exchange) adjacent rotational
states, E = 0a

two-qubit gates coherence
time

d↑ = d↓, d↑↓ ≠ 0 entanglement

1/0 (Ising) rotational-spin
states
(N = 0, 1)b

two-qubit gates coherence
time

d↑ ≠ d↓, d↑↓ = 0 nonadjacent
rotational statesc

entanglement

1/1 (XXZ) adjacent rotational
states, E > 0a

two-qubit gates coherence
time

d↑ ≠ d↓, d↑↓ ≠ 0 nonadjacent
rotational states,
E > 0d

entanglement

aWith the same spin projection (M = M′). bWith different spin
projections (M ≠ M′). cWith |ΔMN| ≥ 2 regardless of M and M′.
dWith |ΔMN| ≤ 1 and the same spin projection (M = M′).

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c02835
J. Phys. Chem. A 2023, 127, 6593−6602

6595

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c02835?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


≠ d↑, and thus, Jz ≠ 0. The property of both the Ising and spin-
exchange interactions being different from zero is advanta-
geous for a number of applications, such as dynamical
generation of many-body spin-squeezed states,9,10 which can
be used to achieve metrological gain over the standard
quantum limit.33,34 At the same time, the coherence properties
of 1/1 type qubits (as well as those of the 1/0 and 0/1 types)
may be limited by the strong and long-range ED interaction,
which is experimentally challenging to turn on and off.

3. QUBIT ENCODING INTO NONADJACENT
ROTATIONAL LEVELS

To illustrate the application of the proposed classification
scheme, we consider qubit encoding into nonadjacent
rotational levels of a 1Σ molecule. A similar type of encoding
was briefly mentioned in ref 24. The Hamiltonian of a 1Σ
molecule in the vibrational ground state placed in a dc electric
field E can be written as

E dH B Ne
2= · (10)

where Be is the rotational constant and d is the dipole moment
of the molecule. Figure 1 shows the lowest nine eigenvalues of

Hamiltonian 10 as functions of the effective electric field η ≡
dE/Be. These states correspond to rotational states with N = 0,
1, and 2 at the zero field.
The interaction of molecules with the electric field couple

rotational states |NMN⟩ with the same projection (MN) to yield
dc field-dressed (or pendular) states25,35

NM c NMN
N

N N| = |
(11)

The choice of |↑⟩ = |0̃0⟩ leaves five choices for |↓⟩ from the
manifold correlating at zero field with N = 2, including |2̃0⟩, |2̃
± 1⟩, and |2̃ ± 2⟩. The matrix elements of the dipole operators
in the rotational basis states are calculated as

N M d NM

d N N
N N

M p M

N N

( 1) (2 1)(2 1)
1

1
0 0 0

N p N

M

N N

N

| |

= + +
i
k
jjjjj

y
{
zzzzz

i
k
jjjj

y
{
zzzz (12)

where d is the permanent dipole moment of the molecule. The
3j-symbols in eq 12 vanish if |N′ − N| > 1 and MN + p ≠ MN′.

The nonzero EDM matrix elements of d̂0 as a function of the
effective electric field η ≡ dE/Be are displayed for the three
possible encodings in Figure 2, where

d d00 000= | | (13)

d NM d NMNM
N N

( )
0

N = | | (14)

d d NM00NM
N

( )
0

N = | | (15)

The transition matrix elements of d̂p (d↑↓ and d↑↓
± ) vanish for

states with MN ≠ p. Therefore, d↑↓ is only nonzero when |↓⟩ =
|2̃0⟩ and d↑↓

± is only nonzero when |↓⟩ = |2̃ ± 1⟩. Note that d↑↓
≠ 0 at E > 0 because the states |0̃0⟩ and |2̃0⟩ couple through
the intermediate state |1̃0⟩. All transition dipole matrix
elements vanish for |↓⟩ = |2̃ ± 2⟩. All diagonal matrix elements
are zero for bare rotational states at zero field.
As follows from Figure 2, qubits spanning the Ñ = 0 and Ñ =

2 pairs permit three classes of encoding: the 0/0 encoding at a
vanishing electric field, 1/0 encoding, and 1/1 encoding,
depending on the |↑⟩ state. To illustrate this more clearly, we
calculate the parameters of the XXZ interaction of eq 1 using
eqs (2) and (3) and the EDM matrix elements. Figure 3 shows
the couplings Jz and J⊥ as functions of the effective electric
field. As described in eq 2, the Ising coupling between qubits
grows as a function of the difference between the diagonal
matrix elements of the EDM in the qubit basis. This is
observed in the left panel of Figure 3, as Jz is consistently
maximized for |↓⟩ = |2̃0⟩. On the other hand, J⊥ corresponds to
the square of the off-diagonal EDM matrix elements. As
expected, J⊥ is equal to zero when |↓⟩ = |2̃2⟩ regardless of the
E-field, while J⊥ is positive for |↓⟩ = |2̃0⟩ and negative for |↓⟩ =
|2̃0⟩ at a nonzero E-field. An avoided crossing between states |
20⟩ and |30⟩ at η ≈ 18 complicates the couplings at stronger
fields, with abrupt changes in the couplings to the |20⟩ state.
However, both perpendicular couplings are maximized at
intermediate field strengths and diminish to zero in strong
fields.
Comparing the relative magnitudes of J⊥ and Jz in the

nonadjacent vs. adjacent rotational state encodings, we note
that J⊥ is significantly weaker in the former encoding scheme
due to the smaller magnitude of d↑↓ [see eq 3]. However, the Jz
couplings are of a similar magnitude because they depend on
the difference between the expectation values d↑ and d↓ [see eq
2], which are similar in both types of encoding.

Figure 1. Energy levels of a 1Σ molecule as functions of the effective
electric field.

Figure 2. Nonzero EDM matrix elements of d̂0 for a 1Σ molecule as a
function of the effective electric field dE

Be
= .
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4. QUADRUPOLE−QUADRUPOLE INTERACTION
The classification scheme proposed here can be extended to
other long-range interactions compared to the ED interaction.
As an example, we consider in the present section the
quadrupole−quadrupole (QQ) interaction. This interaction is
the leading long-range interaction between homonuclear
molecules, which simultaneously possess even/odd N state
manifolds and which therefore can particularly benefit from the
qubit encoding introduced in the preceding section. Previous
theoretical work has shown that QQ interactions of nonpolar
atoms and molecules in two-dimensional optical lattices can
give rise to exotic topological phases.36

As shown in Appendix B, the QQ interaction leads to the
same XXZ model as given by eq (1). However, the model
parameters must now be expressed in terms of the matrix
elements of the quadrupole moment, yielding the following
relations:

J q q( )z
2= (16)

J q q q q q2 6 42 1 2 1 2 2 2 2 2= [ [| | + | | ] + [| | + | | ]]+ +

(17)

Thus, the same classification scheme can be applied to
qubits encoded in nonpolar molecules interacting through QQ
couplings with analogous conditions on the vanishing of Jz and
J⊥, which can be analyzed by considering the matrix elements
of the quadrupole moment in the single-molecule basis.
These matrix elements are

N M q NM

q N N
N N

M p M

N N

( 1) (2 1)(2 1)
2

2
0 0 0

N p N

M

N N
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| |
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i
k
jjjjj

y
{
zzzzz

i
k
jjjj

y
{
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where q is the permanent quadrupole moment of the molecule.
The 3j-symbols in eq 18 vanish if |N′ − N| > 2 and MN + p ≠
MN′. The nonzero EDM matrix elements of q̂0 as a function of
the effective electric field dE

Be
are displayed for the three

possible encodings in Figure 4, where

q q00 000= | | (19)

q NM q NMNM
N N

( )
0

N = | | (20)

q q NM00NM
N

( )
0

N = | | (21)

The transition matrix elements of q̂p (q↑↓, q↑↓
±1, and q↑↓

±2) vanish
for states with MN≠ p. Therefore, q↑↓ is only nonzero when |↓⟩
= |2̃0⟩. q↑↓

±1 is only nonzero when |↓⟩ = |2̃ ± 1⟩, and q↑↓
±2 is only

nonzero when |↓⟩ = |2̃ ± 2⟩.
To illustrate the possible types of encoding achievable with

homonuclear molecules, we calculate the parameters of the
XXZ interaction of eq 1 using eqs 16 and 17 and the
quadrupole matrix elements. Figure 5 shows the QQ couplings
Jz and J⊥ as functions of the effective electric field for a polar
molecule. As described in eq 16, the Ising coupling between
qubits grows as a function of the difference in the diagonal
matrix elements of the EDM. On the other hand, J⊥
corresponds to the square of the off-diagonal quadrupole
matrix elements. As expected, J⊥ is positive for |↓⟩ = |2̃0⟩ and
|↓⟩ = |2̃ ± 2⟩ and negative for |↓⟩ = |2̃ ± 1⟩ at the nonzero E-

Figure 3. Couplings Jz (left) and J⊥ (right) as a function of the effective electric field dE
Be

= , using the ground rotational state and the indicated

rotational states of a polar 1Σ molecule to encode the qubits.

Figure 4. Nonzero matrix elements of q̂0 as functions of the effective
electric field dE

Be
= .
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field. However, all three perpendicular couplings are
maximized at zero field strengths and diminish to zero in
strong fields. It can be observed that the QQ interaction
permits the following types of encoding based on the Ñ = 0
and Ñ = 2 states: 0/1, 1/1, and 1/0.
Finally, we note that for typical lattice spacings used in

current experiments (≃ 500−1000 nm), the QQ interaction is
on the order of ≤1 Hz, which is two-three orders of magnitude
weaker than the ED interaction between polar molecules.
Despite its weakness, the effective QQ interaction Hamiltonian
has the same form as the ED Hamiltonian, and can therefore
be used (at least in principle) to generate useful many-body
entangled states of nonpolar molecules in the same way as the
ED interaction of polar molecules.9,10 In order to ensure robust
dynamical evolution toward such entangled states, the
evolution timescale should be much shorter than the
coherence time of nonadjacent rotational state superposi-
tions.8,10

5. CONCLUSIONS
Molecules are complex quantum systems that feature multiple
energy scales ranging from tens of Hz (hyperfine, Zeeman, and
tunneling doublet structure) to thousands of THz (electronic
structure). In addition, intermolecular interactions at short
range are described by multidimensional potential energy
surfaces (PESs), whose accurate description requires sophis-
ticated quantum chemistry techniques and fitting methods.
However, the long-range physics of intermolecular interactions
of relevance to current QIS experiments in optical lattices and
tweezers1,2 is completely described by the well-established
multipole expansion. The lowest leading order in the multipole
expansion for neutral (uncharged) polar molecules is
represented by the ED interaction and the next leading orders
by the EQ and QQ interactions.
For qubit-based QIS applications, the molecule is reduced to

a two-level system (the qubit), whose effective spin-1/2 levels
can be encoded into the electronic, vibrational, rotational, fine,
hyperfine, Stark, or Zeeman states. Different choices of
encoding give rise to different flavors of the ED interaction
between the qubits. Here, we have shown that all possible
encodings can be classified into 4 types based on the flavor of
the effective ED interaction they give rise to.

Our classification is based on two realizations. First, the
general interaction between molecular qubits is completely
determined by the ED Hamiltonian in the effective two-qubit
basis. Second, the form of this Hamiltonian depends only on
the matrix elements of the EDM of the individual molecules in
a given encoding. The general ED Hamiltonian takes the form
of the iconic XXZ Heisenberg model of quantum magnetism25

with the Ising and spin-exchange coupling parameters Jz and J⊥
expressed in terms of the diagonal (d↑, d↓) and off-diagonal
(d↑↓) EDM matrix elements of each of the individual
molecules. As a result, the flavor of the ED interaction is
completely determined by single-molecule EDM matrix
elements in the qubit basis, regardless of the precise nature
of qubit states.
The versatility of our proposed classification scheme is based

on mapping the ED and QQ interactions to the XXZ
Hamiltonian. In principle, higher-n multipole interactions
between molecules would allow for a similar mapping because
each radial term in the multipole expansion is multiplied by a
product of the individual molecules’ multipole moments.37

However, these higher-n multipole interactions scale with
higher powers of 1/R and hence are hundreds of times smaller
than the already small QQ interaction for typical lattice
spacings considered here.
It follows from eq 1 that there can be 4 flavors of the ED

interaction depending on whether or not the coupling
constants Jz and J⊥ are equal to zero. If Jz = J⊥ = 0, no ED
interaction is present between the qubits, and we classify them
as noninteracting (0/0). In the latter case, three types of the
ED interaction can be distinguished based on whether the
values of |d↑ − d↓| and d↑↓ are zero (see Table 1). We classify
these three types as Ising (1/0), spin-exchange (0/1), and
XXZ (1/1).
To identify the type of molecular qubit encoding, the reader

can use the diagram shown in Figure 6. One begins by
calculating the matrix elements of the EDM in the qubit basis
d↑, d↓, and d↑↓ and locating the corresponding box on the left-
hand side of the diagram. The right-hand side of the diagram
identifies the type of qubit encoding and outlines its possible
applications, with a more detailed discussion provided in
Section 2.
To illustrate our classification scheme, we have considered a

new type or molecular qubit encoding into nonadjacent

Figure 5. Quadrupole contribution to couplings Jz (left) and J⊥ (right) as a function of the effective electric field dE
Be

= , using the ground

rotational state and the indicated rotational states to encode the qubits.
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rotational states of a polar diatomic molecule (such as N = 0
and N = 2). At zero external electric field, all EDM matrix
elements vanish due to the parity selection rules, and this
encoding can be classified as noninteracting (or 0/0 type). In
the presence of a dc electric field, the qubit is converted into
type 1/1 due to both diagonal and off-diagonal EDM matrix
elements being nonzero. However, when the projection MN of
the rotational angular momentum of the qubit states differs by
two or more, the off-diagonal matrix elements of the EDM
vanish identically, and the encoding type changes to 1/0.
It should be noted that our classification is based on the

electric multipole interactions and thus excludes magnetic
interactions, which can be substantial for open-shell molecular
radicals bearing magnetic moments, such as CaF(2Σ+),
SrF(2Σ+), YO(2Σ+), and NaLi(a3Σ+), which have recently
been cooled and confined in magnetic and optical dipole
traps.38−45 The leading-order magnetic dipole−dipole (MD)
interaction scales as α2/Rij

3, where α is the fine-structure
constant. At a typical optical lattice spacing Rij = 500 nm, the
strength of the MD interaction is 0.42 Hz, which is comparable
to the electric QQ interaction. The utility of the MD
interaction has been pointed out in the context of quantum
information processing46 and quantum simulation47,48 with
magnetic atoms trapped in optical lattices. We envision that
the intermolecular MD interaction could be used in the same
way to, e.g., engineer quantum logic gates between trapped
magnetic molecules. It would be particularly interesting to
explore this possibility with highly magnetic molecules such as
CrH(6Σ+) and MnH(7Σ+),49 whose MD interactions are
enhanced by several orders of magnitude compared to the
above estimate, making them comparable to the ED
interactions.
In future work, it would be interesting to apply our

classification to identify novel encodings of molecular qubits,
which could prove useful for QIS applications. There remain
pairs of molecular states, which have not been explored for
qubit encoding, such as the hyperfine components of different
electronic and rovibrational states. It would also be interesting
to extend our scheme to classify qubit encodings in polyatomic
molecules,4,50 which have recently been cooled and trapped in
several laboratories.51−54 It may also be fruitful to explore the
electric dipole−quadrupole interaction, which is activated only
when the molecules are prepared in different types of
rotational encodings (e.g., one half in a coherent superposition
of the N = 0 and 1 rotational states and the other half in that of
the N = 0 and 2 states). These cross-encoding interactions
could prove useful for engineering interactions in ultracold
two-component mixtures of polar and nonpolar molecular
gases.

■ APPENDIX A: EFFECTIVE ELECTRIC
DIPOLE−DIPOLE INTERACTION

The ED interaction between molecules i and j takes the form55
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where d̂p are the spherical components of the dipole operator
(d̂0 = d̂z, d̂±1 = ∓(d̂x ± id̂y)/√2), Rij is the distance between
the molecules, and θij is the angle between the quantization
vector and the vector connecting the two molecules. As the ED
interaction is typically much weaker than the energy difference
between the two qubit states |↑⟩, |↓⟩, processes that change the
total magnetization are energetically off-resonant and can be
neglected. With this assumption, the ED interaction can be
described as the following spin Hamiltonian in the space
spanned by {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}
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The dipole−dipole interaction of eq 22 can be seen as a sum
of terms that transfer −2 < q < 2 units of rotational angular
momentum projection to the molecules’ angular momentum
projection. Assuming that states of different MN are not mixed
together, terms with q ≠ 0 are energetically off-resonant and eq
22 can be simplified to only include terms with q = 0:
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Ignoring energetically off-resonant terms of Hij, the
interaction matrix can be written as
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To evaluate the couplings in eq 23, we need to first define the
matrix elements of the interaction Hamiltonian. We define d↑,
d↓, d↑↓, and d↑↓

± as the matrix elements of the dipole operators

d d d d,0 0| | | | (26)

d d d d,0 1| | | |±
±

(27)

The matrix elements of Hij, under the assumptions of eq 24
become

H d d d11 0 0
2= | | = (28)

H d d d44 0 0
2= | | = (29)

H H d d d d22 33 0 0= = | | = (30)

Figure 6. Molecular qubit encoding classification diagram. To classify
a qubit, determine the values of d↑, d↓, and d↑↓ and locate the relevant
box in the left column. The qubit encoding type is indicated to the
right of each box.
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Since d̂±1 = −d̂∓1
† , we get d↑↓

+ = − (d↓↑
− )* and d↓↑

+ = − (d↑↓
− )*.

The couplings of eq 23 are then derived as
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in terms of the dipole matrix elements of eqs 4 and 5.
Therefore, we observe that while all four terms depend on the
matrix elements of the d̂0 operator, J⊥ is also affected by the
transition dipole matrix elements of d̂±1.

■ APPENDIX B: EFFECTIVE ELECTRIC
QUADRUPOLE−QUADRUPOLE INTERACTION

The quadrupole−quadrupole interaction between molecules i
and j takes the form
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where q̂p are the spherical components of the quadrupole
operator, Rij is the distance between the molecules, and θij is
the angle between the quantization vector and the vector
connecting the two molecules.

Using similar assumptions to 24, we can simplify 36 to only
include terms with q = 0:
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Ignoring energetically off-resonant terms of Hij, the
interaction matrix can be written as
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We define q↑, q↓, q↑↓, q↑↓
±1, and q↑↓

±2 as the matrix elements of the
quadrupole operators

q q q q,0 0| | | | (39)
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The matrix elements of Hij, under the assumptions of eq 37,
become
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Since q̂±1 = −q̂∓1
† and q̂±2 = q̂∓2

† , we get q↑↓
+1 = −(q↓↑

−1)*, q↓↑
+1 =

−(q↑↓
−1)*, q↑↓

+2 = (q↓↑
−2)*, and q↓↑

+2 = (q↑↓
−2)*.

The effective QQ interaction Hamiltonian then takes the
form of eq 23 (with the prefactor switched to that of eq 38)
and the coupling constants

J q q( )z
2= (46)
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(47)
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V q q( ) /42= + (49)
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expressed in terms of the quadrupole matrix elements of eqs
39, 40, and 41. Therefore, we observe that while all four terms
depend on the matrix elements of the q̂0 operator, J⊥ is also
affected by the transition dipole matrix elements of q̂±1 and
q̂±2.
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