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Abstract. Quantum many-body phases offer unique properties and emergent

phenomena, making them an active area of research. A promising approach for

their experimental realization in model systems is to adiabatically follow the ground

state of a quantum Hamiltonian from a product state of isolated particles to one

that is strongly-correlated. Such protocols are relevant also more broadly in coherent

quantum annealing and adiabatic quantum computing. Here we explore one such

protocol in a system of ultracold atoms in an optical lattice. A fully magnetized

state is connected to a correlated zero-magnetization state (an xy-ferromagnet) by a

many-body spin rotation, realized by sweeping the detuning and power of a microwave

field. The efficiency is characterized by applying a reverse sweep with a variable

relative phase. We restore up to 50% of the original magnetization independent of

the relative phase, evidence for the formation of correlations. The protocol is limited

by the many-body gap of the final state, which is inversely proportional to system size,

and technical noise. Our experimental and theoretical studies highlight the potential

and challenges for adiabatic preparation protocols to prepare many-body eigenstates

of spin Hamiltonians.

Keywords : quantum simulation, ultracold atoms in optical lattices, quantum spin

Hamiltonian engineering, adiabatic state preparation, many-body states
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1. Introduction

The study of many-body quantum states is at the intersection of fundamental quantum

physics and quantum technologies. Entangled and highly correlated quantum states lead

to intriguing new properties of materials and are resources for quantum computation.

A leading platform for engineering quantum spin Hamiltonians is provided by ultracold

atoms in optical lattices [1]. Many recent studies in these systems have explored non-

equilibrium quantum dynamics, often involving evolution from an initial state that

is straight-forward to prepare on a single-particle level [2, 3, 4, 5, 6, 7, 8, 9]. The

focus on such quench experiments reflects not only the strong general interest in such

dynamics, but also the challenges of realising more complex many-body eigenstates.

This is often related to the prevalence of low-lying excitations which lead to requirements

of extremely low spin entropies. Entropy redistribution techniques in which a reservoir

system absorbs excess entropy have been proposed [10, 11, 12] and used to prepare

low-entropy entangled states [13, 14], but robustly preparing many-body ground states

remains challenging.

An alternative approach is to start with an uncorrelated state, which could be

prepared with very low entropy, and adiabatically transform it into a many-body

quantum state. For example, quantum antiferromagnetic correlations have been

observed by adiabatically loading a spin-mixture into an optical lattice [15, 16, 17, 18].

However, many such protocols require mass and entropy redistribution across the

system which increases the coherence time requirements. Local transformations of the

Hamiltonian have the promise of being faster and scalable to larger systems. Such

protocols have been proposed [19, 20, 21, 22, 8] and realized [23, 24] using microscopic

engineering of the initial state by optical superlattices, ladder systems, or spin-dependent

lattices. Finally, the importance of adiabatic preparation protocols extends beyond

optical lattice systems and they have been recently utilized to prepare correlated states

of quantum Hamiltonians in systems of Rydberg atom arrays [25, 26, 27, 28].

Here we use an adiabatic scheme which involves a direct manipulation of the spin

state, and not the external potential, and requires control only over a microwave field.

We demonstrate that by a many-body spin rotation, realized by an adiabatic sweep of

the detuning and power of the microwave field, states with different magnetization can be

connected. The properties of such rotation protocols have been explored theoretically in

[29, 30]. We realize a spin-1/2 XXZ chain in which a z-ferromagnet (a highly magnetized

state) is rotated into an xy-ferromagnet, which is a strongly-correlated state with no

gap in the infinite-chain limit. In a finite system, the gap is inversely proportional to the

system size, allowing the adiabatic connection. The xy-ferromagnet is a magnet which

points nowhere on average, i.e. it is a superposition of states which point in different

directions in the xy-plane and for which the spin operator Sz = 0, but the expectation

values are also 〈Sx〉 = 0 and 〈Sy〉 = 0, Fig.1(a). We employ a new technique to show the

presence of correlations in the many-body state: we apply a reverse microwave sweep

but with a different phase relative to the initial sweep. This protocol can distinguish
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Figure 1. Many-body spin rotation in 1D chains. (a) A fully magnetized state is

rotated by an adiabatic passage into a correlated phase in the xy-plane which has no

magnetization. (b) Schematic representation of the phase diagram. Starting from the

z-ferromagnet (Z FM) in |↓〉⊗N , where N is the number spins, a microwave field is

applied coupling the two spin states with detuning δ (effective z-magnetic field) and

Rabi frequency Ω (effective x-magnetic field) with |δ| � |Ω|. First, the detuning is

ramped to zero, rotating the spins to the xy-plane, then the Rabi frequency is ramped

to zero, ideally realizing the xy-ferromagnet (XY FM). (c) Measured fraction of atoms

in each state as a function of the final detuning: |↓〉 (circles) and |↑〉 (triangles) for a

deep 35 ER lattice of isolated sites (orange) and a shallow 11 ER lattice of coupled

sites (blue). The solid lines are phenomenological fits of the form: a tanh((δ-δ0)/w)+c.

between isolated spins, coupled spins, and dephased spins (a collection of spins with

random orientations). We recover up to 50 % of the initial magnetization independent

of the phase of the reverse sweep, a strong evidence for the successful preparation of

a spin state with xy-ferromagnetic correlations. The presence of correlations is further

corroborated by measuring excess fluctuations in 〈S2
x〉, which are proportional to the

Quantum Fisher information. Detailed numerical simulations verify our protocols and

show that the coherence time in our system is limited by intensity noise in the microwave

pulse during the final stages of the preparation when the gap is the smallest. For these

timescales, our results are consistent with creating correlations over a few lattice sites.

Longer chains require considerably longer time evolution to ensure adiabaticity.
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2. Experimental setup and spin Hamiltonian

The system is a Mott insulator of 7Li atoms in an optical lattice. With one particle per

site and two hyperfine states, it realizes the (anisotropic) spin-1/2 Heisenberg model,

where effective spin-spin interactions between neighboring sites are realized by a second-

order tunneling process (superexchange) [31, 32]. We apply a microwave field coupling

the two hyperfine states with detuning δ = ω − ω0, where ~ω0 is the energy difference

between the two hyperfine states and ω is the frequency of the microwave field, and with

Rabi frequency Ω. This is equivalent to having a z- and an x- magnetic field in a spin

system respectively, realizing the anisotropic spin-1/2 Hamiltonian with external fields:

H = Jz
∑
〈i,j〉

Szi S
z
j + Jxy

∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
+ δ(t)

∑
i

Szi + Ω(t)
∑
i

Sxi , (1)

where 〈i, j〉 denotes nearest neighbors, and Sαi are spin operators. Here Jz/h = −73.9

Hz and Jxy/h = 76.5 Hz are the superexchange parameters, which are ∼ t̃2/Uαβ where

t̃ is the tunneling between neighboring sites and Uαβ are the on-site interactions with

α, β ∈ (|↑〉, |↓〉). The on-site interactions and hence the superexchange parameters can

be varied by changing the applied magnetic field via Feshbach resonances (Appendix

B).

The spins are encoded in the second-lowest and third-lowest hyperfine states

|↓〉 = |mi,mj〉 = |1/2,−1/2〉 and |↑〉 = |−1/2,−1/2〉, respectively, at a magnetic field

of 1000 G and can be imaged separately (Appendix C). Rather than using the lowest

two hyperfine states, this encoding reduces the sensitivity to magnetic field noise by an

order of magnitude. The optical lattice is formed by retroreflecting three orthogonal

1064 nm laser beams. Throughout this work we compare deep (35 ER) and shallow

(11 ER) lattices in two configurations: i) isolated spins: all three lattices at 35 ER,

making the superexchange coupling between them small compared to the timescales of

the experiment (h/(4t̃2/U↑↓) = 80s); and ii) coupled spins in 1D chains: lowering the

depth of one lattice arm to 11 ER to enable tunneling, which creates a collection of

spin chains with an average length of 16 sites as determined by the confining potential

(Appendix E).

3. Preparation protocol

The protocol for preparing an xy-ferromagnet using a many-body spin rotation starts

with a Mott insulator of isolated spins in |↓〉. This is the z-ferromagnetic state

|Ψ0〉 = |↓〉⊗N trivially prepared by loading a Bose-Einstein condensate of |↓〉 atoms

into the lattice from an optical dipole trap. This is the highest excited state of the

spin Hamiltonian 1 in the limit of large detuning δ � Ω. The adiabatic connection is

realized at low lattice depths by performing half a Landau-Zener sweep (δ → 0) followed

by an adiabatic ramp off of the driving field Ω → 0, Fig.1(b). Without interactions
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between sites, each atom would be individually prepared in the superposition state

1/
√

2 (|↓〉+ |↑〉). However, nearest-neighbor interactions (Jxy) along the chain open a

many-body gap in the eigenspectrum, so that the initial multi-particle state is instead

adiabatically connected to an entangled state: the xy-ferromagnet. In the mean-field

picture, sweeping the detuning to zero at a constant Rabi frequency rotates the spins

into the xy-plane. Sweeping the Rabi frequency to zero removes the guiding x-bias field,

leaving the system in the xy-ferromagnetic state which is stabilized by the spin-spin

correlations, similar to the Weiss mean field.

We first measure the effect of the adiabatic protocol on the populations in the two

spin states and calibrate the resonance of the transition |↑〉 ←→ |↓〉 by varying the

final point of the detuning sweep δf . Fig.1 (c) shows the population going smoothly

from all atoms in |↑〉 to all atoms in |↓〉. We denote zero detuning the point at which

there is an equal number of atoms in each spin state, i.e. the total Sz = 0. This point

is shifted for the 11 ER lattice, which is due to the non-zero tunneling at low lattice

depths. From the mapping of the Bose-Hubbard Hamiltonian to the Heisenberg model,

there is an additional effective z-magnetic field term ∼ t̃ 2(1/U↑↑ − 1/U↓↓) [33]. This

term is exceptionally small (and typically negligible) in a deep lattice, but in a shallow

lattice it shifts the effective zero detuning point. The width of the feature in Fig. 1(c)

is also larger at 11ER and is proportional to the coupling matrix element Jxy between

lattice sites.

4. Probing the resulting state

We perform the adiabatic sweep and use the corresponding zero-point detunings as

the endpoint of the ramp for deep and shallow lattices respectively. To probe the

resulting state, we implement a Ramsey-like protocol which allows us to distinguish

between single-particle and correlated evolution of the spins. After performing the state

preparation, we introduce a phase jump ∆φ in the drive and then perform the sweep

of the driving field in reverse, Fig. 2(a). Our observable is the return magnetization

MR = 〈N↓−N↑〉/(N↓+N↑) averaged over the cloud, which can be extracted directly from

spin-sensitive images. In an ideal system of isolated spins, the state of each spin after

the initial sweep has a well-defined phase and MR exhibits a Ramsey-type oscillation

between −1 and 1 as a function of ∆φ. In a system of coupled spins, if the protocol has

successfully connected the z-ferromagnet to the xy-ferromagnet and back, we expect to

measure MR = 1, independent of ∆φ. Finally, if the spin rotation had instead resulted

in a collection of spins with random orientations, would measure MR = 0 independent

of ∆φ. While a measurement of zero-magnetization after the initial sweep could be due

to the formation of a correlated phase or to dephasing, a non-zero return magnetization

can emerge from a state with Sz = 0 after the return sweep if correlations have been

established.

The results of the measurement are shown in Fig. 2(b). We parameterize the return

magnetization MR = ∆M cos(∆φ) + MR by its amplitude ∆M and offset MR. For
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Figure 2. Reversing the initial sweep. (a) After the initial sweep, we hold for time

∆t and apply an inverse sweep with relative phase ∆φ. (b) Return magnetization for

a deep lattice (orange) and a shallow lattice (blue) for ∆t = 0. The solid lines are

sinusoidal fits of the form MR = ∆M cos(∆φ)+MR and the dashed lines are MR. The

non-zero MR is an indication that a correlated phase related to xy-ferromagnetism has

been realized in the shallow lattice. (c) Amplitude ∆MR as a function of hold time

between the sweeps. The solid lines are fits of the form a exp[−(t/τ )2] with τ35 = 15(5)

ms and τ11 = 17(10) ms for the deep and shallow lattices respectively. (d) MR as a

function of hold time in a shallow lattice, which remains non-zero for much longer

times than ∆M . The solid line is an exponential fit a exp[−t/τ ] with decay time of

217(48) ms.

isolated spins we observe oscillations with MR = 0.015(38) and ∆M ∼ 0.65(5). We

attribute the smaller than 1 amplitude to dephasing during the sweeps, caused by

technical noise, such as magnetic field noise. In the case of coupled spins (blue), we

observe a non-zero MR = 0.29(2) and a much smaller amplitude ∆M ∼ 0.11(2). The

residual oscillation could be due to non-adiabaticities of the sweeps and to isolated

atoms at the edges of the cloud. The measured MR > 0 shows that the final state can

be reversibly populated and indicates the formation of correlations within the spins in

each chain.

The dependence of MR on the hold time ∆t between the initial and reverse sweep

reveals the different sensitivity of the isolated and coupled spins to noise sources. The

amplitude ∆MR decays on similar timescales in both a deep and a shallow lattice, shown

Fig. 2(c). The oscillations have dephased after ∼ 15 ms, consistent with magnetic field

noise on the 10−5 level affecting isolated spins. By contrast, we expect the correlations

in the coupled system to be insesitive to this level of magnetic field noise and we observe

thatMR remains non-zero for longer, Fig. 2(d). Finally, for hold times longer than 150ms
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Figure 3. Optimization of sweep parameters. The return magnetization MR can be

improved by varying: (a) the sweep time TΩ of the Rabi frequency and (b) the initial

Rabi frequency Ω0. (c) Numerical simulations of the ideal preparation scheme for

N = 100 sites. The correlation length η is extracted by an exponential fit A exp(−ηm)

to the off-diagonal spin correlation function 〈Ŝ+
N/2Ŝ

−
N/2+m〉. (d) Ramp time TΩ required

for the fidelity F = |〈ψprep(TΩ)|ψGS〉|2 to reach a certain threshold as a function of

chain length. Here |ψGS〉 is the ground state, |ψprep〉 is the prepared state and aL is

the lattice spacing.

we measure 10% atom loss, possibly due to lattice heating or spin-changing collisions.

5. Improving the return magnetization MR

The non-oscillating return magnetization MR is a measure of the fidelity of the

preparation of the target state and can be used to optimize the sweep parameters.

We observe that MR can be increased by using lower initial Rabi frequency Ω0 and

shorter Rabi frequency sweeps. This is plotted in Fig. 3. MR reaches a maximum

of 0.51 for Ω0 ∼ 5Jxy/h = 382 Hz and for a one-way Rabi frequency sweep time

of TΩ ∼ 2h/Jxy = 26 ms. In principle, the longer the sweep timescale, the better

the adiabaticicy and therefore the fidelity of the preparation. Numerical simulations

show that in a system of 100 sites, the correlation length increases logarithmically with
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Figure 4. Quantum Fisher Information. (a) Histograms of the spin imbalance I for

isolated sites rotated to the xy-plane (orange) and for coupled sites (blue). The protocol

in each case is shown above. The variance of Sx, as measured by the variance of I,

is 2.66 times larger for coupled sited as compared to the shot-noise-limited variance

of single sites, indicating the presence of correlations at low lattice depths. Here

TΩ = 3.2h/Jxy,Ω0 = 5.5 Jxy/h. (b) Numerical simulations showing the QFI for pure

states, QFI = 4〈Ŝ2
x〉 − 4〈Ŝx〉2 as a function of chain length for different ramp times.

Values are given relative to the QFI for independent spins.

sweep time as seen in Fig. 3(c), making the preparation of fully correlated long chains

challenging. The required time to reach a certain fidelity as a function of chain size

is plotted in Fig. 3(d). For chain lengths of 15-20 sites, as used here, the ramp times

for the Rabi frequency sweep required to reach a fidelity of 0.9 are 6-7 h/Jxy. This

corresponds to correlation lengths of about 13 sites and return magnetization of more

than 0.90. The experimental values are lower. This and the fact that there is a maximum

in the observed MR as a function of ramp time points to the presence of technical noise

in the experiment leading to dephasing. Numerical simulations of various sources and

levels of technical noise suggest that the main source of noise affecting the fidelity of

the preparation is intensity noise of the microwave pulse during the final stages of the

sweep (Appendix G). For example, for a Rabi frequency of 0.2 Jxy/h the coherence time

of single-particle Rabi oscillations in a deep lattice is ∼ 1.5h/Jxy, allowing for a single

superexchange event.

6. Quantum Fisher Information

A way to probe the correlated phase without the reverse ramp is to measure the variance

of the spin operator Sx =
∑

i S
x
i , where the sum is over lattice sites i. In the case that we

assume the state to be pure, we note that the variance is proportional to the Quantum

Fisher Information (QFI) in this system, which can be used to quantify many-body
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entanglement [30]. When single spins are rotated to the xy-plane, the variance of Sx is

shot noise-limited: 〈S2
x〉 ∝ N , where N is the total number of spins. By contrast, the

presence of correlations in a coupled system render it delocalized in the xy-plane (i.e.

spins do not “point” in a particular direction in the xy-plane), so that a measurement

of Sx should exhibit larger fluctuations, compared to shot noise. The variance of Sx
can be measured by applying a π/2 pulse after the initial sweep, which maps Sx to

Sz = N↑−N↓. The statistics of the spin imbalance I = 〈N↑−N↓〉/(N↑+N↓) are shown

in Fig. 4(a) for the coupled system, compared to a system of isolated spins rotated to

the xy-plane. While the standard deviation of the latter is measured to be given by shot

noise, we find that the variance of the spin imbalance is larger for coupled spins by a

factor of 〈S2
x〉coupled/〈S2

x〉isolated = 2.66. The predicted QFI relative to the QFI of single

spins as a function of chain length is plotted in Fig. 4(b). The increased variance of Sx
measured here corresponds to a relative QFI of 2.66 and corroborates the existence of

correlations over a few sites.

7. Conclusions

Our combined experimental and theoretical study demonstrates the potential of

adiabatic spin rotation for creating new many-body quantum states. The comparison of

experimental and numerical results provided guidance for optimized sweep parameters,

and allowed us to identify which sources of noise limited the fidelity of the state

preparation. The calculations also show that the fidelity depends drastically on the

chain length. In our current system, we average over an ensemble of chain lengths.

A major improvement would be the use of a quantum gas microscope where chains

of specific lengths can either be prepared or post-selected. In addition, the effect of

holes in chains could be characterized. Longer correlated states could be created by

extending the coherence timescale by improving the stability of the microwave field and

the magnetic field and by using defect-free initial Mott insulating states.

Our results showcase adiabatic passage protocols for preparing correlated quantum

phases. With improved detection methods, our system can be used to study the

properties of entangled many-body states. As an example, in the limit Jz/Jxy → −1 the

QFI of the xy-ferromagnet is maximized with possible applications in quantum sensing.

Our protocol can be extended to preparing other many-body states since the anisotropy

of the spin Hamiltonian can be widely varied. For example, the xy-antiferromagnet can

also be prepared through adiabatic spin rotation by including a magnetic field gradient

which is ramped adiabatically. In addition, our platform can be used to develop other

state preparation protocols, e.g. counter-diabatic driving [34, 35, 36], which are faster

than adiabatic ramps and possibly superior when technical noise limits the preparation

time.
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Appendix A. Hamiltonian

Spin Hamiltonians can be realized with ultracold bosons in optical lattices in the Mott

insulator state using the tunneling between lattice sites t̃ and on-site interactions U [31].

Here we use a Mott insulator with one atom per site and two hyperfine states, which

encodes the anisotropic spin-1/2 Heisenberg model, which we have implemented before

[37, 6]:

H = Jz
∑
〈i,j〉

Szi S
z
j + Jxy

∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
where the sums are over nearest-neighbors. The spin parameters are:

Jz =
4t̃2

U↑↓
− 4t̃2

U↑↑
− 4t̃2

U↓↓

Jxy = − 4t̃2

U↑↓
(A.1)

and the spin matrices Sαi are defined as Szi = (ni↑−ni↓)/2, Sxi = (a†i↑ai↓+ a†i↓ai↑)/2, and

Syi =− i(a†i↑ai↓− a
†
i↓ai↑)/2.

In this model, the xy-ferromagnet is the highest excited state in the range −1 <

Jz/Jxy < 1. The gap to the nearest state increases smoothly when the anisotropy is

varied from Jz/Jxy → 1 to Jz/Jxy → −1. Also, the state itself varies in that range but

it remains in the realm if xy-ferromagnetism. For technical reasons, we took the data

for Fig.2 in the main text at 1025 G, where Jz/Jxy = −0.15 (with Jz/h = −12.8 Hz and

Jxy/h = 88.7 Hz) and the data for all other figures at 1000 G where Jz/Jxy = −0.97

with (Jz/h = −73.9 Hz and Jxy/h = 76.5 Hz). Since the gap is bigger at the latter

point, we expect our state preparation to work better there. However, no significant

difference in the return magnetization MR was observed.

The evolution of the energy level diagram as a function of sweep time is illustrated

in Fig.A1 for Jz/Jxy = −0.88. Note that the gap decreases as a function of time for this

protocol and the smallest gap is at the end of the sweep.
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Figure A1. Adiabatic sweep. (a) The sweep of the detuning δ(t) and Rabi frequency

Ω(t) of the microwave drive between |↑〉 and |↓〉. (b) The evolution of the energy level

diagram, shown here for a spin chain of 6 sites, highlighting the highest excited state

which we follow during the sweep.

Appendix B. Choice of spin states

The spin parameters Jz and Jxy can be varied by the 7Li Feshbach resonances in the

region 500-1500 G. In this region, the lowest 4 hyperfine states with mJ = −1/2 could

be suitable choices of spin states. Typically, the lowest two have been used to realize

spin models. However, here we use the second and third lowest states with |mI〉 = −1/2

and |mI〉 = 1/2 due to their lower sensitivity to magnetic field noise. These states have

a very small relative magnetic moment |µ↓−µ↑| = 2.76 kHz/G, compared to ∼ 30kHz/G

for the lowest two hyperfine states. The magnetic field noise in our system is ∼ 3.5 mG,

corresponding to stability at the 10−5 level, and resulting in 10 Hz noise, which is ∼ 7.5

times smaller than the superexchange timescale.

To determine the scattering lengths for these energy levels, we use interaction

spectroscopy, as in [38], to measure the energy differences Ubc − Ubb and Ucc − Ubc,

where we use spectroscopic notation, shown in Fig.B1(a). The scattering length as a

function of magnetic field B can be approximated as a parabola:

a(B) = abg

(
1−

∑
i

∆i

B − Bi,0

)
(B.1)

where abg is the background scattering length, Bi,0 are the magnetic fields of the

Feshbach resonances and ∆i are the widths of the resonances. Using the data for the bb

channel from [38], we can determine the parameters for the bc and cc channels. This is

summarized in Table B1.

The scattering lengths of the relevant hyperfine states are plotted in Fig. B1(b) and



Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms14

Channel abg/a0 ∆ (G) B0 (G)

bb [38] −23.0(1.4) −14.9(0.9) 845.45(02)

bb [38] −23.0(1.4) −172.7(10.0) 893.84(18)

bc −35.4(2.3) −56.9(3.7) 938.11(0.05)

cc −34.3(4.9) −104.3(10.4) 1036.19(0.56)

Table B1. Feshbach resonance parameters for the b and c states of 7Li from interaction

spectroscopy in a 3D Mott insulator at 35ER.

the corresponding spin parameters are plotted in Fig. B1(c).
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Figure B1. Feshbach resonances in 7Li for the b and c states. (a) Energy differences

Ubc − Ubb and Ucc − Ubc as measured by interaction spectroscopy of an n=2 Mott

Insulator at a lattice depth of 35 ER. (b) Scattering lengths as a function of magnetic

field. (c) Parameters of the XXZ Hamiltonian as a function of magnetic field. The

dashed line at 1000 G indicates the point where the data is taken except for the data

in Fig.2 of the main text, which is taken at 1025 G (dotted line).

Appendix C. State-selective imaging

In this paper we use two different imaging techniques. For the data in Fig.2, we use

standard absorption imaging, in which the two states are imaged separately, since the

imaging frequencies differ by ∼ 200 MHz. This requires repeating the experimental

sequence in order to image each state, which requires longer experimental times and is

sensitive to shot-to-shot atom number fluctuations. Therefore, for the data in all other

figures, we implemented a more efficient technique, using Stern-Gerlach imaging, in

which the two states are separated in space and can be imaged at the same time. Since

the spin states have similar magnetic moments at high field, in order to separate them
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spatially, we map them to their low-field counterparts. We transfer the population

in the |↓〉 = |1/2,−1/2〉 to |a〉 = |3/2,−1/2〉 via a Landau Zener sweep (Fig. C1).

This is possible because the energy differences between the different pairs of hyperfine

states at these magnetic fields are significantly different, so that the different transitions

can be spectroscopically distinguished. Now the two states map to the low-field states

|a〉 → |F,mF 〉 = |1,−1〉 and |↑〉 → |F,mF 〉 = |1, 1〉, which have a relative magnetic

field moment of 1.4 MHz/G.

In order to measure the populations in each of these states, we quickly ramp all

lattice arms to 35ER, lower the magnetic field in 10 ms to about 5 G. We apply a

magnetic field gradient of 50 G/cm, lower the lattice arm in the direction of the magnetic

field gradient to 0 and the other two arms to 13ER and let the atoms expand. This

results in two spatially separated clouds corresponding to the original spin states. We

calibrate the relative number of atoms in the spin states by driving Rabi oscillations

between the two spin states at high and at low fields. The oscillation amplitude for the

two coupled spin states corresponds to the same atom number.
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Figure C1. Stern-Gerlach imaging. First, at high field, the population in the |↓〉
(blue) is transferred to the lowest hyperfine state by a Landau-Zener transfer. Then,

the field is lowered to ∼ 5 G, where the differential magnetic moment between the two

states is large. A magnetic field gradient separates the atoms in the two states after

the lattice depths are ramped down.

Appendix D. Sweep parameters

We explored two types of sweeps: piece-wise linear (used for the data in Fig.2) and

exponential (used for all other figures). We find no significant difference between the

two sweeps when the timescales of the two are matched. The optimized linear sweeps

and the optimized exponential sweeps are plotted in Fig. D1(a-b).

Fig.D1(c) shows the average return magnetization MR as a function of the length of

the Rabi frequency sweep for both piece-wise linear and exponential pulses. In both cases

we start with the maximum Rabi frequency Ω0 = 19.3 Jxy/h. For the piece-wise linear

sweeps only the length of the second linear part is varied. The return magnetization is

about 0.3 in both cases.
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Figure D1. Sweep parameters: (a) detuning and (b) Rabi frequency sweeps showing

the optimized piece-wise linear sweep used in Fig.2 in the main text (blue) and the

optimized exponential sweep used in all other figures (red). (c) Dependence of the

return magnetization MR on the total length of the Rabi frequency sweep for (blue)

piece-wise linear sweeps and (green) exponential sweeps (green data in Fig.3(a) in the

main text).

Appendix E. Distribution of chain lengths

In order to achieve deep lattices, we focus the lattice beams to 125 µm 1/e2 radius. This

curvature leads to a considerable trapping potential which gives the Mott insulator a

spherical shape. This leads to a distributions of chains with different lengths and to

some isolated atoms at the edges of the sample. As we have discussed in Supplementary

Fig. 10 of [6], this results in the following distribution: For N = 6000 atoms in the Mott

insulator, the maximum chain length is Lmax = 21aL, where aL = 532 nm is the lattice

spacing. The average chain length is Lavg = (3/4)Lmax = 16aL and the total number

of chains is π(Lmax/2aL)2 = 350. This distribution of chain lengths complicates the

optimization of the adiabatic protocol since its performance depends on chain length.

Appendix F. Characterization of isolated particles

A source of error in the measurement of the return magnetization is the presence of

isolated particles at low lattice depths. These could be thermal atoms from imperfect

state preparation or isolated particles at the edges of the cloud, where, due to the lattice

curvature, the energy difference between neighboring sites ∆ > 4t̃. Since they behave

as single particles, their presence will artificially increase the return magnetization at

low lattice depths. This is due to the different detunings at which 〈Sz〉 = 0, i.e. the

spins are in the xy-plane, which is due to the fictitious magnetic field at low lattice

depths (Fig 1(c)). At deep lattices for single spins 〈Sz〉 = 0 for δ
(s)
f = 0 and at 11ER for
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coupled spins δ
(c)
f = −0.15 kHz. Therefore, for ideal sweeps, MR → 1 for single spins at

the resonance of the coupled spins δ
(c)
f .

This effect can be used to estimate the fraction of single particles at low lattice

depths by measuring the return magnetization MR(δ = 0) at low lattice depths at

δ
(s)
f = 0. MR(0) is the sum of M

(s)
R (0) = 0 for single particles and M

(c)
R (0) 6= 0 for

coupled spins. More generally:

MR(δ) = αsM
(s)
R (δ) + (1− αs)M (c)

R (δ) (F.1)

where αs is the fraction of single particles present.

This is shown in Fig.F1. For deep lattices (orange), the return magnetization at zero

detuning (dashed line) is 0. At shallower lattices, the dip of the return magnetization at

zero detuning signals the presence of isolated particles. By varying the preparation

protocol, the number of single particles can be increased. The Mott insulator is

created by loading a Bose-Einstein condensate into an optical lattice. We can vary the

condensate fraction, thus increasing the thermal atoms and holes in the Mott insulator.

We can estimate the fraction of isolated atoms by using Eq.(F.1) and subtracting a

fraction of a fit of the 35ER data. Note that the width of the 35ER data is limited

by magnetic field noise, estimated to 3.5 mG rms. For lower initial condensate fraction

(dark blue points), this gives us a single-atom fraction of approximately 30%. For

higher initial condensate fraction (dark blue points), this gives us a single-atom fraction

of approximately 8 − 10%. Therefore, the measured MR could be too high by at most

10%. Improved detection methods, such as a quantum gas microscope, could give a

better picture.
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Figure F1. Effects of single atoms on MR. Isolated atoms at 35ER (orange points)

or coupled atoms at 11ER with lower (dark blue) or higher (light blue points) initial

condensate fraction. The solid lines are phenomenological fits to guide to the eye. The

dashed vertical line is the 〈Sz〉 = 0 point for isolated sites (35ER lattice) and the

dotted line is the 〈Sz〉 = 0 point for coupled sites in 1D chains (11ER lattice).
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Figure G1. Noise sources. Plotted are the calculated effects of detuning noise (x-

field noise) and intensity noise of the microwave field (x-field noise) on the return

magnetization MR, assuming white noise and optimized exponential ramps. Our

observed MR around 0.5 are probably limited by intensity noise.

Appendix G. Noise sources

The main sources of noise in our adiabatic protocol are detuning and intensity noise

of the microwave field, which map to noise in the z− and x−field respectively. For

individual spins, we expect noise in the z−field to be dominant. This is evident in

the dephasing of individual spins rotated to the xy−plane, as shown in Fig.2(c) in the

main text. For coupled spins, the adiabatic preparation protocol relies on the noise

being smaller than the gap to the next excited state, which is the smallest at the final

stages of the ramp in our case. Numerical simulations show the effects of detuning and

intensity noise on the return magnetization MR given our preparation protocol with

optimized ramp times and assuming white noise, Fig. G1. For the same power spectral

density, intensity noise results in a larger decrease of MR.

We estimate the power spectral density of the detuning noise by measuring the

current in the coils creating the magnetic field. We see a flat profile up to several kHz,

beyond which, due to the large inductance of the coils, fluctuations are suppressed.

We estimate that the rms-noise of 3.5 mG corresponds to power spectral density of

0.002 Jxy/h/
√

Hz, which is not limiting.

To estimate the amount of intensity noise, we measure the decay time of Rabi

oscillations of individual atoms. For Rabi oscillations in a two-level system, we can

include intensity noise in the Rabi frequency:

Ω(t) = Ω(t) + ∆Ωε(t) (G.1)

where ε(t)ε(t′) = S0δ(t− t′), which describes white noise with strength S0. For this type

of noise, the Rabi oscillations envelope will decay as e−t/τ , where τ is the characteristic
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decay time. We can then express the decay time as:

τ =
2

S0(∆Ω)2
(G.2)

and the noise strength as:

fN ≡
√

2

τ

1

Jxy/~
(G.3)

in units of Jxy/h
√

Hz where Jxy/~ = 2π 84.5 Hz. In our experiment, the decay

time increases with decreasing Rabi frequency, probably due to decreasing signal-to-

noise ratio given by the constant noise added by the power amplifier. We can put an

upper bound on the intensity noise by assuming that the decay of the Rabi oscillations

is only due to intensity fluctuations. Assuming white noise, we estimate that the

intensity noise is fN =0.0094 Jxy/h/
√

Hz for large Rabi frequencies and increases to

0.019 Jxy/h/
√

Hz at the very final stages of the ramp. Given that for optimized sweeps

a return magnetization of MR ∼ 0.5 corresponds to Rabi frequency intensity noise of

∼ 0.01 Jxy/
√

Hz, we can conclude that our experiment is mainly limited by intensity

noise in the microwave field at the final stages of the ramp.
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