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We present an explicit two-parameter family of finite-band
Jacobi elliptic potentials given by ¢ = Adn(xz;m), where
m € (0,1) and A can be taken to be positive without loss
of generality, for a non-self-adjoint Dirac operator L, which
connects two well-known limiting cases of the plane wave
(m = 0) and of the sech potential (m = 1). We show that, if
A € N, then the spectrum consists of R plus 24 Schwarz
symmetric segments (bands) on iR. This characterization
of the spectrum is obtained by relating the periodic and
antiperiodic eigenvalue problems for the Dirac operator to
corresponding eigenvalue problems for tridiagonal operators
acting on Fourier coefficients in a weighted Hilbert space,
and to appropriate connection problems for Heun’s equation.
Conversely, if A ¢ N, then the spectrum of L consists of
infinitely many bands in C. When A € N, the corresponding
potentials generate finite-genus solutions for all the positive
and negative flows associated with the focusing nonlinear
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Schrodinger hierarchy, including the modified Korteweg-
deVries equation and the sine-Gordon equation.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction and main results
1.1. Background

In this work we study a non-self-adjoint Dirac operator with a Jacobi elliptic potential,
namely,

Lp=2¢, z€C, (1.1)

where ¢(z;2) = (¢1,¢2)T, the superscript “T” denoting matrix transpose, L is given
formally by

L:=io3(0 — Q@), Qz)= (_% q?) , z€R, (1.2)

the potential Q(x) is I-periodic, o3 := diag(1,—1) (cf. Appendix A.1) and overline de-
notes the complex conjugate. In particular, let

q(xz; A,;m) = Adn(z;m), (1.3)

where dn(z;m) is one of the three basic Jacobi elliptic functions (cf. [43,79]), and m €
(0,1) is the elliptic parameter. Finally, A is an arbitrary constant, which one can take
to be real and positive without loss of generality. (It is easy to see that arg A # 0 leaves
the spectrum invariant.) We will do so throughout this work. Recall that dn(z;m) has
minimal period | = 2K along the real z-axis, where K := K(m) is the complete elliptic
integral of the first kind [43,79]. Also recall that dn(z;0) = 1 and dn(z; 1) = sech . Both
of the limiting cases m = 0 and m = 1 are exactly solvable (i.e., the spectrum is known
in closed form), and therefore provide convenient “bookends” for the results of this work.

There are several factors that motivate the present study. A first one is that Dirac
operators arise naturally in quantum field theory [54,104], and therefore the identification
of exactly solvable potentials is relevant in that context. A second one is the obvious
similarity between the study of (1.1) and that of eigenvalue problems for the time-
independent Schrédinger equation, namely

(A+V(x)p=A9, (1.4)

where A denotes the n-dimensional Laplacian operator and ¢ : R™ — C, which has been
an integral component of mathematical physics since its first appearance in the 1920’s
(e.g., see [38,76,82]), and which received renewed interest in the late 1960’s and 1970’s
(e.g., see [1,24,62,78,98]) thanks to the connection with infinite-dimensional integrable
systems. Namely, the fact that the one-dimensional time-independent Schrédinger equa-
tion [i.e., (1.4) with n = 1] is the first half of the Lax pair for the Korteweg-deVries (KdV)
equation [36,66]. As a result, the study of direct and inverse spectral problems for the
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Schrodinger operator played a key role in the development of the so-called inverse scat-
tering transform (IST) to solve the initial value problem for the KdV equation [36,66].
The direct and inverse scattering theory was later made more rigorous, and generaliza-
tions of the theory were also studied [6,7,20,24,27,52,53,67,73,75,77,93]. In particular,
the so-called finite-gap (or finite-band) solution became a primary object of study.

Similar problems have been considered for (1.1), since it comprises the first half of the
Lax pair associated to the nonlinear Schrodinger (NLS) equation, namely, the partial
differential equation (PDE)

ig: + Gua + 25lq’q = 0. (1.5)

Here g : R x R — C, subscripts  and ¢t denote partial differentiation and, as usual, the
sign s = +1 denotes the focusing and defocusing cases, respectively. Similarly to the KdV
equation, the NLS equation is an infinite-dimensional Hamiltonian system. Also, similarly
to the KdV equation, the NLS equation is a ubiquitous physical model. In particular,
(1.5) is a universal model describing the slow modulations of a weakly monochromatic
dispersive wave envelope, and therefore appears in many physical contexts, such as deep
water waves, nonlinear optics, plasmas, ferromagnetics and Bose-Einstein condensates
(e.g., see [1,3,81]). Therefore, the study of the NLS equation is of both theoretical and
applicative interest.

In 1972 [105], Zakharov and Shabat showed that (1.5) is the compatibility condition
of the matrix Lax pair

¢ = (—izos + Q(z,1)) ¢, (1.6a)
b = (—2iz%03 + H(z,t,2)) ¢, (1.6b)

with o3 as above, and

0 q(z,1) ,
—sq(x,t) 0 > ) H(z,t,z) =22Q — 103(Q2 - Q). (1.7)

a0 = (

Following [105], (1.6a) [i.e., the first half of the Lax pair] is referred to as the Zakharov-
Shabat (ZS) scattering problem. It is easy to see that (1.6a) [with s = 1] is equivalent
o (1.1). Thus, the solution to (1.5) [with s = 1] comprises the scattering potential ¢
n (1.1). Moreover, one can also show that time evolution of ¢ according to the focusing
NLS equation (1.5) [with s = 1] amounts to an isospectral deformation of the potential
for the Dirac operator (1.2).

Scattering theory for the Zakharov-Shabat system have been studied extensively over
the years. In [105] the IST for (1.5) in the focusing case with localized data, i.e., with
q(x,t =0) € L'(R), was formulated. Corresponding results for the defocusing case with
constant boundary conditions (BCs), i.e., |¢(x,t)| = ¢, # 0 as x — +o0, were obtained
in [106]. The theory was then revisited and elucidated in [1,32,78]. When ¢ € L!(R),
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the isospectral data is composed of two pieces: an absolutely continuous spectrum, and
a set of discrete eigenvalues. When ¢ is periodic, however, the isospectral data is purely
absolutely continuous and has a band and gap structure.

Of particular interest is the effort to find classes of potentials for which the scat-
tering problem can be solved exactly. Satsuma and Yajima [86] considered the case of
q(x) = A sechz, with A an arbitrary positive constant, and obtained a complete rep-
resentation of eigenfunctions and scattering data. Their work was later generalized by
Tovbis and Venakides [95] to potentials of the type q(z) = A sech x e~1a 108(coshz) " with
A as above and a an arbitrary real constant. These results were then used in [57,96]
to study the behavior of solutions of the focusing NLS equation in the semiclassical
limit. More recently, Trillo et al. [35] obtained similar results for potentials of the type
q(z) = A tanhz in the defocusing case. In all of these cases, the ZS scattering problem
is reduced to connection problems for the hypergeometric equation. Finally, Klaus and
Shaw [59,60] identified classes of “single-lobe” potentials for which the point spectrum
is purely imaginary.

The above-mentioned works considered potentials that are either localized or tend
to constant boundary conditions as || — oo. Spectral problems for the Schréodinger
operator with a periodic potential similar to the one considered here are also a classical
subject, and their study goes back to Lamé [65], and Ince [47-49], where the spectrum for
a two-parameter family of potentials was studied, and necessary and sufficient conditions
in order for such potentials to give rise to a spectrum with a finite number of gaps were
derived (see also [4,15,28,39,72]). More recently, these results were generalized in [92]
and [88], and in seminal work a characterization of all elliptic algebro-geometric solutions
of the KAV and AKNS hierarchies was given by Gesztesy and Weikard in [39-41].

Finite-band potentials for the focusing and defocusing ZS scattering problems have
also been studied [8,40,51,63,87]. In particular, the special case of genus-one potentials
was explicitly considered in [16,56], and the stability of those solutions was recently
studied in [22]. On the other hand, the identification of exactly solvable cases for periodic
potentials is generally challenging, and few families of finite-band potentials for (1.2) have
been studied in detail (see [40,41]).

Here we present an explicit, two-parameter family of finite-band potentials of the fo-
cusing ZS system and we characterize the resulting spectrum. We also show that (1.1)
with the potential (1.3) can be reduced to certain connection problems for Heun’s equa-
tion. Unlike the case of the hypergeometric equation, the connection problem for Heun’s
equation has not been solved in general [85]. Still, special cases can be solved exactly. For
example, for certain classes of periodic potentials it turns out that Hill’s equation [i.e.,
(1.4) with n» = 1 and periodic potential] can be mapped to a Heun equation. Classical
works [47,48,72] where the spectrum of Hill’s equation for a multi-parameter family of
potentials was studied, resulted in the derivation of necessary and sufficient conditions
for such potentials to give rise to a spectrum with a finite number of bands and gaps. Im-
portantly, the absence of a gap in the spectrum of the Hill operator corresponds uniquely
to the coexistence of solutions, namely, the existence of two linearly independent peri-
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odic, or antiperiodic, solutions to the given ordinary differential equation (ODE) [72].
More recently, those results were strengthened in [100,102] and [45]. The results of this
work provide a direct analogue of all these results for the Dirac operator (1.2) as well as
for the Hill operator with PT-symmetric potential.

1.2. Main results

We first introduce some definitions in order to state the main results of this work (see
Appendix A.1 for further notations and standard definitions).

Definition 1.1 (Laz spectrum). The Lax spectrum of the matrix-valued differential ex-
pression L in (1.2) is the set

E(L) = {Z ceC:Lp=1z¢, 0< ||¢||Lao(]R;(c2) < OO}, (18)

i.e., the set of complex numbers z such that (1.1) has at least one bounded nonzero
solution.

It can be proved that for ¢ locally integrable the Lax spectrum defined above equals the
spectrum of the maximal operator associated with L in L?(R;C?), the space of square-
integrable two-component vector-valued functions, namely the set {z € C : z ¢ p(L)},
where p(L) is the resolvent set of L (see [84] p. 249). Moreover, it is well known that if ¢
is {-periodic with minimal period [, then ¥(L) is purely continuous and comprised of an
at most countable collection of regular analytic arcs, referred to as bands, in the spectral
plane [40,84]. Throughout this work we will occasionally use spectrum as a synonym for
the Lax spectrum. Further properties of the Lax spectrum are discussed in Section 2.
If the potential ¢ is such that there are at most finitely many bands we say that ¢ is a
finite-band potential (see Definition 2.5). The class of finite-band potentials plays a key
role in the IST for the NLS equation on the torus [8,37,71]. In particular, it was shown in
[51] that the potential can be reconstructed from the knowledge of two key spectral data:
(i) the periodic and antiperiodic eigenvalues of L (i.e., the set of values z associated with
periodic or antiperiodic eigenfunctions, respectively), which correspond to endpoints of
spectral bands, and (ii) the Dirichlet (or auxiliary) eigenvalues of L, defined as the set
of zeros of the 1,2 entry of the monodromy matrix (see Section 2 for precise definitions
of all these quantities). To specify the dependence of solutions associated with (1.3) on
the parameters A, m, we will also occasionally use the notation 3(L; A, m) to denote the
Lax spectrum.

Theorem 1.2. Consider (1.1) with ¢ = Adn(z;m), m € (0,1), and A > 0. Then the
potential q is finite-band if and only if A € N. Moreover, if A € N, then:
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Y(L;A,m) C RU(—i4,i4), (1.9)
and q is a 2A-band (i.e., a genus 2A — 1) potential of the Dirac operator (1.2).

(Of course it is well known that (L) is Schwarz symmetric and R C (L) [71,74].)
Theorem 1.2 is a consequence of the following more detailed description of the spectrum:

Theorem 1.3. Assume the conditions of Theorem 1.2. If A € N then:

1. For any m € (0,1), the non-real part of the Lax spectrum, ¥.(L; A, m)\R, is a proper
subset of (—i4,i1A). (For m =0, the Lax spectrum is 3(L; A,0) = R U [—iA,i4].)

2. For any m € (0,1), there are exactly 2A symmetric bands of X(L; A,m) along
(—iA,i4), separated by 2A — 1 open gaps. The central gap (i.e., the gap surrounding
the origin) contains an eigenvalue at z = 0, which is periodic when A is even and
antiperiodic when A is odd.

3. For any m € [0,1), R C X(L; A, m) contains infinitely many interlaced periodic and
antiperiodic eigenvalues, symmetrically located with respect to z = 0.

4. Each periodic/antiperiodic eigenvalue z € R has geometric multiplicity two and each
periodic/antiperiodic eigenvalue z € (—iA,1A)\{0} has geometric multiplicity one.

5. Each periodic/antiperiodic eigenvalue z € R is simultaneously a Dirichlet eigenvalue.
All these Dirichlet eigenvalues are immouvable.

6. Each of the open 2A — 1 gaps on (—iA,iA) contains exactly one movable Dirichlet
eigenvalue. Thus, all of the 2A — 1 movable Dirichlet eigenvalues of the finite-band
solution with genus 2A — 1 are located in the gaps of the interval (—iA,iA).

Recall that a movable Dirichlet eigenvalue is a Dirichlet eigenvalue whose location
changes when changing the normalization of the monodromy matrix, whereas the location
of immovable Dirichlet eigenvalues is independent of the normalization of the monodromy
matrix. For an N-band potential there are a total of N —1 movable Dirichlet eigenvalues
(cf. Definition 2.12 and [34,37]).

Theorem 1.4. Assume the conditions of Theorem 1.2. If A ¢ N, then:

1. Foranym € (0,1), each periodic or antiperiodic eigenvalue has geometric multiplicity
one.

2. There are no periodic or antiperiodic eigenvalues on R.

3. There are infinitely many spines (spectral bands emanating transversally from the
real axis) at the real critical points of the Floquet discriminant (i.e., the trace of the
monodromy matriz).

Time evolution according to the NLS equation is an isospectral deformation of a
potential of (1.2). Thus, by Theorem 1.2, if A € N, the initial condition ¢(z,0) =
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Adn(z;m) generates a genus 24 — 1 solution of the focusing NLS equation; conversely,
if A ¢ N, the corresponding solution is not finite-genus.

After various preliminaries in Section 2, the proof of Theorems 1.2 and 1.3 involves
several steps:

e In Section 3 we map (1.1) into Hill’s equation with a complex potential, and in
Section 4 we map Hill’s equation into a second-order trigonometric ODE.

e In Section 4.2 we map the trigonometric ODE into a three-term recurrence relation
for the Fourier coefficients.

e In Section 4.3 we demonstrate that, when A € N, each periodic or antiperiodic
eigenvalue of L is associated to a corresponding ascending or descending semi-infinite
Fourier series.

e In Section 5 we map the trigonometric ODE into Heun’s equation and relate the
periodic and antiperiodic eigenvalue problems for (1.1) with potential (1.3) to a
connection problem for Heun’s equation.

e Moreover, in Section 5 we show that the periodic and antiperiodic eigenvalues of (1.2)
with potential (1.3) correspond to the eigenvalues of certain tridiagonal operators
that encode the recurrence relations for the coefficients of the Frobenius series solu-
tion of Heun’s equation at the origin and at infinity.

e In Section 6 we establish that all eigenvalues of the above-mentioned tridiagonal
operators are real.

The determination of the precise number of spectral bands for any m € (0, 1) is proved
in Section 8. Finally, Theorem 1.4 is proved in Section 7. Notation, standard definitions,
several technical statements and additional results and observations are relegated to the
appendices.

2. Preliminaries

We begin by briefly reviewing basic properties of the Lax spectrum. Unless stated
otherwise, all statements in this section hold for operators L with arbitrary continuous
l[-periodic potentials.

2.1. Bloch-Floquet theory

While it is natural to pose (1.1) on the whole real z-axis, all of the requisite information
for the spectral theory is contained in the period interval of the potential, namely, I, :=
[0, To + 1], where = z, is an arbitrary base point. Consider the Flogquet boundary
conditions (BCs):

BC,(L) :={¢ : ¢(x, +1;2) =" p(x,;2), v ER}. (2.1)
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Definition 2.1 (Floquet eigenvalues of the Dirac operator). Let the operator L
HY(I,,;C?) — L%*(I,,;C?) be defined by (1.2). Let dom(L) := {¢ € H (I, ;C?) :
¢ € BC,(L)}. The set of Floquet eigenvalues of L is given by

Y,(L)={2€C:3¢p#0ecdom(L) s.t. Lp = z¢}. (2.2)

In particular, v = 2nw/l, n € Z, identifies periodic eigenfunctions, while v = (2n—1)7/I,
n € Z, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues
periodic and antiperiodic, respectively, and we will denote the set of periodic and an-
tiperiodic eigenvalues by %4 (L), respectively.

(H' denotes the space of square-integrable functions with square-integrable first
derivative.) It is well-known that 3, (L) is discrete and countably infinite [15,25].

Next we review the theory of linear homogeneous ODEs with periodic coefficients and
important connections to the Lax spectrum. We set the base point z, = 0 without loss of
generality. Recall, the Floquet solutions (or Floguet eigenfunctions) of (1.1) are solutions
such that

Pz +1;2) = po(r; 2), (2.3)

where p := p(z) is the Floquet multiplier. Then by Floquet’s Theorem (see [15,33]) all
bounded (in x) Floquet solutions of (1.1) have the form ¢(z;z) = eV (x;z), where
Yz +1;2) = Y(x;2) and v := v(z) € R. Thus, a solution of (1.1) is bounded for all
x € R if and only if |u| = 1, in which case one has the relation

p=e", (2.4)

with v € R. The quantity iv is the Floquet exponent. (With a slight abuse of ter-
minology, we will often simply refer to v as the Floquet exponent for brevity.) The
Floquet multipliers are the eigenvalues of the monodromy matriz M := M(z), defined
by Y(x+1;2) = Y(x; 2)M(z), where Y (z; 2) is any fundamental matrix solution of (1.1).
It is well-known that the monodromy matrix is entire as a function of z [71,74]. Note that
det M(z) = 1Vz € C by Abel’s formula, since (1.2) is traceless. Thus, the eigenvalues of
M are given by the roots of the quadratic equation py? —2A p+1 = 0, where A := A(2)
is the Floquet discriminant, i.e.,

Az) = Ltr M(2). (2.5)

Further, py = A ++/A2 — 1. Thus (1.1) admits bounded solutions if and only if —1 <
A<l

Remark 2.2. For ¢ € C(R) one has A(z) = cos(zl) + o(1) as z — oo along the real z-axis
(see [71,74]).
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The above considerations yield an equivalent representation of the Lax spectrum (see
[15,28,84]):

Theorem 2.3. The Lax spectrum (L) is given by

S(L)={z€C:A(z) e [-1,1]}. (2.6)
Additionally, for any fixred v € R the Floquet eigenvalues are given by

(L) ={2€C:A(z) =cos(vl)}. (2.7)

For each v € R the set ¥,(L) is discrete and the only accumulation point occurs at
infinity. Moreover,

()= |J =.@). (2.8)

vel0,2w /1)

Remark 2.4. By (2.3), (2.4) and (2.7), the values z € C for which A(z) = £1 are the
periodic and antiperiodic eigenvalues z € Y1 (L) (see Definition 2.1), respectively. The
periodic and antiperiodic eigenvalues correspond to band edges of the Lax spectrum.
Further, ¥, (L)NX, (L) =0 for all v # v/ mod 2x/I.

2.2. General properties of the Lax spectrum
Owing to (2.6), the Lax spectrum (1.8) is located along the zero level curves of
ImA(z), ie,, I := {z € C : ImA(z) = 0}
[

1
= Moreover, I' is the union of an at most
countable set of regular analytic curves Iy, [40],

40], each starting from infinity and ending
at infinity:

I = UpenDn. (2.9)

(The precise details of the map n — T',, are not important for the present purposes.)
Different curves I'; # I'; (and therefore different spectral bands) can intersect at saddle
points of A(z). However, two distinct T'), can intersect at most once, as a result of the fact
that each T',, is a level curve of the harmonic function Im A(z). Thus the Lax spectrum
(L) cannot contain any closed curves in the finite z-plane.

Definition 2.5 (Spectral band). A spectral band is a maximally connected regular analytic
arc along I';, where A(z) € [—1, 1] holds. Each finite portion of I',, where |Re A(2)| > 1,
delimited by a band on either side, is called a spectral gap.

Lemma 2.6. ([12]) The real z-axis is the only band extending to infinity; 3(L) contains
no closed curves in the finite z-plane; and the resolvent set g := C \ (L) is comprised
of two connected components.
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Fig. 1. Schematic diagram of the Lax spectrum for a generic potential.

With the above definition, the Lax spectrum can be decomposed into bands and gaps
along each I';, as in a self-adjoint problem, with the crucial difference that here bands
and gaps are not restricted to lie along the real z-axis (as they would be in a self-adjoint
problem), but lie instead along arcs of T',,. Fig. 1 provides a schematic

illustration of these concepts.

We call a spectral band intersecting the real or imaginary z-axis transversally a spine
[74]. Generically, the Lax spectrum of the operator (1.2) includes infinitely many spines
emanating from (infinitely many) critical points that extend to (%) infinity along the
real z-axis [25,74], in which case we call ¢ an infinite-band potential. Otherwise, we call
q a finite-band potential. Specifically, if there are N bands (not including the real z-axis)
we say that ¢ is an N-band potential. The corresponding solutions of the focusing NLS
equation are described in terms of Riemann ©-functions determined by hyperelliptic
Riemann surfaces of genus G = N — 1 (see [8,34,37,51,91]). For example, ¢ = A is a
genus-0 (i.e., a 1-band) potential of the Dirac operator (1.2), and ¢ = dn(z;m) is a
genus-1 (i.e., a 2-band) potential.

Remark 2.7. The following sets play a key role in the analysis:

o Periodic/antiperiodic points: points z3 € C such that A(zy) = £1 (note zx €
Y+ (L));
o Critical points: points z. € C such that 9,A(z.) = 0.

We denote by ®(z;z) the fundamental matrix solution of (1.1) normalized so that
®(0;z) = 1, where 1 is the 2 x 2 identity matrix. The trace and the eigenvalues of the
monodromy matrix M (z) are independent of the particular fundamental matrix solution
chosen, and therefore so is the Floquet discriminant A(z) and the Lax spectrum X (L).
Nonetheless, it will be convenient to use ®(x; z), so that M (z) is simply given by

M(z) =®(l;2). (2.10)

Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

© 0 N o o b~ W N R

A DA D W W W W W W W W WWN N N DN DNDNDNDDNNDNNDN R R R R
N B O © 0 N O ¢ & W M H O ©W 0 N O G & W N B O © 0N O G W N = O



© 00 N o 0 B~ W N =

A OPA DA W W W W W W W W WWN NN DNDNDNDNDDNNDNDN R R R R R R e
N B O © 00 N O g B W M H O ©W 0 N O 00 B W M H O O WO N O 0 B W M = O

JID:YAIMA  AID:109188 /FLA [m1L; v1.338] P.12 (1-63)
12 G. Biondini et al. / Advances in Mathematics sss (sess) seesee

Remark 2.8. It is straightforward to see that, for all z € C, the monodromy matrix
satisfies the same symmetries as the scattering matrix for the IST on the line (e.g.,
see [1,2,71])

M=Y(2) = 0oM™(2) 02, (2.11a)
M(Z) = 0oM(z) 0. (2.11b)

Moreover, it is also straightforward to verify the following additional symmetries (e.g.,
see [12]). If ¢ is real, then

M(-z)=M(z), zeC. (2.12a)
Moreover, if g is even, then
M(-%) = o M~(2)oy, z€C, (2.12b)
while if ¢ is odd, then
M(=%) = 0oM~1(2)o2, 2€C, (2.12c)

where o1 and o9 are the first and second Pauli spin matrices, respectively (see Ap-
pendix A.1).

The symmetry (2.11b) for the monodromy matrix implies that the Floquet discrimi-
nant satisfies the Schwarz symmetry

AZ) = A(z), zeC. (2.13)

Moreover, if ¢ is real or even or odd, (2.12) implies additionally that A(z) is an even
function:

A(—z) = A(z), zeC. (2.14)
As a result, one has:

Lemma 2.9. If q is real or even or odd, ¥.(L) is symmetric about the real and imaginary
z-azes. Thus, the Floquet eigenvalues come in symmetric quartets {z,z, —z,—Z}.

For g real and even, it follows from (2.12a) and (2.12b) that
M(z) = A(2) 1+ c(2) 03 —is(z) 02,  z€C. (2.15)

Obviously, (2.15) together with the fact that det M (z) = 1, imply the relation
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A?(2) =14 (2) — 5%(2), ze€C. (2.16)

Equation (2.12a) also implies that, if ¢ is real, M(z) is real when z € iR. Moreover, for
q real and even, one has:

A(z) =Az) = m, s(z) = 5(Z) = s(2), c(z)=—c(z) =c(2), z €iR. (2.17)

That is, A(z), s(z) and ¢(z) are all real for z € iR. For z € R, A(z) and s(z) are real,
whereas ¢(z) is purely imaginary. Finally, since M(z) is entire, (2.17) also implies

s(=z) = s(2), e(—z) = —c(2), zeC. (2.18)

Next we show that the Lax spectrum of (1.2) with a non-constant potential is confined
to an open strip in the spectral plane. The following Lemma is proved in Appendix A.2,
and is instrumental for this work:

Lemma 2.10. Suppose ¢ € C(R) is l-periodic. (i) If q is not constant and z € (L), then
[Tm z| < ||q|loo- (%) If q is Teal or even or odd, and ¥4 (L) C RUIR, then ¥(L) C RUIR
and q is finite-band.

To solve the inverse problem in the IST (namely, reconstructing the potential from the
scattering data), an auxiliary set of spectral data is also needed—the Dirichlet eigenvalues
[34,51]:

Definition 2.11 (Dirichlet eigenvalues). Let M (z) be defined by (2.10). The set of Dirich-
let eigenvalues (see [34]) with base point zo = 0 is defined as

Ypir(Lijzo =0):={z€ C:s(z) =0}. (2.19)

In contrast to the Lax spectrum, the Dirichlet eigenvalues are not invariant with re-
spect to changes in the base point = = z,, or to time evolution of g according to the
focusing NLS equation. Indeed, in the context of the integrability of NLS on the torus,
the Dirichlet eigenvalues correspond to angle variables and are used to coordinatize the
isospectral level sets. As we discuss next, the set of Dirichlet eigenvalues is discrete, con-
sists of movable and immovable points, and the number of movable Dirichlet eigenvalues
is tied to the genus of the corresponding Riemann surface (see [34,41]).

The monodromy matrix M (z) in (2.10) was defined in terms of the fundamental matrix
solution ®(x; z) normalized as ®(0; z) = 1. The monodromy matrix M (z;x,) associated
with a “shifted” solution ®(x;x,, z) normalized as ®(x,; x,, z) = 1, with o € R, is given
by

M(z;2,) = ®(20; 2) M (2)D (24 2). (2.20)

Let Xpi;(L; z,) be the corresponding set of Dirichlet eigenvalues.

Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint

Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

© 0 N o o b~ W N R

A DA D W W W W W W W W WWN N N DN DNDNDNDDNNDNNDN R R R R
N B O © 0 N O ¢ & W M H O ©W 0 N O G & W N B O © 0N O G W N = O



© 00 N o 0 B~ W N =

A OPA DA W W W W W W W W WWN NN DNDNDNDNDDNNDNDN R R R R R R e
N B O © 00 N O g B W M H O ©W 0 N O 00 B W M H O O WO N O 0 B W M = O

JID:YAIMA  AID:109188 /FLA [m1L; v1.338] P.14 (1-63)
14 G. Biondini et al. / Advances in Mathematics sss (sess) seesee

Definition 2.12 (Movable and immovable Dirichlet eigenvalues). Let z € C be a Dirichlet
eigenvalue associated to the monodromy matrix M(z; z,) with a given base point z = x,,
i.e., z € ¥pi(L; x,). Following [34], we say that z is an émmouvable Dirichlet eigenvalue if
z € Ypir(L; ) for all z € R. Otherwise, we say z € C is a mowvable Dirichlet eigenvalue.

Remark 2.13. If ¢ is an N-band potential of the non-self-adjoint Dirac operator (1.2),
then the number of movable Dirichlet eigenvalues is N — 1 (see [34,41]).

An immediate consequence of (2.16) and the symmetries of M(z), A(z), ¢(z) and s(z)
is the following lemma, which will be useful later (see also [34,74]):

Lemma 2.14. If z € R and |A(z)| = 1, then ¢(z) = s(z) =0, so that z is an immovable
Dirichlet eigenvalue. Conversely, if s(z) = 0 with z € iR, then |A(z)| > 1.

Lemma 2.15. Let z € X4 (L). If 9.A(z4) # 0, then the corresponding eigenspace has
dimension one.

Proof. Suppose that there exist two linearly independent periodic (or antiperiodic) eigen-
functions. Consider the normalized fundamental matrix solution ®(z; z) of (1.1), namely,
L®(z;2z) = 2®(x; z) with ®(0; z) = 1. Differentiating with respect to z and using varia-
tion of parameters one gets

l
A, = %tr —i®(l; 2 /(IJ Yw; 2)o3®(x; 2) dm) (2.21)
0

By Floquet’s theorem ®(I; z1) = £1, respectively. Then (2.21) yields 9,A(z4) =0. O
The following lemma is a direct consequence of Lemmas 2.14, and 2.15:

Lemma 2.16. If z € ¥4 (L)NR, then the geometric multiplicity is two and 9,A(z*) = 0,
respectively.

2.83. Limitsm -0 andm —1; 2=0

The two distinguished limits m — 0T and m — 1~ of the two-parameter family of
elliptic potentials (1.3) provide convenient limits of the results of this work. Interestingly,
both of these limits yield exactly solvable models. Here it will be convenient to keep track
of the dependence on m explicitly.

Since dn(z;0) = 1, when m = 0 the potential (1.3) reduces to a constant background,
i.e.,, ¢ = A with period | = 2K(0) = w. Thus, (1.1) becomes a linear system of ODEs
with constant coefficients, for which one easily obtains a fundamental matrix solution

®(z;2,m = 0) = e i(zos—Ao2)z (2.22)
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Hence the monodromy matrix is
isin (V22 + A%r)
R /Z2 + AQ

implying X(L; A,0) = R U [—iA4,iA]. Further, z = +iA are the only simple periodic
eigenvalues; all other periodic (resp. antiperiodic) eigenvalues are double points. Hence,

M(z,m =0) = cos (V22 + A%m) 1 —

(z03 — Aoa), (2.23)

forany A # 0, ¢ = Aisa 1-band (i.e., genus-0) potential of (1.1). Moreover, the associated
solution of the focusing NLS equation [i.e., (1.5) with s = 1] is simply ¢(z,t) = AeliA’t,

On the other hand, the limit m — 17 is singular, since K(m), and therefore the
period [ = 2K (m) of the potential (1.3), diverges in this limit. Indeed, dn(x; 1) = sech «,
so letting m = 1 results in the eigenvalue problem (1.1) with potential ¢ = A sech z. This
case is also exactly solvable, and was first studied by Satsuma and Yajima [86]. The point
spectrum is comprised of a set of discrete eigenvalues located along the imaginary z-axis.
Moreover, for A € N the potential is reflectionless, and the point spectrum is given by
zn = i(n —1/2) for n = 1,..., A. That is, when A € N, ¢ = Asechx corresponds to
a pure bound-state A-soliton solution of the focusing NLS equation [86]. When A = 1,
the solution of the NLS equation (1.5) is simply ¢(z,t) = efsechz. When A > 1, the
solutions are much more complicated [69,86]. Indeed, the potential A sech 2 was used to
study the semiclassical limit of the focusing NLS equation in the pure soliton regime [57].

Lastly, we discuss the origin z = 0 of the spectral plane. When z = 0, the ZS sys-
tem (1.6a) admits closed-form solutions (see Appendix A.3). These solutions then allow
one to obtain the following lemma, which is proved in Appendix A.3:

Lemma 2.17. Consider (1.2) with potential (1.3) and m € [0,1). If A € N is even or
odd, then z = 0 is a periodic or antiperiodic eigenvalue, respectively, with geometric
multiplicity two in each case.

3. Transformation to Hill’s equation

In this section we introduce a transformation of (1.1) that will be instrumental in
proving Theorem 1.2, and we consider the effect of this transformation on the Lax spec-
trum.

First we transform (1.1) to Hill’s equation with a complex-valued potential via the
unitary linear transformation

o—v=A~Ao, A::%(i 1), (3.1)

where v := v(x;2%) = (v,v™)T. Differentiation of (1.1) and use of (3.1) show that, if ¢
in (1.2) is a real-valued differentiable potential, then (3.1) maps (1.1) into the diagonal
system
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Hv:= (=0? 4+ Q% —iQu01)v = 2%v. (3.2)
Or, in component form,
vy + (g + 22+ ¢* )" =0, (3.3)

Equation (3.3) is Hill’s equation with the complex (Riccati) potential V* := Fig, — ¢>.
Thus, (3.3) amounts to the pair of eigenvalue problems

HEoF = ot Ni=22, (3.4)
where
H* = -0 + VE(2). (3.5)

Remark 3.1. If the potential ¢ in (1.2) is real and even, then V*(—2) = VE(x), i.e., V*E
is PT-symmetric.

Next, similarly to (2.1), we introduce the corresponding Floguet BCs for H*:
BC,(H*) := {vt 1 v (1, 0) = o (0;0), v (;0) = (0;)), veR}. (3.6)

Definition 3.2 (Floquet eigenvalues of Hill’s operator). Let the operators H* : H2([0,1]) —
L?([0,1]) be defined by (3.5). Let dom(H*) := {v* € H?([0,1]) : v* € BC,(H*)}. The
set of Floquet eigenvalues of H* is given by

S, (HE) :={A e C:FF £0edom(HF) s.t. HEvF = \ot}. (3.7)

In particular, v = 2nw/l, n € Z, identifies periodic eigenfunctions, while v = (2n—1)n/I,
n € 7, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues
periodic and antiperiodic, respectively, and we will denote the set of periodic and an-
tiperiodic eigenvalues by Y4 (H™*), respectively.

(H? denotes the space of square-integrable functions with square-integrable first and
second derivatives.) It is well-known that ¥, (H7) is discrete and countably infinite [15,
25,28,72].

Lemma 3.3. If the potential q in (1.2) is real and even, then ¥,(H') = X_,(H™), the
dimension of the corresponding eigenspaces are equal, and each of ¥, (HT) is symmetric

about the real \-axis.

Proof. Let A € ¥, (H™) with eigenfunction v (x; ). Since ¢ is even, it is easy to check
0 := vt (—x; \) satisfies H~ 0 = A\0. Moreover,
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5(l;A) = vt (=1 A) = e ™5(0; ), (3.8a)
o (5A) = —vf (=1:A) = e 71, (05 ) - (3.8b)

Hence, A € X_,(H™). Conversely, if A\ € ¥_,(H~) with eigenfunction v~ (z; ), a
completely symmetric argument shows that A € X,(HT). Finally, since the map
v(z;A) — v(—x;A) is a (unitary) isomorphism, the dimension of the corresponding
eigenspaces are the same.

Next, we prove the symmetry. Assume that A\ € ¥,(H*) with corresponding eigen-
function v*(z; \), respectively. Then it is easy to check that o% := v(—x;\)* satisfies
H*3* = X\p*. Moreover,

(1 N) = vE(=;\) = T (0; N (3.9a)
TE(N) = —vE (=) = "5 (0;0) . (3.9b)

Thus, A € ¥, (H*) with eigenfunction &+ (z; \), respectively. O
Remark 3.4. It is easy to see that Lemma 3.3 implies X4 (H ") = X4 (H ™), respectively.

Next, since the Lax spectrum S(HT) = UVG[Oyzﬂ/l)Zy(Hi), we have the following key
equivalence:

Lemma 3.5. If the potential q in (1.2) is real and even, then the unitary map (3.1) implies:
SHNY=XH )={A=22:2€%(L)}. (3.10)

That is, the Lax spectrum of these three operators is related through the relation \ = 22.
In particular,

€Y (L) & A=22eX (HY), 2e€% (L) & A\=22e¥Y_(HY). (3.11)

Finally, for z # 0, the geometric multiplicity of an eigenvalue z € ¥, (L) equals that of
A= 2% € %, (H*), and similarly for 2 € $_(L) and A\ = 2% € ©_(H?).

Proof. If z € X(L), the transformation (3.1) implies that v*(x;\) are both bounded
solutions of Hill’s ODE (3.4), respectively, implying A € S(H™*). Conversely, if v*(z; \)
is a bounded solution of (3.4) with the plus sign, it follows that ¢ := vt (—z,)) is a
bounded solution of (3.4) with the minus sign. Further, ¢; = (vF +v7)/v/2, and ¢y =
i(v™—v*)/v/2 are both bounded, and the map (3.1) then implies that ¢(z; z) = (¢1, ¢2)"
solves (1.1), implying z € X(L). A similar argument follows if one starts with v~ (z; A)
bounded. Thus, (3.10) follows. Equation (3.11) follows directly from Lemma 3.3.

It remains to show that, for z # 0, the dimension of the corresponding eigenspaces are
equal. The argument follows [26] where the self-adjoint case was studied. To this end, let
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E4(L,z) denote the eigenspace associated with an eigenvalue z € ¥4 (L), and similarly
for L? := L o L and H™. First, note that ¢ + iogy¢ is a (unitary) isomorphism between
the eigenspaces Fi (L, z) and F1(L,—z). Thus, applying the operator twice, for z # 0
one easily gets

dimFEy (L3 \ = 2%) = 2dimEL (L, 2) . (3.12)

Next, note that L? is (unitary) equivalent to the diagonal system (3.2), i.e., H =
LAL2A~! Moreover,

HT 0 0 0
= (7 D)8 2. .
and so

Ey(H ) = (Ex(HT,\) @ 0) @ (0® E+(H™,\). (3.14)

Hence, by (3.12)(3.14) and Lemma 3.3 it follows dimEL (L, z) = dimEy(H*,\), re-
spectively. O

Remark 3.6. By Lemma 3.5, the spectrum of the Dirac operator L in (1.2) with real and
even potential is associated to that of the spectrum of the Hill operators H* in (3.5).
Importantly, note that the final statement of Lemma 3.5 does not hold at z = 0; that is,
the geometric multiplicity of the periodic (or antiperiodic) eigenvalue z = 0 of the Dirac
and Hill operators need not be equal (see Appendix A.3).

All of the above results hold for generic real and even potentials. Moving forward,
we restrict our attention to the Jacobi elliptic potential (1.3). By Lemma 3.5 we fix
y := v~ (x; \) without loss of generality (dependence on A and m is omitted for brevity).
Then Hill’s equation H v~ = Av~ is given by

Yoo + (Amsn(z;m) en(z;m) + X + A2 dn?(z;m))y = 0. (3.15)

Remark 3.7. Since dn®(z;m) = 1 — msn?(z;m), (3.15) can be viewed as an imaginary
deformation of the celebrated Lamé equation [4,31,48,72], Yz + (A+V(2))y =0 up to a
shift of the eigenvalue \. The Lamé equation has the remarkable property that solutions
can coexist if and only if A2 = n(n + 1) where n is an integer [4,31,48,72]. Recall
that solutions coexist if two linearly independent periodic (or respectively antiperiodic)
solutions exist for a given A. In the case of Hill’s equation with a real potential this
amounts to a “closed gap” in the spectrum (corresponding to finite gap potentials).
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4. Transformation to a trigonometric ODE

In this section we introduce a second transformation of (1.1). By part (ii) of
Lemma 2.10 moving forward we only need to consider the periodic and antiperiodic
eigenfunctions.

4.1. Second-order ODE with trigonometric coefficients
Consider the following change of independent variable:

x +— t:=2am(z;m), (4.1)
where am(z;m) is the Jacobi amplitude [14,43]. Equation (4.1) establishes a conformal
map between the strip |Imz | < K(1 —m) and the complex ¢-plane cut along the rays
(2§ + V)m £ 2irr, 7 > 1, j € Z, where r = In[(2—m)/m]/2 [43,79]. We then arrive at our
second reformulation of the Dirac eigenvalue problem:

4(1 — msin® Sy — (msint)y, + (A + A%(1 — msin? L)+ 3 Amsint)y =0. (4.2)

(The independent variable ¢ introduced above should not be confused with the time
variable of the NLS equation (1.5).)

Remark 4.1. Equation (4.2) can be written as the eigenvalue problem
By = \y, (4.3)
where the operator B : H%(]0, 2n]) — L?([0,27]) is defined by
B := —4(1 —msin® £)07 4+ (msint)d; — (A*(1 — msin® L) + L Amsint)). (4.4)

The coefficients are now 2m-periodic and as before ¥4 (B) will denote the periodic and
antiperiodic eigenvalues of the operator B, respectively (see Definition 3.2).

This leads to the following result which connects the periodic/antiperiodic eigenvalues
of Hill’s equation (3.15) to the periodic/antiperiodic eigenvalues of the trigonometric
equation (4.2).

Lemma 4.2. Let B be the trigonometric operator (4.4). Then A € ¥4 (B) if and only if
AEXL(HT).

Proof. By (4.2) one gets By = Ay if and only if H-§ = Ag, with g(xz;\) = y(t; A)
and ¢t = 2am(z;m) as per (4.1). Next, note that am(z;m) is monotonic increasing for
x € (0,2K), am(z + 2K;m) = am(x;m) + 7, and am(0; m) = 0. Hence, the map (4.1)
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is a bijection between z € [0,2K] and ¢t € [0,2n]. Moreover, §(0; \) = £g(2K; ) if
and only if y(0; A) = £y(2m; A). Similarly, §,(0; \) = £7,(2K; A) if and only if 4 (0; \) =
+4¢(2m; \). Thus, 2K-periodic (resp. antiperiodic) solutions of (3.15) map to 27-periodic
(resp. antiperiodic) solutions of (4.2), and vice versa. 0O

Remark 4.3. The trigonometric ODE (4.2) can be viewed as a complex deformation of
Ince’s equation (see Chapter 7 of [72] for more details). Namely, one can write (4.2) as

(1+acost)yu + (bsint)y: + (h + dcost +iesint)y =0, (4.5)

where a = m/(2 —m), b = —a/2, h = \/(4 — 2m) + A%/4, d = A%a/4, e = Aa/4. To
the best of our knowledge this is the first example of a non-self-adjoint version of Ince’s
equation arising from applications.

4.2. Fourier series expansion and three-term recurrence relation

Recall that any Floquet solution y(t; \) of (4.2) bounded for all ¢ € R has the form
y(t; N) = e f(t;\) where f(t + 2m;\) = f(t;A) and v € R (cf. Section 2.1). Moreover,
since f(t; \) is 2m-periodic, we can express it in terms of a Fourier series on L?(S?!), where
St := R/Z is the unit circle. By direct calculation, let y(¢; A) be a Floquet solution of (4.2)
given by

y(t; \) = et Z cpel™. (4.6)

nez

Then the coefficients {c, },cz are given by the following three-term recurrence relation:

anCn—1+ (Bn — Nen + Yncnt1 =0, neZ, (4.7)
where
a, = —%m[A— (2n+2v —2)|][A+ (2n+2v —1)], (4.8a)
Bn = (1—1im)[(2n+2v)* — 47], (4.8b)
Yo =—3m[A—(2n+2v+2)][A+ (2n +2v +1)]. (4.8¢)

Remark 4.4. In turn, the recurrence relation (4.7) can be written as the eigenvalue prob-
lem

Byc = Ac, (4.9)

where ¢ = {¢p tnez

Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint

Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

© 0 N o o b~ W N

A OPA DA W W W W W W W W W WN NN DNDNDNDNDDNNDNDN R R R R R R
N B O © 00 N O O B W M H O ©W 0 N O 00 B W M H O O WO N O 0 B W M =B O



© 0 N o o b~ W N

A OPA D W W W W W W W W WWN NN DNDNDNDNDDNNDNNDN R R R R R R e e
N B O © 00 N O ¢ & W M H O ©W 0 N O G & W N B O © 0N O G W N = O

JID:YAIMA  AID:109188 /FLA [m1L; v1.338] P.21(1-63)
G. Biondini et al. / Advances in Mathematics sss (sess) seesee 21

B, = an B Vn . (4.10)

Note: v € Z corresponds to periodic, and v € Z + % to antiperiodic eigenfunctions
of (4.3).

Next, define the space (P(Z) := {c € (*(Z) : 3", cz In|P|cn|* < oo}. The requirement
that ¢ € (24(Z) ensures By € L*([0,27]). The reason why this is the case is that B is a
second-order differential operator, which implies that the Fourier coefficients of By will
grow n? faster as |n| — oo than those of y.

Definition 4.5 (Figenvalues of the tridiagonal operator). Let the operator B, : (?(Z) —
(%(Z) be defined by (4.10). The set of eigenvalues is given by

Y(B,) :={\€C:3c#0¢€ > Z) st. Bye=Ac}. (4.11)
We have the following important result:

Lemma 4.6. If v € Z or Z + 5, then ¥4 (B) = X(B,), and the dimension of the corre-
sponding eigenspaces are equal, respectively.

Proof. By standard results in Fourier analysis [82] one defines the bijective linear map

U:2(Z)—L*(SY),  (Uc)(t) = cne™, (4.12)
neZ

and the multiplication operator
M, : L*([0,2x]) — L*([0,2x]), (M, w)(t) = e w(t). (4.13)

By construction B, = (M,,U)*lBMl,U in the standard basis and U, M, are unitary.
Also, y = M, Uc (see (4.6)). Hence, it follows ¥4 (B) = X(B,) and the dimensions of the
corresponding eigenspaces are equal. 0O

Remark 4.7. The Floquet exponent v can be shifted by any integer amount without
loss of generality, since doing so simply corresponds to a shift in the numbering of
the Fourier coefficients in (4.6). So, for example, v — v + s simply corresponds to

(ana ﬁnv ’Y’I’L) = (an+s; Bn+sa ’yn+s) fOI‘ all ne Z
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4.3. Reducible tridiagonal operators and ascending and descending Fourier series

We show that the tridiagonal operator B, is reducible. Recall that a tridiagonal
operator is reducible if there exists a zero element along the subdiagonal, or superdiagonal
[46].

Lemma 4.8. f Ac N andv e€Z orZ + %, then B, is reducible.

Proof. There are two cases to consider: (i) v € Z, corresponding to periodic eigenvalues,
and (i) v € Z + %, corresponding to antiperiodic eigenvalues. In either case, however,
when A € N one has

a, =0 <— nzg—l—l—y vV n=-—

Yn =0 <— nzé—l—y V. o n=-—

—v, (4.14a)
—v. (4.14b)

In both cases, one can find two values of n that make a,, and =, zero, respectively, but
only one of them is an integer, depending on whether A is even or odd. Note also that
Brn =0 for n = —v + A/2, but the corresponding value of n is integer only if A is even
and v € Z or A is odd and v € Z + 1. (The equalities in (4.14) hold for all v € R, but
only when v € Z or v € Z + % do they yield integer values of n.) O

We emphasize that, when A ¢ N, a similar statement (namely, that B, is reducible)
can be made for different values of v. The precise values of v can be immediately obtained
from the definition of the coefficients a,, 8, and ~, in (4.8). On the other hand, the
particular significance of integer and half-integer values of v is that they are associated
with periodic and antiperiodic eigenvalues, which are the endpoints of the spectral bands.
In Section 5.3 we will also see how the periodic and antiperiodic eigenvalues are related
to the solution of a connection problem for a particular Heun ODE.

Consider the tridiagonal operator B, : (*(Z) — (*(Z) in (4.10). Let £3 = (*(N,)
(N, := NU{0}) and €2 = (*(Z \ N,), so that (*(Z) = (% & (%, and denote by Py
orthogonal projectors from ¢2(Z) onto ¢ respectively. Finally, introduce the block de-
composition

B_ A_
B, = <A+ B+>, (4.15)

where the semi-infinite tridiagonal operators By are defined as

Bo Yo
B, :=|a fim (4.16)

)

ag Boyal>
a_y oy
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and A4 only have one nontrivial entry each, equal to ay and y_; respectively, in their
upper right corner and lower left corner, respectively. If A € N and v = (1—A)/2 (corre-
sponding to the case of periodic eigenvalues when A is odd and antiperiodic eigenvalues
when A is even), it is easy to see that ag = y_; = 0 and therefore Ay = 0, which implies
that B, = B_ & B4 and @t are invariant subspaces of B,. The above considerations
imply the following:

Lemma 4.9. If A€ N and v = (1 — A)/2, then ¥(B,) = X(B-) UX(B;), where By are
given by (4.16).

The case A € N and v = A/2 is similar, but more complicated. In this case, it is
necessary to also introduce a second block decomposition of B, in addition to (4.15),
namely:

B A_
B, = <A+ B+) , (4.17)

where

51 71

B, = |02 P2 72 , (4.18)

a_y By y-1 ] o
ag Bo

and A only have one nontrivial entry each, equal to oy and g respectively, in their upper
right corner and lower left corner, respectively. If A € N and v = A/2 (corresponding to
the case of periodic eigenvalues when A is even and antiperiodic eigenvalues when A is
odd), it is easy to see that y_1 = Sy = oy = 0 and therefore A_ = /1+ = 0. On the other
hand, Ay and A_ are not identically zero. Thus, B, cannot be split into a direct sum of
two semi-infinite tridiagonal operators. Nevertheless, an analog of Lemma 4.9 still holds.

Lemma 4.10. If A € N and v = A/2, then ¥(B,) = %(B_)UX(B,) = %(B_)UX(B,),
where By and By are given by (4.16) and (4.18), respectively.

Proof. We first show that 3(B,) C X(B_-) U X(B4). Recall that A_ =0 but Ay # 0.
Let A and ¢ be an eigenpair of B, and let cx = Pyc, so that ¢ = (c_,c)T. If c_ # 0,
we have B_c_ = Ac_, and therefore A € X(B_). Otherwise, c_ = 0 implies ¢4 # 0 and
c=(0,c.)", and B,cy = Acy, ie., A € (B,).

We show that X(B_) UX(B;) C 3(B,). Suppose that A and ¢4 # 0 are an eigenpair
of By, and let ¢ = (0,cy)T. Then B,c = \¢, implying A\ € X(B,). Finally, suppose that
A € B(B_) \ (By), with associated eigenvector c_ # 0. In this case, let ¢ = (c_, p)T.
We choose p such that p = —(By — A\)"*A, c_. One can show (similarly to Lemma 6.7)
that it is always possible to do so since By is closed with compact resolvent. Therefore,
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the operator (B, — \)~! exists and is bounded, and A\ ¢ X(B, ) implies that A is in the
resolvent set of By. But then we have B,c = Ac, which implies A € ¥(B,).

The proof that %(B,) = X(B_) U X(B,) is entirely analogous, but we report it
because it is useful later. If A and ¢ are an eigenpair of B,, let ¢ = Piec, with Py
defined similarly as Py. If &, # 0, we have By&, = Aé, and therefore A € %(B,),
since /Lr = 0. Otherwise, similar arguments as before show that B_é_ = Aé_ and
therefore A € %(B_). We therefore have (B,) C %(B_) U X(B,). Finally, to show
that ¥(B_) UX(By) C X(B,), we first observe that if A and ¢_ are an eigenpair of
B_, and ¢ = (¢_,0)T, one has B,c = Ac and therefore A\ € %(B,). Conversely, if
A € %(By) \ (B_), with eigenvector &, it is always possible to choose p such that
p = —(B_ — A\)"'A_é, (again, cf. Lemma 6.7), and therefore ¢ = (p,éy)7 satisfies
B,c = Ac, implying A € ¥(B,). O

Remark 4.11. If A € N and v = A/2, then B, and B_ can be decomposed as

_ (0 7 5 _ (B- 0
b(U3). (2 0). o1s

Corollary 4.12. If A€ N and v = A/2, then ¥(B,) = X(B_) U X(B,;) U {0}.
Importantly, the proofs of Lemmas 4.9 and 4.10 also imply the following;:

Theorem 4.13. If A € N and A € C\ {0} is a periodic or antiperiodic eigenvalue of the
trigonometric operator (4.4), then there exists an associated eigenfunction generated by
either an ascending or descending Fourier series.

Proof. The proof is trivial when v = (1 — A)/2, since in this case B, = B_ @ B;. On
the other hand, the case v = A/2 requires more care. The proof of Lemma 4.10 shows
that, if A and c; are an eigenpair of B, , then ¢ = (0, c; )7 is a corresponding eigenvector
of B,. Next, if A and ¢_ are an eigenpair of B_, then ¢ = (¢_,0)T is a corresponding
eigenvector of B,. Finally, note $(B_) = %(B_)U{0}. O

Corollary 4.14. If A € N and )\ € C is a periodic or antiperiodic eigenvalue with geomet-
ric multiplicity two, then a first eigenfunction can be written in terms of an ascending
Fourier series, while a second linearly independent eigenfunction is given by a descending
Fourier series.

5. Transformation to a Heun ODE
We now introduce a final change of independent variable that maps the trigonometric

ODE (4.2) into Heun’s equation. All the results of Sections 5.1 and 5.2 below will hold for
integer as well as non-integer values of A except where expressly indicated. This further
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reformulation allows us to interpret the Dirac problem (1.1) as a connection problem for
Heun’s ODE.

5.1. Transformation from the trigonometric ODE to Heun’s equation

Recall that Heun’s equation is a second-order linear ODE with four regular singular
points [31,50,85]. We first rewrite (4.2) using Euler’s formula. Then we perform the
following change of independent variable:

trs Ci=e. (5.1)
We then obtain a third reformulation of our spectral problem, since the transforma-

tion (5.1) maps the trigonometric ODE (4.2) (and therefore (1.1) with elliptic poten-
tial (1.3)) into the following Heun ODE:

CPF(¢m)yce + CG(CGm)ye + H(GA, A,m)y =0, (5.2)
where
F(¢m) := —m¢* + (2m —4)¢ —m, (5.3a)
G(¢;m) == —%mﬁz + (2m —4)¢ — im, (5.3b)
H(CGAAm) = 2AA+1D)m ¢+ A+ A2(1—2)) ¢+ A4 - 1)m. (5.3¢)

Note that the trigonometric ODE (4.2) does not explicitly contain the Floquet expo-
nent v. The role of v for Heun’s ODE will be played by the Frobenius exponents discussed
below.

Equation (5.2) has three regular singular points in the finite complex plane plus a
regular singular point at infinity. Specifically, in the finite complex plane one has a regular
singular point at ¢ = 0 and two additional regular singular points where F'((;m) = 0,
i.e., when

¢ 21— 2)c 1 =0, (54

which is satisfied for

m—2+2vy/1—m

- (5.5)

G =

Note that (12 < 0 for all m € (0,1), and (3 = 1/{;. Without loss of generality, we take
|¢1] < 1 < |¢2]. Summarizing, the four real regular singular points are at 0,(;, (2, 00,
with ¢ € (—o0,—1) and (; € (—1,0).
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Table 1
Frobenius exponents corresponding to the Heun ODE (5.2).

¢=0 (=G ¢=¢ (=00

P P =A/2 p1 =0 P =0 Py = A/2
;2 = —(A-1)/2  pl=1/2 pA=-1/2 pFf=—(A+1)2

Remark 5.1. One can equivalently map the first-order ZS system (1.6a) into a first-order
Heun system with the same four singular points using the same change of independent
variable (5.1) [cf. Appendix A .4]:

A 0 z
53 + IAC " 1)m w, (5.6)
)?%)

4¢C+m(¢—1)2 2(4¢+m(¢—1

Cue = —

where w((; \) = (w1, ws)T
5.2. Frobenius analysis of Heun’s ODE

Next we apply the method of Frobenius to (5.2) at the regular singular points ¢ = 0
and ¢ = oco. Then we construct half-infinite tridiagonal operators whose eigenvalues
coincide with those of the tridiagonal operators discussed in Section 4.3. By direct cal-
culation, one can easily check that the Frobenius exponents of (5.2) are as in Table 1.
The Frobenius exponents p; 2 at ( =0 and ¢ = oo are obtained by looking for solutions
of (5.2) in the form

Yo(GA) = (P> enl, (5.7a)
n=0
and
Yoo ((GA) = €7D en (T, (5.7b)
n=0

respectively, with ¢g # 0 in each case. Note, when A is even, p$ and p$° are integer while
p$ and pS° are half-integer, and vice versa when A is odd. Note also that p§—p$ = 1/2— A
and p$° — p3° = 1/2 + A, so when A € N, these differences are never integer, and no
exceptional cases (i.e., resonances) arise.

Next we study the three-term recurrence relations at ( = 0 and ¢ = oo, since they are
key to proving the reality of the X\ eigenvalues. We begin by plugging (5.7a) and (5.7b)
into (5.2). The coefficients of the Frobenius series (5.7a) at ¢ = 0 solve the following
three-term recurrence relations. For p = p§ = A/2:

—Aco + F(2A4+1)c; =0, n=0, (5.8a)
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P.cn—1+ (R — N)ep + Sneny1 =0, n>1, (5.8b)
where

P,=2(mn-1)(24+2n—1), R,=(1-2)((A+2n)* - A%,

Sp="(n+1)(24+2n+1). (5.8¢)
For p= pg — —(A — 1)/2
(3 -1D2A-1) - ANeo—-32A-3)c=0, n=0, (5.9a)
jjncn—l + (En - /\)cn + S7ncn+1 =0, n=l, (59b)
where
P, =-2n(24—2n+1), Ry=(1-2)((2n+1-A)? - A?),
Sp=—2(n+ 1)(2A —2n-3). (5.9¢)

Similarly, the coefficients of the Frobenius series (5.7b) at ( = oo are given by the
following three-term recurrence relations. For p = p3° = A/2:

—Aco — F(2A —1)e1 =0, n=20, (5.10a)
Xncn-1+ Y —Nen + Znens1 =0, n>1, (5.10b)

where

Xp=-2(Mn-1)(24-2n+1), Y,=(1-2)((2n-A)? - 4?),

Zpn=-2(n+1)(24-2n-1). (5.10c)

For p=p5° =—-(A+1)/2:
[(1-2)2441)— Ao+ Z(2A4+3)c1 =0, n=0, (5.11a)
XCn 1+( _)\)Cn‘i'Z Cn-‘rl_o n217 (511b)

where

X, ="n2A+2n 1), V,=(1-2)((2n+1+A)> - A?),

(1
Zn="(n+1)(2A +2n +3). (5.11c¢)

Remark 5.2. The three-term recurrence relations at ( = 0 can be written as the eigen-
value problems
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TFc=Ac, (5.12)
where T3 : (24(N,) C 2(N,) — £3(N,), and

RO SO EO §0

T, = | Pr B S5 , T = P R, S ) (5.13)

Similarly, the three-term recurrence relations at ( = oo can be written as the eigenvalue
problems

TEc= e, (5.14)
where TE : ¢24(N,) C £2(N,) — £*(N,), and

Yo Zo Yo Zo
T-:=|X1 V1 24 , TH.=|Xi Y1 4 . (5.15)

5.3. Relation between Fourier series and the connection problem for Heun’s ODE

Recall that: (i) If A € C is a periodic or antiperiodic eigenvalue of (4.3), one has v € Z

OI‘I/EZ—F%,

integer amount by shifting the indices of the Fourier coefficients (cf. Remark 4.7). (iii) By

respectively. (ii) The Floquet exponents can be shifted by an arbitrary

Theorem 4.13, each periodic or antiperiodic eigenvalue has an associated ascending or de-
scending Fourier series when A € N. (iv) The transformation ¢ = e'* maps the Frobenius
series (5.7) to ascending or descending Fourier series (4.6), and vice versa. (v) Finally,
when A € N, the values of the Frobenius exponents for the expansions at ( = 0 and at
¢ = oo are either integer or half-integer.

Moreover, the Floquet exponents v = (1 — A)/2 and v = A/2 in Lemmas 4.9 and
4.10 coincide exactly with the Frobenius exponents p§ and p{ at ¢ = 0, respectively.
The Frobenius exponents p5° and p7° at ¢ = oo are also equivalent to the above Floquet
exponents upon a shift of indices. As a result, the recurrence relations (5.8), (5.9), (5.10)
and (5.11) associated to the Frobenius series (5.7) of Heun’s ODE (5.2) are equivalent
to those associated to the Fourier series solutions of the trigonometric ODE (4.2). More
precisely:

Lemma 5.3. If A € N and A € X(B,) is either a periodic or antiperiodic eigenvalue, (i.e.,
v integer or half-integer, respectively) then the following identities map the recurrence
relations generated by the Frobenius series solution of (5.2) at ¢ =0 and ¢ = oo to the
ascending and descending recurrence relations generated by the Fourier series solution
of (4.2), respectively. Namely:
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(i) For v = p}, one has, respectively:

(a’nJ /BTL? fYn) = (P'nﬂ Rn7 S’n)? n Z 07 (5.16&)

(O‘na 67“ ,-Yn) = (Pna Rna Sn)v n Z 0 . (516b)
(ii) For v = p3% one has, respectively:

(ny Bons Y=n) = (Zn, Yo, X0n), n2>0, (5.17a)
(a—n—lv B-n-1, '-Y—n—l) = (Zny ?na jzn)v n>0, (517b)

Proof. When v = pf ,, the result follows immediately by direct comparison. Likewise
when v = p{°. Finally, when v = p3° we can simply shift v — v + 1, which sends
n—-n—1 0O

Corollary 5.4. If A is odd, then the eigenvalues of T;F and TE correspond to the periodic
eigenvalues of the Dirac operator (1.2) and T, and T to the antiperiodic ones, via the
map A\ = z2. Conversely, if A is even, then the eigenvalues of T, and T, correspond to
the periodic eigenvalues of the Dirac operator and those of Tt and T to the antiperiodic

Oones.

Remark 5.5. We emphasize that, when A € N, Lemma 5.3 only holds for periodic or
antiperiodic solutions of (4.2) (i.e., v integer or half-integer). On the other hand, even
when A ¢ N, a similar conclusion holds for certain Floquet solutions of (4.2). Namely,
even for generic values of A, one can establish a one-to-one correspondence between
certain Floquet exponents and ascending or descending Floquet eigenfunctions of (4.2),
and in turn with Frobenius series solutions of (5.2).

So far we have analyzed the properties of solutions corresponding to periodic and
antiperiodic eigenvalues of the problem. We now turn to the question of identifying
these eigenvalues. Doing so yields the desired characterization of the Lax spectrum of

(1.2).

Remark 5.6. A periodic/antiperiodic eigenfunction of (1.1) with potential (1.3) corre-
sponds to a Fourier series solution (4.6) of the trigonometric ODE (4.2) that is convergent
for t € R. The transformation (5.1) given by ¢ = e'*, which maps the real t-axis onto the
unit circle [¢| = 1 (cf. Fig. 2), maps these solutions into a Laurent series representation
for the solutions of Heun’s ODE (5.2). The question of identifying which solutions of
Heun’s ODE define periodic/antiperiodic eigenfunctions of (1.1) is discussed next.

Lemma 5.7. Let T, be either one of the operators TF defined in Remark 5.2 and let
Yo(C) = CPw,o(C) be a corresponding Frobenius series solution of Heun’s equation at ¢ = 0.
Then:
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Fig. 2. The singular points ¢ = 0, (1, {2, and oo and the region || = 1 in the complex ¢ plane.

(i) A is an eigenvalue of T, if and only if w,(¢) is analytic in the disk || < |(al; i-e., if
Yo(C) is analytic up to a branch cut when the Frobenius exponent p, is not integer.

Similarly, let Ts, be either one of the operators TE defined in Remark 5.2 and let 1.0 () =
(Pwoo(C) be a corresponding Frobenius series solution of Heun’s equation at { = co. Then:

(ii) A is an eigenvalue of Ty if and only if weo(C) is analytic in the exterior disk |¢| >
|C1]; i-e., if Yoo (C) is analytic up to a branch cut when the Frobenius exponent ps, is
not integer.

Proof. We consider T, first. The radius of convergence of the Frobenius series represent-
ing y(¢) in a neighborhood of ¢ = 0 is at least |(1]. Moreover, A € C is an eigenvalue of
T, if and only if the corresponding eigenvector ¢ € £24(N,) (see Remark 5.2). Since the
entries of ¢ coincide with the coefficients of the Frobenius power series representing y(¢),
we conclude that A € C is an eigenvalue of T, if and only if the radius of convergence
of this series is at least one. In this case y(¢) is analytic in the disk |¢| < [¢2| (up to
a possible branch cut), since there are no singular points of the Heun’s equation in the
annulus |¢1] < (] < |¢2]. The proof for T, follows along the same lines. O

Remark 5.8. The above results relate the existence of eigenvalues to the connection prob-
lem for Heun’s equation (5.2). For simplicity, consider the case of periodic eigenvalues.
Assume A € N. The Frobenius analysis of Section 5.2 yields two linearly independent
solutions of Heun’s ODE near each of the four singular points. Let y{,((;\) be the
Frobenius series with base point ¢ = 0 and yj 5(¢; A) those with base point { = ¢;. Both
Y5 o(¢; A) and yi 5(¢; A) form a basis for the solutions of Heun’s ODE (5.2) in their re-
spective domains of convergence. Since these domains overlap, in the intersection region
one can express one set of solutions in terms of the other, i.e., (y1,v3) = (y7,y3) C, with
a constant non-singular connection matrix C. The Frobenius exponents at ( = (7 are 0
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and i, and, when A € N, one of the Frobenius exponents at ¢ = 0 is integer and the

Y
other2 is half-integer. Therefore, the values of A\ for which the analytic solution at ( =0
converges up to |(| = |(2] are precisely those values for which the Frobenius series with
integer exponent at ( = 0 is exactly proportional to that with integer exponent at { = (3.
Similar arguments hold for the solutions near { = {3 and { = co. In other words, when A
is a periodic eigenvalue, the analytic solutions at ( = 0 and { = (7 or those at { = (5 and
¢ = oo must be proportional. This is the manifestation of an eigenvalue in terms of the
connection problem for the Heun’s equation (5.2). If both pairs of analytic solutions are
proportional to each other, A is a double eigenvalue, otherwise A is a simple eigenvalue.
(In Section 6 we will also see that all positive eigenvalues have multiplicity two and
all negative eigenvalues have multiplicity one.) Similar results hold for the antiperiodic
eigenvalues once the square root branch cut resulting from the half-integer Frobenius
exponent is taken into account.

We also mention that there is an alternative but in a sense equivalent way to look at
the problem, which is to study the convergence of the Frobenius series solutions (5.7)
using Perron’s rule [80]. This connection is briefly discussed in Appendix A.5.

6. Real eigenvalues of the operators Tgt and TOZE

Thus far we have shown that the periodic and antiperiodic eigenvalues of (1.2) with
Jacobi elliptic potential (1.3) and amplitude A € N can be obtained from the eigenvalues
of certain unbounded tridiagonal operators, namely, TOjE and Toﬂg defined in Section 5.2.
We now prove that all eigenvalues of these operators are real. We do so in two steps:
First, in Section 6.1, we show that finite truncations of these operators have purely real
eigenvalues. Then, in Section 6.2, we use semicontinuity to show these operators have
purely real eigenvalues.

6.1. Real eigenvalues of the truncated operators T N and T; N

Here we show that finite truncations of the operators T5-, T have purely real eigen-
values. We form the truncations by considering only the first N — 1 terms of the
corresponding three-term recurrence relations. To this end let TfN and Toio, N be the
N x N truncations of T and TE, respectively.

Lemma 6.1. If A € N and m € (0,1), then for any N > 0 the matrices T, \ and T;N
have purely real eigenvalues.

The result is a consequence of the fact that P,41S, > 0, X414, > 0, and
XnHZ > 0, n > 0, which makes it possible to symmetrize T \ and T N via a
similarity transformation (see [42,46]). The result does not apply to T07 > since there ex-

ists an n > 0 such that ﬁnﬂ §n < 0, and, as a result, some of the entries of the resulting
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symmetrized matrix would be complex. Thus, another approach is needed to show the
eigenvalues of T, v are all real. To this end we introduce the following definition [46]:

Definition 6.2 (Irreducibly diagonally dominant). An N x N tridiagonal matrix is irre-
ducibly diagonally dominant if (i) it is irreducible; (ii) it is diagonally dominant, i.e.,
|aii| = 3254, laij], for all i € {0,..., N —1}; and (iii) there exists an i € {0,..., N —1}
such that [a;i| > 37, ,; |a;j|. Here a;; denotes the entry in the i-th row and j-th column
of the matrix.

Theorem 6.3. (Veselic, [99] p. 171) Let T, be an N x N tridiagonal matriz which is
irreducibly diagonally dominant and such that sign(ﬁngn_l) = sign(finén_l) forn =
1,...,N — 1. Then T;’N has N real simple eigenvalues.

Next we show that 7" "y satisfies the hypotheses of Theorem 6.3 and thus has only
real eigenvalues.

Lemma 6.4. If A € N and m € (0,1), then for any N > 0 all eigenvalues of T:N are
real and distinct.

Proof. First, A € N implies 13n§n 1 # 0 for n > 1. Thus, T:N is irreducible. Next,
R, <0 whenn < |A— 1]. Similarly, R,_1 <0 whenn < [A+ 1]. (Here, |z denotes
the greatest integer less than or equal to x.) Thus, sign(é Ry 1) < 0 if and only if
A = n. Likewise, P, < 0 when n < |A + 1], and Sn_1 <0 whenn < |A— £]. Thus,
agn(PnSn,l) < 0 if and only if A = n. Hence,

sign(P,Sp_1) = sign(Ry, Ry, — 1), n>1. (6.1)

Finally, consider the transpose (T+ )T. Note (6.1) remains valid. For n = 0 one easily
gets |Ro| > |P1|. Moreover, for n > 1, one has |R,| = (1=3)2n+1)[2n+ 1 — 2A[ and
|Pn+1| + |Sn 1] = F(2n + 1)[2n + 1 — 2A]. Thus, |R | > |Pn+1| + \Sn 1| for n > 1.
Hence (Tj ~)T is an N x N irreducibly diagonally dominant tridiagonal matrix and
satisfies (6.1). The result follows from Theorem 6.3. O

Theorem 6.5. If A € N and m € (0,1), then for any N > 0 all eigenvalues of the tridi-
agonal matrices TOiN and ToiO N are real and have geometric multiplicity one. Moreover,
all eigenvalues of T:N and T;VN, and all nonzero eigenvalues of T and T_ 5 are
simple.

Proof. For T~ N and T N, the reality of all eigenvalues was proved in Lemma 6.1, and for
T+N it was proved in Lemma 6.4. Moreover, Lemma 6.4 also proved that the eigenvalues
of T "n are simple.

Let A be an eigenvalue of T, yandc= (co,.--,cn—1)T the corresponding eigenvector.
Assume ¢y = 0. Then it follows from the three-term recurrence relation (5.8) that ¢, =0
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for n > 1. (Note that Sy is nonzero.) Since c¢ is an eigenvector this is a contradiction.
Hence the first component of the eigenvector is necessarily nonzero. Next, let ¢ and ¢
be two eigenvectors corresponding to the same eigenvalue of T . Consider the linear
combination b = ac + &é. Then there exists (a, &) # 0 such that by = 0. By the first
part of the argument b = 0. Hence the eigenvectors ¢ and ¢ are linearly dependent. The
proofs for T;FN and T;N are identical. O

6.2. Generalized convergence and reality of periodic and antiperiodic eigenvalues

In Section 6.1 we showed that, for A € N, the V x N truncations of the tridiagonal
operators have only real eigenvalues. It remains to show that the tridiagonal operators
T+ and TE also have only real eigenvalues. This result will follow from the fact that
the eigenvalues of the tridiagonal operators possess certain continuity properties as the
truncation parameter N tends to infinity. Some of the proofs in this section follow from
Volkmer [101]. For brevity we only present the details of the analysis for T..

Lemma 6.6. Consider the operator T.. There exists 6 € (0,1) and n. € N such that
2max(P? + 52, ﬁnQH +52% ) <#’R2, n>n. (6.2)
The same estimate holds for the operators T, and TE.

Proof. It follows from the definition of ﬁm En, and S, in (5.9¢) that

P2 4+ 52 = 2m?n*(1+0(1)), (6.3a)

P2+ 52 =2m*nt(1+0(1)), (6.3b)

R? = (4—2m)*n*(1 + o(1)), (6.3¢)

as n — oo. Hence, let # = m. For n sufficiently large one gets 4m?n* < Gzﬁi =

m2(4 — 2m)?n*. The result holds for m € (0,1). It is easy to check that the same
estimate holds also for the operators T,;", T. O

Next we decompose T, TX into their diagonal and off-diagonal parts. Namely, if T
is any one of the operators T, TX, we write

T:=Tp+ 710, (6.4)

where T is the diagonal, and Tp the off-diagonal. This decomposition is instrumental
in proving the following:

Lemma 6.7. The operators T+ and TE are closed with compact resolvent.
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Proof. The proof follows closely that of the analogous result in [101]. We provide details
of the proof for the operator T,;". First, by replacing R, by R, +w with sufficiently large
w, we may assume, without loss of generality, that R > 0 and that (6.2) holds for all
n > 0. Then

|Toc|| < 0||Tpe|| Ve € £2*(N,). (6.5)

Since 0 < }-2n — oo it follows T’ ! exists and is a compact operator. Moreover, by (6.5) it
follows that [|[ToT5 || < 6 < 1. Hence T~ = Ty (I + ToTp") ™! is a compact operator
(see [58] p. 196). Therefore, T, is a closed operator with compact resolvent. The proofs
for T, TE are identical. O

The proof of the next lemma is identical to that of Theorem 6.5.
Lemma 6.8. All eigenvalues of the operators TS and TE have geometric multiplicity one.

Next we begin to address reality of the eigenvalues. By Lemma 6.7 it follows $(7:F) and
Y(TE) are comprised of a set of discrete eigenvalues with finite multiplicities. Recall that,
for z € X(L), we have |Imz| < ||q||sc. Moreover, we also have |Im z||Re z| < 3||¢zl«
for any z € X(L) (see [12]). Hence, by the correspondence between the Dirac and Hill
equations (see Section 3) we have

Red > —[lalZ.  [ImA| < [lgaloo - (6.6)

Thus there exists a curve ¥ such that the region in the complex A-plane bounded by
%€ contains finitely many periodic (resp. antiperiodic) eigenvalues of Hill’s equation with
complex elliptic potential (3.15) counting multiplicity. This suggests to apply the concept
of generalized convergence of closed linear operators (see Appendix A.6 for a discussion
of generalized convergence). In particular, we will use the following result:

Theorem 6.9. (Kato, [58] p. 206) Let T, T, € €(Z, %), n =1,2,... the space of closed
operators between Banach spaces. If T~' exists and belongs to B(2Z , %), the space of
bounded operators, then T,, — T in the generalized sense if and only if T, exists and
is bounded for sufficiently large n and || Tt — T~ — 0.

Theorem 6.9 implies the semicontinuity of a finite system of eigenvalues counted ac-
cording to multiplicity ([58] p. 213). To this end, we introduce a sequence of tridiagonal
operators:

T, :=Tp + P, 10, (67)

where P, is the orthogonal projection of ¢?(N,) onto span{eg,ei,...,e,_1}, with
{€i}nen, being the canonical basis. Thus, for example, T}, is determined by, say, T."
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with the off-diagonal entries ]5]-, §j replaced by zeros for j > n. Clearly, ¥(Tx) =
(T O+ N) U {én}nz n for any N € N. The following result is obtained from Theorem
2 in [101], the difference being the additional zero column for 7, and T,. Once the
first column and row are deleted, the proof is identical. We therefore omit the proof for
brevity.

Lemma 6.10. Let T be any one of the operators T, TE. If T, is defined by (6.7), with
Tp and To defined by (6.4), then T,, — T in the generalized sense (see Theorem 6.9
above).

Using convergence in the generalized sense, we are now ready to show that 7 and
T% have real eigenvalues only:

Lemma 6.11. If \, € X(TF) or A\, € X(TE), then A\, € R.

Proof. Let T be any one of the operators T or T£. Count eigenvalues according to their
multiplicity. Fix n € N, and let A, € £(T). Let e > 0 and C. :={A € C : |A = \,,| = €}.
Since |7, =T~ — 0 as n — oo, we know for each § > 0 there exists N € N such that
|Tx' — T~ < 6. By semicontinuity of a finite system of eigenvalues (see [58] p. 212),
we can choose 0 > 0 such that C. contains an eigenvalue of T . Call this eigenvalue Ay .
Since € is arbitrary, and Ay is real for any N it follows A, € R. O

Summarizing, we have shown that the periodic (resp. antiperiodic) eigenvalue prob-
lems for (1.2) with Jacobi elliptic potential (1.3) can be mapped to eigenvalue problems
for four tridiagonal operators obtained from a Frobenius analysis of the Heun equa-
tion (5.2). Moreover, all eigenvalues of the tridiagonal operators are real with geometric
multiplicity one. Putting everything together, we are now ready to prove the first part
of Theorem 1.2:

Theorem 6.12. Consider (1.2) with potential (1.3) and m € (0,1). If A € N, then
S(L;A,m) € RU(—iA4,iA), and q is a finite-band potential.

Proof. Let z € ¥4 (L). Recall that we have established a direct correspondence between
the periodic (resp. antiperiodic) eigenvalues of the tridiagonal operators T, TE and
the periodic (resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic
potential (1.3). Also, X(7F) UX(TL) C R. Hence, by Lemma 3.5, and since A\ = 22,
it follows that X(L; A,m) C R U (—iA,iA) (see also Lemma 2.10). Thus, the periodic
(resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic potential (1.3)
are real or purely imaginary. Then, by symmetry (see Lemmas 2.9 and 2.10), the entire
Lax spectrum is only real and purely imaginary. Finally, that ¢ is finite-band for all
A e N and m € (0,1) follows from Lemma 2.10. O

Lemma 6.13. If A\ € (T, ) UX(TL), then A > 0.
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Proof. All entries of the tridiagonal operator T are positive. Consider the truncation
T;’ ~- Without loss of generality take the transpose. A simple calculation shows that
(TE )T is strictly diagonally dominant. Hence, by the Gershgorin circle theorem all
eigeﬁvalues of (T:g N)T are strictly positive. By semicontinuity, in the limit N — oo it
follows that 3(T) C [0, 00).

Next, note that the first column of T, is comprised of all zeros. Thus, 3(T,) =
¥ (T, )u{0}, where T is defined by T}, with the first row and the first column removed.
Moreover, TO_ has strictly positive entries, and the transpose is diagonally dominant.

Arguing as in the previous case gives the result. O
7. Lax spectrum for non-integer values of A

All of the results in this work up to the Fourier series expansion and the three-term
recurrence relation in Section 4.2 hold independently of whether or not A is integer. The
same holds for the Frobenius analysis in Section 5.2. On the other hand, the reducibility
of the tridiagonal operator B, with integer and half-integer Floquet exponents v in
Section 4.3 only holds when A € N (because it is only in that case that zeros appear in
the upper and lower diagonal entries). Similarly, the Frobenius exponents at ( = 0 and
¢ = oo in Section 5.2 are integer or half-integer only when A € N. We next show that
these are not just technical difficulties, but instead reflect a fundamental difference in
the properties of the Lax spectrum of (1.2) when A ¢ N.

Lemma 7.1. If A ¢ N, and m € (0,1), then all periodic and antiperiodic eigenvalues
of (1.2) with Jacobi elliptic potential (1.3) have geometric multiplicity one.

Proof. The proof proceeds by contradiction. For simplicity, we focus on the periodic
eigenvalues. Suppose that for A ¢ N and v € Z there exist two linearly independent
eigenfunctions. Then the transformation ¢ = e yields two linearly independent solutions
of Heun’s ODE (5.2) on |(| = 1. Let us denote these solutions as §1(¢; A) and 92((; A).
Note all points on |¢| = 1 are ordinary points for Heun’s ODE and, therefore, both
791((;A) and §2(C; A\) are analytic and single-valued in the annulus |(1] < [¢] < [¢o]
(cf. Fig. 2). Moreover, recall that the Frobenius exponents at ¢ = (; are p} = 0 and
p3 = 1/2. Let y}(¢; \) and y3(¢; \) denote the corresponding solutions. Since 1 (¢; \)
and §2(¢; A) are linearly independent solutions, we have yi ((; ) = c191(¢; A) + c292(¢; A)
for some constants ¢; and cp. Then yi({;\) is analytic and single valued in the region
0 < [¢] < [¢2]

On the other hand, y#(¢; A) is a linear combination of the Frobenius solutions i (¢; \)
and §2({; A) defined at the singular point ¢ = 0, with Frobenius exponents p$ = A/2 and
p3 = (1—A)/2 respectively, neither of which is an integer. Thus, no single-valued solution
can exist around ¢ = 0. Therefore, there cannot be two linearly independent periodic
eigenfunctions. Similar considerations apply for the antiperiodic eigenvalues. O
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Note Lemma 7.1 does not hold for m = 0, as in the limit m — 0 Heun’s equation (5.2)
degenerates into a Cauchy-Euler equation (with two regular singular points at ¢ = 0 and
¢ = 00). Still, together with Lemma 2.16, Lemma 7.1 implies:

Corollary 7.2. If A¢ N, and m € (0,1), then X4 (L)NR = 0.

In turn, since both ¥ (L) are infinite (see [25]), and since the periodic and antiperiodic
eigenvalues are the endpoints of the spectral bands, Corollary 7.2 directly implies:

Corollary 7.3. If A ¢ N, and m € (0,1), then X(L) with Jacobi elliptic potential (1.3)
has an infinite number of spines along the real z-axis.

We conclude that when A ¢ N, the potential ¢ in (1.3) is not finite-band according
to Definition 2.5, which proves the only if part of Theorem 1.2, namely that A € N is
not only sufficient, but also necessary in order for ¢ in (1.3) to be finite-band, as well as
Theorem 1.4.

8. Further characterization of the spectrum and determination of the genus

It remains to prove the last part of Theorem 1.2, namely the determination of the
genus. To this end, we need a more precise characterization of the Lax spectrum for
A € N, which will also yield the proof of the remaining parts of Theorem 1.3. We turn
to this task in this section.

8.1. Multiplicity of imaginary eigenvalues

Theorem 8.1. If z € (—iA,iA) \ {0} is a periodic or an antiperiodic eigenvalue of (1.2)
with potential (1.3) with A € N, and m € (0,1), then it has geometric multiplicity one.

Proof. By Lemma 3.5 it follows z € ¥4 (L) if and only if A = 22 € ¥4 (H ™), respectively.
Moreover, for z # 0 the geometric multiplicity of the periodic (resp. antiperiodic) eigen-
values is the same. Next, by the results of Section 5, each periodic (resp. antiperiodic)
eigenfunction of H~ is associated with an eigenvector of T;" or T, and

S(THUSTE) = {A=22:2eX4(D)}, (8.1)

with TF, T yielding periodic eigenvalues and T);, T antiperiodic eigenvalues when A
is odd, and vice versa when A is even (cf. Corollary 5.4). By Lemma 6.8, each eigenvalue
of T, TE has geometric multiplicity one. Therefore, a periodic (resp. antiperiodic)
eigenvalue z € C of L can have geometric multiplicity two if and only if A = 2?2 is
simultaneously an eigenvalue of both T,” and T or simultaneously an eigenvalue of
both T and T. On the other hand, Lemma 6.13 showed that the eigenvalues of T

and T, are non-negative. Hence, by the relation A = 22 all periodic (resp. antiperiodic)
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eigenvalues z € (—i4,iA) \ {0} of (1.2) with potential (1.3) have geometric multiplicity
one. 0O

Corollary 8.2. For all m € (0,1), if z € (—i4,iA) \ {0} is a periodic or an antiperiodic
eigenvalue of (1.2) with potential (1.3), then s(z) # 0.

Proof. Recall that s(z) is defined by (2.15). If s(z) = 0, the monodromy matrix M(z)
would be diagonal, but this would imply the existence of two periodic (resp. antiperiodic)
eigenfunctions, which would contradict Theorem 8.1. O

Note that the above results do not hold for m = 0 (a constant background potential),
since in that case all periodic and antiperiodic eigenvalues except z = +iA4 have geometric
multiplicity two.

8.2. Dirichlet eigenvalues and behavior of the Floquet discriminant near the origin

In this subsection we prove some technical but important results that will be used
later in the proof of Theorem 1.3.

As in Section 2.3, here it will be convenient to explicitly keep track of the dependence
on m by writing the potential, fundamental matrix solution, and monodromy matrix re-
spectively as ¢(z;m), ®(x; z,m) and M (z; m). We begin by recalling some relevant infor-
mation. We will use the structure of the monodromy matrix M (z;m) = ®(2K(m); z,m)
introduced in (2.15). Also recall that, when m = 0 (in which case ¢(z,0) = A), M(z,0) is
given by (2.23). (Recall that | = 2K (m) is the (real) period of dn(z;m), and 2K(0) = 7.)
Thus, (2.15) implies

A(z;0) = cos (V22 + A%),  s(z,0) = — sin (V22 4 A7) . (8.2)

A
VAT A

Recall from Section 2.2 that A(z;m) and s(z;m) are even functions of z while ¢(z;m) is
an odd function of z. Let A;(m), —ic;(m) and s;(m) denote, respectively, the coefficients
of 227, 22711 and 2% in the Taylor series of A(z;m), ¢(z;m) and s(z;m) around z = 0.
Combining (2.23) and (A.12b), we obtain the following expansions near z = 0:

A(z;m) = (1) + Ay (m)22 + O(2Y), (8.3a)
c(z;m) = —ico(m)z — icy(m)2> + O(2°), (8.3b)
s(z;m) = s1(m)2% + O0(21). (8.3c)

We want to study in detail the behavior of A(z;m) near z = 0. We begin by looking
at the dynamics of (closed) gaps as a function of A at m = 0, to show how the number of
bands grows as A increases. According to (8.2), the periodic and antiperiodic eigenvalues
are, respectively,
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2p = tV4n?2 — A2 zn =4/ (2n +1)2 — A2, nez. (8.4)

It follows that z = 0 is a periodic or antiperiodic eigenvalue when A € Z. Direct calcu-
lations show that

w222 mA? .
Azz(zz 0) = —m COS( V 22 + A27T) — m Sln( V 22 + A27T)7 (85)
so that
in(A
A..(0;0) = —%f”) (8.6)

Observe that, as a function of A, A,,(0;0) changes sign as A passes through an integer
value. For example, if A passes through an even value n € N, the sign of A, (0;0) changes
from “+47” to “—”, corresponding to the transition of a pair of critical points of A(z;0) from
R to [—iA,i4]. Correspondingly, a pair of zero level curves of Im A(z) = 0 intersecting R
transversally will pass through z = 0 and intersect [—iA4, 4] forming an extra closed gap
on [—iA,iA]. This is the mechanism of increase of the number of gaps on [—iA,iA4]. Note
that (8.5) implies that A,(z;0) has a third order zero at z = 0 when A € Z. Next we
show that this mechanism works for any m € (0,1). This will be accomplished through
several intermediate steps.

Lemma 8.3. For fired A € N we have A,.(0;0) = 0, and (—1)AA..(0;m) is a strictly
monotonically decreasing function of m for m € [0,1).

Proof. The first statement follows from (8.5). The rest of the proof is devoted to show
that

(-1DAA..(0;m) <0, (8.7)
when m € (0, 1). Substitution of (8.3) into (2.16) yields

1A..(0;m) = Ay(m) = %(fl)AHcg(m). (8.8)
Note that (—1)?A,.(0;m) < 0 since M (z;m) is real on z € [—iA,iA]. Thus, it remains
to show that co(m) # 0 for m € (0,1). In fact, we will show below that co(m) is
monotonically increasing on m € [0,1). That, combined with ¢¢(0) = 0 (see (8.8)), will
complete the proof.

Recall that ® = ®(z;2,m) is the solution of the ZS system (1.6a) normalized as
®(0; z,m) = 1. Differentiating (1.6a) with respect to z we get the system

cI)a:z - (_120'3 + iqag)(bz — iO’3<I). (89)
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Considering system (8.9) as a non-homogeneous ZS system [i.e., treating the term —io3®

as a “forcing”] and integrating, we obtain the solution

D, (x;2,m) = —i@(m;z,m)/q)_l(f;z,m)a;),q)(f;z,m) d¢, zeC. (8.10)
0

Also recall that the (real) period of ¢ in (1.3) is I = 2K (m) and that M (z;m) = ®(l; 2, m).
By Lemma 2.17, A € N implies ®(I;0,m) = (—1)A1. At z = 0, we therefore have

M, (0;m) = —i(=1)* [ 7' (£)os®(€) dE

(ulvg —+ U217 2’01'02 )df (8 11)

72U1U2 —U1V2 — UV

where we introduced the notation

O(z;2,m) = (ul v1> , (8.12)

U2 V2
which we will use extensively below. On the other hand, in light of (2.15) we have
M, =A.1+c,03—1is.09, zeC, (8.13)

which implies

!
c.(0;m) = —i(—l)A/(ulvg + uguy) dz

0
1 1
s,(0;m) = 2i(— A/uluz dz = 2i(— A/Ul’UQ dz. (8.14)
0 0
Comparing this with the expansion (8.3) we then have
!
co(m) = ic,(0;m) A/ urvg + uguy) do . (8.15)
0
At z = 0, according to Section A.3, we also have
®(x;0,m) = cos(Aamz) 1 + sin(Aamz) ios (8.16)
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where amz = am(z;m), so that

& (x;0,m)03®(x;0,m) = cos(24Aamzx)oz + sin(24ama)o . (8.17)
We obtain
2K (m) T
524
co(m) = (=1)4 / cos(2Aamz) dz = (—1)4 / M, (8.18)
1 —msin?y

0 0

where we used y = amz, dy = \/1 — msin? y dz. Now, from [14], 806.01, for m € (0,1)
we have

o0

cos 2Ay dy (25 — D)!]>m?

— A —_— =TT -
O ety " & B - 4G + NG - P

>0 (8.19)

since all the coefficients of the convergent Taylor series are positive. 0O

Corollary 8.4. One has |A(z;m)| > 1 in a deleted neighborhood of z = 0 on (—iA,iA)
for any A € N and m € (0,1). Moreover, z =0 is a simple critical point of A(z;m) and
A(0;m) = (—=1)4.

Remark 8.5. Corollary 8.4 shows that no critical points of A(z;m) can move from R to
iR when we vary m € (0,1) with a fixed A € N. Similarly to the case m = 0, the change
of genus in the case m > 0, happens when we vary A (see also Fig. 4).

Next, recall that the monodromy matrix M (z;x,) normalized at a base point z, is
given by (2.20). Using (2.20), we prove the following lemma regarding Dirichlet eigen-
values.

Lemma 8.6. Let A € N and m € (0,1). If an open gap v on (—iA,iA) contains a zero of
s(z), then the associated Dirichlet eigenvalue is movable.

Proof. Equations (2.15) and (2.20) and direct calculation show that
M (25 0)= <A+c(u1v2+u2v1)+s(u1uQ+vlvg) —s(ud+v}) — 2cuyvy )
’ s(u3+v3)+2cuqvy A — c(urvetuguy) — s(ujustuvive)

(8.20)

where ¢ = ¢(z) and s = s(z) were defined in (2.15) and the functions u, u2, v1 and va,
defined as in (8.12), are evaluated at x = xo.

Consider first an open gap v C iR that does not contain z = 0. From (2.16) it follows

that ¢(z) # 0 on «. Note uj(zg)vi(xg) # 0 for small zy > 0 [because u1(0) = 1 and

v1(0) = 0 and uy and vy are analytic in = as solutions of (1.6a) with the potential (1.3)].
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Therefore, it follows from (8.20) that Mi2(z; o) = 0 implies s(z) # 0. But Mi2(2;0) =
s(z). Thus, each Dirichlet eigenvalue in such a gap is movable.

Consider now a gap 79 C iR containing z = 0, i.e., the central gap. By Corollary 8.4,
such gap exists for any m € (0,1), and by (8.2), it does not exist when m = 0. We
consider m € (0,1). Then by Lemma 8.3 (see (8.8)), ¢(z) has a simple zero at z = 0 and,
by (8.3), s(z) has at least a double zero at z = 0. Thus, the condition Mjs(2;x¢) = 0
near z = 0 becomes

fslzz(u%(xo; z) + U%(l’o; 2)) + 2icozuq (xo; 2)v1 (z0; 2) = R(xo; 2) , (8.21)

where R(zg;z) € R when 2z € iR and R(zo;2) = O(2%) uniformly in small real zy. By
Lemma 8.3 (see (8.8)) we have c¢g # 0. If 51 # 0, (8.21) shows that Mis(z;x¢) has one
fixed zero at z = 0 whereas the location of the second zero depends on xg and is given
by

2icour (wo; 2)v1 (205 2) — M 2icou1 (wo; 0)v1(20;0) + O(2) :
= . . == : ciR, (8.22)
s1(ug(zo; 2) + vi(mo; 2)) s1(ui(20;0) + vi(z0;0) + O(2))

which is a point inside the central gap on (—iA,i4). Indeed, the requirement det M (z; z¢)
=1 and (8.20) imply that a Dirichlet eigenvalue can not be in the interior of any band
located on (—iA,iA4) \ {0}.

Equations (8.21) and (8.22) show that a zero of M12(z;x) in the gap v C (—i4,14)\
{0} is always fixed at z = 0, and therefore corresponds to an immovable Dirichlet eigen-
value, whereas a second zero is located at a point changing with x(, and is therefore
a movable Dirichlet eigenvalue. Indeed, the point z = z(xg) defined by (8.22) attains
z(0) = 0 and z(z¢) # 0 at least for small zg > 0 since v1(0) = 0 and v1(xp) # 0 in a
deleted neighborhood of zero.

Finally, if s1 = --- = sg_1 = 0 and s # 0, with k£ > 1, the leading-order portion of
each term in the 1,2 entry of (8.21) yields instead

—s1 228 (U2 + v?) + 2icozurv; = R, (8.23)

where again R = O(z?) is real-valued for z € iR and where for brevity we dropped the
arguments. Repeating the same arguments as for (8.21), we see that at least one of the
roots in (8.23) is purely imaginary. O

Remark 8.7. It follows from (8.21) and (8.23) that s1(m) # 0 if and only if there is
exactly one movable Dirichlet eigenvalue in a vicinity of z = 0 for small xg € R.

8.3. Proof of the remaining statements of Theorem 1.3
Lemma 2.14 proves items 4 and 5 of Theorem 1.3. Theorem 1.2 together with

Lemma 2.2 and the symmetries (2.17) implies item 3. Thus, it remains to prove items 2
and 6 only, namely:
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Theorem 8.8. Consider (1.2) with Jacobi elliptic potential (1.3). For all m € (0,1), if
A €N then:

1. For any m € (0,1), there are exactly 2A symmetric bands of X(L; A, m) on (—i4,i4)
separated by 2A — 1 symmetric open gaps. The central gap (i.e., the gap surrounding
the origin) contains an eigenvalue at z = 0. This eigenvalue is periodic when A is
even and antiperiodic when A is odd.

2. Each of the open 2A — 1 gaps on (—iA,iA) contains exactly one movable Dirichlet
eigenvalue. Thus, all of the 2A — 1 movable Dirichlet eigenvalues of the finite-band
solution with genus 2A — 1 are located in the gaps of the interval (—iA,iA).

Proof. The idea of the proof is based on continuous deformation of the elliptic parameter
m, starting from m = 0 and going into m € (0,1). The proof is based on the following
three main steps, each of which will be discussed more fully below:

1. Analysis of the spectrum for m = 0. When m = 0, dn(z,0) = 1, and the ZS
system (1.1) has a simple solution ®(z;z,m). The monodromy matrix M (z;m) based
on ®(x; z,m) was given explicitly in (2.23) for m = 0, and the Lax spectrum is 3(L) =
R U [—i4,14] in this case. In particular, the vertical segment [—iA,iA] is a single band
that contains 24 —1 double periodic/antiperiodic eigenvalues, which we consider as being
closed gaps. Each of these closed gaps contains a Dirichlet eigenvalue (a zero of s(z;m),
see (8.2)), which for m = 0 is immovable according to Lemma 2.14 (see also (8.20)).

2. Analysis of the spectrum for small nonzero values of m. Corollary 8.4 states that
for all m € (0,1) the double eigenvalue at z = 0 is embedded in the central gap
Y C (—iA,iA). Moreover, Corollary 8.4 and Lemma 8.6 show that there is at least
one movable Dirichlet eigenvalue on . Next, we show that under a small deformation
m > 0 all the remaining closed gaps on (—i4,iA) must open, creating 24 bands and
2A —1 gaps on (—iA,iA4), with each gap containing exactly one movable Dirichlet eigen-
value. Our proof of this statement is based on the fact that any periodic/antiperiodic
eigenvalue on (—iA,iA) \ {0} has geometric multiplicity one (see Theorem 8.1), whereas
a double eigenvalue at a closed gap would have geometric multiplicity two. By a continu-
ity argument, each gap on (—iA,iA4) \ {0} has exactly one movable Dirichlet eigenvalue.
Thus, items 2,6 are proved for small m > 0.

3. Control of the spectrum for arbitrary values of m € (0,1). We finally prove that the
number 2A of separate bands on (—iA,iA), as well as the fact that each gap on (—i4,1A4)
contains exactly one movable Dirichlet eigenvalue, cannot change when m varies on (0, 1).

In what follows, we prove all the statements in items 1-3 above.

1. From (8.2) it follows that, for m = 0, we have (L) = R U [—iA4,i4] with

2 _ 2 g2
z, =n" — A%,

n=0%+1,...,+A (8.24)

being (interlaced) periodic or antiperiodic eigenvalues on [—iA,iA]. Note that A,(z;0)
has a simple zero at each z, for n # 0,+A. Therefore, each z, # 0,+iA identifies a
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closed gap. On the other hand, since A, (%iA4;0) # 0, the endpoints +iA of the spectrum
are simple periodic eigenvalues. [By Lemma 2.10, when m > 0 it follows +iA ¢ 3(L).]
Finally, note that A,(z;0) has a double zero at z = 0, which will be relevant in the
discussion of item 3 below.

Recall that the Dirichlet eigenvalues are the zeros of s(z;0). By (8.2), each closed gap
on [—iA,iA] \ {0} contains exactly one Dirichlet eigenvalue u,, n = £1,...,£(4 — 1),
which is a simple zero of s(z;0). Note also that there are exactly 24 — 1 closed gaps on
(—iA,iA), and at each such gap with the exception of z = 0 there is exactly one zero
level curve I',, of Im A orthogonally crossing iR. Moreover, by Lemma 8.3, there are eight
zero level curves of Im A passing through z = 0, including the real and imaginary axes
(e.g., see Fig. 4, upper right panel). Note that, by Lemma 8.6, a Dirichlet eigenvalue .,
becomes movable if the closed gap opens up as m is deformed away from m = 0.

2. Recall that the monodromy matrix M(z;m) is entire in z and A and analytic in

€10,1) (cf. Lemma 2.10). Also recall that s(z;m) is real-valued on iR. Finally, recall
that by Lemma 2.14 zeros of s(z;m) cannot lie in the interior of a band. Let u, be the
zeros of s(z;0) for z € iR, i.e., the Dirichlet eigenvalues along the imaginary axis when
m = 0. Since the zeros of s(z;m) are isolated, for sufficiently small m > 0, each Dirichlet
eigenvalue p,, must remain on (—iA,iA) by continuity. Thus, for sufficiently small values
of m, all the gaps on (—i4,iA) \ {0} (independently of whether they are open or closed)
must survive the small m deformation, with exactly one Dirichlet eigenvalue in each gap.

Importantly, the above arguments imply that, for small m € (0,1), all the gaps on
(—iA,iA)\{0} must be open. Indeed, the assumption that for small m € (0, 1) there exists
a closed gap at z, € (—iA,iA) \ {0} leads to a contradiction, because by Corollary 8.2,
s(z;m) # 0 at the endpoints of each band. There are 2A—2 such open gaps. By continuity,
each of them contains a zero of s(z;m) and therefore a movable Dirichlet eigenvalue by
Lemma 8.6. Moreover, by continuity, s(z;m) must have opposite signs at the endpoints
of any gap in (—i4,14) \ {0}.

Next, recall that by Theorem 6.12, ¥(L) C R U (—iA,iA) for all m € (0, 1). It follows
from Corollary 8.4 that, for all m € (0,1), the (double) Floquet eigenvalue z = 0 is
immersed in a gap v, C (—iA,iA). Then, by Lemma 8.6, for small m > 0 there are
exactly 24 — 1 open gaps on (—i4,iA), with each gap containing a movable Dirichlet
eigenvalue. Therefore there are 24 (disjoint) bands on (—iA,1A4).

Finally, differentiation of s(z;m) in (8.2) yields

52(2:0) = zA sin (V 22+ A27T) _ cos ( /22 + A27'(') 7 (8.25)

22 + A2 Vz2 4 A2

which shows that s,(z;0) has a simple zero at the origin. Therefore, s1(0) = 5,,(0;0) # 0
and so, by Remark 8.7, there is a unique movable Dirichlet eigenvalue in a vicinity of
z = 0 and it is situated on ~y,. Hence there is exactly one movable Dirichlet eigenvalue
in each gap implying that the genus of the corresponding Riemann surface in 24 — 1.
Thus, items 2 and 6 are proved for small m > 0.
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3. It remains to prove that the number of bands on (—iA,iA) and the number of
movable Dirichlet eigenvalues (which were established for small m € (0,1) in item 2
above) do not change as m varies in (0,1). Let us consider the deformation of the
collection of bands (with genus 24 — 1) established for small m € (0,1). A possible
change of the genus can be caused only by one of the following four possibilities: (a) a
collapse of a band into a point; (b) a splitting of a band into two or more separate bands;
(c) a splitting of a gap into two or more separate gaps; (d) a collapse of an open gap
into a closed one.

We next prove that none of these possibilities can occur. Indeed, regarding (a), the
collapse of a band into a point would contradict the analyticity of A(z;m), since it would
imply that the same value of z is simultaneously a periodic and antiperiodic eigenvalue.
(Note that each band along (—iA,iA) must necessarily start at a periodic eigenvalue
and end at an antiperiodic one or vice versa, since otherwise there would necessarily
be a critical point z, inside the band. But a critical point z, inside the band would
imply the existence of a second band emanating transversally from the imaginary axis,
contradicting Theorem 6.12.) Similarly, regarding (b), the splitting of a band would
require a critical point of A(z;m) at some z, inside the band. But, again, a critical point
at z, would mean that there is a zero-level curve of Im A crossing iR at zp, which in turn
would contradict Theorem 6.12.

For the same reasons we have A, (z,;m) # 0 at any non-periodic and non-antiperiodic
Floquet eigenvalue z,, separating a band and a gap on (—iA,iA). Indeed, the contrary
would lead to A, having an even-order zero at z,. But that would imply at least two
pairs of zero-level curves emanating from iR at z, and, thus, again would contradict
Theorem 6.12.

We now turn our attention to the gaps, and specifically to the possibility (c) listed
above. The splitting of a gap into two or more separate gaps would imply that A(z;m)
has a local minimum zo on the gap at some m € (0, 1) and simultaneously |A(zp; m)| < 1.
That, again, would contradict Theorem 6.12.

Thus, it remains to exclude possibility (d), namely the collapse of a gap. By
Lemma 8.6, the central gap v, containing z = 0 stays open for any m € (0,1). Also, for
small m € (0, 1), it was shown in the proof of item 2 above that the signs of s(z;m) at
the endpoints of any gap v C (—iA,iA4) \ {0} are opposite. These signs cannot change
in the course of a deformation with respect to m € (0,1), by Corollary 8.2. Thus, each
gap that was open for small m € (0,1) must contain a zero of s(z;m) and, therefore, as
it was proven in item 2 above, must stay open for all m € (0,1). So, the genus 24 — 1
is preserved for all m € (0,1). Moreover, each gap contains a zero of s(z;m) and thus,
according to Lemma 8.6, a movable Dirichlet eigenvalue.

So, we proved that each gap on (—i4,1A4) contains exactly one movable Dirichlet
eigenvalue. It is well known [34,40,74] that the number of movable Dirichlet eigenvalues is
equal to the genus 24 —1. This, completes the proof of Theorem 8.8 for all m € (0,1). O

Remark 8.9. It follows from Remark 8.7 that s;(m) # 0 for all m € (0,1).

Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint

Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

© 0 N o o b~ W N R

A DA D W W W W W W W W WWN N N DN DNDNDNDDNNDNNDN R R R R
N B O © 0 N O ¢ & W M H O ©W 0 N O G & W N B O © 0N O G W N = O



© 00 N o 0 B~ W N =

A OPA DA W W W W W W W W WWN NN DNDNDNDNDDNNDNDN R R R R R R e
N B O © 00 N O g B W M H O ©W 0 N O 00 B W M H O O WO N O 0 B W M = O

JID:YAIMA  AID:109188 /FLA [m1L; v1.338] P.46 (1-63)
46 G. Biondini et al. / Advances in Mathematics sss (ssee) eseese

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Periodic (red) and antiperiodic (blue) eigenvalues (vertical axis) of the spectrum as a function of the
elliptic parameter m (horizontal axis) for a few integer values of A. Bottom left: A = 3. Top left: A = 4.
Right: A = 7. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

9. Dynamics of the spectrum as a function of A and m

We further illustrate the results of this work by presenting some concrete plots of
the spectrum. We begin with the case of A € N. Fig. 3 shows the periodic (red) and
antiperiodic (blue) eigenvalues along the imaginary z-axis (vertical axis in the plot) as
a function of the elliptic parameter m (horizontal axis) for a few integer values of A,
namely: A = 3 (bottom left), A =4 (top left) and A = 7 (right). Note how all gaps are
closed when m = 0 and how they open immediately as soon as m > 0 and remain open
for all m € (0,1). In the singular limit m — 17, the band widths tend to zero, and the
periodic and antiperiodic eigenvalues “collide” into the point spectrum of the operator
L on the line.

Next, Fig. 4 shows the Lax spectrum (blue curves) in the complex z-plane for several
non-integer values of A, illustrating the formation of new bands and gaps as function
of A. Note that the range of values for the real and imaginary parts of z allows one
to see only a small portion of the Lax spectrum. For example, not visible outside the
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Fig. 4. The Lax spectrum (L) [computed numerically using Hill’s method (see [21])] with potential ¢ =
Adn(z;m), m = 0.9, and increasing values of A, illustrating the formation of new bands and gaps for
non-integer values of A.

Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

© 0 N o o b~ W N R

A DA D W W W W W W W W WWN N N DN DNDNDNDDNNDNNDN R R R R
N B O © 0 N O G & W M H O ©W 0 N O 0 & W N H O ©W 0N O G & W N = O



© 00 N o 0 B~ W N =

A OPA DA W W W W W W W W WWN NN DNDNDNDNDDNNDNDN R R R R R R e
N B O © 00 N O g B W M H O ©W 0 N O 00 B W M H O O WO N O 0 B W M = O

JID:YAIMA  AID:109188 /FLA [m1L; v1.338] P.48 (1-63)
48 G. Biondini et al. / Advances in Mathematics sss (sess) seesee

plot window are various bands and gaps along the imaginary axis (cf. Fig. 3) as well as
the infinite number of spines growing off the real axis when A ¢ N. However, selecting
a larger portion of the complex z-plane would have made it more difficult to see the
dynamics of the bands and gaps near the origin. Starting from the smallest value of A
in the set (A = 3.99, top left panel), one can see how, as A increases, a spine is pulled
towards the origin, which it reaches at approximately A = 3.9985 (top right panel). As
A increases further, the spine moves along the imaginary axis, simultaneously shrinking
to zero at approximately A = 3.999249 (left plot in the third row). (Note that, even
though the band is effectively gone at this value of A, the corresponding potential is still
not finite-band due to the infinitely many spines that are still present outside the plot
window.) As A increases further, the band edges of the previous spine bifurcate along
the imaginary axis, giving rise to a new gap. Finally, at A = 4 (left plot in the fourth
row), the lower edge of this new gap reaches the origin. This is also exactly the value of
A at which the infinitely many spines shrink to zero. As A increases further, the band
centered at z = 0 reappears, a new spine gets sucked towards the origin, and the cycle
repeats.

In summary, every time A increases by one unit, two more spines from the real axis
gets pulled into the imaginary axis, and a two new Scwarz symmetric gaps open on
the imaginary axis. When A hits the next integer value, the lower band edges in the
upper-half plane and the corresponding one in the lower-half plane reach the point z = 0.
Simultaneously, all remaining spines emanating from the real z-axis shrink to zero, giving
rise to a finite-band potential. As A keeps increasing, the spines grow back, and the
process repeats.

It is also interesting to briefly describe the dynamics of the zero-level curves of
Im A(z;m) near z = 0. Thanks to (8.5) and (8.6), we know that A,,(0;0) = 0 if and
only if A € Z. One can also see that A, ,..(0;0) # 0 when A € Z. So, when A € Z, there
are exactly eight zero-level curves of Im A emanating from z = 0. As it follows from
Corollary 8.4, under a small m > 0 deformation from m = 0, a pair of these level curves
will move up along the imaginary z-axis, while the other pair will symmetrically move
down along iR™. It also follows from (8.2) that s(z;0) has a second-order zero at z = 0;
that is, s1(0) # 0, which will remain in place under a small m > 0 deformation according
to (2.16), (2.17) and Corollary 8.4. This is another way to show that s;(m) # 0 for small
m > 0.

10. Discussion and concluding remarks

The results of this work provide an extension to the non-self-adjoint operator (1.2) of
the classical works of Ince [47-49]. The results of this work also provide: (i) an example
of Hill’s equation with a complex, PT-symmetric potential (and a corresponding com-
plex deformation of Ince’s equation) whose spectrum is purely real, which is especially
relevant, since the study of quantum mechanics with non-Hermitian, PT-symmetric po-
tential continues to attract considerable interest (e.g. see [5,9,30] and references therein),
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(ii) an example of an exactly solvable connection problem for Heun’s ODE, and (iii) for
the first time a perturbation approach to study the determination of the genus, and the
movable Dirichlet eigenvalues was presented.

We point out that the fact that the elliptic potential (1.3) is finite-band for any
A € N can also be obtained as a consequence of the results of [40], where the potential
q(z) = n(¢(x) — {(x —ws) — ((w2)) was studied (where ((x) is Weierstrass’ zeta function
and wq one of the lattice generators [79]) and was shown to be finite-band when n € N
using the criteria introduced there (see Appendix A.7 for details). In Appendix A.7 we
also discuss other elliptic potentials satisfying the criteria laid out in [40]. On the other
hand, no discussion of the spectrum (i.e., location of the periodic/antiperiodic eigenvalues
and of the spectral bands) was present in [40].

It is also the case that the elliptic potential (1.3) is associated with the so-called
Trebich-Verdier potentials [92] for Hill’s equation (which are known to be algebro-
geometric finite-band, see [88]) if and only if A € N, as we show in Appendix A.8.
To the best of our knowledge, this connection had not been previously made in the
literature.

The family of elliptic potentials (1.3) is especially important from an applicative
point of view, since (as was discussed in Section 1) it interpolates between the plane
wave potential g(z) = A when m = 0 and the Satsuma-Yajima (i.e., sech) potential
q(z) = A sechz when m = 1, which, when A € N, gives rise to the celebrated A-soliton
bound-state solution of the focusing NLS equation [(1.5) with s = 1].

The potential ¢(z) = A sech x has also been used in relation to the semiclassical limit
of the focusing NLS equation. This is because, by letting A = 1/¢ and performing a
simple rescaling x +— ex and t — et of the spatial temporal variables, (1.5) is mapped
into the semiclassical focusing NLS equation

ieqt + €2qze +2|q/*q =0, (10.1)

with the rescaled initial data ¢(z,0) = dn(z; m). The dynamics of solutions of (10.1) has
been studied extensively in the literature (e.g., see [10,13,17,19,29,55,57,70,96]). In partic-
ular, it is known that, for a rather broad class of single-lobe initial conditions (including
q(z) = sech z), the dynamics gives rise to a focusing singularity (gradient catastrophe)
that is regularized by the formation of high-intensity peaks regularly arranged in the pat-
tern of genus-2 solutions of the NLS equation. The caustic (i.e., breaking) curve along
which the genus-2 region breaks off from the genus-0 region (characterized by a slowly
modulated plane wave, in which the solution does not exhibit short-scale oscillations)
has also been characterized, and it is conjectured that additional breaking curves exist,
giving rise to regions of higher genus.

All of the above-cited works studied localized potentials on the line. However, sim-
ilar behavior was observed for (10.1) with periodic potentials in [11], where a formal
asymptotic characterization of the spectrum of the Zakharov-Shabat system (1.6a) in
the semiclassical scaling was obtained using WKB methods, and in particular it was
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shown that the genus is O(1/€) as € — 01. Some of the numerical results of [11] about
the localization of the spectrum were rigorously proved in [12]. The results of the present
work provide some rigorous evidence, for the dn potential (1.3), in support of the formal
results of [11] about the genus of the potential as a function of e.

We emphasize that, even though we limited our attention to the focusing NLS equation
for simplicity, all the equations of the infinite NLS hierarchy (including the modified
KdV equation, higher-order NLS equation, sine-Gordon equation, etc.) share the same
Zakharov-Shabat scattering problem (1.6a). Therefore, the results of this work provide a
two-parameter family of finite-band potentials for all the equations in the focusing NLS
hierarchy.

The results of this work open up a number of interesting avenues for further study.
In particular, an obvious question is whether these potentials are stable under pertur-
bations. The stability of genus-1 solutions of the focusing NLS equation was recently
studied in [22] by taking advantage of the machinery associated with the Lax represen-
tation. A natural question is therefore whether similar results can also be used for the
higher-genus potentials when A > 1 or whether different methods are necessary.

Another interesting question is whether more general elliptic finite-band potentials
related to (1.3) exist. Recall that, for the focusing NLS equation on the line, the potential

—lalog(coshz) (which reduces to g(x) = A sechz when a = 0) was shown

q(z) = A sechze
in [95,96] to be amenable to exact analytical treatment. It is then natural to ask whether
exactly solvable periodic potentials also exist related to ¢(z) = A dn(z;m) but with an
extra non-trivial periodic phase.

Yet another question is related to the time evolution of the potential (1.3) according
to the focusing NLS equation. When A = 1, time evolution is trivial, and the correspond-
ing solution of the NLS equation is simply ¢(x,t) = dn(z;m)e'?~")*, That is not the
case when A > 1, however. For the Dirac operator (1.2) on the line with reflectionless
potentials, sufficient conditions were obtained in [68] guaranteeing that, if the discrete
spectrum is purely imaginary, the corresponding solution of the focusing NLS equation
is periodic in time. The natural question is then whether a similar result is also true
for the elliptic potential (1.3), namely, whether such potentials generates a time-periodic
solution of the focusing NLS equation when A € N.

The semiclassical limit of certain classes of periodic potentials (including the potential
dn(z;m)) generates a so-called breather gas for the focusing NLS equation (e.g., see
[11,97]), which is to be understood as the thermodynamic limit of a finite-band solution
of the focusing NLS equation where the genus G — oo and simultaneously all bands
but one shrink in size exponentially fast in G (see [94] for details). It was proposed that
such gases be called periodic breather gases. Periodic gases have the important feature
that, together with their spectral data (i.e., independent of the phase variables) such as
the density of states, one also can obtain some information on a “realization” of the gas,
namely, on the semiclassical evolution of the given periodic potential. Thus, progress
in studying the (24 — 1)-band solutions of the focusing NLS equation (with A € N)
generated by the potential g(x) = Adn(z;m), and especially its large A limit, is of
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definite interest. In fact, finite-band solutions to integrable systems (such as the KdV
and NLS equations) generated by elliptic potentials, based on the work of Krichever [64],
were studied in the literature. We will not go into the details of those results here, but it
should be clear that any details about the family of finite-band solutions of the focusing
NLS equation that homotopically “connect” the known behavior of the plane wave and
the multi-soliton solutions will be very interesting to obtain and analyze.
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Appendix A
A.1. Notation and function spaces

The Pauli spin matrices, used throughout this work, are defined as

o1 = <(1) é) s 09 = (? _(;> s 03 i(— ((1) _(1)> . (Al)

Moreover, L>(R;C?) is the space of essentially bounded Lebesgue measurable two-
component vector functions with the essential supremum norm. Given the interval I, =
[0, o + 1] we define the inner product between two-component Lebesgue measurable
functions ¢ and 1 as

xo+l1

(6.0) == / (617 + bo5y) dar. (A2)

Zo

Then L2(I,,;C?) denotes the set of two-component Lebesgue measurable vector func-
tions that are square integrable, i.e., ||| 12z, ;c2) = (¢, $)'/? < co. Similarly, we define
the inner product of two scalar Lebesgue measurable functions f and g as

T+l
(f.g) = / fgda. (A3)

To
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Then L?(I,,; C) denotes the set of scalar Lebesgue measurable functions that are square

integrable, ie., Hf||L2(IIO;C) = <fa f>1/2
two infinite sequences ¢ = {¢p tnez and d = {d, } ez as

< o0. Finally, we define the inner product of

(c,d) ==Y cndn . (A.4)

nez

Then ¢%(Z) denotes the set of square-summable sequences, i.e., ||c|/¢2(z) = (¢, ¢)1/? < <.
Finally, the space of continuous functions on the real axis is denoted C'(R), and N, :=
N U {0}.

A.2. Proof of two lemmas

Proof of Lemma 2.10. To prove part (i) we begin by writing (1.1) as the coupled system of
linear differential equations (1.6a). By Floquet theory z € ¥(L) if and only if ¢ = e#%4,
where ¢ = (11, 19)T with ¢(x+1; 2) = ¢(z; 2), and v € [0,27/1). Plugging this expression
into (1.6a) yields the modified system

1,0 —iqs = (2 + 1)1, 9 +iqy = (=2 +v)s. (A.5)

Multiplying the first of these equations by 1); and taking the complex conjugate yields
two equations, which we integrate over a full period, arriving at the expressions

(g, 1) = =1, ¥12) — (2 + )01l 220.17) »
W1, qa) = i1, ¢10) + Z+ )1l Z2 0y »

where boundary terms vanish since ¢ (x +1; z) = ¢1(x; ). Adding these two expressions
then one gets

—Tm z[|¢1[|72 0, = Relgoa, v1) - (A.6)
Similarly, the second equation of (A.5) yields

(1, qiba) = Wt2, 2.0) + (=2 + V)Yl F2 (0.1
o, 1) = =12, Ya2.2) + (2 — V) 1¥allZ2(0,) »

as well as

—TIm 2|27 20,y = Relga, v1) - (A7)

Equating (A.6) and (A.7) we conclude that if |[Im z| > 0, then

U1l 22¢j0,7) = 1¥2llz2(j0,1)) - (A.8)
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Next, note that |{(gi2,¥1)] < {|qwa], |11]). Also, since ¢ is not constant, there exists
(a,b) C (0,1) such that |g(z)| < ||¢|leo for = € (a,b). Thus, for |[Imz| > 0 it follows
from (A.8) and the Holder inequality that

0 < |Tm2|[l¢1l|Z2 (o) = | Redqtba, ¥1)] < llglloo(ltbal, [1])
< glloo 911172 0.1 -

Hence |Im z| < ||¢||eo for z € E(L). The proof of (ii) which can be found in [12] follows
from Lemma 2.9 and since A(z) is an analytic function of z. O

Lemma A.1. Consider the Dirac operator (1.2). If the potential ¢ = Adn(xz;m), then the
monodromy matriz M (z;m) is an analytic function of m for any m € [0,1).

Proof. The result follows from two key facts. One is that dn(x; m) is an analytic function
of m for all |m| < 1 [103]. The second is the fact that solutions of ODEs with analytic de-
pendence on variables and parameters are analytic (see [18] pp. 23-32 and [50] p. 72). O

A.83. Solution of the ZS system at z =0

We have seen that, for g real, the eigenvalue problem (1.1) can be reduced to second-
order scalar ODEs (3.3). Consider (3.3) with A = 0, namely vt + (+ig, + ¢*)v* = 0.
Using the ansatz v¥ = e*/ one gets £ f,, + (fz)? £ig, + ¢> = 0. Then, letting g = f,
yields g, + g% = Fig, — ¢° with a solution given by g = Fig. In particular, it follows
g* = —¢*. Hence, we have derived the following solution to the ODEs (3.3) for A = 0,
namely,

v (2;0) = eFi o (=) ds (A.9)

Next, using the invertible change of variables (3.1), one gets the following solution to the
eigenvalue problem (1.1) when z = 0:

o(z;0) = (cos (/mq(s) ds), —sin (]q(s) ds))T . (A.10a)

Moreover, using Rofe-Beketov’s formula [83], one obtains a second linearly independent
solution as:

o3 0) = (Sin( / a(s) ds),cos( j q(s) ds))T. (A.10b)
0 0

Thus, the Floquet discriminant (2.5) for eigenvalue problem (1.1) at z =0 is
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l
A(0) = cos ( / a(s) ds) , (A.11)
0

where [ is the period of the potential. We can now prove Lemma 2.17.

Proof of Lemma 2.17. Using well-known properties of the Jacobi elliptic functions (see
[43,79]), when ¢(x) = A dn(x;m), (A.10a), (A.10b) and (A.11) yield, respectively

¢(z;0,A,m) = (COS(A am(z;m)), —sin(Aam(z; m)))T , (A.12a)
B(x;0,A,m) = (sin(A am(x;m)), cos(Aam(z; m))) ' ) (A.12D)
A(0; A, m) = cos(Am) . (A.12¢)

In particular, ¢(0;0, 4,m) = (1,0)T, and ¢(2K;0, A, m) = (cos(A),sin(An))T. There-
fore, we have that ¢(xz + 2K;0,A,m) = ¢(x;0,A,m) if and only if A € 2Z, and
o(x + 2K;0,A,m) = —¢(x;0,A,m) if and only if A € 2Z + 1, with similar relations
for gg Thus, when A is an even integer, z = 0 € X, (L), whereas when A is an odd inte-
ger, z = 0 € ¥_(L). Finally, the above calculations also show that, for ¢ = Adn(z;m)
with A € Z the eigenvalue z = 0 has geometric multiplicity two. O

A.4. Transformation of the ZS system into a Heun system

If the potential g is real, then the change of dependent variable ¢ = % diag(1, —i)(o3+
o1) v, maps the ZS system (1.6a) into the equivalent system

vy = —i(zo1 + qos)v. (A.13)

Then the transformation ¢ = 2am(z;m) maps (A.13) to the trigonometric first-order
System

(¥

B

1 —msi

=-3 <A03 SR — ) v, (A.14)
n?t
2

which is equivalent to (4.2). Finally, the transformation ¢ = e’ maps (A.14) to

Cue = —3 <A03 + 2 >U7 (A.15)
VI- 503+ cn)
and the transformation
— - . 1 m 1
vV =ow, ::dlag <1,;\/1—§(1—§(C+C_1))> 5 (A16)
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maps (A.15) to the Heun system (5.6) where A = 22. The Heun system (5.6) has four
(regular) singular points, located at ¢ = 0,(y,2, 00, where ¢y 2 are zeros of the denom-
inator in (5.6). The Frobenius exponents at the singularities can be derived directly
from (5.6).

A.5. Augmented convergence and Perron’s rule

In general the Frobenius series (5.7a) with base point ¢ = 0 only converges for |¢| < |¢1]
and the series (5.7b) with base point ¢ = oo only converges for |¢| > |(2|. Therefore,
neither expansion is convergent on |(| = 1 in general. However, there exist certain values
of X for which one or both of the Frobenius series have a larger (i.e., augmented) radius
of convergence. These are precisely the periodic/antiperiodic eigenvalues of the problem,
and Perron’s rule provides a constructive way to identify them (see also [4,31,48,50,85]
for further details).

We begin by noting that, by dividing all coefficients by n2, all four three-term recur-
rence relations (5.8), (5.9), (5.10) and (5.11) can be rewritten as

eoco + foc1 =0, n=0, (A.17a)
dnCn—1 + €ncp + frncns1 =0, n=12... (A.17b)

with f, # 0, and d,, — d, e, — e, and f, — f as n — oo. Perron’s rule [31,80] states
that, if £ are the roots of the quadratic equation

fe+et+d=0, (A.18)

with [£_] < [&4], then lim, o0 ¢py1/cn = &4, unless the coefficients d,,, e, f,, satisfy the
infinite continued fraction equation

d
o _ ! : (A.19)
fo da f1
eg— —————
ds fa
eg — —————
63 —_— . e .

in which case lim,,_, oo ¢p1/¢n = €—. That is, Perron’s rule implies that, generically, the
radius of convergence of the series £ jc, (™ is 1/|¢+|. However, if and only if (A.19)
holds, the radius of convergence is 1/|¢_|, and therefore larger. In our case, the roots
&+ of (A.18) are exactly the singular points (1 2 of Heun’s ODE (5.2). Then, since e,
depends on A, (A.19) is a condition that determines the exceptional values of A that
guarantee augmented convergence. Indeed, (A.19) is equivalent to requiring that A is an
eigenvalue of T3 (resp. T%).
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A.6. Generalized convergence of closed operators

Here we briefly discuss the generalized convergence of closed operators, (see [58] p. 197
for a detailed discussion). Consider €(2", %) the space of closed linear operators between
Banach spaces. If T, S € €(27, %), their graphs G(T'), G(S) are closed linear manifolds
on the product space 2" x #. Set §(T, S) = §(G(T), G(S)), i.e., the gap between T and
S. (See [58] p. 197 for the definition of §(7,S).) Similarly, we can define the distance
d(T, S) between T and S as equal to d(G(T),G(S)). (See [58] p. 198 for the definition
of d(T,S).) With this distance function €(2", %) becomes a metric space.

In this space the convergence of a sequence T, — T € €(Z,%) is defined by
(T, T) — 0. Since §(T,S) < d(T,S) < 25(T,S) ([58] p. 198) this is true if and only
if S(Tn,T) — 0. In this case we say T,, — T in the generalized sense. This notion of
generalized convergence for closed operators is a generalization of convergence in norm.
Importantly, the convergence of closed operators in the generalized sense implies the
continuity of a finite system of eigenvalues ([58] p. 213).

A.7. Gesztesy-Weikard criterion for finite-band potentials

According to Theorem 1.2 from [40], an elliptic potential Q(z) of the Dirac op-
erator (1.2) is finite-band if and only if its fundamental matrix solution ®(z;z) is
meromorphic in x for all z € C.

Theorem A.2. Consider (1.2), then ¢ = Adn(x;m) with m € (0,1) is finite-band if and
only if A€ Z.

Proof. The (simple) poles of dn(z;m) within the fundamental period 2jK + 4niK’ are
at x = iK' and ¢ = 3iK’ where K’ := K(1 — m). By the Schwarz symmetry, it is
sufficient to consider only the pole at iK’. The residue at iK' is —i ([43], 8.151) and the
local Laurent expansion is odd. Let ®(u) := ®(z — iK’;2) and note dn(z + iK';m) =
—icn(u;m)/sn(u;m) ([14], p. 20). Substitution into (A.13) gives

u®, (u) = [—izuoz + (A + u?p(u))o2)®(u) = B(u)®(u), (A.20)

where p(u) is analytic near « = 0 and even, and is meromorphic near v = 0 for all z € C.
The leading order term of B(u) is Aoy with eigenvalues A = +A. Thus, meromorphic
®(u) requires A € Z.

To show that A € Z is also a sufficient condition we need to show that ®(u) does not
contain logarithms, i.e., regular singular point « = 0 is non-resonant. To do so we need
to shift the spectrum of the leading term of B(u) to a single point, for example, —A.
Without loss of generality, we can assume A > 0. Since

(1 —io1)o2(1 +io1) = o3, $(1 —ioy)o3(1 +ioy) = o2, (A.21)
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we first diagonalize the leading term Aoy by the transformation ® = (1 + idl)(i). Then
(A.20) becomes

ud,, = [izucs + (A + u’p(u))os3)®. (A.22)

Then the shearing transformation ® = diag(u,1)¥ reduces (A.22) to

A-1 =z p(u) 0
U, = 2 0. A.23
“ ( 0 A) tu < —z p(u)) ( )
After diagonalizing the leading term, we obtain
~ A-1 0 p(u) r(u) -
¥, = 2 o A.24
“ ( 0 —A) o < -z —p(u) ’ ( )

where p(u), r(u) are even and analytic at u = 0 functions. Thus, the coefficient of (A.24)
is an analytic and even matrix function.

If A =1, one more shearing transformation would produce leading order term —1,
which is non-resonant (no non trivial Jordan block) and, thus, the result would follow. If
A > 1, we apply shearing transformations with the matrix diag(u?,1) with consequent
diagonalizations that will shift the (1,1) entry of the leading term by —2 and preserve
the analyticity and evenness of the coefficient. When the difference of the eigenvalues of
the leading term becomes one, we repeat the last step of the case A=1. O

Corollary A.3. For the Dirac operator (1.2), ¢ = A cn(z;m) with m € (0,1) and A > 0
is finite-band if and only if A = \/mn with n € Z, while ¢ = A sn(x;m) is not finite-band
for any A > 0.

Proof. The function cn(x; m) has the same locations of simple poles as dn(x; m). Given
that the residues of the poles 2jK + iK' for j € Z of cn(x;m) are (—1)771i/\/m, it is
clear that the choice of A given above leads to integer Frobenius exponents. To prove
the non-resonance conditions, we notice that in Theorem A.2 we used only the fact that
dn(z; m) has an odd Laurent expansion at the pole. Since this is also true for ([43], 8.151)
the proof is complete. Similar arguments show that A sn(z;m) is never finite-band. O

A.8. Connection between Heun’s equation and Treibich-Verdier potentials

It was shown in [88] that the Heun ODE in standard form:

d2y (7 0 < >%+ abe =& (A.25)

I Sy I T () ()

is associated with the so-called Treibich-Verdier potentials (defined below) for Hill’s
equation [92], where a, 3,7, 4, €, &, a (with each of them # 0,1) are complex parameters
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linked by the relation v+ d + € = a+  + 1. Specifically, the Heun equation (A.25) can
be transformed into

2 3
<—% + ) Ll + Dpla + w;) —E> fx)=0 (A.26)

=0

via the transformation f(z) = y¢~1/2(¢ —1)712/2(¢ — a)~'3/2, where p(z) is the Weier-
strass p-function with periods {2w1,2ws}, where w; /w3 ¢ R and

p(z) — ey a:€3—€1

OJ(]ZO, Wy = —W1 — W3, ei:@(wi)7 z = 5 )
€2 — €1 €2 — €1

E=(eg—e))[-4&+ (—(a—B)2+292 +6ve+ 2> — 4y —4e — 62 +26 + 1) /3 + (—(a —
B)? 4 292 + 670 + 262 — 4y — 46 — €2 + 2¢ + 1)a/3], and the coefficients [; in (A.26) are
connected with the parameters in (A.25) as follows:

l():ﬂ—a—%, 11:—’y+%, 12:—(54-%7 13:—64-%. (A27)

It is known that the potential Z?:o l;(l; + 1)p(x +w;) is a (finite-band) Treibich-Verdier
potential if and only if [; € Z, i = 0,1, 2,3 [92]. Note that the periods {2w1, 2ws} of p(x)
are not uniquely determined.

In this subsection we show the special case of the Heun equation (5.2) considered in
this work corresponds to a Treibich-Verdier potential if and only if A € Z. To show this,
we employ the conformal mapping ¢ := ¢ /¢1 Under this transformation, and recalling
the relation (2 = 1/(1, the Heun equation (5.2) is mapped into

- m—4\ F X AAZ(1—m >
@ty 50— (Bt gy AU+ DE + () A - )

@t N « EC- 11/ =t

(A.28)
The four regular singularities {0, (1, (2,00} of (5.2) are mapped into {0,1,1/¢%, 0o}
Moreover, applying the change of dependent variable y(¢) = ¢*§(¢) to (A.25)) yields

ec + P(Qgc +Q(Q)y =0, (A.29)
where
Y +2p ) €
P(() = c C*1+C—a’
_plp—1+47) dp €p afC —¢
QO="" T T i-w T VC )

Note that (A.28)) and (A.29) are of the same form with @ = 1/¢? and (; = [m —
2 4+ 24/1 —m]/m. Reducing to a common denominator for P(¢) and comparing the
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Dirac ODE (1.1)

vt=g1+ige

X——xor A——A

Hill ODE™ (3.4)

Hill ODE™ (3.4)

~

—2am(x;
t=2am(x;m) t=2am(x;m)
Trig. ODE (4.3) fo-torA—-A Trig. ODE’ (A.31)
. g=e ;
{=ell r=ell
Heun ODE (5.2) < mltordma Y Heun ODE’ (A.32)

Frobenius exp'n Frobenius exp'n

Fig. A.5. Relations between the various ODEs and solutions discussed throughout this work.

corresponding coefficients with (A.28) leads to v+ 2p = 1/2, 6 = 1/2 and € = 1/2,
which implies that lo = I3 = 0. Repeating the same procedure for Q({), we find that:
(i)p=(A—-1)/20r p=—A/2,and; (ii) —A(A+1)/4=—p(p—1/2) + apf.

Now we discuss the two possible cases for p: If p = (A —1)/2, then v = 3/2 - A
and aff = 1/2 — A. Combining a + 5 =7+ d+€e—1 = ~, one obtains [; = A —1
and lp = —1 — A or A. Alternatively, if p = —A/2, then v = 1/2 + A, af = 0, and
a+ 8 =1/2+ A. It turns out that [y = —A and l[p = —1 — A or A. Either way, we
therefore have that Iy, [ € Z if and only if A € Z.

A.9. Transformations Av— —A and ( — 1/¢

The maps A — —A and ¢ — 1/¢ allow one to establish a connection between several
related objects. Specifically, using the change of independent variable (4.1), Hill’s equa-
tion HtvT = \v™T is mapped into the following second-order ODE with trigonometric
coefficients

4(1 — msin® L)y, — (msint)y, + (A + A*(1 —msin® L) — L Amsint)y =0.  (A.30)

Next, applying the transformation ¢ = e to (A.30) yields another Heun ODE, namely,
CF(¢Gm)yee + CG(Gm)ye + H(G A, A,m)y =0, (A.31)

where F((;m) and G({;m) are still given by (5.3a) and (5.3b), respectively, and with
H := H(¢; A\, —A, m). Note that the four regular singular points of (5.2)) and (A.31) are
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the same. The full chain of transformations and correspondences is summarized in the
commutative diagram in Fig. A.5.
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