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Abstract
We obtain Fredholm type formulas for partial degenerations of theta functions
on (irreducible) nodal curves of arbitrary genus, with emphasis on nodal curves
of genus one. An application is the study of ‘many-soliton’ solutions on an
elliptic (cnoidal) background standing wave for the Korteweg–de Vries (KdV)
equation starting from a formula that is reminiscent of the classical Kay–Moses
formula for N-solitons. In particular, we represent such a solution as a sum of
the following two terms: a ‘shifted’ elliptic (cnoidal) background wave and a
Kay–Moses type determinant containing Jacobi theta functions for the solitonic
content, which can be viewed as a collection of solitary disturbances on the
cnoidal background. The expressions for the travelling (group) speed of these
solitary disturbances, as well as for the interaction kernel describing the scat-
tering of pairs of such solitary disturbances, are obtained explicitly in terms
of Jacobi theta functions. We also show that genus N+ 1 finite gap solutions
with random initial phases converge in probability to the deterministic cnoidal
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wave solution as N bands degenerate to a nodal curve of genus one. Finally,
we derive the nonlinear dispersion relations and the equation of states for the
KdV soliton gas on the residual elliptic background.

Keywords: solitons, soliton gas, integrable PDE, Korteweg-de Vries equation
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1. Introduction and results

The Korteweg–de Vries (KdV) equation

ut+ uxxx+ 6uux = 0, u= u(x, t) (1.1)

is historically the first equation shown [30] to admit solitary waves. The simplest such solution
is the single ‘soliton’ (solitary wave) solution

u(x, t) =
|b|/2

cosh2
(√

|b|x−|b|
3
2 t+ϕ

2

) , (1.2)

which is a simple traveling wave moving to the right with speed v= |b|, where ϕ ∈ R is an
arbitrary constant. The parameter b< 0 corresponds to the unique eigenvalue of the Sturm–
Liouville operator (stationary Schrödinger equation with potential −u(x,0))

−f ′ ′(x)− u(x,0)f(x) =
b
4
f(x), f ∈ L2(R). (1.3)

If f is the Jost solution, then the associated norming constant γ and shift ϕ are given by γ =

∥ f∥−1
2 and ϕ = 2log

(
γ2√
|b|

)
.
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This particular solution can be written suggestively as

u(x, t) = 2∂2
x ln

1+
e
√

|b|x−|b|
3
2 t+ϕ

2
√
|b|

 . (1.4)

Despite the equation being nonlinear, KdV admitsN-soliton solutions that describe a super-
position of the simple solitons introduced above. The N-soliton solution can be concisely
described by the Kay–Moses [21] formula of Fredholm type:

u(x, t) = 2∂2
x lndet [1N+G(x, t)] , where:

Gℓm(x, t) =
√
CℓCme

ϑℓ+ϑm
2√

|bℓ|+
√
|bm|

, ϑℓ :=
√
|bℓ|x− |bℓ|

3
2 t, ℓ= 1, . . . ,N. (1.5)

Here: 1N denotes the identity matrix of sizeN;G is theN×N matrix indicated above; the para-
meters bℓ are arbitrary negative numbers, and;Cℓ, ℓ= 1, . . . ,N, are arbitrary positive numbers.
It is well known that for an N-soliton solution (1.5) the spectrum of (1.3) is {b1, . . . ,bN}; the
constant Cℓ is called a norming constant associated with bℓ, ℓ= 1, . . . ,N.

A different family is the so-called finite-gap family of solutions [8, 18], which can be
written as

u(x, t) = 2∂2
x lnτ (x, t), (1.6)

where the tau–function τ (x, t) for the finite-gap solutions is expressed in terms of the Riemann
theta function associated to underlying hyperelliptic Riemann surface. (For theN–soliton solu-
tions, the tau–function is given by the Kay–Moses determinant (1.5).)

The starting point of this work is the observation that N-soliton solutions can be obtained
from the finite-gap solutions by degenerating the hyperelliptic surface to a nodal curve of genus
zero (first observed by Its and Matveev [18]); the computation is contained essentially in the
last chapter of Mumford’s book [24], where a determinantal formula of different type was
derived (see also [19, 20, 23], where the degeneration procedure was used and a determinant
formula for the N-soliton solutions of the focusing NLS equation was obtained). In the recent
work [15], the Kay–Moses formula is recovered from the degeneration via the equivalence
with the Wronskian formula of Matveev [23].

In this paper we present a generalization of the Kay–Moses formula to the case where the
hyperelliptic curve is partially degenerated to a nodal curve of genus 1. The core of the compu-
tation is, in fact, more general; it is based on a formula (presented in appendix A) for the limit
of the Riemann theta function (with appropriate characteristics) when the curve degenerates
to a nodal curve whose resolution has an arbitrary genus g.

A formula for the partial degeneration can also be found in the monograph [2] (chapter 4, p
138) in the context of the nonlinear Schrödinger equation). This formula provides a different,
not determinantal description of the degeneration (see theorem 2.2 below), which also could
be used to study the scattering of the nonlinear Schrödinger equation (NLS) solitons on the
cnoidal background. We now describe the setting of the problem.

Consider the real elliptic curve

w2 = 4z3 − g2z− g3 = 4(z− e1)(z− e2)(z− e3), e3 < e2 < e1, e1 + e2 + e3 = 0 (1.7)

with half-periods

ϖ1 :=

ˆ e2

e3

dz

2
√
(z− e3)(z− e2)(z− e1)+

∈ R+, (1.8)
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ϖ3 :=

ˆ e2

e1

dz

2
√
(z− e3)(z− e2)(z− e1)

∈ iR−, (1.9)

where the radical is chosen with branchcuts [e3,e2]∪ [e1,∞) and with the determination such
that it is in iR− in the gap [e2,e1]. Then the stationary cnoidal wave solution (genus one finite-
gap or one-phase nonlinear wave solution) is given by

u(x, t) = 2∂2
x lnτ (x, t) = 2∂2

x ln

[
e−

ζ(ϖ3)
8ϖ3

x2
θ3

(
x

4iϖ3
, τ

)]
, (1.10)

where τ :=ϖ1/ϖ3 ∈ iR+, and θ1,2,3,4(β,τ ) denote the standard Jacobi elliptic theta functions.
Note that the choice e1 + e2 + e3 = 0 in (1.7) is made without loss of generality. If ũ(x, t)

is a solution of (1.1) corresponding to the elliptic curve with ẽ1 + ẽ2 + ẽ3 = v, then using the
Galilean symmetry of (1.1) ũ(x, t) = u(x− 2vt, t)+ v

3 , where u is a solution of (1.1) associated
with an elliptic curve with branchpoints e1,e2,e3 satisfying (1.7). In this way we can obtain
any cnoidal travelling wave solution from the family of stationary cnoidal solutions.

Choose L points bj ∈ (−∞,e3), j = 1, . . . ,L and N− L points bj ∈ (e2,e1), j = L+
1, . . . ,N. These points represent the centers of O(ε), ε→ 0+, fast shrinking bands of some
genus N+ 1 hyperelliptic Riemann surfaceRN(ε), see figure 1. If N is fixed, the rate of decay
of the shrinking bands is not essential. (But in the case of soliton gases, where N→∞ (see
below), ε is linked with N and the rate of decay of the bands is important.)

Let Θ be the Riemann theta function [13] on RN(ε):

Θ(X;Ω) :=
∑

ν∈ZN+1

eiπν⊺Ων+2iπν⊺X, X ∈ CN+1, (1.11)

where Ω=Ω(ε) is the Riemann period matrix (our choice of Aj and Bj cycles is shown
on figure 5). Let us set X= [ψ1, . . . ,ψN,β]

⊺ ∈ CN+1. Our main observation, see theorem 2.2,
states that in the limit ε→ 0 the Riemann theta function

lim
ε→0

Θ

(
X− 1

2
Ω(ε)u;Ω(ε)

)
= det [1N+G]θ3 (β−A) , (1.12)

where the shift A depends only on b1, . . . ,bN, and the N×N matrix G depends on b1, . . . ,bN
and also on X. The limiting elliptic curve (1.7) with N pairs of identified points b1, . . . ,bN (on
both sheets) will be denoted by RN(0).

The factorization (1.12) represents the limiting Riemann theta function as a product of Kay–
Moses type determinant and the (shifted) Riemann theta function θ3 on the residual elliptic
background RN(0). It is a direct generalization of Mumford’s approach to the case when all
but one bands of the Riemann surface are shrinking as ε→ 0 and, thus, in the limit, one obtains
anN-soliton solution to the KdV on the residual (elliptic) background. In appendix A this result
is generalized to an arbitrary hyperelliptic residual background.

Our next main result, theorem 2.5, states that

u(x, t) = 2∂2
x lnτ (x, t) with τ (x, t) := e−

ζ(ϖ3)
8ϖ3

x2 det [1N+G(x, t)]θ3

(
x

4iϖ3
−A

)
(1.13)

is a solution to the KdV (1.1), where ζ denotes the Weierstrass zeta function on the elliptic
curve (1.7) and the x, t dependence of the vector X, which is part of G, is defined in terms of
the limiting quasi-momentum and quasi-energy meromorphic differentials onRN(ε) as ε→ 0,
see theorem 2.5 for details. Thus,

u(x, t) = 2∂2
x lndet [1N+G] + 2∂2

x lnθ3

(
x

4iϖ3
−A

)
− ζ(ϖ3)

2ϖ3
, (1.14)
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Figure 1. The position of hot (red), j= 1,. . .L, and cool (blue), j= L+1,. . .,N, points bj
of discrete spectra, relative to the spectral bands [e3,e2]∪ [e1,∞) of the elliptic back-
ground. These can be viewed as the degeneration of small bands—centered at each dis-
crete spectral point—on a higher genus surface.

i.e. up to a constant, solutions of KdV describing the N solitons on the elliptic background can
be represented as a sum of the Kay–Moses type determinant ‘tweaked by the elliptic back-
ground’ and the elliptic background solution 2∂2

x lnθ3(y) ‘shifted by the N solitons’.
Proofs of theorems 2.2 and 2.5, including the appropriate notations from algebraic geo-

metry, are the subject of section 2. Important steps in these proofs are the calculation of the
Riemann period matrixΩ, the normalized holomorphic differentials and the quasi-momentum
and quasi-energy differentials in the limit ε→ 0. Using results of section 2, we then calculate
the velocity of a single soliton on the elliptic background (section 3) and the phase shift of two
interacting solitons on the elliptic background (section 4). Here we want to mention that the
solitons corresponding to bj < e3, see figure 1, appear to have larger than the cnoidal wave amp-
litude and positive speed (bright-and-forward or simply hot), see figure 3. On the other hand,
the solitons corresponding to bj ∈ (e2,e3) appear to have smaller than the cnoidal wave amp-
litude and negative speed (dim-and-retrograde or simply cool). The smaller than the cnoidal
wave amplitude of the soliton can be identified with the dip in the cnoidal wave oscillations
clearly visible on figure 2; for some early works about solitons on the elliptic background see,
for example, [22, 29].

Dim (and retrograde) solitons, also mentioned as solitary disturbances, have negative group
velocity, i.e. they are moving from the right to the left, which runs contrary to the common
understanding that the solitons for the KdV equation (1.1) are moving left to right. However,
the motion in the opposite direction is the result of the interaction between the soliton and
the background. A similar phenomenon happens in KdV soliton gases on zero background,
where the faster (and taller) solitons are constantly pushing back the slower (and smaller)
solitons due to the phase shift of their pair-wise interaction, so that the effective velocity of
sufficiently small solitons is negative, see [5]. Numerical observation of KdV solitons moving
in the negative direction was first reported in [25].

In section 5 we use the results described above to derive the main equations for a KdV
soliton gas on the elliptic background, such as the nonlinear dispersion relations (NDRs) and
the equation of state. The concept of a soliton gas, which can be traced back to some ideas of
Zakharov [31] and Venakides [28], was formulated by El [9]. A soliton gas can be considered
as a large N→∞ limit of an ensemble of N solitons, viewed as particles with two-particle
interactions. Alternatively, it can be viewed as a specific (thermodynamic) limit of genus N
finite-gap solutions when N→∞ and simultaneously the size of all (or all but finitely many)
bands go to zero exponentially fast in N. Thus, we are interested in the large N limit of various
quantities associated with a hyperelliptic Riemann surface RN(e−νN), where ν > 0. In this
setting the NDR become simply the thermodynamic limit of the Riemann bilinear identities on
RN(e−νN), which involve the quasi-momentum and quasi-energy meromorphic differentials

3626
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on one side and the normalized holomorphic differentials on the other. Many details about
soliton gases for the NLS and KdV equations can be found in [9, 11], see also [10, 27]. In
particular, the thermodynamic limits of the NDR were derived in [11] for the focusing NLS
soliton (all bands are shrinking) and breather (all but one band are shrinking) gases. In both
cases, the genus of the residual (degenerate) surface was zero. In section 5 we make the next
step in this direction by deriving the NDR and the equation of state for a KdV gas on the genus
one background. In light of appendix A, it is quite clear that one can use the same technique
to derive the NDR for a KdV gas on backgrounds of any finite genus. We want to mention that
the error estimate of the limiting NDR is outside the scope of this paper, although some partial
results related to this issue in the context of the NLS soliton gas can be found in [27].

In the appendices A and B we respectively state and sketch the proof of theorem 2.2 for
any genus g⩾ 1 background (residual) Riemann surface, as well as prove that any solution
described by theorem 2.5 converges to the background elliptic solution with respect to some
natural probability measure uniformly on compact subsets of (x, t).

The following theorem summarizes the main results of sections 2–4. Its proof follows from
theorems 2.2, 2.5 and 4.2. Proof of (1.16) requires repeated use of theorem 4.2.

Fix b1 < b2 < .. . < bL ∈ (−∞,e3) and bL+1 < .. . < bN ∈ (e2,e3). Let ℘(s) denote the
Weierstrass function on the elliptic curve (1.7). Define implicitly βk satisfying bk = ℘(2ϖ3βk),
k= 1, . . . ,N, and Re(βk) ∈ [0,1), Im(βk) ∈ {0, Imτ/2}. Denote by β⋆k := 1−βk+χτ, the
second pre-image of each bk in the fundamental rectangle, where χ= 1 if Imβ = Imτ/2 and
χ= 0 if Imβ = 0.

Theorem 1.1.[1] The solution of the KdV equation (1.1) with N solitons on a cnoidal back-
ground satisfying (1.7) is given by

u(x, t) = 2∂2
x lndet [1N+G] + 2∂2

x lnθ3

(
x− x0
4iϖ3

−A
)
− ζ(ϖ3)

2ϖ3
,

where the background shift A :=
1
2

N∑
j=1

(βj−β⋆j ),

Gℓ,m :=

θ3

(
βℓ−β⋆m+

x− x0
4iϖ3

−A
)

θ1 (βℓ−β⋆m)θ3

(
x− x0
4iϖ3

−A
)√

CℓCme
iπ(ψℓ+ψm), ℓ,m= 1, . . . ,N,

ψj(x, t) := (x− x(0)j )
Pj
2π

+ t
Ej
2π
, Ej :=−1

2
℘ ′(2ϖ3βj), Pj :=

1
2ϖ3

θ ′
1 (β;τ)

θ1 (β;τ)

∣∣∣∣∣
β=βj

β=β⋆
j

(1.15)

and the norming constants Cj are positive numbers given explicitly in theorem 2.2 and

x(0)j ,x0 ∈ R are arbitrary shifts.

[2] The points βj ∈ (0, 12 ), j = 1, . . . ,L correspond to right-propagating solitons (solitary dis-
turbances) whereas the points βj ∈ (0, 12 )+

τ
2 , j⩾ L+ 1 correspond to left propagating

solitons (solitary disturbances).
[3] The profile of such solutions for t→±∞ consists of a cnoidal stationary background (with

period X= 4iϖ3 ∈ R+) modulated by solitons (solitary disturbances) that are localized
around the lines xj = Vjt+Φ

(±)
j . Each Vj =−Ej

Pj
gives the modified velocity of the solitons

on the elliptic background; the order of velocities is preserved, i.e. V1 > V2 > .. . . The
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Figure 2. Plot of a dim retrograde soliton at three different times; the parameters of the
elliptic curve are as in figure 10 and β = 0.24+ τ

2 (c≃ 1.50356). The group velocity
calculated with formula (3.4) is V≃−8.99139. In the left/right pane the time is set to
∓10/|V| to see that the disturbance has travelled exactly ten units (and towards the left).

Figure 3. Plot of a bright forward soliton at three different times; the parameters of
the elliptic curve are as in figure 10 and β= 0.30 (b≃−5.3595). The group velocity
calculated with formula (3.4) is V≃ 6.8273. In the left/right pane the time is set to
±10/|V| to see that the disturbance has travelled exactly ten units.

phase shifts Φ(±)
j depend on the norming constants, but their averaged difference (the

averaged total shift of the jth soliton) does not:

〈
Φ

(+)
j

〉
−
〈
Φ

(−)
j

〉
=

2
|Pj|

∑
k>j

ln

∣∣∣∣θ1(βj−β⋆k )

θ1(βj−βk)

∣∣∣∣− 2
|Pj|

∑
k<j

ln

∣∣∣∣θ1(βj−β⋆k )

θ1(βj−βk)

∣∣∣∣ , (1.16)

where the average is over the period of the cnoidal wave (see description in section 4 and
figures 2–4).

Remark 1.2. Part [3] in theorem 1.1 shows that solitons on the elliptic background affect a
phase shift in the cnoidal background. A consequence of this fact is that the solitary disturbance
is not localized. For N= 1 this can be directly verified by computing the asymptotic behavior
of the solitonic disturbance 2∂2

x ln(1+G) as x→±∞. One finds that

2∂2
x ln(1+G)∼

{
0 x→+∞,

2∂2
x lnθ3

(
β1 −β⋆1 +

x−x0
4iϖ3

−A
)
− 2∂2

x lnθ3
(

x−x0
4iϖ3

−A
)

x→−∞.
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Figure 4. Plot of the two–soliton solution with both a bright and a dim soliton at times
−30/vhot,0,30/vhot. The parameters of the two solitons are the same as in figures 2
and 3. As expected, the dim soliton travels to the left and the bright one to the right with
their own group velocities.

2. Generalities about nodal hyperelliptic and elliptic curves

We consider the degenerating Riemann surface described by the affine equation

Y2 = 4(z− e3)(z− e2)(z− e1)
N∏
j=1

(z− bj− ε)(z− bj+ ε) (2.1)

where (see figure 5)

b1 < b2 < · · ·< bL < e3 < e2 < bL+1 < · · ·< bN < e1; (2.2)

Let us introduce the elliptic curve (in Weierstrass form), see, for example, [1, 17], or any
standard reference:

w2 = 4(z− e3)(z− e2)(z− e1). (2.3)

The determination ofW(z) := 2
√
(z− e3)(z− e2)(z− e1) is chosenwith the branch-cuts along

[e3,e2]∪ [e1,∞) so that

W(z+) ∈ R−,z ∈ [e1,∞], W(z+) ∈ R+, z ∈ [e3,e2], (2.4)

W(z) ∈ iR−, z ∈ [e2,e1], W(z) ∈ iR+, z ∈ (−∞,e3]. (2.5)

We denote the two half periods ϖ3,ϖ1 and the modular parameter τ as followsˆ e2

e3

dz

2
√
(z− e3)(z− e2)(z− e1)+

=ϖ1 ∈ R+, (2.6)

ˆ e2

e1

dz

2
√
(z− e3)(z− e2)(z− e1)

=ϖ3 ∈ iR−, (2.7)

τ =
ϖ1

ϖ3
∈ iR+. (2.8)

With these understandings we define the Abel map by

β =

ˆ z

−∞

dz
2ϖ3W(z)

. (2.9)

3629



Nonlinearity 36 (2023) 3622 M Bertola et al

Figure 5. The choice of cycles around the main bands and around the shrinking bands
near the hot (far left) and cool (middle gap) solitons.

In particular the images of e3,e2,e1 are τ
2 ,
τ+1
2 , 12 , respectively. We recall the definitions and

the main properties of the fundamental Weierstrass ζ and ℘ functions:

ζ(s) :=
1
s
+

′∑
n,m

(
1

s− 2mϖ3 − 2nϖ1
+

1
2mϖ3 + 2nϖ1

+
s

(2mϖ3 + 2nϖ1)2

)
, (2.10)

ζ(s+ 2ϖ3) = ζ(s)+ 2ζ (ϖ3) , ζ(s+ 2ϖ1) = ζ(s)+ 2ζ (ϖ1) , (2.11)

℘(s) :=−ζ ′(s) =
1
s2

+
′∑

n,m

(
1

(s− 2mϖ3 − 2nϖ1)2
− 1

(2mϖ3 + 2nϖ1)2

)
, (2.12)

℘(ϖ1) = e1; ℘(ϖ3 +ϖ1) = e2; ℘(ϖ3) = e3, (2.13)

(℘ ′)2 = 4(℘− e1)(℘− e2)(℘− e3) . (2.14)

We will also need the Jacobi theta functions with the specific normalization below, which
differs from the one in DLMF [6, 20.2(i)], by a factor of π; for example, for us here θ3 is
1–periodic instead of π periodic.

θ(β) = θ3(β;τ) :=
∑
n∈Z

eiπ n
2τ+2iπ nβ , (2.15)

θ1(β) = θ1(β;τ) :=
∑
n∈Z

eiπ(n−
1
2 )

2
τ+2iπ(n− 1

2 )(β−
1
2 ). (2.16)

We emphasize that Jacobi elliptic functions are naturally functions of the variable β on the nor-
malized Jacobian J with quasi-periods 1, τ = ϖ1

ϖ3
, while Weierstrass’ ℘,ζ are doubly (quasi)

periodic in the unnormalized variable s and have periods 2ϖ3,2ϖ1: for this reason when mix-
ing them in the same formula one should bear in mind that s= 2ϖ3β to translate from one to
the other.

2.1. Terminology

The Jacobian of the elliptic curve (2.3) is the torus J := C/Z+ τZ and it provides the uniform-
ization (i.e. the parametrization) of the algebraic curve (2.3) via the Weierstrass’ substitutions
w= ℘ ′(2ϖ3β), z= ℘(2ϖ3β) as per (2.14). Points in the Jacobian J will be represented by
points in the fundamental domain

L :=

{
Reβ ∈ [0,1), Imβ ∈

[
0, Im(τ)

)}
, (2.17)
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with β= 0 corresponding to the point at infinity. We refer to (x,z) in (2.3) as theWeierstrass’
representation. The three points e1,e2,e3 correspond to the half periods τ2 ,

τ+1
2 , 12 (respectively,

modulo the lattice Λτ := Z+ τZ). This is a slightly non-standard correspondence due to the
choice of A ,B cycles.

The points bj correspond to pairs of pre-images in the fundamental domain L of the
Jacobian J:

bj = ℘(2ϖ3βj) = ℘(2ϖ3β
⋆), βj ∈

{(
0, 12
)

1⩽ j ⩽ L (hot)
τ
2 +

(
0, 12
)

L+ 1⩽ j ⩽ N (cool),
(2.18)

where (see figure 7)

β⋆j = 1−βj+χτ, χ =

{
0 1⩽ j ⩽ L

1 L⩽ j ⩽ N.
(2.19)

The Aj,Bj cycles on the curve (2.1) are defined in the following way (see figure 5):

− for the bands around the hot solitons bj the Aj cycle is a small circle around the band and the
Bj cycle is a contour from the right end of the small band to e3 of the main band (on both
sheets);

− similarly, for the bands around the cool solitons bL+j the Aj cycle is a small circle around
the band and the Bj cycle is a contour from the left end of the small band to e2 of the main
band;

− the cycles of the elliptic curve will be numbered N+ 1 and the AN+1 cycle and BN+1 as
shown in figure 5.

2.2. General properties of nodal curves and their period matrix

We refer to chapter III of Fay for a general approach but here we give a perfunctory account
of the ideas, tailored to the problem at hand, namely, that the limiting nodal curve is an elliptic
curve.

Consider, for guidance, the following example

y2 = (z2 − ε2)4(z− e1)(z− e2)(z− e3), e1 + e2 + e3 = 0. (2.20)

As ε→ 0 the curve becomes a nodal elliptic curve; its resolution consists of an elliptic curve
(represented in the canonical Weierstrass form)(

y
z

)2

= 4(z− e1)(z− e2)(z− e3). (2.21)

The functions y,z on this elliptic curve can be parametrized as follows in terms of the Weier-
strass’ functions ℘,℘ ′:

z= ℘(s), y= ℘(s)℘ ′(s) =
1
2

(
℘(s)2

) ′
. (2.22)

This means that the algebra of these functions separate all points of the elliptic curve except
the two zeros of ℘; in other words the nodal curve is the result of identifying one pair of points
in the limiting elliptic curve.
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Figure 6. The curve (2.20) before degeneration; the two small cuts are around the
images of the point (Z= 0,Y=∓4e1e2e3), and their two sides are identified as sug-
gested by the color-coding.

The limiting elliptic curve without the identification of the two points is an example of
resolution of a nodal curve; if we have several nodes the procedure is precisely the same:

y2 =
N∏
j=1

(z−ψj)
24(z− e1)(z− e2)(z− e3) ⇒ y=

N∏
j=1

(℘(s)−ψj)
2
℘ ′(s), z= ℘(s). (2.23)

In the resolved elliptic curve we now have N pairs of pairwise identified points; in particular
the two points in each pair are interchanged by the elliptic involution (if they were in general
positions, then this would not be the resolution of a hyperelliptic nodal degeneration). Let us
denote by βj,β⋆j these pairs in the Jacobian, within the same fundamental domain (2.17).

What remains of the corresponding Aj,Bj cycles?
Even before degeneration we can represent the hyperelliptic curve as the elliptic curve with

small branch cuts around βj,β⋆j , pairwise identified, see for example figure 6. The Aj cycle is
represented by a small counterclockwise circle around one of the two pre-images of the node
(say, βj), while what survives of the Bj cycle is a path joining the two pre-images of the given
node in the resolved curve.

If we have several nodes, of course the Bj cycles should be chosen as mutually non-
intersecting paths joining the two pre-images of each node and staying within the same fun-
damental domain (2.17).

What happens then to the corresponding normalized holomorphic differentials, ωk, k=
1, . . . ,N+ 1, in the degeneration process? As explained better in [13], they become the (unique)
third kind differentials on the resolved curve with two simple poles at the pre-images βj,β⋆j of
the nodes bj, residues 1

2iπ at βj and− 1
2iπ at β⋆j , and vanishing A -period on the resolved curve.

They have the following form

ρβj,β⋆
j
:=

1
2iπ

d
dβ

ln
θ1(β−βj)

θ1(β−β⋆j )
dβ. (2.24)

The evident advantage of formulas such as (2.24) is that the differentials appear as total derivat-
ives of (multivalued) functions on the curve and hence the integration is a pleasant experience.
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Figure 7. The points βj in the Jacobian corresponding to the hot (red) solitons and cool
(blue) solitons, and their corresponding involutions. Indicated in bracket the correspond-
ing points on the elliptic curve.

We mention here that such formulas can be written for any genus Riemann surface (hyperel-
liptic or not) in terms of Riemann theta functions and in fact all the considerations here translate
with no substantial difference to higher genus.

The matrix of B periods will have, in the off–diagonal entries, the following limit

Ωℓ,k =

˛
Bℓ

ωk →
ˆ βℓ

β⋆
ℓ

ρβk,β⋆
k
=

1
2iπ

ln
θ1(β

⋆
ℓ −β⋆k )

θ1(β⋆ℓ −βk)

θ1(βℓ−βk)

θ1(βℓ−β⋆k )
, (2.25)

where ωk denotes the kth normalized holomorphic differential, see figure 5. The above formula
determines Ωℓ,k only up to integers; this phenomenon, rather than a nuisance, is a feature. It
simply reflects the fact that we can add to a period matrix Ω an arbitrary integer matrix by
adding to the B–cycles an integer combination of the A –cycles.

We also mention that the symmetry in the exchange ℓ,k is a manifestation of Weil recipro-
city or as a consequence of Riemann bilinear relations.

If now dβ denotes the normalized differential on the resolved elliptic curve, then in the
limit we have ωN+1 → dβ. It follows that the limit of Ωℓ,N+1 tends to the difference of the
Abel maps of the pairs βℓ,β⋆ℓ :

Ωℓ,N+1 =

˛
Bℓ

ωN+1 →
ˆ βℓ

β⋆
ℓ

dβ = βℓ−β⋆ℓ =

˛
BN+1

ρβℓ,β⋆
ℓ
. (2.26)

In this case, the symmetryΩℓ,N+1 =ΩN+1,ℓ in the ε→ 0 limit is simply a consequence of the
Riemann bilinear identity on the elliptic curve.

We mention here that if the resolved curve were of higher genus, at this point we would
simply obtain the full Abel map of the divisor of degree zero Dℓ = βℓ−β⋆ℓ , ℓ= 1, . . . ,N.

2.2.1. Properties of the period matrix. With the choice of A /B cycles made above (see
figure 5) the matrix Ω, of normalized B–periods satisfies

Ωℓ,m =

˛
Bℓ

ωm =Ωmℓ, ℓ,m= 1 . . .N+ 1, (2.27)

ΩN+1,ℓ =Ωℓ,N+1 ∈ R, ΩN+1,N+1 ∈ iR+, Ωℓ,m ∈ iR, ℓ,m⩽ N. (2.28)
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We can summarize the discussion of the previous paragraph in the following lemma.

Lemma 2.1. As ε→ 0we have that

ωj →
1
2iπ

d
dβ

ln
θ1(β−βj)

θ1(β+βj− 1)
dβ, j= 1, . . . ,L (hot solitons);

ωj →
1
2iπ

d
dβ

ln
θ1(β−βj)

θ1(β+βj− τ − 1)
dβ, j= L+ 1, . . . ,N (cool solitons); (2.29)

ωN+1 → dβ. (2.30)

The matrix of normalized B–periods has the following limits:

1. The ‘hot-hot’ part (j, ℓ= 1, . . . ,L) is given by

Ωj,ℓ =

˛
Bj

ωℓ →
1
iπ

ln

∣∣∣∣θ1(βj−βℓ)

θ1(βj+βℓ)

∣∣∣∣ j ̸= ℓ. (2.31)

2. The ‘cool-cool’ part (j, ℓ= L+ 1, . . . ,N) is given by

Ωj,ℓ =

˛
Bj

ωℓ → =
1
iπ

ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj+βℓ− τ)

∣∣∣∣ j ̸= ℓ. (2.32)

3. The ‘hot-cool’ (j = 1, . . . ,L, ℓ= L+ 1, . . . ,N) (or ‘cool-hot’) part is given by

Ωj,ℓ =

˛
Bj

ωℓ → =
1
iπ

ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj+βℓ− τ)

∣∣∣∣ , j ∈ {1, . . . ,L}, ℓ ∈ {L+ 1, . . . ,N}. (2.33)

4. The hot and cool solitons interact with the finite genus background by

Ωℓ,N+1 → 2βℓ− 1 ∈ R, ℓ= 1, . . . ,L, (2.34)

Ωℓ,N+1 → 2βℓ− τ − 1 ∈ R, ℓ= L+ 1, . . . ,N. (2.35)

5. Finally,

Ωjj = i ln
1
ε
+O(1)→+i∞, j= 1, . . . ,N; ΩN+1,N+1 → τ. (2.36)

2.2.2. The Riemann Theta function and its degeneration. Let Θ be the Riemann theta
function [13];

Θ(X;Ω) :=
∑

ν∈ZN+1

eiπν⊺Ων+2iπν⊺X, X ∈ CN+1. (2.37)

According to lemma 2.1 we partition the matrix Ω into blocks:

Ω=

[
B µ

µ⊺ ΩN+1,N+1

]
(2.38)
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where the diagonal of B diverges to +i∞ (at the rate of lnε, but this is not important here).
Recalling (2.19) the limit of the matrix Bℓ,j can be uniformly written as

Bℓ,j →
1
iπ

ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj−β⋆ℓ )

∣∣∣∣ , µℓ → βℓ−β⋆ℓ =

{
2βℓ− 1 ℓ⩽ L(hot solitons)

2βℓ− τ − 1 ℓ⩾ L+ 1(cool solitons).

ΩN+1,N+1 → τ

(2.39)

Here the different form of the involution for βℓ’s is due to the choice of fundamental
domain (2.17). With these preparations we can state and prove the main theorem:

Theorem 2.2. Let us denote u= (1,1, . . . ,1,0) ∈ CN+1, X= [ψ,β] ∈ CN+1. Then

lim
ε→0+

Θ

(
X− 1

2
Ω(ε)u;Ω(ε)

)
= det [1N+G]θ3 (β−A) , (2.40)

G= [Gℓm] =
[
θ3 (βℓ−β⋆m+β−A)

θ1 (βℓ−β⋆m)θ3 (β−A)

√
CℓCme

iπ(ψℓ+ψm)

]N
ℓ,m=1

(2.41)

where βj,β⋆j , defined in (2.18) and (2.19), are the two pre-images of bj in the Jacobian of the
resolved elliptic curve, and

A=
1
2

∑
j

(
βj−β⋆j

)
, Cℓ := θ1(βℓ−β⋆ℓ )

∏
k∈{1,...,N}

k ̸=ℓ

∣∣∣∣θ1(βk−β⋆ℓ )

θ1(βk−βℓ)

∣∣∣∣. (2.42)

Proof of theorem 2.2. The proof follows similar steps to the proof for ordinary solitons by
Mumford in [24], where, however, the author ends up with a different determinantal formula
(not a Fredholm determinant). Here we also have the added twist that at some point we need
a special identity of determinants due to Fay [13]. With the established notations and splitting
the summation integer vector ν = [n,m] ∈ ZN+1, 1= (1,1,1, . . . ,1) ∈ RN we have

Θ

(
X− 1

2
Ωu
)

=
∑
m∈Z

∑
n∈ZN

exp iπ

[
m2ΩN+1,N+1 + n⊺Bn+ 2mµ⊺n

+2

(
mβ+ n⊺ψ− 1

2
n⊺B1− m

2
µ⊺1

)]

=
∑
n∈ZN

∑
m∈Z

exp iπ

m2ΩN+1,N+1 +
∑
ℓ

(n2ℓ − nℓ)Bℓℓ+
∑′

ℓ,k

nℓ(nk− 1)Bℓk

+2m

(
µ⊺n+β− 1

2
µ⊺1

)
+ 2n⊺ψ

 .
Since Bℓ,ℓ →+i∞, in the limit only the vectors n with entries nℓ ∈ {0,1} will contribute to
the sum, while all the other being suppressed (we leave the details of the use of dominated
convergence to the reader). Thus the limit of the above sum as ε→ 0 yields (the prime on the
summation indicating that the sum is for ℓ ̸= k)
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Figure 8. A plot overlaying the two-soliton solution (red: in this case two retrograde
solitons) with the background cnoidal wave. The observable phase shift of the back-
ground that occurs from the right to the left of each solitary disturbance, is described in
theorem 4.2.

lim
ε→0

Θ

(
X− 1

2
Ωu
)

= lim
ε→0

∑
n∈{0,1}N

∑
m∈Z

exp iπ

m2ΩN+1,N+1 +
∑ ′

ℓ,k

nℓ(nk− 1)Bℓk

+2m

(
µ⊺n+β− 1

2
µ⊺1

)
+ 2n⊺ψ

]

= lim
ε→0

∑
n∈{0,1}N

exp iπ

∑ ′

ℓ,k

nℓ(nk− 1)Bℓk+ 2n⊺ψ


× θ3

(
µ⊺n+β− 1

2
µ⊺1

)
. (2.43)

We now use the results (2.25)

lim
ε→0

Θ

(
X− 1

2
Ωu
)

=
∑

n∈{0,1}N

∏ ′

ℓ,k

(
θ1(βk−βℓ)θ1(β

⋆
k −β⋆ℓ )

θ1(βk−β⋆ℓ )θ1(β
⋆
k −βℓ)

) nℓ(nk−1)
2

× e2iπ
∑

ℓ nℓψℓθ3

(
β+

∑
ℓ

(βℓ−β⋆ℓ )(nℓ− 1/2)

)
. (2.44)

Note that the expression θ1(βk−βℓ)θ1(β
⋆
k −β

⋆
ℓ )

θ1(βk−β⋆
ℓ )θ1(β

⋆
k −βℓ)

= limε→0 eiπΩℓk is a positive real number. Nowwe

equivalently sum over all possible subsets S⊂ {1,2, . . . ,g} consisting of increasing indices.
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Figure 9. The same setup as in figure 8. The top pane shows two retrograde solitons
for a large negative time (remote past); the dots indicate, for reference, the ‘position’
of the two disturbances. Both disturbances have negative velocity (move to the left);
the narrow-waist, disturbance travels with greater speed than the wider-waist disturb-
ance. In the remote future (below) the narrower disturbance has overtaken the wider
one. The circles indicate where the two disturbances would be if propagating on the
pure cnoidal background; the position of the diamonds is computed by the shift given
by the formula in theorem 4.2. The numerical values for this example are as fol-
lows: e1 = 2,e2 = 1,e3 =−3, β1 = 1/4+ τ

2 , β2 = 0.36+ τ
2 , V1 ≃−8.94427, V2 ≃

−8.4810443, ∆(β1,β2)≃−17.32, ∆(β2,β1)≃ 22.878, and the times shown above
are t± ≃±182.5586.

lim
ε→0

Θ

(
X− 1

2
Ωu
)

=
∑

S⊂{1,...,N}
S ordered

∏ ′

ℓ<k∈S

θ1(βk−βℓ)θ1(β
⋆
k −β⋆ℓ )

θ1(βk−β⋆ℓ )θ1(β
⋆
k −βℓ)

×
∏
ℓ∈S

e2iπψℓ

∏
k∈{1,...,N}

k̸=ℓ

∣∣∣∣θ1(βk−β⋆ℓ )θ1(β
⋆
k −βℓ)

θ1(βk−βℓ)θ1(β⋆k −β⋆ℓ )

∣∣∣∣ 12


× θ3

β+∑
ℓ∈S

(βℓ−β⋆ℓ )−
1
2

∑
j

(
βj−β⋆j

) . (2.45)

We therefore conclude that

lim
ε→0

Θ

(
X− 1

2
Ωu
)
=

∑
S⊂{1,...,N}
S ordered

∏ ′

ℓ<k∈S

θ1(βk−βℓ)θ1(β
⋆
k −β⋆ℓ )

θ1(βk−β⋆ℓ )θ1(β
⋆
k −βℓ)

∏
ℓ∈S

Cℓ e2iπψℓ

θ1(βℓ−β⋆ℓ )

× θ3

(
β+

∑
ℓ∈S

(βℓ−β⋆ℓ )−A

)
, (2.46)
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where we have set for brevity (the norming constants):

Cℓ := θ1(βℓ−β⋆ℓ )
∏

k∈{1,...,N}
k̸=ℓ

∣∣∣∣θ1(βk−β⋆ℓ )θ1(β
⋆
k −βℓ)

θ1(βk−βℓ)θ1(β⋆k −β⋆ℓ )

∣∣∣∣ 12 , A=
1
2

∑
(βj−β⋆j ). (2.47)

We now need the Fay identity [13, p 33]. In genus one it can be formulated as the identity (2.48)
below, where n ∈ N is arbitrary; x1, . . . ,xn, x̂1, . . . , x̂n are arbitrary points on the elliptic curve,
and E ∈ C is any value for which θ3(E) ̸= 0:

det

[
θ3 (xℓ− x̂m+ E)
θ1 (xℓ− x̂m)θ3 (E)

]n
ℓ,m=1

=
θ3

(∑
j(xj− x̂j)+ E

)
θ3 (E)

∏
j<k

θ1(xj− xk)θ1(x̂k− x̂j)

n∏
k,j=1

θ1(xj− x̂k)

. (2.48)

If we specialize to xj = βj, x̂j = β⋆j , j = 1, . . . ,N and E = β−A and let ♯(S) denote the cardin-
ality of the set S, then we obtain

θ3

(∑
ℓ∈S

(βℓ−β⋆ℓ )+β−A

)
θ3 (β−A)

∏
ℓ<k∈S

θ1(βℓ−βk)θ1(β
⋆
k −β⋆ℓ )

♯(S)∏
ℓ,k∈S

θ1(βℓ−β⋆k )

= det

[
θ3 (βℓ−β⋆m+β−A)

θ1 (βℓ−β⋆m)θ3 (β−A)

]
ℓ,m∈S

. (2.49)

The rhs of (2.49) reads

(rhs 2.49) =

θ3

(
β+

∑
ℓ∈S

(βℓ−β⋆ℓ )−A

)
θ3 (β−A)

∏
ℓ∈S

1
θ1(βℓ−β⋆ℓ )

∏
ℓ<k∈S

θ1(βℓ−βk)θ1(β
⋆
k −β⋆ℓ )

θ1(βℓ−β⋆k )θ1(βk−β⋆ℓ )
.

(2.50)

Thus we find that (2.46) becomes

lim
ε→0

Θ

(
X− 1

2
Ωu
)
= θ3 (β−A)

∑
S⊂{1,...,N}
S ordered

det

[
θ3 (βℓ−β⋆m+β−A)

θ1 (βℓ−β⋆m)θ3 (v−A)

×
√
CℓCme

iπ(ψℓ+ψm)
]
ℓ,m∈S

(2.51)

= θ3 (β−A)
∑

S⊂{1,...,N}
S unordered

1
♯(S)!

det

[
θ3 (βℓ−β⋆m+β−A)

θ1 (βℓ−β⋆m)θ3 (β−A)

×
√
CℓCme

iπ(ψℓ+ψm)
]
ℓ,m∈S

. (2.52)

This last summation is precisely the Fredholm expansion of the determinant [26] in the
statement.
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2.3. KdV tau function

In the finite-gap integration method the vector X (the argument of Riemann’s theta function)
evolves linearly with respect to x, t:

X= x
P
2π

+ t
E
2π

+X0. (2.53)

With our choices of the A ,B cycles the first N components are purely imaginary and the
last component is real. The vector X0 encodes the initial conditions and it is arbitrary (with
the same reality properties). The vectors P,E are the vectors of B–periods of second–kind
differentials on the Riemann surface (2.1):

Pℓ =
˛

Bℓ

dP; Eℓ =
˛

Bℓ

dE (2.54)

where the quasi-momentum and quasi-energy differentials are the unique differentials of the
second kind (i.e. without residues) with a single pole at ∞ of order 2 and 3, respectively, nor-
malized to have vanishingA –periods on the hyperelliptic curve, with the following prescribed
singular behaviour:

dP(z) =

(
1

4
√
z
+O

(
z−

3
2

))
dz;

˛
Aj

dP= 0, j= 1 . . .N+ 1 (2.55)

dE(z) =

(
3
4

√
z+O

(
z−

3
2

))
dz
˛

Aj

dE= 0, j= 1, . . . ,N+ 1. (2.56)

Here
√
z means the root with the branchcut along R+ and

√
z+ ∈ R−. In particular, we have

that the Abelian integrals behave as

x
ˆ

dP+ t
ˆ

dE≃ x
√
z

2
+ t

z
3
2

2
. (2.57)

The complete formula for the tau function of the KdV solution contains also [7] an exponential
as follows

τ (x, t) = e−x
2CΘ

(
xP+ tE

2π
+X0

)
, (2.58)

and the finite-gap solution of the KdV equation is given by

u(x, t) = 2
∂2

∂x2
lnτ (x, t), (2.59)

which satisfies the KdV equation with the following coefficients:

ut+ uxxx+ 6uux = 0. (2.60)

In fact, the exponential in (2.58) contains a quadratic form in all times of the hierarchy, but
this has no effect on the solution u(x, t) of KdV, due to the logarithmic differentiation in x.
However, the constant C is essential. Expressions for it can be found in [14] but we need a
different description here [3, 7] which involves the canonical bi-differential of the Riemann
surface.
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On any Riemann surface of genus g the canonical bi-differential B(p,q) is a differential in
both arguments that satisfies

1. B(p,q) = B(q,p).
2. As a differential in p, B(p,q) has a unique double pole for p= q (and viceversa), with bi-

residue 1 in the sense that for any local coordinate ξ we have

B(p,q) =
dwds

(w− s)2
(1+O(w− s)2), w= ξ(p), s= ξ(q). (2.61)

3. Integration with respect to p along theA –cycles yields zero, identically in q (and viceversa).

Formulas for this object in terms of theta functions can be found in [13], chapter II, but here
we do not need any further detailed information.

The constant C appearing in (2.58) is then given by [7]6

C=
1
2

res
p=∞

res
q=∞

√
z(q)

2

√
z(p)

2
B(p,q) =

1
2

res
q=∞

√
z(q)

2
dP(q) (2.62)

where the Riemann surface is the hyperelliptic surface of the form (2.1).
The only information that we need here is that under the degeneration of the curve the bi-

differential reduces to the corresponding bi-differential on the elliptic resolution of the limiting
curve [13], chapter IV.

Thus we need to figure out what is B(s,w) for an elliptic curve. A simple verification shows

B(s,w) =
(
℘(s−w)+

ζ(ϖ3)

ϖ3

)
dwds. (2.63)

Since z= ℘(s) = 1
s2 +O(1), we see that the above residue becomes

C=
1
8
res
s=0

res
w=0

1
sw

(
℘(s−w)+

ζ(ϖ3)

ϖ3

)
dwds=

ζ(ϖ3)

8ϖ3
. (2.64)

2.3.1. KdV evolution in the degeneration. We can identify the differentials of the quasi-
momentum and quasi-energy in the limit as ε→ 0; in fact if they are normalized to have van-
ishing A –cycles (where the A cycles are the ones around the nodal degenerations), in the
limit they tend to the corresponding differentials on the elliptic curve (the resolution of the
nodal hyperelliptic curve).

Lemma 2.3. The quasi-momentum dP and quasi-energy dE on the elliptic curve are

dP(s) =−1
2

(
℘(s)+

ζ (ϖ3)

ϖ3

)
ds=

1
2

1
(2ϖ3)2

d2

ds2
lnθ1

(
s

2ϖ3
;τ

)
⇒ (2.65)

P(s) =
ˆ s

ϖ3

dP=
1
2

(
ζ(s)− s

ζ (ϖ3)

ϖ3

)
=

1
4ϖ3

θ ′1

(
s

2ϖ3
;τ
)

θ1

(
s

2ϖ3
;τ
) (2.66)

dE(s) =−1
4
℘ ′ ′(s)ds ⇒ E(s) =

ˆ s

ϖ3

dE=−1
4
℘ ′(s). (2.67)

6 The theorem in loc. cit. is theorem 3.6.15 on page 138, stated without proof (and for the KP tau function), which is
given as a collection of exercises. The solution to these exercises is contained then in [3].
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Proof. We can express them in terms of Weierstrass elliptic functions. Since z= ℘(s) = 1
s2 +

O(1),

dP=

(
1

4
√
z
+O

(
z−

3
2

))
dz=−

(
1
2s2

+O(1)

)
ds. (2.68)

It follows that

dP=−1
2
(℘(s)−C)ds

with the constant chosen so as to have vanishing A -period:

2ϖ3C=

ˆ ϖ1+2ϖ3

ϖ1

℘(s)ds= ζ (ϖ1)− ζ (ϖ1 + 2ϖ3) =−2ζ (ϖ3) ∈ R (2.69)

where we have used (2.11). Thus the quasi-momentum is given by (2.65). Similarly

dE=
1
2

(
−3

1
s4

+O(1)

)
ds. (2.70)

Formula (2.67) then follows.

Lemma 2.4. The quasi-momenta and quasi-energies of the solitons are

Pj =

 ζ(2ϖ3βj)− 2ζ (ϖ3)βj ∈ iR+ j ⩽ L

ζ(2ϖ3βj)− 2βjζ (ϖ3)+
π i
2ϖ3

∈ iR+ j ⩾ L+ 1
(2.71)

Ej =


=−1

2
℘ ′(2ϖ3βj) =−

√
(bj− e1)(bj− e2)(bj− e3) ∈ iR− j ⩽ L

=−1
2
℘ ′(2ϖ3βj) =−

√
(cj− e1)(cj− e2)(cj− e3) ∈ iR+ j ⩾ L+ 1

(2.72)

EN+1 = 0, PN+1 =− iπ
2ϖ3

∈ R+. (2.73)

Alternatively we can write the quantities Pj in uniform way using (2.65)

Pj = P(2ϖ3βj)−P(2ϖ3β
⋆
j ) =

1
4ϖ3

θ ′1 (βj)
θ1 (βj)

−
θ ′1
(
β⋆j
)

θ1

(
β⋆j

)
=

1
2ϖ3

θ ′1 (βj)

θ1 (βj)
+χ

iπ
2ϖ3

(2.74)

where χ= 1 for the cool solitons and χ= 0 for the hot ones.

Proof. We use (2.65) and start from N+ 1:

PN+1 = P(ϖ3 + 2ϖ1)−P(ϖ3) = ζ (ϖ1)−
ϖ1

ϖ3
ζ (ϖ3) =

−iπ
2ϖ3

(2.75)

where we have used one of Legendre’s relations [6, equation (23.2.14)]. For j⩽ L (hot solitons)
we have

Pj = P(2ϖ3βj)−P(2ϖ3β
⋆
j ) =

1
2
ζ(2ϖ3βj)−

1
2
ζ(2ϖ3(1−βj))− 2βjζ (ϖ3)+ ζ (ϖ3) (2.76)

= ζ(2ϖ3βj)− 2βjζ (ϖ3) (2.77)

3641

http://dlmf.nist.gov/23.2.E14


Nonlinearity 36 (2023) 3622 M Bertola et al

where we have used the periodicity of ζ (2.11) together with its oddness. For the cool solitons
we have

Pj = P(2ϖ3βj)−P(2ϖ3(τ + 1−βj)) = ζ(2ϖ3βj)− 2βjζ (ϖ3)+
π i
2ϖ3

. (2.78)

The formula (2.72) is similarly obtained evaluating E(βj)−E(β⋆j ) = 2E(βj): note that dE is
an exact differential; this reflects the well known fact that the 1-gap solution is stationary (up
to Galilean invariance).

We summarize the computation in the following theorem.

Theorem 2.5. In the limit ε→ 0 the vector of phases has the following limit:

X(x, t)→


ψ1(x, t)

...
ψN(x, t)
β(x, t)


ψj(x, t) := (x− x(0)j )

Pj
2π

+ t
Ej
2π
, j= 1, . . . ,N

β(x) :=
x− x0
4iϖ3

Pj ∈ iR+, E1,...,L ∈ iR−, EL+1,...,N ∈ iR−

(2.79)

where x0, and x
(0)
j , j = 1, . . . ,N are arbitrary real numbers7.

With these phases, the N-soliton solution is then given by the formula

u(x, t) = 2∂2
x lnτ (x, t) (2.80)

where

τ (x, t) := e−
ζ(ϖ3)
8ϖ3

x2 det [1N+G]θ3

(
x− x0
4iϖ3

−A
)
, (2.81)

A= 1
2

∑N
j=1(βj−β⋆j ), and G is found in theorem 2.2.

The formula (2.81) is clearly reminiscent of the Kay–Moses formula for N solitons [21].

Remark 2.6. The arbitrary shifts x(0)j and x0 in theorem 2.5 are obtained by starting with a
vector uε which is fine–tuned so that, for a fixed φ ∈ RN we have

Bε(uε− 1) = iφ. (2.82)

Now take the limit ε→ 0; since the diagonal of Bϵ diverges, the vector uε is a suitable per-
turbation of 1. In other words, in the limit the solution ‘explores’ a small slice of the Jacobian
around the half period. The chosen φℓ ∈ R have the effect of re-scaling the norming constants
by an arbitrary positive constant eφℓ .

3. Velocity of a single soliton on elliptic background: bright-and-forward
versus dim-and-retrograde

Consider here just one hot soliton b ∈ (−∞,e3); as figure 3 shows, we see a hump of taller
oscillation on the cnoidal background that moves to the right with velocity Vj =−Ej/Pj >
0. However, for a cool soliton c ∈ (e2,e1) the disturbance over the cnoidal wave is first of
all a subtraction (i.e. a ‘dim soliton’). Moreover, which is more interesting, this disturbance
moves to the left with velocity Vj =−Ej/Pj < 0. The phenomenon was observed in [5] using

7 Comparing (2.79) to (2.58) we have X0 = X(0,0).
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a Whitham approach, and experimentally in [25]. Here we observe the same phenomenon by
inspecting the explicit solution formula given in theorem 1.1.

Remark 3.1. We can justify the shape of a dim soliton as follows. With the normalizations
used in this paper, the potential u(x, t) can be written as

u(x, t) =
1
4

2
N+1∑
j=1

µj−
2N+1∑
j=1

Ej

 (3.1)

where µj = µj(x, t) are the Dirichlet eigenvalues and are one in each of the gaps and Ej are all
the branchpoints. Under the degeneration, branchpoints come together in pairs. Consider now
the case of a single cool soliton with eigenvalue at c ∈ [e2,e1]. Then the trace formula (3.1)
implies that (recall that e1 + e2 + e3 = 0) the value of u is given by 1

2 (µ1 +µ2 − c) where
µ1 ∈ [c,e1] and µ2 ∈ [e2,c]. This gives the four critical values

u(x, t) µ1 µ2
e1
2 e1 c

e1+e2−c
2 e1 e2
c
2 c c
e2
2 c e2

These four values are the maximum and minimum of the cnoidal wave, and the two critical
values of the ‘dent’ in the envelope. △

To prove the phenomenon of on a mathematical level we need to analyze the formula for
the soliton; specializing theorem 2.5 to N= 1 we get

u(x, t;β1) = 2∂2
x lnτ (x, t;β1)

τ (x, t;β1)e
ζ(ϖ3)x

2

8ϖ3 = θ3

(
x− x0
4iϖ3

− β1 −β⋆1
2

)
+ e

i
(
(x−x(0)1 )P(β1)+tE(β1)

)

× θ3

(
x− x0
4iϖ3

+
β1 −β1

⋆

2

)
(3.2)

where P(β1) = i|P(β1)|, E(β1) are as in (2.71), (2.72) and we set V1 =−E(β1)/P(β1) ∈ R.
Rewriting the above in clear form we find

u(x, t) =−ζ(ϖ3)

4ϖ3
+ 2

d2

dx2
ln

[
θ3

(
x− x0
4iϖ3

− β1 −β1
⋆

2

)
+ e−|P(β1)|(x−x(0)1 −tV1)

× θ3

(
x− x0
4iϖ3

+
β1 −β1

⋆

2

)]
. (3.3)

Since both θ3’s in the logarithm are periodic (and positive) functions of x, if x−V1t≫ 0 then
the second term is suppressed and the solution looks like the usual cnoidal wave with a shift,
while, for x−V1t≪ 0 the second term dominates and we can discard the first θ3 function, so
that the solution looks like a cnoidal wave with the opposite shift. Thus the only ‘disturbance’
occurs when the two addenda are of the same magnitude, namely along the zero curve of the
phase x−V1t, which is a disturbance with constant negative velocity for a cool soliton.

Thus, we have established that the ‘solitons’, whether hot or cool, travel with asymptotic
speeds V(β) given by
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Figure 10. The group velocity V( τ2 + s
2 ) (3.4) of a dim soliton as a function of s in

β = s
2 +

τ
2 . Here τ ≃ 1.36007 i, e1 = 2, e2 ≃ 1, e3 =−3, ϖ3 ≃−0.742206i, ϖ2 ≃

1.009452.

V(β) =−E
P
=

1
2

℘ ′(2ϖ3β)

ζ(2ϖ3β)− 2βζ(ϖ3)+χ iπ
2ϖ3

, β ∈
(
0,

1
2

)
+χ

τ

2
, (3.4)

where χ= 0 for hot solitons and χ= 1 for cool ones.
Note also that the background cnoidal wave undergoes a shift from the left to the right of

the disturbance, clearly visible in the different arguments of the two theta functions.
The plot of the speed is in figure 10, while in figures 2–4 we show, respectively, a single

dim soliton (retrograde), a single bright soliton (moving right) and the two-soliton solution
obtained from theorem 2.5.

4. Scattering of soliton pairs over cnoidal background

First, let us verify that very energetic solitons have the expected velocity as an ordinary soliton,
which follows from the dispersion relation for the phase

ϑfree = x
√
|b| − t|b| 32 (4.1)

to be Vfree(b) = |b|, which can also be seen from the single soliton formula (1.2). The limit
b→−∞ corresponds, in the Jacobian, to β→ 0+; using the Laurent expansion of ζ(s) =
1
s +O(s) and ℘ ′(s) =− 2

s3 +O(s) we find

V(β)∼− 1
4ϖ3

2β2
∼−℘(2ϖ3β) =−b= Vfree(b). (4.2)

Before proceedingwe need to definewhat wemean by the ‘position of the soliton’ since clearly
(see figures 2–4) the ‘solitons’ over the background are not coherent structures but rather (more
or less) localized disturbances of the cnoidal background. This difficulty is in contrast with the
standard case of solitons on a zero background.

To come up with a working definition we look again at the expression for the single
soliton (3.2): we define the instantaneous location as the position, relative to the ballistic
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motion x= Vt=−E/Pt, where the two addenda in the rhs of (3.2) are equal. Specifically, set-
ting V(β) =−E(β)

P(β) ∈ R, and x(t) = x(0)1 +V(β)t+Φ(t) equating the addenda in (3.2) gives:

e−|P(β)|Φ(t)Cθ3

(
V(β)t+Φ(t)

4iϖ3
+
β−β⋆

2

)
= θ3

(
V(β)t+Φ(t)

4iϖ3
− β−β⋆

2

)
⇒

Φ(t) =− 1
|P(β)| ln

θ3

(
V(β)t+Φ(t)

4iϖ3
− β−β⋆

2

)
θ3

(
V(β)t+Φ(t)

4iϖ3
+ β−β⋆

2

)+ 1
|P(β)| lnC,

(4.3)

where we note that P(β) = i|P(β)|.

Lemma 4.1. For any β ∈ (0, 12 )+ {0, τ2 } equation (4.3) has a unique solutionΦ(t). Moreover,
Φ(t) is continuous and has period 4iϖ3

V(β) .

Proof. The equation (4.3) defines a unique function Φ(t) via the implicit function theorem.
To see it we observe that the r.h.s. is a periodic, bounded function R(Φ, t) of Φ so that it
intersects the line L(Φ) = Φ. To see uniqueness it is sufficient to show that the function
F(Φ, t) := L(Φ)−R(Φ, t) is a monotonic (increasing, as it turns out) function of Φ. Now, we
have

∂

∂Φ
R(Φ, t) =

−1
4iϖ3|P(β)|

θ ′3

(
V(β)t+Φ

4iϖ3
− s
)

θ3

(
V(β)t+Φ

4iϖ3
− s
)∣∣∣∣∣

s= β⋆−β
2

s= β−β⋆

2

=
−1

4iϖ3|P(β)|

θ ′1

(
V(β)t+Φ

4iϖ3
+ τ+1

2 − s
)

θ1

(
V(β)t+Φ

4iϖ3
+ τ+1

2 − s
)∣∣∣∣∣

s= β⋆−β
2

s= β−β⋆

2

. (4.4)

We are going to show that

∂

∂Φ
R(Φ, t)⩽ 1 (4.5)

which is sufficient as long as the equality holds only at isolated points. Indeed we have (recall-
ing ϖ3 ∈ iR−)

max
d∈R

∂

∂Φ
R(Φ, t) =

−1
4|ϖ3||P(β)|

min
d∈[0,1]

θ ′1
(
s+ τ+1

2 + d
)

θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣

s= β⋆−β
2

s= β−β⋆

2

. (4.6)

Recall now from (2.74) that P(β) = 1
4ϖ3

θ ′
1 (s)
θ1(s)

∣∣∣∣β
s=β⋆

so that

max
d∈R

∂

∂Φ
R(Φ, t) =

−1

θ ′
1 (s)
θ1(s)

∣∣∣∣β
s=β⋆

min
d∈[0,1]

θ ′1 (s+ τ+1
2 + d

)
θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣

s= β⋆−β
2

s= β−β⋆

2

 . (4.7)

We now show that the minimum is achieved at d= 0; the minimum is −1 for cool solitons,
and strictly larger for hot solitons, (thus proving (4.5)) and it is an (isolated) critical point. Let
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us denote ρ := β⋆−β
2 ∈ [0,1/2] and note that it is always real. Consider the function

F(d) :=
θ ′1
(
s+ τ+1

2 + d
)

θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣

s=ρ

s=−ρ

. (4.8)

This is an elliptic function of d, real valued for d ∈ R∪R+ τ
2 . Its poles are at d=±ρ+ τ+1

2
and its zeros (by Abel’s theorem) are of the form±ε+ 1

2 ∈ (0,1); indeed we find F(0)< 0 and
F( 12 )> 0. Moreover the only critical points on the real axis are d= 0, 12 . The fact that d= 0 is
a minimum is easily verified by the second derivative test noting that

F ′(0) = 4ϖ2
3

[
℘

(
2ϖ2

(
τ + 1
2

− ρ

))
−℘

(
2ϖ3

(
τ + 1
2

+ ρ

))]
= 0 (4.9)

F ′ ′(0) = 16ϖ3
3℘

′
(
2ϖ3

(
τ + 1
2

− ρ

))
> 0 (4.10)

where the last inequality is due to the fact that the points τ+1
2 − ρ correspond to the points in

the gap [e1,e2] on the first sheet, where ℘ ′ ∈ iR−, see (2.5). Since F is periodic and has only
one other critical point at d= 1

2 (which must be a maximum) we have shown that

F(d)⩾ F(0), ∀d ∈ R. (4.11)

Consider the case of a cool soliton β = ρ+ τ
2 , β

⋆ = τ
2 + 1− ρ. Observing that τ+1

2 + β⋆−β
2 =

β⋆ and τ+1
2 − β⋆−β

2 = β, we see that at the minimal value d= 0 the right hand side of (4.7) is
1. Then formula (4.7) gives exactly (4.5), with the equality being achieved for d= 0.

Consider now the case of a hot soliton β ∈ [0, 12 ]. In view of (4.7), to prove (4.5) we now
have to show that∣∣∣∣∂ρ lnθ1(ρ− 1

2

)∣∣∣∣⩾ ∣∣∣∣Re∂ρ lnθ1

(
ρ− τ + 1

2

)∣∣∣∣ , (4.12)

where ρ= β⋆−β
2 ∈ [0, 12 ). Using (2.66) reduces (4.12) to

| Imζ(ϖ1 +ϖ3 − ρ̃)|⩽ | Imζ(ϖ3 − ρ̃)| (4.13)

where ρ̃= 2ϖ3ρ. The value ρ̃= 0 turns (4.13) into an equation. Thus, to prove (4.12) it is
sufficient to show that

|℘(ϖ1 +ϖ3 − ρ̃)|⩽ |℘(ϖ3 − ρ̃)| (4.14)

for every ρ̃ ∈ [0,ϖ3]. That follows from the identities [17]

℘(ϖ1 +ϖ3 − ρ̃) = e2 +
(e2 − e1)(e2 − e3)

℘(ρ̃)− e2
, (4.15)

℘(ϖ3 − ρ̃) = e3 +
(e3 − e1)(e3 − e2)

℘(ρ̃)− e3
. (4.16)

Since both terms in (4.16) are negative and |e3|> |e2|, the desired result follows from
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∣∣∣∣ (e2 − e1)(e2 − e3)
℘(ρ̃)− e2

∣∣∣∣⩽ ∣∣∣∣ (e3 − e1)(e3 − e2)
℘(ρ̃)− e3

∣∣∣∣ , (4.17)

which is clearly true for any ρ̃ ∈ [0,ϖ3].
Once existence and uniqueness of solution Φ(t) of (4.3) is established, the continuity of

Φ(t) (in fact, smoothness) follows from the implicit function theorem. Since θ in (4.3) is a
period one function, it is obvious that if Φ(t0) solves (4.3) with t= t0, it also solves (4.3) with
t= t0 +

4iϖ3
V(β) . Now the uniqueness of solution of (4.3) implies that Φ(t) = Φ(t+ 4iϖ3

V(β) ).

It follows from (4.3) and lemma 4.1 that the average of Φ(t) over a period is 1
|P(β)| lnK,

because (Φ(t) is the difference of two shifted logarithms of θ with the same period plus a
constant):

Φ(t) =− 1
|P(β)|

ln
θ
(
V(β)t+Φ(t)

4iϖ3
− β−β⋆

2

)
θ
(
V(β)t+Φ(t)

4iϖ3
+ β−β⋆

2

) +
lnK
|P(β)|

⇒ ⟨Φ⟩= 1
T

ˆ T

0
Φ(t)dt=

lnK
|P(β)|

,

(4.18)

where T= 4iϖ3
V(β) is the period. Now, suppose that two solitons corresponding to the points

β1,β2 ∈
(
0, 12
)
+ {0,1} τ2 are localized at t→±∞ around the positions

x1(t;β1,β2) = tV(β1)+Φ
(±)
1 (t,β1,β2), t→±∞ (4.19)

x2(t;β1,β2) = tV(β2)+Φ
(±)
2 (t,β1,β2), t→±∞. (4.20)

We are not interested in the value of Φ(±)
j directly (since the initial position can be changed

arbitrarily by a re-definition of the norming constants) but in their average difference:

∆j(β1,β2) :=
〈
Φ

(+)
j (t;β1,β2)

〉
−
〈
Φ

(−)
j (t;β1,β2)

〉
, j= 1,2. (4.21)

Theorem 4.2.[1] The deviation from the ballistic trajectory for a two–soliton interaction is

∆1(β1,β2) =
2

|P1|
ln

∣∣∣∣θ1(β1 −β⋆2 )

θ1(β1 −β2)

∣∣∣∣ , ∆2(β1,β2) =− 2
|P2|

ln

∣∣∣∣θ1(β1 −β⋆2 )

θ1(β1 −β2)

∣∣∣∣ , (4.22)

where Pj, j = 1,2, are given in lemma 2.4 and the solitons are ordered so that V2 < V1

(i.e. the soliton number has the larger velocity (note that the Vj’s may be positive or neg-
ative, so that larger velocity does not mean larger speed!).

[2] (‘Conveyer-belt effect’). The background cnoidal wave undergoes an addition of a shift by
βj−β⋆j in its phase passing from the right to the left of the jth solitary disturbance:
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A :=
1
2

2∑
j=1

(βj−β⋆j ). (4.24)

Visualizations of the results of theorem 4.2 are shown in figures 8 and 9. We call the
second effect a ‘conveyer-belt’ effect because the solitary disturbance is sort of ‘kicking’ the
background like a runner on a conveyer belt. A similar shifting effect on the background
cnoidal wave was previously observed [16, proposition 6.1] in the context of the modified
KdV equation for a single ‘trial’ soliton of higher velocity passing through an elliptic (genus
1) soliton condensate (also known as condensate limit of a soliton gas, see [10, 11]).

Proof. [1]Consider the two solitons, each of which could be hot or cool.We denote for brevity
Pj = P(βj),Ej = E(βj), Vj = V(βj), with the velocity V given in (3.4).

The core of the computation is to analyze the dominant term in the tau-function (2.81),
recalling that we need to take the second logarithmic derivative in x.

For this reason it should be evident that the position of the disturbances (solitons) is determ-
ined by the asymptotic behaviour of the 2× 2 determinant det[12 +G]. Let us denote, for
brevity

λj := e2iπψj = ei(x−x
(0)
j )Pj+i tEj = e

−|Pj|
(
x−x(0)j −Vjt

)
∈ R, (4.25)

where we have used that Pj is always in iR+ (see (2.71)), while Ej ∈ iR− for hot solitons and
Ej ∈ iR+ for cool ones (2.72).

Let us consider for definiteness the hot-on-hot interaction and order the solitons so that
V1 > V2. As t→−∞ we consider the location around x= xj(t) := x(0)j −Vj|t|

λ1 ≃ 1, λ2 = e|P2|(V1−V2)|t|+|P2|(x(0)2 −x(0)1 ) ≫ 1. (4.26)

Viceversa, around x= x2(t) we have that λ1 is exponentially small

λ1 ≃ e−|P1|(V1−V2)|t|+|P1|(x(0)1 −x(0)2 ) ≪ 1, λ2 ≃ 1. (4.27)

The general structure of the determinant in (2.41) when considered in our situation, is

det [12 +G] = det

[
1+Aλ1 B

√
λ1λ2

B
√
λ1λ2 1+Cλ2

]
(4.28)
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where A,B,C are some periodic, bounded functions of x only.
Let us follow the slower of the two solitons, V2 < V1; around x2(t) (as t→−∞) λ1 is

exponentially small and thus clearly

det [12 +G]≃ 1+Cλ2, (4.29)

and then we have, in this regime (with β = x
4iϖ3

)

θ3 (β−A)det[12 +G]≃ θ3 (β−A)(1+G22) (4.30)

=

(
θ3 (β−A)+e−|P2|(x−x(0)2 −V2t)θ3 (β−A+β2−β⋆2 )

∣∣∣∣θ1(β1−β⋆2 )
θ1(β1−β2)

∣∣∣∣) (4.31)

and the soliton is located where the two addenda are approximately equal. Letting x= x2(t)+

Φ
(−)
2 we have that the effect is maximal at

−|P2|Φ(−)
2 = ln

θ3

(
x2(t)+Φ

(−)
2

2iϖ3
−A

)
θ3

(
x2(t)+Φ

(−)
2

2iϖ3
+

β2−β1+β⋆
1 −β⋆

2
2

)∣∣∣ θ1(β1−β⋆
2 )

θ1(β1−β2)

∣∣∣ . (4.32)

Note that here there is no such thing as an ‘exact position’ (even asymptotically) of the soliton
disturbance on the background. However the above equation (4.32) for Φ(−)

2 defines clearly a
periodic function of t and the average on a period yields the equation〈

Φ
(−)
2

〉
=

1
|P2|

ln

∣∣∣∣θ1(β1 −β⋆2 )

θ1(β1 −β2)

∣∣∣∣ . (4.33)

Now consider t→+∞; in this case, following x2(t) again we have

λ1 ≃ e|P1|(V1−V2)t+|P1|(x(0)1 −x(0)2 ) ≫ 1, λ2 ≃ 1. (4.34)

Thus the computation of the determinant needs to be done differently; using row operations
we obtain

det [12 +G] = (1+Aλ1)

(
1+Cλ2 −

B2λ1λ2

1+Aλ1

)
, (4.35)

which is nothing but Schur complement formula. Recalling now that λ1 is exponentially large,
we have

lndet[12 +G]∼ lnλ1 + ln

(
1+Cλ2 −

B2λ2

A

)
+O(λ−1

1 )

= lnλ1 + ln

(
1+

AC−B2

A
λ2

)
+O(λ−1

1 ). (4.36)

Since lnλ1 is linear in x, the solution (which requires two derivatives in x) is not affected and
we need only consider the middle logarithm. So effectively we need to analyze

θ3 (β−A)
det[12 +G]

1+G11
≃ θ3 (β−A)

(
1+

detG
G11

)
. (4.37)

Using Fay’s identity (2.48) we get

detG= C1C2λ1λ2
θ3(β+A)θ1(β1 −β2)θ1(β

⋆
2 −β⋆1 )

θ3(β−A)θ1(β1 −β⋆1 )θ1(β2 −β⋆2 )θ1(β1 −β⋆2 )θ1(β2 −β⋆1 )
(4.38)
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so that

θ3 (β−A)
det[12 +G]

1+G11
≃ θ3 (β−A)+ e−|P2|(x−x(0)2 −V2t) θ3 (β−A)θ3(β+A)

θ3(β1 −β⋆1 +β−A)

|θ1(β1 −β2)|
|θ1(β2 −β⋆1 )|

.

(4.39)

Now we set x= x2(t)+Φ
(+)
2 and obtain

−|P2|Φ(+)
2 = ln

θ3

(
V2t+Φ

(−)
2

2iϖ3
+

β1−β2−β⋆
1 +β

⋆
2

2

)
θ3

(
V2t+Φ

(−)
2

2iϖ3
+A

)
|θ1(β1−β2)|
|θ1(β2−β⋆

1 )|

. (4.40)

Once again, the period average of the dislocation is〈
Φ

(+)
2

〉
=

1
|P2|

ln
|θ1(β1 −β2)|
|θ1(β2 −β⋆1 )|

. (4.41)

Now the shift in x location follows from the ratio of (4.40) and (4.32)

λ
(+)
2

λ
(−)
2

=
AC

AC−B2
⇒ ∆21 =− 1

|P2|
ln

AC
AC−B2

. (4.42)

Thus the total shift is

∆2(β1,β2) =
〈
Φ

(+)
2

〉
−
〈
Φ

(−)
2

〉
=

2
|P2|

ln
|θ1(β1 −β2)|
|θ1(β2 −β⋆1 )|

. (4.43)

[2] Observe the argument of two functions θ3 in (4.31): on the right (β = x
4iϖ3

, x=−(V2 −
ε)|t|) the exponential is exponentially small and the first θ3 dominates, with the phase x

4iϖ3
−A.

On the left (x=−(V2 + ε)|t|) the exponential is large and the second θ3 dominates with the
phase x

4iϖ3
−A+β2 −β⋆2 . Similarly for the other transition.

5. Elliptic gas of solitons for KdV

We now consider the setup of a growing number of degenerating bands on the elliptic back-
ground. Unlike the rest of the paper, the calculations in this section are mostly formal. The
total number N of collapsing bands (solitons) of our Riemann surface RN+1(ε) is now linked
with the size 2δj > 0 of the jth collapsing band by 2δj = e−Nνj , where all νj ⩾ 0. In this section,
it will be more convenient for us (following [9, 14]) to normalize the differentials dP, dE by
B-periods, i.e. the B-periods of dP, dE corresponding to all the shrinking bands are zero.
The normalization on the background (resolved) part of RN+1(ε) is unchanged. The quasi-
momentum and quasi-energy differentials with the new normalization will be denoted as dP̂,
dÊ respectively. In view of figure 5, one can observe that dP̂, dÊ are gap-normalized differen-
tials, meaning that their periods over each gap are zero. The relation between the quasi-energy
and quasi-momentum used in the previous part of the paper and the gap-normalized versions
used here are

dP̂= dP−
N∑
k=1

ckωk, c=
[
B−1 0N×1

]
P,

dÊ= dE−
N∑
k=1

γkωk, γ =
[
B−1 0N×1

]
E.

(5.1)
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Here ωj, j = 1, . . . ,N+ 1, are the normalized holomorphic differentials on RN+1(ε), B is the
N×N blockmatrix of theirB-periods from (2.38), and P andE are theN+ 1 dimensional vec-
tors of B-periods of dP and dE respectively, (2.54). According to [9, 14] the A -periods of dP̂,
dÊ, related to the shrinking bands, define the wavenumbers kj and frequencies wj, j = 1, . . . ,N,
of the nonlinear wave (finite gap) solutions to the KdV equation defined by RN+1(ε). Then
the Riemann bilinear identities on RN+1(ε) yield

lim
ε→0

N∑
l=1

˛
Al

dP̂
˛

Bl

ωj =
2π i
4ϖ3

ωj
dβ

∣∣∣
β=0

,

lim
ε→0

N∑
l=1

˛
Al

dÊ
˛

Bl

ωj =
2π i

32ϖ3
3
∂2
β

ωj
dβ

∣∣∣
β=0

,

(5.2)

where j = 1, . . . ,N and

lim
ε→0

N∑
l=1

˛
Al

dP̂
˛

Bl

ωN+1 −
˛

BN+1

dP̂=
2π i
4ϖ3

,

lim
ε→0

N∑
l=1

˛
Al

dÊ
˛

Bl

ωN+1 −
˛

BN+1

dÊ= 0.

(5.3)

Equations (2.39) imply that

kN+1 :=

˛
BN+1

dP̂=
N∑
j=1

kj(βj−β⋆j )−
π i
2ϖ3

, wN+1 :=

˛
BN+1

dÊ=
N∑
j=1

wj(βj−β⋆j ),

(5.4)

where kj,wj denote the Aj periods of dP̂,dÊ respectively, j = 1, . . . ,N. Substituting (2.39)
into (5.2), we obtain

O(− lnδj)kj+
N∑ ′

ℓ=1

kℓ ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj−β⋆ℓ )

∣∣∣∣=− iπ
2ϖ3

[
∂β lnθ1(β)|β=βj +πiχ(βj)

]
,

O(− lnδj)wj+
N∑ ′

ℓ=1

wℓ ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj−β⋆ℓ )

∣∣∣∣=− iπ
16ϖ3

3
∂3
β lnθ1(β)

∣∣∣∣∣∣
β=βj

,

(5.5)

whereχ(β) is the characteristic function of (e2,e1) (the cool solitons),
∑ ′ denotes the summa-

tion with ℓ ̸= j and j = 1, . . . ,N. Equation (5.5) imply that for a fixed N ∈ N and some δj → 0
we will necessarily have kj,wj → 0. Therefore, following [11], we will refer to the wavenum-
bers kj and the frequencies wj, j = 1, . . . ,N, as solitonic, whereas the remaining wavenumber
kN+1 and the frequency wN+1 will be referred to as carrier.

The last part of (2.66) can be conveniently rewritten as

∂β lnθ1(β) =−4ϖ3ζ(ϖ3)β+ 2ϖ3ζ(2ϖ3β), (5.6)

which yields

∂2
β lnθ1(β) =−4ϖ3ζ(ϖ3)− 4ϖ3

2℘(2ϖ3β), ∂3
β lnθ1(β) =−8ϖ3

3℘ ′(2ϖ3β), (5.7)

3651



Nonlinearity 36 (2023) 3622 M Bertola et al

where the former expression essentially is given in [4, equation (1035.01)]. Using now the
asymptotics of

¸
Bj
ωj, j = 1, . . . ,N from [9, 10, 28] and (5.6), (5.7), we can rewrite (5.5) as

Nνjkj+

N∑ ′

ℓ=1

kℓ ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj−β⋆ℓ )

∣∣∣∣=−iπ
[
ζ(2ϖ3βj)− 2ζ(ϖ3)βj+

iπ
2ϖ3

χ(βj)

]
,

Nνjwj+

N∑ ′

ℓ=1

wℓ ln

∣∣∣∣ θ1(βj−βℓ)

θ1(βj−β⋆ℓ )

∣∣∣∣= iπ
2
℘ ′(2ϖ3βj).

(5.8)

Let us now assume that, as N→∞, the degenerating bands are accumulating on some
interval (or collection of intervals) Γ⊂ R that is separated from the stationary bands of RN,
i.e. Γ⊂ (−∞,e3)∪ (e2,e1). Let φ(z) be the (limiting) probability density of the centers bj
of the j = 1, . . . ,N shrinking bands on Γ, supp φ = Γ, and ν(z)⩾ 0 be a smooth function on
Γinterpolating νj = ν(bj) on Γ. Such an N→∞ limit, subject to some additional restriction,
see [9, 11], is called the thermodynamic limit ofRN. In the thermodynamic limit, equation (5.8)
for the solitonic wavenumbers and frequencies become

ˆ
Γ̂

ln

∣∣∣∣ θ1(η−β)

θ1(η+β− 1−χ(β))

∣∣∣∣u(β)dβ+σ(η)u(η) =− i
2

[
ζ(2ϖ3η)− 2ζ(ϖ3)η+

π i
2ϖ3

χ(η)

]
,

ˆ
Γ̂

ln

∣∣∣∣ θ1(η−β)

θ1(η+β− 1−χ(β))

∣∣∣∣v(β)dβ+σ(η)v(η) =
i
4
℘ ′(2ϖ3η),

(5.9)

where: Γ̂ = ℘(2ϖ3Γ) is the image of Γ in the Jacobian;

u(η) =
û(η)φ̂(η)

2π
, v(η) =

v̂(η)φ̂(η)
2π

σ(η) =
ν(℘(2ϖ3η))

φ̂(η)
(5.10)

with û(η), v̂(η) interpolating Nkj,Nwj at βj, j = 1, . . . ,N respectively, (compare with [10],
section 3.2) and;

φ̂(β) = 2ϖ3φ(℘(2ϖ3β))℘
′(2ϖ3β). (5.11)

The expressions for the thermodynamic limit of the carrier (background) wave-number k̃=
limN→∞ kN+1 and frequency w̃= limN→∞wN+1 obtained from (5.4), are

k̃= 2π

[ˆ
Γ̂

(2β− 1− τχ(β))u(β)dβ− i
2ϖ3

]
, w̃= 2π

ˆ
Γ̂

(2β− 1− τχ(β))v(β)dβ.

(5.12)

Similarly to the breather gas in focusing NLS setting, see [11], equation (5.9) form the so-
called solitonic NDR for the KdV soliton gas on the elliptic background, which we can loosely
speaking call the elliptic KdV gas. The carrier NDR is given by (5.12). It is worth mentioning
that, like in the case of the fNLS soliton gas [11], the imaginary part of the general NDR (5.2)
and (5.3) form the solitonic NDR, whereas the real part of (5.2) and (5.3) form the carrier
NDR.

Following the approach of [11], section 5, we derive the equation of states for the speed
s(η) =− v(η)

u(η) of element of the gas (tracer soliton)

s(η) = s0(η)+
ˆ
Γ̂

∆(η,β)[s(η)− s(β)]u(β)dβ, (5.13)
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where

s0(η) =
℘ ′(2ϖ3η)

2[ζ(η)− 2ζ(ϖ3)η+
π i
2ϖ3

χ(η)]
, (5.14)

has the meaning of the speed of a single soliton on the elliptic background (free speed) and

∆(η,β) =
i ln
∣∣∣ θ1(η−β)
θ1(η+β−1−χ(β))

∣∣∣2
ζ(2ϖ3η)− 2ζ(ϖ3)η+

iπ
2ϖ3

χ(η)
, (5.15)

has the meaning of the (total) phase shift of the η-soliton (with the spectral parameter η) when
it interacts with the β-soliton. All the solitons are considered on the elliptic background. We
want to point out that the free speed and the phase shift expressions derived in this section
for the elliptic KdV gas, see (5.14) and (5.15) respectively, coincide with the corresponding
expressions (3.4) and (4.22)–(2.71) respectively, established in the previous sections of this
paper for solitons on the elliptic background.

The equation (5.13) is an integral equation to find s(η) considering u(η) given. It was first
suggested by Zakharov [31] for diluted soliton gas (with no background) and was later exten-
ded by El [9] to the case of dense gases. Equation (5.13) naturally extends results of [9, 31] to
the soliton gas on an elliptic background.

Finally, let us consider the large N limit of the background shiftA, see theorem 1.1, and the
averaged total shift S(b) of the soliton, parametrized by b, given by (1.16). Here we assume
that the soliton eigenvalues bj accumulate onΓwith the limiting probability densityφ(z). Then
in the large N limit we have

A
N

∼
ˆ
Γ̂

(β− 1
2
− τχ(β))φ̂(β)dβ,

S(b) = 4

∣∣∣∣∣ϖ3
θ1 (β;τ)

θ ′1 (β;τ)

∣∣∣∣∣
β=η

β=η⋆

∣∣∣∣∣
ˆ
Γ̂

ln

∣∣∣∣ θ1(η−β)

θ1(η+β− 1−χ(β))

∣∣∣∣sign[℘(2ϖ3β)−℘(2ϖ3η)]φ̂(β)dβ,

(5.16)

where η⋆ = 1+ τχ(η)− η. The latter formula can be interpreted as the average total shift of
a tracer soliton of the KdV soliton gas, parametrized by b, on the elliptic background.
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Appendix A. Arbitrary genus

Suppose Cε is a family of degenerating curves which, as ε→ 0 becomes an irreducible nodal
curve C0 with a resolution C of genus g. On the resolution C we fix a basis of A ,B cycles (in
homotopy first, and then as their image in homology) and dissect the surface C so as to obtain
a simply connected domain L. We choose the cycles that avoid all the nodes.

On the resolution there are N pairs of points pj,p⋆j , j = 1, . . . ,N which correspond to the
two point of the resolution of the nodes. The basis of cycles of the family is chosen so that

1. The vanishing cycles Ag+j reduce in the limit to small counterclockwise circles
around pj ∈ C0;

2. the logarithmic cycles Bg+j reduce to mutually disjoint paths from pj to p⋆j within the fun-
damental dissection L.

A.1. Notations and conventions

We denote by ωj the normalized holomorphic differentials on the resolved nodal curve C and
by τ the g× g matrix of normalized B–periods:˛

Aj

ωk = δjk, τ jk =

˛
Bj

ωk = τkj. (A.1)

We denote by A the Abel map A : C → J(C) in the Jacobian of C, with basepoint p0:

A(p) =
ˆ p

p0

 ω1
...
ωg

 (A.2)

where the path is the unique path within L. We denote by K =Kp0 the vector of Riemann
constants [12]. Finally we have the Riemann theta function

Θ(X;τ ) =
∑
n∈Zg

exp iπ (n⊺τn+ 2n⊺X) . (A.3)

If∆= [ε⃗, δ⃗] denotes a half–period∆= 1
2 ε⃗+

1
2τ δ⃗ ∈

1
2Z

g+ 1
2τZ

g, the theta function with char-
acteristic ∆ is

Θ∆(X;τ ) =
∑

n∈Zg+ 1
2 δ⃗

exp iπ

(
n⊺τn+ 2n⊺

(
X− 1

2
ε⃗

))
. (A.4)

A simple verification shows that (we omit τ from the notation for brevity)

Θ∆(−X) = (−1)δ⃗·ε⃗Θ∆(X) (A.5)

and thus such half–periods are called even or odd according to the parity of δ⃗ · ε⃗ ∈ Z. Those
odd periods for which the gradient of Θ∆ at the origin is not zero are called non-singular. A
theorem [24] guarantees that there is at least one odd, non-singular such odd period. From now
on we denote by ∆ one such choice.
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The main use of Θ∆ is explained below. If p,p⋆ are two arbitrary points on C and we want
the expression of the unique third–kind differential with poles at p (with residue+1) and at p⋆

with residue −1 and vanishing A –periods is then

ρp,p⋆(q) = dq ln
Θ∆ (A(q)−A(p))
Θ∆(A(q)−A(p⋆))

. (A.6)

It is of paramount importance that the contour of integration of the Abel map be taken within
the same fundamental domain L, for otherwise the A –periods are not zero.

Now, following the same logic as explained in the text, we have that the degeneration limit
of the B matrix of periods is

Ωϵ ≃

[
τ µ

µ⊺ B

]
, (A.7)

where B ∈MatN×N, τ ∈Matg×g and µ ∈Matg×N. The diagonal of B diverges to +i∞ while

Bℓm → 1
2iπ

ln

(
Θ∆(A(pℓ)−A(pm))Θ∆(A(p⋆ℓ )−A(p⋆m))
Θ∆(A(pℓ)−A(p⋆m))Θ∆(A(p⋆ℓ )−A(pm))

)
(A.8)

µℓ,a →
ˆ pℓ

p⋆ℓ

ωa = Aa(pℓ)−Aa(p
⋆
ℓ ). (A.9)

In other words, the ℓth column of µ tends to the Abel map on the resolved limiting curve of
the difference of the points of the resolution of the ℓth node. The reader may object about the
ambiguity on the determination in the formula (A.8), to which we refer to the discussion in
the main text; we assume, however, that the real part in (A.8) has been completely determined
(by the choice of cycles). It is now really an exercise to track the same proof of theorem 2.2
and obtain

Theorem A.1. Let X ∈ Cg+N be the vector

X=

[
w
z

]
, w ∈ Cg, z ∈ CN. (A.10)

The Riemann-theta function Θ̃ of the degenerating family of curves Cε satisfies

lim
ε→0

Θ̃


X− 1

2
Ωε



0
...
0
1
...
1


;Ωε


= det [1N+G]Θ(z−A;τ ) (A.11)

where

A=
1
2

N∑
j=1

(
A(pj)−A(p⋆j )

)
(A.12)

Gℓ,m =
Θ(A(pℓ)−A(p⋆m)+w−A)

Θ∆ (A(pℓ)−A(p⋆m))Θ(w−A)
Cℓe

iπ (ψℓ+ψm) (A.13)

Cℓ =Θ∆ (A(pℓ)−A(p⋆ℓ ))

 ∏
k: k̸=ℓ

Θ∆ (A(pℓ)−A(p⋆k ))Θ∆ (A(p⋆ℓ )−A(pk))
Θ∆ (A(pℓ)−A(pk))Θ∆ (A(p⋆ℓ )−A(p⋆k ))

 1
2

(A.14)
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where the square root is defined by eiπBℓm in terms of the determination chosen in (A.8). If we
omit a 1 in the g+ ℓth position in the half-period shift, then the theorem holds but with the ℓth
row and column of the matrix G removed.

The proof is an exercise following the same steps as in the proof of theorem 2.2, using the
general Fay identity

det

[
Θ(A(pℓ)−A(qm)+ e)

Θ∆ (A(pℓ)−A(qm))Θ(e)

]K
ℓ,m=1

=
Θ(A+ e)
Θ(e)

∏
ℓ<mΘ∆ (A(pℓ)−A(pm))Θ∆ (A(qm)−A(qℓ))∏K

ℓ,m=1Θ∆ (A(pℓ)−A(qm))
, (A.15)

A :=
K∑
ℓ=1

(A(pℓ)−A(qℓ)) . (A.16)

Appendix B. Average and convergence in probability

We now consider the following scenario where the initial phases of the degenerating curve
are tuned in a random way in the part of the Jacobian associated to the degenerating cycles.
In other words we consider a probability ensemble where the probability space is O= (S1)N

representing the choices of phases associated with the gaps adjacent to the degenerating bands.
We want to prove that, in probability, the solution converges to the deterministic solution (uni-
formly for (x, t) in compact sets) given by the elliptic cnoidal background. The proposition
below is the key estimate from which the theorem B.2 about the convergence in probability
follows easily. From the point of view of the geometry of the (real section of the) Jacobian
of the degenerating curve, together with theorem 2.2, it shows that the probability of seeing
a disturbance is an exceedingly rare event, localized in a small slice of the Jacobian around
the particular half-period indicated in theorem 2.2. We parametrize the N–torus by [−1,1]N

(modulo even integers) for convenience.

Proposition B.1. Let us denote u= (1−ϕ1,1−ϕ2, . . . ,1−ϕN,0)T ∈ RN+1, X= [ψ,β]T ∈
(iR)N×R and all ϕj ∈ [−1,1]. Then there exist constants K,C such that∣∣∣∣Θ(X− 1

2
Ωu
)
− θ3 (β−A)

∣∣∣∣⩽ K
N∑
j=1

e−(
| lnϵ|

2 −C)|ϕj| (B.1)

uniformly over compact subsets of X ∈ CN+1. Similar estimate (with different constants) holds
for any finite derivative∣∣∣∣∣∣

N∏
j=1

∂
hj
Xj∂

h
β

(
Θ

(
X− 1

2
Ωu
)
− θ3 (β−A)

)∣∣∣∣∣∣⩽ Kh

N∑
j=1

e−(
| lnϵ|

2 −C)|ϕj|. (B.2)

Proof. We trace over the steps of the proof of theorem 2.2. With the established notations
and splitting the summation integer vector ν = [n,m]T ∈ ZN+1, 1= (1,1,1, . . . ,1)T ∈ RN and
ϕ = (ϕ1, . . . ,ϕN)

T we have
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Θ

(
X− 1

2
Ωu
)

=
∑
m∈Z

∑
n∈ZN

exp iπ

[
m2ΩN+1,N+1 + n⊺Bn+ 2mµ⊺n

+2

(
mβ+ n⊺ψ − 1

2
n⊺Bu− m

2
µ⊺u

)]
=
∑
n∈ZN

∑
m∈Z

exp iπ

[
m2ΩN+1,N+1 +

∑
ℓ

(n2ℓ − nℓ(1−ϕℓ))Bℓℓ

+
∑′

ℓ,k

nℓ(nk− 1+ϕk)Bℓk+ 2m((µ− 1/2+ϕ/2)⊺n+β)+ 2n⊺ψ

]

=
∑
n∈ZN

exp iπ

∑
ℓ

(n2ℓ − nℓ(1−ϕℓ))Bℓℓ+
∑′

ℓ,k

nℓ(nk− 1+ϕk)Bℓk+ 2n⊺ψ


× θ3

(
(µ− 1

2
− 1

2
ϕ⊺)n+β

)
.

Now we use that Bℓℓ = i ln 1
ε +O(1) as ε→ 0+ and that all other entries have a finite limit

Bℓm → B0
ℓm. Consider the quadratic form given by the off diagonal matrix B ′ = [Bℓ,m]ℓ̸=m: this

is a family, depending on ε, of quadratic form and hence bounded uniformly by the norm (here
below a= 1−ϕ):

|iπ(n⊺B ′(n+ a)+ 2n⊺ψ)|< CN∥n∥2 +DN (B.3)

where CN is a positive constant and DN = DN(a,ψ) is uniformly bounded (as long as ψ is in
a compact set). On the other hand we have that, for any ϕ ∈ (0,1),

n2 − n(1−ϕ) =

(
n− 1−ϕ

2

)2

− (1−ϕ)2

4
⩾ |ϕ|

2
+
n2

2
− 1

2
, ∀n ∈ Z \ {0}. (B.4)

We thus have the estimate with Λ = ln1/ε,∣∣∣∣Θ(X− 1
2
Ωu
)
− θ3(β)

∣∣∣∣⩽
eDN max

β∈R
|θ3 (β)|

∑
n∈ZN\0

N∏
ℓ=1

exp

[
−
(
Λ

2
−CN

)
(n2ℓ − 1+ |ϕℓ|)(1− δnℓ)

]
(B.5)

where δnℓ = 1 if nℓ = 0 and δnℓ = 0 if nℓ ̸= 0, and we have used that µ is a real vector.
Consider the expression:

Fρ(Λ,ϕ) :=
∑
|n|⩾ρ

exp

[
−
(
Λ

2
−CN

)
(n2 − 1+ |ϕ|)(1− δn)

]
, ρ= 0,1. (B.6)

We have F0(Λ,ϕ) = 1+F1(Λ,ϕ) where

F1(Λ,ϕ) = exp

[
−
(
Λ

2
−CN

)
|ϕ|
]∑
|n|⩾1

exp

[
−
(
Λ

2
−CN

)
(n2 − 1)

]
(B.7)
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and the last series can be estimated by the integral test to provide a convergent sum as long as
Λ> CN (recall that Λ = ln1/ε→+∞). Hence we have the uniform estimate

F1(Λ,ϕ)⩽ K̃e−(
Λ
2 −C)|ϕ|. (B.8)

Now we can rewrite the summation in (B.5) as follows:

∑
n∈ZN\0

N∏
ℓ=1

exp

[
−
(
Λ

2
−CN

)
(n2ℓ− 1+ |ϕℓ|)(1− δnℓ)

]

=
∑
n∈ZN

N∏
ℓ=1

exp

[
−
(
Λ

2
−CN

)
(n2ℓ− 1+ |ϕℓ|)(1− δnℓ)

]
− 1

=
N∏
j=1

F0(Λ,ϕj)− 1=
N∏
j=1

(1+F1(Λ,ϕj))− 1 (B.9)

and thus we can estimate (for some K> 0)∣∣∣∣Θ(X− 1
2
Ωu
)
− θ3(β)

∣∣∣∣ ⩽ K
N∑
ℓ=1

e−(
Λ
2 −C)|ϕℓ|. (B.10)

Consider now a derivative and follow the same initial steps:

N∏
j=1

(
∂Xj
2iπ

)kj

(∂β)
s
Θ

(
X− 1

2
Ωu
)

= (2iπ)s
∑
m∈Z

∑
n∈ZN

N∏
j=1

nkjj m
s exp iπ

[
m2ΩN+1,N+1 + n⊺Bn

+2mµ⊺n+ 2

(
mβ+ n⊺ψ − 1

2
n⊺Bu− m

2
µ⊺u

)]
=
∑
n∈ZN

N∏
j=1

nkjj exp iπ

[∑
ℓ

(n2ℓ − nℓ(1−ϕℓ))Bℓℓ

+
′∑
ℓ,k

nℓ(nk− 1+ϕk)Bℓk+ 2n⊺ψ


× θ

(s)
3

(
(µ− 1

2
− 1

2
ϕ)⊺n+β

)
.

If all the kj’s are zero (and s ̸= 0), then the estimate proceeds exactly as before. If at least one
of the kj’s is nonzero, since the quadratic form at the exponent has its maximum at n= 0, we
have the equivalent of (B.5)∣∣∣∣∣∣

N∏
j=1

(
∂Xj
2iπ

)kj

(∂β)
s
Θ

(
X− 1

2
Ωu
)∣∣∣∣∣∣⩽

eDN max
β∈R

∣∣∣θ(s)3 (β)
∣∣∣∑ ′

n∈ZN

N∏
ℓ=1

nkℓℓ exp

[
−
(
Λ

2
−CN

)
(n2ℓ − 1+ |ϕℓ|)(1− δℓ)

]
. (B.11)

Then the same reasoning around (B.6) and (B.7) applies (with different constants).
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Theorem B.2. Let Φ denote the N–dimensional real torus of the phases ϕ ∈ [−1,1)N, with
normalized (unit) volume 1

2N d
Nϕ, considered as a probability space. Let uN+1(x, t; ϕ⃗;ε) denote

the N+ 1-gap solution of the KdV equation with the initial phases ϕ1, . . . ,ϕN, thought of as

a random variable (depending on x, t). Denote by u1(x, t) = 2∂2
x lnθ3

(
x

4iϖ3

)
the deterministic

cnoidal stationary wave solution. Then

uN+1(x, t; ϕ⃗;ε)→ u1(x, t) (B.12)

in probability, uniformly for (x, t) in compact sets.

Proof. Let (x, t) belong to a compact set and consider the estimate of proposition B.1. Then
for some constant K> 0 (which depends only on the chosen compact set),

|uN+1(x, t; ϕ⃗;ε)− u1(x, t)|⩽ K
N∑
j=1

e−(
| lnε|

2 −C)|ϕj|, (B.13)

for all (x, t) in that set. The integral of the latter function on the torus isO
(

1
| lnε|

)
which tends

to zero as ε→ 0+.
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