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Abstract

In our submission to the SIGMORPHON 2023
Shared Task on interlinear glossing (IGT), we
explore approaches to data augmentation and
modeling across seven low-resource languages.
For data augmentation, we explore two ap-
proaches: creating artificial data from the pro-
vided training data and utilizing existing IGT
resources in other languages. On the modeling
side, we test an enhanced version of the pro-
vided token classification baseline as well as a
pretrained multilingual seq2seq model. Ad-
ditionally, we apply post-correction using a
dictionary for Gitksan, the language with the
smallest amount of data. We find that our token
classification models are the best performing,
with the highest word-level accuracy for Ara-
paho and highest morpheme-level accuracy for
Gitksan out of all submissions. We also show
that data augmentation is an effective strategy,
though applying artificial data pretraining has
very different effects across both models tested.

1 Introduction

This paper describes the SigMoreFun submission
to the SIGMORPHON 2023 Shared Task on in-
terlinear glossing (Ginn et al., 2023). Given in-
put text in a target language, the task is to predict
the corresponding interlinear gloss (using Leipzig
glossing conventions). IGT is an important form
of linguistic annotation for the morphological anal-
ysis of languages, and also serves as an extremely
valuable resource for language documentation and
education for speakers of low-resource languages.

There were two tracks for this shared task, Track
1 (closed) and Track 2 (open). For Track 1, sys-
tems could only be trained on input sentences and
glosses; in Track 2, systems could make use of the
morphological segmentation of the input as well
as any (non-IGT) external resources. Since the
Track 2 setting better matches the long-term re-
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search goals of our team, we only participate in
this open track.

In our submission, we investigate two different
approaches. First, we attempt data augmentation
by either creating our own artificial gloss data by
manipulating the existing training data, or by uti-
lizing existing resources containing IGT in other
languages (§2). Second, we explore two different
models for gloss generation (§3). The first builds
off the token classification baseline, while the sec-
ond uses a pretrained multilingual seq2seq model.

Finally, we also attempt to post-correct model
outputs with a dictionary. We apply this to Gitk-
san and find that this, combined with our other
approaches, results in the highest morpheme-level
accuracy for Gitksan in Track 2.

2 Data Augmentation

One major challenge for this shared task is the scale
of data provided. All of the languages have less
than 40k lines of training data, and all but Arapaho
have less than 10k. The smallest dataset (Gitk-
san) has only 31 lines of data. Thus, one obvious
method to try is data augmentation. More specif-
ically, we try pretraining our models on different
forms of augmented data before training them on
the original target language data.

We explored two forms of data augmentation.
First, we generated artificial gloss data in the target
language by permuting morphemes in the existing
training data. Second, we utilized data from the
Online Database for Interlinear Text (ODIN; Lewis
and Xia, 2010; Xia et al., 2014) to see if trans-
fer learning from data in other languages can help
improve performance.

2.1 Artificial Data

A challenge our team faced with respect to data
augmentation is figuring out how to obtain addi-
tional data when we do not have much knowledge
of the languages’ grammatical systems, along with



the fact that these languages are generally from
digitally under-resourced language families. Fur-
thermore, we wanted our solution to be easily im-
plemented and relatively language agnostic due
to time constraints and practical usability for re-
searchers working on a variety of languages.

Thus, one avenue of data augmentation we tried
was to create artificial data from the provided train-
ing data. This requires no rule-writing or knowl-
edge of the grammar of the language, and thus
could be applied quickly and easily to all of the
languages in the shared task.

We used a naive word-swapping method to ran-
domly swap morphemes that occur in similar con-
texts to create new sentences. To do this, for each
gloss line, we replace each word stem (that has a
gloss label affix) with “STEM” to create a skeleton
gloss. We naively determine if a label is a stem
by checking if it is in lowercase. We do not do
this to words that do not have affixes as (with the
exception of Uspanteko) we do not have access to
parts of speech, and do not want to swap words that
would create an ungrammatical sequence.

We create a dictionary mapping each skeleton
word gloss to possible actual glosses, and map each
actual gloss to possible surface forms (we make
no assumptions that these mappings are one-to-
one). We then randomly sample % random skeleton
glosses (in this case, we used k equal to roughly
three times the amount of training data) and ran-
domly fill in words that match the format of skele-
ton words present in the line.

(1) to (3) below illustrate an example in this
process. We create a skeleton gloss (2) from the
Gitksan sentence in (1) by replacing the all word
stems that have an affix with “STEM” in both the
segmentation and gloss tiers—in this case, only
witxw-it applies to this step. Then to create the
artificial data in (3), we replace the skeleton word
and corresponding gloss with another word from
the training data that has the same skeleton form,
in this case hahla’lst-it.

(1) ii nee-dii-t naa dim ’witxw-it20
CCNJ NEG-FOC-3.I who PROSP come-SX

)

2) i nee-dii-t naa dim STEM-it
CCNJ NEG-FOC-3.I who PROSP STEM-SX

3) i nee-dii-t naa dim hahla’lst-it
CCNJ NEG-FOC-3.I who PROSP work-SX

While this method may create a somewhat un-
natural input surface sequence (as we are unable to

capture phonological changes in the surface form
and corresponding translations may be nonsensi-
cal), this method guarantees that the structure of
the gloss is a naturally occurring sequence (as we
only use gloss skeletons that are present in the in-
put). However, a limitation of this method is that
it does not extend to out-of-vocabulary tokens or
unseen gloss structures. Furthermore, as we cannot
generate a gold-standard translation for the artifi-
cial data, we do not make use of a translation in
training.

2.2 ODIN

Another potential avenue for data augmentation
is transfer learning from data in other languages,
which has been shown to be an effective method
to improve performance in low-resource settings
(Ruder et al., 2019).

The available resource we utilize is ODIN, or
the Online Database for Interlinear Text (Lewis
and Xia, 2010; Xia et al., 2014). ODIN contains
158,007 lines of IGT, covering 1,496 languages.

We use the 2.1 version of ODIN data and convert
the dataset to the shared task format, and filter out
languages with fewer than five glossed sentences.
However, there remains significant noise in the
dataset that could cause significant alignment is-
sues for the token classification models. Therefore
we opt to only train the ByT5 models on ODIN, in
the hope that this model is less sensitive to align-
ment errors. Indeed, we find that the ByT5 model
finetuned first on ODIN receives a performance
boost when finetuned again on the shared task data.

3 Models

We explore two models for gloss generation. The
first one is built upon the token classification base-
line with some improvements, and we treat this
model as our internal baseline. The second model
we deploy tests whether we can achieve competi-
tive performance by finetuning a pretrained charac-
ter based multilingual and multitask model, ByTS5.
For this model, we perform minimal preprocess-
ing and use raw segmented morphemes and free
translations if available.

3.1 Token Classification Transformer

We use the baseline Track 2 model provided by the
organizers as a starting point. The original imple-
mentation randomly initializes a transformer model
from the default Huggingface RoBERTa base con-



figuration, and uses a token classification objective
with cross-entropy loss, where each gloss is treated
as a distinct token. The morphemes and free trans-
lations are tokenized by space and dashes, with
punctuations pre-separated. They are concatenated
and separated by the SEP token and are used as
the inputs to the model. We modify the original
Track 2 baseline model to obtain a better baseline.
We use pretrained weights from XLM-RoBERTa
(XLMR) base (Conneau et al., 2020), instead of
randomly initializing the weights. We also slightly
modify the morpheme tokenizer to enforce that the
number of morpheme tokens matches the number
of output gloss tokens exactly.

Additionally, we introduce the COPY token to
replace the gloss if it matches the corresponding
morpheme exactly. An example from Natugu is
shown in gloss (4):

4 67 mnc-x  Mzlo Skul
COPY COPY be-1MINI COPY COPY

We believe this would improve performance by
removing the need to memorize glossed code-
switching and proper nouns, though it is only ef-
fective if the code-switched language is the same
as the meta language (e.g. English code-switching
in the Arapaho data), and would have no effect if
the source language uses a different orthography
or is code-switched to another language, where the
gloss would not matched the morpheme form ex-
actly. This method also compresses all punctuation
markers into one token, but the usefulness of this
side effect is less clear.

Since we are using pretrained weights, it is then
natural to explore integrating the pretrained tok-
enizer. Since XLMR was not trained on any of
the source languages, it makes the most sense to
only use the pretrained tokenizer to tokenize free
translations, if they are available, and extend the
vocabulary to include morphemes.

3.2 Finetuned ByT5

Multi-task and multi-lingual pretrained large lan-
guage models have been shown to be effective
for many tasks. We explore whether such mod-
els can be used effectively for glossing. We con-
duct experiments with both mT5 (Xue et al., 2021)
and ByT5 (Xue et al., 2022), but ByTS5 is pre-
ferred because it takes raw texts (bytes or char-
acters) as inputs and in theory should be more ef-
fective for unseen languages. Following the text-
to-text format inherited from T5 (Raffel et al.,

2020), we use a prompt based multilingual se-
quence to sequence objective for both models.
The prompt template is: “Generate interlinear
gloss from [source languagel: [segmented
morphemes] with its [meta language] transla-
tion: [free translation] Answer: ”. Data from
all languages are mixed together and shuffled, with
no up or down sampling. After initial experiments,
we find ByT5 outperforms mT5 across all lan-
guages, and therefore we only conduct subsequent
experiments on ByT5 and report those results.

Upon initial experiments, we also find the results
for Lezgi to be lower than expected. We hypothe-
size that the fact that the data are in Cyrillic script
causes this deficiency, since ByT5 was trained on
far less Cyrillic data than data in the Latin script.
Therefore we create an automatic romanization
tool, sourced from Wikipedia' and integrated in
the Epitran package (Mortensen et al., 2018), and
convert all Lezgi data to Latin script for ByT5 fine-
tuning.

After inspecting the outputs of the ByTS models,
we find cases where punctuations are attached to
the previous glosses, instead of being separated by
a space as is standard in the training sets. This is
probably due to the fact that the model was pre-
trained on untokenized data and this behavior is
preserved despite finetuning on tokenized data. We
therefore use a simple regular expression based tok-
enizer to fix the inconsistencies. We notice that the
procedure only gives performance boost on Gitk-
san, Lezgi, Uspanteko, and Natugu, and so we only
apply the procedure to those languages, leaving the
rest of the outputs unchanged.

4 Dictionary Post-correction: Gitksan

One of the key challenges for extremely low re-
source languages is the integration of structured
linguistic data in other forms, such as a dictionary,
into machine learning pipelines. We test a simple
post-correction method from a pre-existing dictio-
nary on Gitksan only, due to its unique combination
of low resource and easily obtainable dictionary in
machine readable form. We use the dictionary com-
piled by Forbes et al. (2021), without consulting the
morphological analyzers that they also provided.
At inference time, if a morpheme is unseen dur-
ing training, we search for the exact form in the
dictionary. We also expand the search to all sub se-

"https://en.wikipedia.org/wiki/Lezgin_
alphabets
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quences of morphemes within the enclosing word,
plus the previous whole word in cases where a par-
ticle is included in the dictionary form. The first
matched definition is used as the gloss and if none
of the search yields an exact match, we fall back to
the model prediction. We only apply this method to
the token classification models because the align-
ment between morphemes and glosses is directly
established, whereas the seq2seq models do not
guarantee that the number of glosses matches the
number of morphemes.

5 Results and Discussion

Tables 1 and 2 show our systems’ performance
(as well as the original baseline provided by the
organizers) on the test data with respect to word-
and morpheme-level micro-averaged accuracy, re-
spectively. Overall, the token classification model
trained first on the artificially generated augmented
data perform the best, with the model trained on the
shared task data only not far behind. Meanwhile,
ByT5 models perform worse, with the model fine-
tuned first on ODIN trailing our best model by a
few percentage points, while the model finetuned
first on augmented data performs worse than the
baseline.

It is interesting that ByT5 performs worse than
token classification models, even when it is fine-
tuned on ODIN, which effectively doubles the
amout of annotated data. The gaps of performance
are uneven across the languages, and we do ob-
serve some language and training data specific is-
sues that could contribute to the deficiency of the
ByT5 model. For Gitksan, where only a very small
amount of data is available, the ByT5 model suf-
fers from hallucination, generating more glosses
than it should. It also has the opposite problem
for Lezgi, when sometimes fewer glosses than ex-
pected are generated for long sequences of inputs.
For Uspanteko, we observe that some morphemes
are glossed with three question marks (???), per-
haps to denote uncertainty or unknown morphemes,
and we think this might have caused the model to
falsely generalize the symbols to other contexts like
code switching. In general, ByT5 models are worse
at alignment because that is not enforced between
segmented morphemes and glosses.

5.1 Data Augmentation

Overall, we find data augmentation to be useful.
With artificially generated data, we see the effects

are perhaps greatest for the mid-resource languages
(ddo, lez, ntu, nyb, usp), while the highest and
lowest resourced languages did not receive much
benefit from pretraining on the artificial data. We
think this is perhaps because there is a “sweet spot”
with respect to the amount of data that is required to
train a model. If there is enough data already, in the
case of Arapaho, then the noisiness of artificial data
would outweigh the benefit of training on them. On
the other end of the scale, Gitksan perhaps needs
more synthetic data for data augmentation to yield
meaningful improvements.

For ByT5 models, artificially generated data
seem to have the opposite effect, where perfor-
mance is significantly degraded. A speculation
for this effect is the fact the pretrained model is
more sensitive to the overall semantics of the input
sentences, and since the artificially generated sen-
tences could be nonsensical, they could be much
noisier than we expect. On the other hand, pretrain-
ing on ODIN yields improvements for the majority
of the languages®. This is encouraging since we
did not perform much preprocessing for ODIN,
and there is definitely still room to make the data
cleaner and more internally consistent, which in
turn should result in a better model.

5.2 Choice of Hyperparameters

We find the choice of hyperparameters of the token
classification models to be necessarily language
and dataset specific. Gitksan in particular needs
special attention, where the number of training
epochs need to be greatly increased for the very
low data size. We find that the token classification
model needs at least a few thousand steps to con-
verge, and controlling for the number of minimum
training steps makes more sense in low data set-
tings. After the submission deadline has been con-
cluded, we ran more experiments and discovered
our Lezgi and Natugu models are under-trained.
We do not include those latest experiments in this
paper, but we believe our token classification mod-
els have the potential to perform better with more
hyperparameter tuning.

5.3 In- Versus Out-of-Vocabulary Errors

One dimension of error analysis we investigated
was what proportion of our systems’ errors come

Tsez is the only language that appeared in ODIN (68
sentences). We did not remove it from the corpus but this
should have little influence on the performance because the
size of the dataset is very small.



Model arp ddo git lez ntu nyb usp AVG
xlmr-base 85.87 73.77 27.86/34.11¢ 74.15 8299 80.61 7347 72.14
xlmr-aug 8292 80.07 24.74/31.25 77.77 78.72 8553 77.51 73.39
byt5-base 78.86 80.32 14.84 60.72"  76.67 76.73 7121 66.48
byt5-aug  73.27 62.37 4.17 38.60 55.11 69.25 70.85 53.38
byt5-odin 80.56 82.79 20.57 63.77 7797 8259 7572 69.14
baseline 8544 75.71 16.41 3454 41.08 8430 76.55 59.14

“We report before / after dictionary based post-correction for Gitksan.

We trained this model without romanizing Lezgi.

Table 1: Word-level accuracy of our submitted systems. Best performance per language in the table is bolded. The
XLMR baseline is the highest Arapaho accuracy reported out of all shared task submissions.

Model arp ddo git lez ntu nyb usp AVG
xlmr-base 91.36 84.35 47.47/52.82 80.17 88.35 8584 80.08 80.42
xlmr-aug  89.34 88.15 46.89/52.39 8236 8553 8949 83.08 81.48
byt5-base 78.82 75.77 12.59 4410 6240 78.97 7425 60.99
byt5-aug  72.10 57.93 2.60 26.24 35.62 70.01 67.73 47.46
byt5-odin 80.81 78.24 12.74 50.00 63.39 8530 73.25 63.39
baseline 91.11 85.34 25.33 51.82 49.03 88.71 82.48 67.69

Table 2: Morpheme-level accuracy of our submitted systems. Best performance per language in the table is bolded.
The XLMR baseline with artificial pretraining and dictionary post-correction is the highest Gitksan accuracy

reported out of all shared task submissions.

from morphemes or words that are either in or out
of the training data vocabulary. We count a mor-
pheme or word as in-vocabulary if the surface form
and its corresponding gloss co-occur in the pro-
vided training data (not including the development
data, as our models are only trained on the train
set). Note that there is a much larger proportion
of OOV words as opposed to morphemes due to
the fact that an unseen word can be composed of
different combinations of seen morphemes.

Table 3 shows the proportion of morphemes and
words that are out-of-vocab (OOV) within the test
set. While nearly all the languages have less than
10% of their morphemes classified as OOV, Gitksan
notably has a relatively large portion of OOV test
data, with ~ 45% of morphemes and ~ 78% of
words being OOV.

Tables 4 and 5 show our models’ performances
on in- verses out-of-vocab tokens at the morpheme
and word levels, respectively. While we would
intuitively expect that word-level OOV accuracy be
about the same or worse than morpheme-level OOV
accuracy, this is not the case due to the fact that

arp ddo git lez ntu nyb usp
Morph 43 09 450 56 34 19 70
Word 242 155 781 169 214 84 200

Table 3: Percentage of morphemes and words that are
OOV within the test set.

a large portion of out-of-vocab words are formed
with in-vocab morphemes. For most languages,
with the exception of Gitksan, there appears to
be a trade-off between better in-vocab morpheme
performance with XLMR and performance out-of-
vocab with ByTS5.

6 Related Work

There have been a variety of approaches to the prob-
lem of (semi-) automatically generating interlinear
glosses. Baldridge and Palmer (2009) investigate
the efficacy of active learning for the task of inter-
linear glossing, using annotation time required by
expert and non-expert annotators as their metric.
The system they use to generate gloss label sugges-
tions is a standard maximum entropy classifier.



Model arp ddo git lez ntu nyb usp
«Imr—base 95.20 85.12 82.89 84.79 90.87 87.46 86.05
497 000 16.08 260 1452 0.00 0.82
«1mr-au 9298 88.94 84.74 87.10 87.88 91.17 89.31
& 749 000 1286 2.60 1935 0.00 041
bvt5-au 7476 58.24 342 4027 36.54 71.27 70.56
Y & 1231 2410 1.61 2354 968 323 3020
. 83.47 7855 1842 6290 6438 86.85 75.23
byt5-odin
21.14 43.37 579 4752 3548 323 4694

Table 4: Morpheme-level accuracy over all tokens of our submitted systems, split by in- versus out-of-vocab. Cells

highlighted in gray indicate OOV accuracy.

Model arp ddo git lez ntu nyb usp
lnr_bage 0393 7818 9523 8424 0314 8585 86.27
5444 4979 17.00 2467 45.65 23.60 2241
lnr—ay, 0372 8385 9405 8764 8924 90.81 9111
& 4917 5951 1367 2933 4000 2324 28.09
vtsaue 8722 6869 1071 4606 65.13 74.59 8144
y & 2969 2804 233 200 1826 1124 28.63
. 9193 87.66 63.10 73.78 8593 87.60 83.46
byt5-odin
45.07 5636 8.67 14.67 4870 28.09 4481

Table 5: Word-level accuracy of our submitted systems, split by in- versus out-of-vocab. Cells highlighted in gray

indicate OOV accuracy.

A rule-based approach by Snoek et al. (2014)
utilizes an FST to generate glosses for Plains Cree,
focusing on nouns. Samardzi¢ et al. (2015) view
the task of glossing segmented text as a two-step
process, first treating it as a standard POS tagging
task and then adding lexical glosses from a dictio-
nary. They demonstrate this method on a Chintang
corpus of about 1.2 million words.

A number of other works focusing on interlinear
glossing utilize conditional random field (CRF)
models. Moeller and Hulden (2018) test three
different models on a very small Lezgi dataset
(< 3000 words): a CRF (that outputs BIO labels
with the corresponding gloss per character in the in-
put), a segmentation and labelling pipeline that uti-
lizes a CRF (for BIO labels) and SVM (for gloss la-
bels), and an LSTM seq2seq model. They find that
the CREF that jointly produces the BIO labels and
tags produced the best results. McMillan-Major
(2020) utilizes translations in their training data by
creating two CRF models, one that predicts gloss
from the segmented input and another than pre-

dicts from the translation, and then uses heuristics
to determine which model to select from for each
morpheme. Barriga Martinez et al. (2021) used a
CRF model to achieve > 90% accuracy for gloss-
ing Otomi and find that it works better than an
RNN, which is computationally more expensive.

Other works, including our systems, have turned
to neural methods. Kondratyuk (2019) leverages
pretrained multilingual BERT to encode input
sentences, then apply additional word-level and
character-level LSTM layers before jointly decod-
ing lemmas and morphology tags using simple se-
quence tagging layers. Furthermore, they show
that two-stage training by first training on all lan-
guages followed by training on the target language
is more effective than training the system on the
target language alone. An approach by Zhao et al.
(2020), like McMillan-Major (2020), makes use of
translations available in parallel corpora, but do so
by using a multi-source transformer model. They
also incorporate length control and alignment dur-
ing inference to enhance their model, and test their



system on Arapaho, Tsez, and Lezgi.

Past SIGMORPHON shared task have inspired
the use of data augmentation to improve perfor-
mance in low resource settings. Silfverberg et al.
(2017) generated additional examples by randomly
replacing the characters in the stem with other in-
vocabulary characters. Anastasopoulos and Neubig
(2019) employed a similar method, while keep-
ing the lengths of generated stems the same as the
original. However, these methods were designed
for reinflection, where stem is not glossed, and our
method that does not generate new stems is presum-
ably more fitting for the present task. Additionally,
Bergmanis et al. (2017) used a more sophisticated
method that automatically finds orthographic pat-
terns from an unlabeled word list to create pseudo
annotations. This method can be modified for gloss-
ing, but it requires unlabeled word lists which is
not guaranteed to be available for all low resource
languages.

7 Conclusion

In our shared task submission, we explore data aug-
mentation methods and modeling strategies for the
task of interlinear glossing in seven low-resource
languages. Our best performing models are to-
ken classification models using XLMR. We demon-
strate that pretraining on artificial data with XLMR
is an effective technique for the mid-resource test
languages. Additionally, in our error analysis we
find that we may have actually undertrained our
token classification models, and thus our systems
may have the potential to perform better with ad-
ditional hyperparameter tuning. While our ByT5
models did not perform as well as our other sys-
tems, we show that pretraining on ODIN data is
effective, despite this data being very noisy. Finally,
we also demonstrate improvements by utilizing a
dictionary to post-correct model outputs for Gitk-
san.
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