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ARTICLE INFO ABSTRACT
Keywords: In this paper, we present an immersed finite element (IFE) method for solving the elastodynamics interface
Elastodynamics problems on interface-unfitted meshes. For spatial discretization, we use vector-valued P, and Q, IFE spaces. We

Interface problem

establish some important properties of these IFE spaces, such as inverse inequalities, which will be crucial in the
Immersed finite element

error analysis. For temporal discretization, both the semi-discrete and the fully discrete schemes are derived. The
proposed schemes are proved to be unconditionally stable and enjoy optimal rates of convergence in the energy,
L? and semi-H' norms. Numerical examples are designed to verify our theoretical analysis and to demonstrate
the stability and robustness of our schemes.

1. Introduction

In this paper, we consider the following two-dimensional elastodynamics interface problem:

u, — div o(u) =, inQ uQ*reo, L, (1.1a)
u(x,0) = oy(x), inQ uQt, (1.1b)
u,(x,0) = @ (x), inQ uQh, (1.10)
u=gx,1), on 0Q,t [0, L]. (1.1d)

Here, Q c R? is assumed to be a polygonal domain separated by a fixed interface I' such that @ = Q+ UQ- UT, as illustrated in Fig. 1. The unknown
function u : Q x [0, L] - R? denotes the displacement vector field of the elastic body, and f is a given external body force. The stress tensor
o=(o;), 1<i,j<2is defined to be

03 (W) = A(V - wé,; +2ue,; (), (1.1e)

where §;; is the Kronecker delta function and 4 and y are Lamé parameters. The linearized strain tensor e(u) = (¢;;(w)) is defined by

1 aui au/’
()= =(— + —2). 1.1
W = 3G+ 50 .10

Two subdomains Q* and Q™ are occupied by two different elastic materials with distinct Lamé parameters A and . Without loss of generality, we
assume that the Lamé parameters are piecewise constant defined as follows:

A_{A‘, ifxeQ-, _{M‘, ifxeQ-,

A, ifxeQr ut, ifxeQr. (1.18)

In addition, we assume the following interface conditions across the interface I' at any time € [0, L]:
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Fig. 1. From left: a domain of the elastodynamic interface problem, a fitted triangular mesh, an unfitted triangular mesh, an unfitted Cartesian mesh.

[u];=0, onT, (1.1h)
[e(@n]-=0, onT, (1.11)

where the jump operator [-]- is defined to be [v] := (V|g+)r — (V|qo-)r, and n is the unit normal pointing from Q~ to Q*.

The present work is motivated by wide applications of elastodynamics in the real-world engineering field. In the past decades, the study of elastic
wave propagation is of great interest in many applications originated from seismology, evaluation of composites, ocean acoustics, and biomechanics
[14,15,39,41,42]. For example, the propagation of seismic waves in the layered earth can be modeled by elastodynamics in inhomogeneous media.
Another example in the biomechanical applications is the modeling of thorax by a bi-material medium consisting of thoracic wall and lung to
investigate the transmission of energy through human bodies [13-15]. In these real scenarios, difficulties often occur when elastic waves propagate
through medias with complicated material interface geometry, so it is desirable to design efficient and accurate simulation techniques.

Many studies have been carried out to numerically solve steady-state elasticity interface problems. Roughly speaking, there are two classes of
numerical methods among the literature, named fitted-mesh and unfitted-mesh methods. For the first class, the computational mesh is generated
to align with the interface (second plot of Fig. 1), so that standard discretization techniques, such as finite element method [5,50], discontinuous
Galerkin method [10,23], weak Galerkin method [37,43] can be directly applied without sacrificing their accuracy. However, it is rather expensive
to construct high-quality fitted meshes especially when the interface has complex geometries or the interface evolves with time. Another class of
methods, known as unfitted-mesh methods, allows us to use meshes independent of interfaces without compromising its accuracy (right two plots in
Fig. 1). Thus, these methods are often more efficient in computations. Existing numerical methods in this class include immersed interface method
(IIM) [7,48], multi-scale finite element method [9], extended finite element method (XFEM) [11], CutFEM [24,40] and immersed finite element
method (IFEM), to name only a few.

The IFEM is a class of unfitted-mesh finite element methods for solving PDE interface problems. IFEM modifies the local finite element spaces on
interface elements by incorporating interface conditions to maintain optimal approximation property. Unlike other unfitted methods aforementioned,
a distinctive feature of IFEM is the degree of freedom (DoF) is independent of the interface locations, since the IFE space is isomorphic to the standard
FE space on the same mesh. So far, the IFEM has been developed for many PDE interface problems, including elliptic problems [19,21,26,32], Stokes
problems [8,29]. For elasticity interface problems, we refer readers to [12,33,35,38,28] for the construction of immersed P,, Q,, rotated-Q, and
P,/CR finite element spaces, [17,18] for error analysis of IFEM for P, Q, spaces and [27] for a Petrov-Galerkin type method.

Besides the aforementioned steady-state applications, the IFEM can also be used as spatial discretization for solving time-dependent PDE interface
problems. In [34] and [47], the authors developed and analyzed both semi-discrete and fully discrete IFE schemes for parabolic and hyperbolic
interface problems, respectively. In [36] and [2], the error analysis for this numerical scheme has been improved by requiring less restrictive
regularity of solution. Several IFE methods for time-dependent Stokes and Navier-Stokes equations with stationary and moving interfaces have been
introduced in [30,44].

In this paper, we develop and analyze an IFE method for elastodynamics interface problems based on unfitted triangular or rectangular meshes.
For the spatial discretization, we employ the vector-valued immersed P, and Q, IFE spaces introduced in [17,18]. We further prove the inverse
inequalities of these IFE functions, which are essential in our error estimation. A semi-discrete IFE scheme is proposed and optimal error estimates in
the energy, L? and semi-H' norm are theoretically proved. For full discretization, we adopt the §-scheme and prove the optimal convergence rates
in L? and semi-H' norm, as well as the unconditional stability. The constant in our error bounds is independent of interface location. Comparing
to the immersed discontinuous Galerkin method introduced in [1] for acoustic-elastic and elastic-elastic wave propagation problem, the auxiliary
variable is not required in our scheme for numerical stability. Consequently, our method is less expensive since fewer degrees of freedom are used
in our method. For elastodynamic interface problems with nonhomogeneous interface jump conditions, i.e., the right hand side of (1.1h) and (1.11)
are nonzero, the IFE space can be constructed naturally following the homogenization idea in [26]. However, the approximation properties and the
a priori error estimates require significant amount of work, hence the authors will not consider this case in the current paper.

The rest of the paper is organized as follows. In Section 2, we recall the P, and Q, IFE spaces for stationary elasticity interface problems. In
Section 3, we introduce semi-discrete and fully discrete schemes for solving elastodynamics problems. In Section 4, we prove the inverse inequalities
of the these vector-valued IFE spaces and prove the optimal convergence for the proposed semi and fully discrete numerical schemes. In Section 5,
we report several numerical examples to verify the theoretical results and explore other features of the proposed schemes. Brief conclusions are
summarized in Section 6.

2. IFE discretization

In this section, we first introduce some notations and assumptions to be used in this paper, then we recall the linear and bilinear immersed finite
element spaces for the stationary elasticity problems. We refer [18,33] for more details of the construction and analysis.

2.1. Notations and assumptions

We denote the standard Sobolev space on a measurable set Q c Q as W*?(Q) equipped with the norm || - Iy xr) and the semi-norm | - |y kp -
As usual, we write W*2(Q) simply as H*(€) when p=2. For a vector function w = (w;);—; , € W*P(Q) = [W*P(€Q)]?, its norm is naturally defined by
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2
IWllwo@y = 2 1wl o- (2.1)

i=1
The semi-norm | - |y, is defined similarly.
In the case of QN T ##, we denote the subsets &N Q* by QF for s =+, —. The broken Sobolev space defined on Q is denoted by PW*”(Q)

PW P(Q) = (v : v]gs € (WFP(QN)12, s =+,—; [V]p = [o(v)n] =0). (2.2)

The associated norm || - lpwrer ) and semi-norm | - [pwho (@) are defined by:

”V”pwkqﬂ(g}) = Z ”v”[WkJJ(ﬁS)]Za |V|pwk.p(§2) = Z |V|[Wk,p(§):)]2- (2.3)
s=+

s=%

Similar to standard Sobolev spaces, we denote the broken Sobolev space PW*2(Q) by PH*(Q) with norm || - ||PHk(Q). The space PH>(Q) will be
used frequently in our analysis since the exact solution is assumed to have a piecewise H? regularity, i.e. u(-,r) € PH*(Q).
Furthermore, we define the time-dependent Sobolev space L?(0, L;V)

L
LP(0,L; V)= v:[0,L]»—>V,/||v(-,t)||{,dr<oo . PENT, 29
0
with the norm
L 1/p
Wi =| [Ivcolar| @5
0

When p = oo, the corresponding space is defined as

L*®0,L; V)= {v ([0, L1V, sup [Iv(-,D)lly < oo} s (2.6)
1€[0,L]

with the norm

IVl Lo o.:vy = sup IIVC, DIy 2.7
1e[0.L]

Similarly, W*?(0, L; V) can be defined with associated norm:

1/
' ' 2.8)
LP(0,L) : :

As usual, when p =2, we simply write the space W*2(0, L; V) as H*(0, L; V).

Let 7, be a shape-regular triangular or rectangular mesh of Q. We use N}, and &, to denote the set of nodes and edges, respectively. For each
T €T, hy :=diam(T) is the diameter of T, and the mesh size is determined by h := maxy¢y, {hy}. An element T € 7, is called an interface element
if T nT # @; otherwise, it is called a non-interface element. The collections of interface elements and noninterface elements are denoted as 7, and
7., respectively. For an interface element T, we use T* =T NnQ* and T~ =T nQ" to denote its two subelements. The collection of edges intersecting
with the interface I is denoted as &, , and &} = £,\ &, denotes the set of the non-interface edges. The sets of interior and boundary edges are denoted
by &, and Eﬁ, respectively. Similarly, 80;', and éh” denote the sets of interior interface edges and interior non-interface edges, respectively.

For every interior edge e € &,, a unit normal vector n, is associated. Two elements sharing the common edge e are denoted as T, ! and 72, where
n, points from 7T} to Tez. For a vector-valued function g, the jump operator [-], and average operator {-}}, across an edge e are defined as follows.

D% (IvC,Dly) |

IVllwero,L:v) = ( Z ‘

|la|<k

lell = @Iyl — @)l (e =3 (@l + @)l 29

Lastly, we adopt the following assumptions [35] to characterize the geometrical relations between the mesh and the interface.

(H1) The interface I' cannot intersect an edge of any element at more than two points unless the edge is part of I'.
(H2) If I intersects the boundary of an element at two points, these intersection points must be on different edges of this element.
(H3) The interface I is a piecewise C? function, and the mesh 7}, is formed such that on every interface element T € Th' ,I'nTis C2.

2.2. IFE spaces for elasticity problem

In this subsection, we recall the linear and bilinear IFE spaces [25]. To unify the notations, we define the index set 7, for each element 7 € 7,
such that I = {1,2,3} for triangular elements, and Z; = {1,2,3,4} for rectangular elements.

On non-interface elements T € 7', we use the standard vector-valued polynomial space. The local finite element space is S,(T") = P,(T) X P,(T)
for triangular mesh and S,(T) = Q,(T) x Q,(T) for rectangular mesh. On an interface element T € Tys based on (H2), we assume the interface I'
intersects boundary of 7' at two points D and E, located on two different edges. The vector ngx is the unit normal of the line segment I'; = DE.
Then the interface element T is split into 7+ and T~ by I';. Typical interface elements with notations defined above are illustrated in Fig. 2.
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Fig. 2. Typical triangular (left) and rectangular (right) interface elements.

We construct the local basis functions ¢, 1, i = 1,2, ---,2|I7| on the interface element as follows

a +b x+cly . ~
= , ifxeT?,
X = <a +b+x+c y> nx

¢ir(®) = (2.10)
a; +bTx+cy

= (LT i e T,
i) <a;+b;x+c2_y> x

for linear case on triangular meshes, and

oo (ay +bix+cTy+dfxy iFx e T
®=( 1, 4 + + , xel™,
a2+b2x+c2y+d2xy
$ir(x)= bt eyt d- (2.11)
a x+c b . ~
¢,.-T<x>=<1 e Ly>, ifxeT-,
, a2+b2x+c2y+d2xy

for bilinear case on rectangular meshes. These IFE basis functions satisfy the standard nodal value conditions;

0
$ir(A) = [ ] Vi=l.. Tl (A= [6‘ . ] Vi= Tl + 1, 20T 212)
i=|IrlJ
Besides, we enforce the interface conditions (1.1h)-(1.1i) approximately as follows:
+ Continuity of displacement functions

&I, — ¢ rlr, =0, (2.13)
+ Continuity of stress in normal direction
(0(¢ (F) - 0'(¢;T(F)))nﬁ =0, (2.14)
where F is taken to be (D + E)/2 as in [35] or as a weighted average of D and E as in [17].
The local IFE space S,,(T) on an interface element T € 7 is defined as S,,(T") £ Span{¢, r : 1 <i <2|Iy|}. The global IFE space S,(®Q) is defined

to be

S,(Q)={v : v|p €S,(T),VT € T,;v is continuous at each node N € N};;v|,o =0}. (2.15)

We will sometimes just denote the global space S, (€2) by S, for convenience. It is clear that S, is a subspace of V, where

Vy={v: vlre [HYT)?VT € T,V is continuous at each node N € N, v is continuous across each e € éz,vlm =0}. (2.16)

More detail on the construction of the IFE spaces for elasticity problems and their properties can be found in [17,35].
3. Semi-discrete and fully discrete numerical schemes

In this section, we introduce the IFE discretization for elastodynamic interface problem (1.1).
3.1. Spatial discretization

In this subsection, we introduce the spatial discretization using the IFE spaces defined above. We use the partially penalized IFE scheme intro-
duced in [18]. Define the following bilinear and linear forms:

ap(u,v) = /2ue(u) ce(v)dx + Z //I(V-u)(V-v)dx
TET, T

TeThT
Z/ {on,}} - [v]ds - Z»/{{a(v)n B [[u]]ds+— Z/[[u]]-[[v]]ds, 3.1
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L= Y / f-vdx, (3.2)
TEeT)

where p > 0 is a penalty parameter. The variational form for the elastodynamics problem (1.1) is: find ue H 2(0, L;PH%(Q)) such that

(u;, V) +a,(u,v) = Le(v), Vvev,, t>0, (3.3a)

u0)=0), uw0)=0,. (3.3b)
The semi-discrete scheme for (1.1) is: find u, € H 20, L; S;,) such that

W, > V) +ap Uy, vy) = Le(vy), Vv, €Sy, t>0, (3.4a)

u,(0) =R, 0, u,(0)=R,0;, (3.4b)

where the elastic projection operator R,: V, — S, is defined by

a,(Ryo,vy,) =ay(®,vy), Vv, €S,. (3.5)
We define the mesh-dependent energy norm ||| - |||,:
G = 3 [2ulewiax+ 3 [arvevitaxs 3o [un P pliRas+ ot [0 (own,} Pas. 36
TET), T TET, ecél ecél Y

The following approximation property has been proved in Theorem 4.3 of [18]:

Lemma 3.1. For every u € PH*(Q), assume p sufficiently large, then R ,u is well-defined and the following estimate holds:

la—Rpu|, S ||u||PH2(SZ) , (3.7a)
lu-Rpu20) S h? llullppzq) » (3.7b)
|u_Rhu|PH'(Q) hS h”“”PHZ(Q)' (3.7¢0)

Here and in what follows, the notation u < v denotes u < Cv where the hidden constant C is independent of the mesh size 4 and the interface
location. The proof for the energy norm (3.7a) and the L? norm (3.7b) is reported in [18]. The H' norm error estimate (3.7¢) is a direct consequence
by combining the H' estimate for Lagrange interpolation error |u— Z,u| 1 in [17] and the inverse inequality in Theorem 4.1 in this paper.

3.2. Temporal discretization

In the subsection, we further discretize the scheme (3.4) in time. Let 7, be a uniform partition of the time domain [0, L] with the step size z:

P,={0="<t' < <M=L}, c=1"-1"""n=1.2,..,.M. (3.8)
For a vector function v(x, t), we denote v" :=v(-,") and define the following difference functions:

n+l1 n

yntl — 2" +Vn—1 P V"+1/2 o v —vy
- 2 ' P (3.9)

v = ovttl p (1 =20 +ov'l, v = ovtl £ (1 - 0",

no.__
o0,V" =

where 0 € [0, 1]. The fully discretized scheme for (1.1) is: find uy forn=2,3,---,M in
@ V) + @y v, = Lynija (v, Vv, €S, (3.10a)
wW=R,e) u,=R,u", (3.10b)

2
where, u'* = @y + 70, + %(div o(@y) +£(x,0)) is a third-order approximation of u!. The matrix form of the above fully discrete scheme can be written
as:

M + T—ZK)c"“ =(2M - ﬁK)c" - M+ T—ZK)c”‘l + L2Fmi/4 (3.11)
4 - 2 4 : )

Here, ¢ is the vector of unknowns. (M), ; = (¢;,¢;), (K); ; = a,(¢;, $;) are mass and stiffness matrices, and (Fr-1/ 4, = Lgn1/4(¢;) is the load vector.
Remark 3.1. In [31], the fully discrete scheme is called §-scheme. In our paper, we use §-scheme for temporal discretization with 0 =1/4.
4. Error estimation

In this section, we derive the a priori error estimation for both semi-discrete and fully discrete schemes. First we prove some inverse inequalities
for IFE functions.
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Fig. 3. Three typical cases for triangular interface elements.

4.1. Inverse inequalities

We first recall the following norm equivalence lemma for triangular meshes [16].

Lemma 4.1. Let T € Th’ be an interface triangle in one of three cases illustrated in Fig. 3. Let P, be the polynomial space of degree no more than k, then the
following norm equivalent results hold

« For Case (a): |A|E| > |A;A,|/2 and |A|D| > | A A3|/2, we have

||-||L2(T,)2 ”‘”LZ(T)a on Pk- (41)
* For Case (b): |A|E| >|A|A,|/2 and |A| D| < |A A;3|/2 and Case (c): |A|E| <|A|A,|/2 and |A| D| < |A,A3|/2, we have

||'||L2(f+) =~ ”'”Lz(T) , onPy. (4.2)

An analogous norm equivalence result can be established for rectangular interface elements.

Lemma 4.2. Let T € Th' be an interface rectangle in one of three cases illustrated in Fig. 4. Let P, be the polynomial space of degree no more than k, then
the following norm equivalent results hold

* For Case (d): D€ A|A, and E € A| A,, we have

”'”Lz(f-v-) =~ ||'”L2(T) , onP. (4.3)
* For Case (e): |A|E| > |A,A,|/2 and |A,D| > |A4A5|/2 and Case (f): |A|E| > |A, A,|/2 and |A,D| < |A4A5|/2, we have

”'”LZ(T-) = “'”LZ(T)’ on Py. 4.4)

Proof. For Case (d), we let M, N be the midpoint of A;A4, and A, A5, and let O be the center of square. It is clear that the rectangle ONA; M is a
homothetic subset of T. By Lemma 2.2 in [46], we have

”U”L2(f+) < ||U||L2(T) < ”U”LZ(DONA3M) < ||U||L2(7-+) s Vv e Py,

where the hidden constant in the estimate depends only on &, the order of polynomial.
For Case (e), we let M, N be the mid-point of A; A, and A, A,, and let O be the center of T. A similar argument yields

”U”LZ(T—) < ||U||L2(T) S ||U||L2(|:|0NA]M) < ”U”Lz(ff—) Yv e Py.

For Case (f), we let M and N be the first quadrisection point of A; A, and A, A,, respectively. Let O be the fourth point of (JON A, M. A similar
argument yields

||U||L2(%—) < ||U||L2(T) S ”U”LZ(DONAIM) < ||U||L2(7“~—) Vv € Py.

This completes the proof of the lemma. []J

Recall the standard trace inequalities [45] in 1D and 2D cases:

k+1
0@ < ol 2y Vo€ P 4.5)

Vil

where / is a line segment, and z is an endpoint of /. Moreover,

k+1)(k+2) |e
loll 2 < %%Ilullym, Yve P (T) (4.6)

where T is a triangle and e is an edge of T'.
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Fig. 4. Three typical cases for rectangular interface elements.

We also recall from [17], an IFE function ¢; can be written as
¢r=p in T+
br=q _ o
¢ =Myp) inT

where p is a polynomial in [P;(T)]? for linear case while in [Q,(T)]*> for bilinear case and My (p)=p + ¢, LX) is the extension mapping with
L(X)=1(X — D) and f is the unit normal vector of DE. It is clear that L(X) is the equation of the line segment DE. By direct calculation, we have

¢ = (K™ 5@ R “
where 5’(V) = (&ij(v)) 1<i,j<2 and
8,,(V) = AV - V)8, ; + 21e;;(¥), o

with A=At — A~ and ji = u* — y~. The matrix K~ = 0P~ QT where

P [ @ +247) 0 ]  0=[T (4.9)
0 U

with t being the unit tangential vector of DE. It can be also verified by switching the signs between — to + that M;] P =p+ ca’ L(X) where c(’)r is
defined similarly to ¢;. These results will be used to prove the inverse inequality in the next theorem.

Theorem 4.1 (Inverse Inequality). The following estimate holds for each interface element T & Th",
IVorll 2y S b7l 2y s Yobr € Su(D). (4.10)
Proof. Without loss of generality, we consider the three cases of triangular elements specified in Fig. 3. Note that
ILOON 2 = B = D) 2y S NX = Dl oy S RIT* 2 S 2, 5=+, —. (4.11)
In addition, we can bound (K*)~! as follows
x| s ler|| e[ nen st =+~ (4.12)
For Case (@) in Lemma 4.1, by the standard inverse inequality and the norm equivalence results, we have
_ _ 1| p- -1l g
“V¢T”L2(f—) < ”V¢T“L2(T) Sh ”¢THL2(T) Sh ”¢T“L2(f-)' (4.13)
Similarly, we can bound the other piece as follows
+ + =1 || 5+ — =1+ =1 || 5+
‘|V¢T”L2(T+) < ”V(I’T“LZ(T) Sh ”¢THL2(T) =h ”(I’T“B(fﬂ +h ”¢T“L2(f-)' 414
Using the triangle inequality we obtain
1| 5+ 1| g+ 1| g+ 14— 1| g+ _ -
h H¢T” +h H¢T”L2(T*) <h ”¢T“L2(f+) +h ”¢T“L2(T*) +h ”‘I’T ¢T“L2(T*)

=0 bl oy + 17 e |

)
L2(T+) (4.15)

2T’

Note that c:)’ in second term on the right hand side of (4.15) is a constant function of X. By (4.11), (4.12), the trace inequality (4.5) applied on DF,
we obtain

leg 2l oz, <[] e, 12N L2 S B 16N

|&(¢;)”L2(DF> s hleElil/z H&(d);)

(4.16)
< h2|DF|71/2

L2(DE)’

In the last inequality, we used the assumption |[DF| > | DE|/2. Note that | /A A, DE| > h?/8, then applying the standard trace and inverse inequalities
on A\A,DE we have
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DM

.

A

Fig. 5. An illustration of a fictitious triangular element of Case (c).

“ch

_ <hh! |
2(T-)

6(¢;)“L2(AA1DE) Sh HV¢;”L2(AA1DE) S ”¢;HL2(T*) < ||¢T||L2(T)- (4.17)

This proves the Case (a). The proof of Case () is similar to Case (a) with the fact that | A A;DE| > h*/8 and |DE| > \/Eh /2.

For Case (c), note that | DE| can be arbitrarily small; hence, we apply the idea of the fictitious element stated in [49]. The fictitious element is
only used for proof but not in the actual computation. Let O be the barycenter of A\ A, A,A;, then we define the homothetic transformation of T
with respect to O to be T, denoted by A Af A? A% which satisfies T, = (X €R? : 3 €T s.t. OX = AOY }. The line DE intersects T, with D and E*.

We also denote D’ and E’ to be the homothetic pre-image of D* and E*. See Fig. 5 for an illustration. Then we can prove for the one piece T+ by
norm equivalence (4.1) and (4.2):

“V(I’;”LZ(T*) < ”V(p;“LZ(T) s ! ”q);HLZ(T) s n! ”(p;”LZ(T*)' (4.18)
For the other piece, we have

“V(l’;”LZ(Tﬂ = Hvdj;

LX(T) S n! H(p;”LQ(T) = ( H¢;”L2(T*) + ”‘I’;Hﬂ(ﬂ))

1 (4.19)
S h (Nlbrll oo + HCELHU@) )-
Then, by (4.11), (4.12), and the trace inequality (4.5) applied on D*F, we obtain:
- 21 a0 gt 2 A A =172 || ag gt
leg Ll oz, S B 16@OPEN S 221D ENT o@D s (4.20)

Here we used the assumption | DAF| > 1/2|D*E*|. Let M* be the midpoint of AZAZ and note that | A D*M*E*| > 1/9(A—1)*h?. We then take a fixed

value A > 1, apply the standard trace inequality, inverse inequality on AD*E*M*, and note that D' E’ A, A; is the homothetic subset of D*E*A% A}
to get:

0L o, s o] sh||ver| sz
“cOL”LZ(TH Sh |6(¢T) LZ(ADAE/IMA)Nh V¢T L2(A\AD*EAM*) ™~ ¢T L2(A\D*E*M*)

N . . (4.21)
< ) < < . < .
~ ”¢T“L2(D1E1A§A31) ~ ”¢THL2(D’E’A2A3) - Hd’T”LZ(T+) = ||¢T||L2(T)

Here we used Lemma 2.2 of [46] again. This finishes the proof of Case (c) of triangular interface elements.

For rectangular elements, Case (e) and Case (f) are proved in a similar procedure with (a) and (b). For Case (d), we decompose [JA;A,A34,
into AA;A,A, and AA,AzA,, then repeat the argument as in triangular elements on A\A;A4,A, and use the standard inverse inequality on
AA A A, [

Remark 4.1. The proof of triangular elements in Lemma 4.1 and Theorem 4.1 is based on equilateral right triangle element shape in the proof. The
results hold valid for general triangular elements by the standard affine mapping.

Recall the following coercivity and continuity results for a,(-,-) which have been proved in [18]:

Ivallls S @naovi) S Ivalls ¥Vh €S- (4.22)

The following relationship between the energy norm and the L? norm is established.

Lemma 4.3. The following inequality holds:
llull 2y Sllulll,,  Vue V. (4.23)
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Proof. Applying Poincaré-Friedrichs’ inequality for piecewise H' space [3], Korn’s inequality for piecewise H' space [4] and definition of ||-||,,
for any function u € V;;:

lall?, o S IVUl?, o+ Y / A2 [V 117ds S lle@)l2, o + / 712 V] IPds S lilll;. O (4.24)

L2(Q) L2(Q) L2(Q)
€€ e€E) e

For each element T € 7;, we define the patch w; =U {T’ €T,:T'NT# ﬂ}. The following the patch assumption [22,18] holds true: for every

interface element T € Th’ and an interface edge e of T, each sub-edge e* =enQ’, s = +,—, there exists a triangle K} C Q° N such that ¢° is one of
edges of this triangle such that
hle’| SIK]| S hle’|. (4.25)

This assumption will be used to prove the global trace inequality [18].

Lemma 4.4. Assume that the mesh T,, satisfies the patch assumption. Then the following trace inequality holds:

2 [ Hno@n g ., S M0l VuePH@. (4.26)

665;1

Proof. For each interface edge e € 8;", we denote its segments ¢* =e N Q°, s =+, —. Following the patch assumption (4.25), for each edge segment
e*, there exists a triangle K} C oy such that it satisfies |e*| < h~'|K?|. Then we use the standard trace inequality on K} and obtain the following
estimates:

1120 @n, |2 S B2Vl 2 + 190l 2e-)
. 1/2
<23 (1 /1K) AVl gk + AVl k)
s=+,—

= D IVl 25, + AVl 2 r)- (4.27)

s=+
Summing (4.27) over e € S;' we obtain:

X [ {aown ] . S X X AVallaa + VUl )
i ecé) 5=+

ecé! P 5=+ -

S Y, Iullpgeg,,, S lullpgg): O (4.28)
TET,

4.2. Semi-discrete analysis

In this subsection, we present the error estimation for the semi-discrete scheme (3.4).

Theorem 4.2. Assume that u € W2=(0, L;PH?) is the exact solution of (1.1), and @y € PH%(Q). Let u,, be the solution of semi-discrete scheme (3.4), then
the following estimate holds for any time t € [0, L]:

llue) = wn ), < 1+ 04 (o lpge + Nully 20 Ly ) - (4.29)

Proof. We decompose the error function e,(r) = u(r) — u,(t) = £,(t) + n,,(t), where &,(1) = u(t) — R u(?) and n,(t) = R,u(t) — u,(t), where R,u is the
elastic projection of u. The bound for &,(r) is a direct result from approximation property:

t

€@, S 2 llu@llpg2 < 2| [[uo]lpg2 + / [lu (®)||pg2 ds | S h (”“’OHPH2 +1 ||“r||L°°(0,L;PH2))' (4.30)
0

To bound 7,(1), we use (3.3a), (3.4a) and the definition of R ,u to obtain

((w =)y, ) + a, (11,0, v1,) = 0. (4.31)

By the above decomposition we have

Wi Vi) + ap @ (0, V) = =& 41, Vi) (4.32)
Choosing v, = n,, (1), the bi-linearity of a,(-,-) and (-, ), and Cauchy-Schwarz inequality yield

d
E(||"h~'”2 +an 1) S |1 Enaell e - (4.33)

This bound can be loosened as

d
= (sl + antmama)) < &l (lmall+ Vanmnma)) (4.39)

Then the above inequality leads to
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d 1/2
(el + anCmaemd) 5 nal - (4.35)

Integrating (4.35) over [0,7], we have

1
1/2 1/2
(el + anmomd) 5 (nn O + apna @, ma@») " + / IEnu(o)] ds. (4.36)
0

Then by the continuity and coercivity of a,(-,-), we have

1/2
Ml (s O + O )+ 1l oo 112, - (4.37)

Due to our choices of #,,,(0) and 7,(0), the first term on the right hand side is zero. By the commutativity of R, and the ¢ derivative, (3.7b), we
obtain

llanlll, S 0% Ml 200, cpm2y - (4.38)

Finally, we combine (4.30) and (4.38) to obtain (4.29). []

Remark 4.2. From (4.38), we can see that the elastic projection of initial condition is not the only choice. As long as the estimates of #,,(0) and
1,(0) have sufficient order of approximation, the above estimates would still hold. For example, we can take the interpolation u,(0) = I,,®, and
uy,(0) = I,@,. Then ||n,0)|], = [|[Rxu(©) — Z,u©)||, 5 [[RAu©) —u©)]|, + [|[u©) - Z,u(0)||,, which has the desired approximating order /. Similar
results hold for ||z, ,(0)].

We then derive the error estimates for the semi-discrete scheme in the semi-H'! and the L2 norms.

Theorem 4.3. Assume that u € W1 (0, L; PH?) is the exact solution of (1.1) and @y, », € PH%(Q). Let uy, be the solution of semi-discrete problem (3.4),
then the following estimate holds for any time t € [0, L]:

[[u®) = w, O] 120y + Alu@) = w17,y S L+ nh* (”“’OHPHZ +|@ [|pge + ”u”WIW((),L;PHZ)) .
Proof. We use the decomposition of the error function again as follows

Apge> Vi) + a0, V) = —=(Epye> Vi)- (4.39)
Integrating this equality from 0 to ¢ we obtain
t
Mp s Vi) + ay / Np($)ds, vy, | = —(&p s Vi) + (11,,(0), V) + (&, (0), V). (4.40)
0
Choosing v, =1, and using the bi-linearity of a,(-,-), (-,-) and Cauchy-Schwarz inequality, we have

t t

d

Sl + | [ mras. [ mcoas || 1wl Il + I, Ol ol + Ron, @ ] @41)
0 0

Note that #,,,(0) =0, then (4.41) can be written as

t t

il +en| [ mods. [ mcoras| | (16n1+ 12Ol Il @.42)

dt
0 0

Similar to the proof of Theorem 4.2, we loose (4.42) as

t t

% ) + an /nh(S)ds,/nh(s)ds

0 0
) . 12 (4.43)
S (18l + Hens O Il + || [ macts. [ mcoas
0 0
This leads to
t ' 1/2
d
L P + 0 / 1,(5)ds, / mds|| < (1€l + 1EnO]) - (4.44)
0 0
Integrate (4.44) from 0 to 7, we have
t t 1/2 t
||nh||2+ah /nh(s)ds,/r]h(s)ds 5/||§,”(s)|| ds+ &, (0)]| 1. (4.45)
0 0 0
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Using the positivity a,(-,-) and the approximation property of R,, we have

Il < ||§h,r||Loo(o,L;L2> S thz(”u”WL‘”(O,L;PHZ) +|@ [|pg)- (4.46)
Similarly with the energy norm, we have the estimate for &,

t

€all S B> @ llpge S 7 [ [luo|lpg2 + / [lu,(s)||pg2 ds [ S 2* (”“’OHPH2 +t||uf||L°°((),L;PH2)> : (4.47)
0

Then we obtain the estimate in the L? norm using the triangle inequality. For the error bound in semi-H! norm, note that 7, € S,. Applying the
inverse estimate in Theorem 4.1, we have h Y rer Imyl g1 () S |14 ]- Then the semi-H! norm estimate is obtained by combining the above results
with the approximation property of the elastic projection stated in Theorem 3.1. []

4.3. Fully discrete analysis

In this subsection, we provide the error analysis for the fully discrete scheme (3.10). We first derive the stability for our scheme. For simplicity,
we let f =0 in the analysis below.

Theorem 4.4 (Stability). The fully discrete scheme (3.10) is unconditionally stable and satisfies the following stability result for M > 1:

2 2
B e B2 e,

2 72

T

Proof. In (3.10), we let v, =u/*' —u/~!, then

(uZ+l —uj —(u}, - u;'”l),u',;“ —uj + (u} - u;'l’l))
7’ +1 —1 0+l —1 (4.49)
+Tah(u2 +u +up +uy ,u;'l +uy —(uj +uy ")) =0.
By the symmetry and bi-linearity of (-,-) and a,(-,-) we have
2 2 _ -
u’;l“ -l = (o - H + rzah(u;'lﬂ/z,uzﬂ/z) - rzah(uz Vz,uZ 172y 0. (4.50)
The following recursive relation holds
2 2 _ _
= |+ 222 = o - | a2 ), (4.51)
Summing (4.51)over n=1,2,---, M, we have
2 2
“uhM“ - uhM” + rzah(uzlﬂ/z,uzlﬂ/z) = ”u}l - u(;lH + rzah(u;l/z,u;l/z). (4.52)
By the continuity and coercivity of a,(-,-), we obtain
2 2 2 2
e Ihas i N A e T (453)

This completes the proof of the stability. []

Now we derive an error estimate for the fully discrete scheme. Similar to semi-discrete analysis, we decompose the error ) =u”" —u} into &} +17;.

In the following lemma, we first estimate the one-step approximation u,'l and use it to discuss the impact of the approximations of initial conditions.

Lemma 4.5. Assume that u is the exact solution of (1.1) and satisfies u,,, € L®(0, L; PH*(Q)). Then the following estimate for u}l holds

“"111“ 5 M"H"h SN0l o,Lpr2 ) (4.54)

Proof. By the coercivity of a,(-,-), the definition of R, and u}l, we have:
1| . 111 1 L o1 1 e 1
]I, = sy iy = an Ry’ = whm)y = ayRju’ = Ry} = @y’ —u'. ). (4.55)
2
Recall that u* = @) + 7, + %u,,(x,O) is an approximation of u,. Using the continuity of a,(-,-), we have

! =t < [ —ut ) il

Thus,

[l = o - (456

Using Lemma 4.4 to bound the right hand side of the above inequality, we have

R
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2 8 — *
o =ull, = X [ outew! —utontax+ F [ oyl -utopaxs ¥t [t fow! -uln, ) as
TET, TET, eef;l ) (4.57)
SR R
Then we obtain the estimate using Taylor Theorem:

; 2
I <l — ot < gl — gl _ N Cko)

Pl < o 5 0 = .

0 PH2(Q) .

3
St |Iutﬂ||Lm(07L;PH2(Q))'

The estimate for ||-|| > holds thanks to Lemma 4.3 and #;, €S,(Q). [

Lemma 4.6. Assume that u(-,1) € PH>(Q) is the exact solution of (1.1) and satisfies the regularity condition u,,,, € L* (0, L; PH?). Then the following estimate
holds for0<n<M —1:

n1/4
(A

n
u o,

s7 ||“mt ||L°°(0,L;PH2) . (4.59)

. 1/4
Proof. We can write ||uj; / —d,u"|| as follows

2
2 u"+1 +2u” +u! n+l _ ygn n—1
u;ﬂt,l/4 o = 1t 411 U 2:12 tu (4.60)
The first term can be expanded using Taylor Theorem
) . m+l m—1
n+ —
w; "+ 2uy, + 2up o il 4 a1 4 461
- = w,+ [ W ()T —s)ds+ [ u,,(s)E" — s)ds. (4.61)
n in
Similarly, we expand the second term into
rn+l tnfl
uVl+1 —2u” +un—1 1 1 _
— =u’ + py U, ()@ = 5)3ds + p) U, ()@ = 5)Pds. (4.62)
m m
We bound the remaining terms separately using Cauchy-Schwarz inequality and Fubini’s Theorem:
¥l =1 2
/ Uy (A = $)ds + / Uy ()" = 5)ds
m m
12 122
<o / W ()Pds |+ / Wy ()12 (4.63)
" "
tn+l
3 2 4 2
S A G RCETal P
=1
Similarly for the other two terms, we have
¥l -1 2
1 1 -
= / Uy (@™ =) ds + = / U, ()" - 5)*ds
T T
m "
12 122
<o / W ()Pds |+ / Wy ()]s (4.64)
" m
m+l

< / P d5 57 gy O

m=1
Now we are ready to derive the error estimates in energy norm for the fully discrete scheme (3.10).

Theorem 4.5. Assume that u € W**(0, L; PH?) is the exact solution of (1.1), and w,, is the solution of fully discrete problem (3.10). Then the following
estimate holds for0<n<M —1:
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Proof. We evaluate the weak form (3.3a) at #"~!, ¢", t"*!. By the bi-linearity of a,(,-) and (,-), we have for every v, €S;:

w2 w2 S (L 1) (7 ) Ml e o ppm (4.65)

1/4

(uft’ ,vh)+ah(u"’]/4

,Vp) = Leni/a(vy). (4.66)
Combining (4.66) and (3.10a), we have

1/

(0,1 —u'1 ,vh)+ah((uh —w" 4y, =0. (4.67)

With the definition of R, (4.67) can be decomposed into

. 4
Ot Vi) + an (v = =0, 80 vy) — @i/ = o, v, (4.68)
Then we take v, = 0,7}, which can be written as
1/2 1/2 1/2 1/2
R AR e nff/ -, o o
oMy = "5, . = > : (4.69)

Also for any vector function w, we have

o.wnt1/2 _ g wn=1/2 n+1/2 n—1/2
o wi =2 i oA ¥ ;W ] (4.70)
T

By Cauchy-Schwarz inequality, we obtain the following from (4.68):

—(0 n+1/2 at n—1/2 a'1n+1/2_‘_a n— 1/2)+ a (71”+1/2+71n 1/2 nn+l/2 71"_1/2)
1 h >h h
(4.71)
b (-l (o " o).
By the bilinearity and the symmetry of a,(-,-) and (-, ), we have:
<H0r'1n+l/2”2 3 H n— 1/2” ) ta (nn+1/2’nn+l/2) anll 12 =12y
" ! ! 4.72)
<o (fougi + i = ouw]) (o™ + o)
Denote Q, = Ha,,g h“ and Q, = ||u’; 1/ - o, u" we have the following estimate using Taylor expansion
-1 _ 1
Jouey| = B
trH»l nfl
= / Ep (@ = s)ds + / Enn ()™ = 9)ds
o+l 12 r 172 (4.73)
||| [ toras| +| [ igaoras
m n—1
12
SE AR
-1
The approximation capability of R ,u,, yields
0,3 ||§n,h||Loo(o,L;L2) s ||“n||Lw(o,L;PH2)~ (4.74)
We next bound Q, using Lemma 4.6:
0,57 l[wsee [l o0, 2:pm2) - (4.75)
Combining the above estimates and summing (4.72) from 1 to M, we get
M
o o ) e B o] )¢t @70
n=0
Denote Q3 = Hd,n}l/zu and Q, = mnl/zm . Then by Lemma 4.5 we obtain
e % i "(')tHz = % <“'1H|2 * H”(ﬁﬂz> Sl L7 “.77)
0= el <4 (AL ) bl
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Here we used 112 =0, similar to semi-discrete analysis. We further denote the total energy error &

=]

'72+1/2“|h' (4.79)

With y = (v + h?) lully .00 0. pr2)> ODE can obtain from (4.76):
M

EMP sy Y+t (4.80)
n=0

By an analogous mathematical induction procedure as Theorem 5.3 of [20], we obtain for n < M:
SZ Snty +vy. (4.81)
In summary, we have the following estimate:
2 2
(|6,n2“” H + mnz“'/ mh S A1) (22 + B 1l ass o ppiey - (4.82)

With the approximation capability of operator R,, we have:
M+1/2 2 2 2
m§h H‘h Sh ”u”Lw(o,L;PHZ(Q))' (4.83)

Then by triangle inequality, we obtain

(a7 =y 20 < 2L+ flen ], S+ D (2 R) Nl ey O (4.84)

Remark 4.3. The analysis of the fully discrete scheme depends on the bound for '72 and n}, which depends on the choice of initial conditions.
For '72’ as mentioned in the Remark 4.2, we used the elastic projection to eliminate this error. However, similar to the semi-discrete scheme, any
approximations that have appropriate error bounds also work. For n}l, we notice from Lemma 4.5 that it depends on u'*, the approximation of
u'. Here we used a third order Taylor approximation to guarantee the convergence order. Again, any approximations that have appropriate error
bounds could be taken.

Finally we derive the error estimate of the fully discrete scheme (3.10) in the semi-H' and the L? norm.

Theorem 4.6. Let u € W4 (0, L; PH?) be the exact solution of (1.1). Let uZ, n=1,2,---, M be the solution of the fully discrete scheme (3.10). Then we
have the following error bound: for n=0,1,2,---, M,

W= AN 0y S LD (2241l e (4.85)

Proof. We first use Theorem 4.5 to obtain for n=0,1,2,---,M — 1:

n+1 n
n+1 n n i n

mo-n

=7

=||om 2| S L+ D (22 +7) Tl s me, (4.86)

Using Theorem 4.5 again and Lemma 4.3, we have for n=0,1,2,---,M — 1:

g =2 'I"+1/2“ < m"ﬂ+l/2"|h S(L+1) (12 +h2) “u“W“v“’(O,L;PHz)' (4.87)
Applying the triangle inequality for ”n”“ ”Lz(g) and ||7"|| 12(q), We obtain for 0 <n < M:
"Il SCL+ D (22 + 1) [l ac o, pm2) - (4.88)

Finally, combining the above estimate with the approximation property of R, we have

n

o =], I+ HEM S L1 (22 4 ) Tlly o 0,1 - (4.89)

L2(Q)

This holds for n=0,1,2,..., M. The estimate for semi-H! norm is similar to the counterpart of Theorem 4.3. []

5. Numerical experiments

In this section, we test the scheme with several numerical examples to validate the theoretical results. For all testing examples, we set the
computational domain Q =[—1,1] x [-1,1]. We use the N x N rectangular meshes with mesh size h =2/N and the bilinear IFE functions for
approximations. The penalty parameter p is set to be 200 in the partially penalized IFE scheme (3.10).

Example 1 (Accuracy test for an elliptical interface). In this example, we consider an elastic plate consisting of two materials with an elliptical
interface defined by T' = {(x,y) € Q : (x — x¢)* + K2(y — y)* = ré}. The domain Q is separated by this interface into subdomains: Q* = {(x,y) € Q :
(x=x0)* + K2y —yp)* > r}} and Q™ = {(x,) € Q 1 (x — x0)> + k*(y — y5)* < rj }. The exact solution u(x, y,1) = (u'(x, y, 1), (x, y,1)) is given by:
(x = x0)* + K*(y—yo)* —rp)e™ /47, onQ,1€[0,L],
u' (e, y,0) =P (x, y,1) = (5.1)
(x =x)* + K (y—yp)* —rde™/2*, onQt te[0,L].

105



Y. Chen, S. Hou and X. Zhang Computers and Mathematics with Applications 147 (2023) 92-110

Table 1

Errors of IFE solution u}, in Example 1 at the ending time 7= 1.
N lluj, — |l e order  [lul —u'|l 2 order [u} —u'|y order
10 6.0729 x 1073 1.5931 x 1073 2.6490 x 1072

20 1.4951x 1073 2.02 3.1828 x 107# 2.32 1.0079 x 1072 1.39
40 5.5554x 107 1.43 8.7658 x 1073 1.86 4.4691 x 1073 1.17
80 1.6197 x 107 1.78 22762 %1073 1.95 1.9995 x 1073 1.16
160 3.9072x 1073 2.05 5.7313x107° 1.99 8.3509 x 107* 1.26
320 1.0734x 1073 1.86 1.4442 x 107° 1.99 3.9268 x 107* 1.09
640 2.6959 x 1076 1.99 3.6185%x 1077 2.00 1.8569 x 107* 1.08

Table 2

Errors of IFE solution «? in Example 1 at the ending time 1= 1.
N (el order [lu; — |l order |uj —u?|,, order
10 6.0982x 1073 1.4027 x 1073 2.6297 x 1072

20 1.6623 x 1073 1.88 3.1218x 107* 217 1.0013 x 1072 1.39
40 4.4028 x 1074 1.92 1.0754x 107* 1.54 4.5320x 1073 1.14

80 1.4515%x 10~ 1.60 2.8036 x 107 1.94 1.9849 x 1073 1.19
160 4.2339 x 107 1.78 7.0923 x 1076 1.98 8.3318x 10 1.25
320 1.0162x 1073 2.06 1.7317x 107° 2.03 3.8926x 107* 1.10

640 24121 x107° 2.07 4.2785x 1077 2.02 1.8568 x 107* 1.07

The Lamé parameters are chosen to be AT =100, A~ =10, 4t =10 and y~ = 1. The parameters in the exact solution (5.1) are x, =0.2, y, =0, k =2.5,
and ry =7/6.28.

We set the time step size = = 4 in our computation. In Tables 1 and 2, we list the errors of IFE solutions and the convergence rates for “;: and ui,
respectively. Here, the L® norm is computed as the maximum of the error among all finite element nodes. The contour plot for numerical solutions
of Example 1 is shown in the left plot of Fig. 6.

Example 2 (Accuracy for more complicated interface shapes). In this example, we consider a more complicated star-shape interface. The level-set
function of the interface is

d(x,y) = (x* + Y[ + 0.6sin(6 arctan(y/x))] — (r/6.28)*

which splits the whole domain Q into two sub-domains Q* = {(x,y) €Q : ¢(x,y) >0} and Q™ = {(x,y) €Q : ¢(x,y) <0}. We set the exact solution for
this example to be

~ D)
Syt ——==sin(t
upCoyn \ _ e ® , onQ ,re(0,L]
U5 (x,7,1) L2V sin(r)
u(x,y,1) = N ¢(Ax ) -
X, ), 2= sin(t
ulr( »0) 2 oy "), onerienw
uf (x, y,1) o sin()
where the Lamé parameters are chosen to be AT =20, A~ =1, y* =200 and x~ = 10.

We set the time step size to be = = h. Errors at the final time 7 =1 for 4, and u, are reported in Tables 3 and 4, respectively. Optimal convergence
rates for L2 and semi-H' norms are observed which validate our theoretical results. Additionally, we also computed the error in L® norm, which
measures the largest difference of the numerical solution and the exact solution among all mesh points N,. The order of convergence is close to
second order, which is considered optimal given the polynomial degree of the finite element spaces. The contour plot for numerical solutions of
Example 2 is shown in the right plot of Fig. 6.

Example 3 (Long-time behavior). In this example, we investigate the long time behavior of our numerical scheme. In our analysis for the semi and fully
discrete formulations, we obtain a bound of the numerical errors which is linear in time L. This means the numerical errors will grow at most linearly
proportional to L. This conclusion is consistent to related studies of elastic wave problems using a Local Discontinuous Galerkin (LDG) method, such
as [20]. In the following numerical example, we aim to explore the numerical behavior as the final time L increases dramatically. We consider a
line interface I' = {(x,y) € Q : x + y — ¢ = 0}. The subdomains are defined to be Q* = {(x,)) €Q : x+y—c>0} and Q™ ={(x,y») €Q : x+y—c <0}.
The exact solution u(x, y,7) = (u' (x, y, 1), u*(x, y, 1)) is given by:

(x+y—c)sinQxt+ 1)/~ _
<[x2 - (y = ¢)*1sin2zt + 1)//1->’ on &€ (0. L),
u(x, y, 1) = . (5.3)
(x+y—c)sinQzat+1)/4 "
<[x2 — (y— )] sin(2at + 1)//1+>’ on&”.re[0.1]

The Lamé parameters are taken as At =100, y* =10, A~ =10, 4~ =1, and the constant ¢ = 1.2.

In our experiment, we let the mesh size N = 40, while the time step = = h/16. In Fig. 7, we report the L?, L® and semi-H' error norms of ”;1
and ui against time up to L = 5000, which we consider to be a significantly long test interval for observation. In our tests, we find the errors of ”};
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Fig. 6. Contour plots for numerical solution of Example 1 (Left) and Example 2 (Right) when N = 160.

Table 3

Errors of IFE solution uL in Example 2 at the ending time 7= 1.
N [lua), = u' || o order  [lu} —u'|l,: order  |u} —u'|;n order
10 1.3511x 1072 1.0666 x 102 1.4207 x 107!

20 9.5144x 1073 0.51 2.8976 x 1073 1.88 8.7907 x 1072 0.69
40 4.6819 x 1073 1.02 6.5421 x 107* 2.15 4.1211x 1072 1.09
80 9.0997 x 107* 2.36 1.4037 x 1074 2.22 1.6755x 1072 1.30
160 3.5321x107* 1.37 3.5395x 1073 1.99 7.9007 x 1073 1.08
320 1.0016 x 107 1.82 8.2650 x 107° 2.10 3.8282x 1073 1.05
640 1.8367 x 1075 2.45 1.9017 x 107° 212 1.8453x 1073 1.05

Table 4

Errors of IFE solution uf, in Example 2 at the ending time ¢ = 1.
N [l =1, order  [lu; — |l order  |uf —u?|,, order
10 1.3511x 1072 1.0666 x 102 1.4207 x 10!

20 9.5144x107  0.51 2.8976x 107 1.88 8.7907x 1072 0.69
40 46819%x 1073 1.02 6.5421x 10  2.15 412111072 1.09
80 9.0997x 10+ 2.36 14037 x 107+ 2.22 1.6755x 1072 1.30
160 3.5321x10*  1.37 3.5395x107°  1.99 7.9007x 107 1.08
320 1.0016x10™*  1.82 8.2650x 107 2.10 3.8282x 107 1.05
640  1.8367x 1075  2.45 1.9017x 1076 2.12 1.8453x 1073 1.05

and ui are almost independent with time L, in a steady and nearly periodic type of propagation mode. We emphasize that this example shows the
advantage of our method for long time simulation. The related sharper theoretical results with respect to time L are left for future investigation.

Example 4 (A traveling wave problem). In this example, we consider a traveling wave problem inspired by numerical examples in [1]. A circular
interfaceI'= {(x,y») €Q : x2+)* = rg} with rj = 1/2 is considered in this example. For simplicity, we set the external force f = 0 and initial conditions
to be:

_ 1000x _ S5xv2
a)o(x,y)=( (200 + 1000 )e);p[ 20001 + ) ]>’
(5.4)

o= [ F2* 000 (1 + )] exp[-200(1 + Z)?]
1A 0 5

with periodic boundary condition. The solution of this problem describes the traveling of a band-shape plane wave from left to right along x-axis.

The Lamé parameters are chosen to be At =1.0, 4t =0.01, A~ =0.1, y~ =0.1.

In our test, we slightly modify the stiffness matrix K to accommodate the periodic boundary condition while preserving the symmetric positive
definiteness introduced in [6]. The heat plots of displacement u at time points ¢ =0, 0.105, 0.25, and 0.4 are shown in Fig. 8. In our tests, we set
the spatial mesh size N =400 and 7 =5 x 10~*. Since it is difficult to obtain the exact solution for this example, we compare the cross sections of
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Fig. 7. Error Norms of Example 3 with respect to time when N =40, 7 =1/320.
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Fig. 8. First row: heat plots of u, at time point T'=0,0.105,0.25,0.4 when N =400. Second row: heat plots of u, at time point 7' =0,0.105,0.25,0.4.

numerical solutions at y=0 at r =0.24 and ¢ = 0.4 for the meshes N =300 and N =400, respectively. For these two mesh sizes, we choose same time
step 7 =5x 107*, and the comparison is shown in Fig. 9. The numerical results of two meshes are observed to match with each other very well,
which indicates the convergence of our numerical solutions.

6. Conclusion

In this paper, we proposed semi discrete and fully discrete numerical schemes for elastodynamics interface problems. For spatial discretization,
we used linear or bilinear immersed finite element spaces and the partially penalized scheme. We proved properties of these IFE space including
the norm equivalence and inverse inequalities. For fully discrete scheme, we used a -scheme with 6 = 1/4. Both semi-discrete and fully discrete
schemes were analyzed and proved to converge optimally in the energy, L?> and semi-H' norms. Numerical experiments are provided to verify
the theoretical results. In addition, the long time behavior has been considered to illustrate the stability of the scheme. We also demonstrated the
applicability and performance of our method on the traveling wave problems.
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Fig. 9. Comparison of cross sections of u; numerical solution when N =300 and N =400, left: T =0.24, right: T =0.4.
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