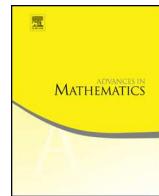


Contents lists available at ScienceDirect



Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Elliptic finite-band potentials of a non-self-adjoint Dirac operator

Gino Biondini^a, Xu-Dan Luo^b, Jeffrey Oregero^c,
Alexander Tovbis^c

^a Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260, United States of America

^b Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

^c Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America

ARTICLE INFO

ABSTRACT

Article history:

Received 28 February 2023

Accepted 16 June 2023

Available online xxxx

Communicated by C. Fefferman

Keywords:

Dirac operators

Spectral theory

Nonlinear Schrödinger equation

Non-self-adjoint problems

We present an explicit two-parameter family of finite-band Jacobi elliptic potentials given by $q \equiv A \operatorname{dn}(x; m)$, where $m \in (0, 1)$ and A can be taken to be positive without loss of generality, for a non-self-adjoint Dirac operator L , which connects two well-known limiting cases of the plane wave ($m = 0$) and of the sech potential ($m = 1$). We show that, if $A \in \mathbb{N}$, then the spectrum consists of \mathbb{R} plus $2A$ Schwarz symmetric segments (bands) on $i\mathbb{R}$. This characterization of the spectrum is obtained by relating the periodic and antiperiodic eigenvalue problems for the Dirac operator to corresponding eigenvalue problems for tridiagonal operators acting on Fourier coefficients in a weighted Hilbert space, and to appropriate connection problems for Heun's equation. Conversely, if $A \notin \mathbb{N}$, then the spectrum of L consists of infinitely many bands in \mathbb{C} . When $A \in \mathbb{N}$, the corresponding potentials generate finite-genus solutions for all the positive and negative flows associated with the focusing nonlinear

E-mail address: biondini@buffalo.edu (G. Biondini).

<https://doi.org/10.1016/j.aim.2023.109188>
0001-8708/© 2023 Elsevier Inc. All rights reserved.

1 Schrödinger hierarchy, including the modified Korteweg-
 2 deVries equation and the sine-Gordon equation.
 3

4 © 2023 Elsevier Inc. All rights reserved.
 5

6 Contents

1	1. Introduction and main results	3
2	1.1. Background	8
3	1.2. Main results	9
4	2. Preliminaries	10
5	2.1. Bloch-Floquet theory	11
6	2.2. General properties of the Lax spectrum	12
7	2.3. Limits $m \rightarrow 0$ and $m \rightarrow 1$; $z = 0$	14
8	3. Transformation to Hill's equation	15
9	4. Transformation to a trigonometric ODE	19
10	4.1. Second-order ODE with trigonometric coefficients	19
11	4.2. Fourier series expansion and three-term recurrence relation	20
12	4.3. Reducible tridiagonal operators and ascending and descending Fourier series	22
13	5. Transformation to a Heun ODE	24
14	5.1. Transformation from the trigonometric ODE to Heun's equation	25
15	5.2. Frobenius analysis of Heun's ODE	26
16	5.3. Relation between Fourier series and the connection problem for Heun's ODE	28
17	6. Real eigenvalues of the operators T_o^\pm and T_∞^\pm	29
18	6.1. Real eigenvalues of the truncated operators $T_{o,N}^\pm$ and $T_{\infty,N}^\pm$	31
19	6.2. Generalized convergence and reality of periodic and antiperiodic eigenvalues	33
20	7. Lax spectrum for non-integer values of A	36
21	8. Further characterization of the spectrum and determination of the genus	37
22	8.1. Multiplicity of imaginary eigenvalues	37
23	8.2. Dirichlet eigenvalues and behavior of the Floquet discriminant near the origin	38
24	8.3. Proof of the remaining statements of Theorem 1.3	42
25	9. Dynamics of the spectrum as a function of A and m	46
26	10. Discussion and concluding remarks	48
27	Acknowledgments	51
28	Appendix A.	51
29	A.1. Notation and function spaces	51
30	A.2. Proof of two lemmas	52
31	A.3. Solution of the ZS system at $z = 0$	53
32	A.4. Transformation of the ZS system into a Heun system	54
33	A.5. Augmented convergence and Perron's rule	55
34	A.6. Generalized convergence of closed operators	56
35	A.7. Gesztesy-Weikard criterion for finite-band potentials	56
36	A.8. Connection between Heun's equation and Treibich-Verdier potentials	57
37	A.9. Transformations $A \mapsto -A$ and $\zeta \mapsto 1/\zeta$	59
38	References	60

1 **1. Introduction and main results** 12 **1.1. Background** 23 In this work we study a non-self-adjoint Dirac operator with a Jacobi elliptic potential, 3
4 namely, 4

5
$$L\phi = z\phi, \quad z \in \mathbb{C}, \quad (1.1) \quad 6$$

7 where $\phi(x; z) = (\phi_1, \phi_2)^T$, the superscript “T” denoting matrix transpose, L is given 8
9 formally by 10

11
$$L := i\sigma_3(\partial_x - Q(x)), \quad Q(x) = \begin{pmatrix} 0 & q(x) \\ -\overline{q(x)} & 0 \end{pmatrix}, \quad x \in \mathbb{R}, \quad (1.2) \quad 12$$

13 the potential $Q(x)$ is l -periodic, $\sigma_3 := \text{diag}(1, -1)$ (cf. Appendix A.1) and overline denotes the complex conjugate. In particular, let 14

15
$$q(x; A, m) = A \operatorname{dn}(x; m), \quad (1.3) \quad 16$$

17 where $\operatorname{dn}(x; m)$ is one of the three basic Jacobi elliptic functions (cf. [43, 79]), and $m \in$ 18
19 $(0, 1)$ is the elliptic parameter. Finally, A is an arbitrary constant, which one can take 20
21 to be real and positive without loss of generality. (It is easy to see that $\arg A \neq 0$ leaves 22
23 the spectrum invariant.) We will do so throughout this work. Recall that $\operatorname{dn}(x; m)$ has 24
25 minimal period $l = 2K$ along the real x -axis, where $K := K(m)$ is the complete elliptic 26
27 integral of the first kind [43, 79]. Also recall that $\operatorname{dn}(x; 0) \equiv 1$ and $\operatorname{dn}(x; 1) \equiv \operatorname{sech} x$. Both 28
29 of the limiting cases $m = 0$ and $m = 1$ are exactly solvable (i.e., the spectrum is known 30
31 in closed form), and therefore provide convenient “bookends” for the results of this work. 3233 There are several factors that motivate the present study. A first one is that Dirac 34
35 operators arise naturally in quantum field theory [54, 104], and therefore the identification 36
37 of exactly solvable potentials is relevant in that context. A second one is the obvious 38
39 similarity between the study of (1.1) and that of eigenvalue problems for the time- 40
41 independent Schrödinger equation, namely 42

34
$$(-\Delta + V(x))\phi = \lambda\phi, \quad (1.4) \quad 35$$

36 where Δ denotes the n -dimensional Laplacian operator and $\phi : \mathbb{R}^n \rightarrow \mathbb{C}$, which has been 37 an integral component of mathematical physics since its first appearance in the 1920's 38 (e.g., see [38, 76, 82]), and which received renewed interest in the late 1960's and 1970's 39 (e.g., see [1, 24, 62, 78, 98]) thanks to the connection with infinite-dimensional integrable 40
41 systems. Namely, the fact that the one-dimensional time-independent Schrödinger equation 42 [i.e., (1.4) with $n = 1$] is the first half of the Lax pair for the *Korteweg-deVries* (KdV) 43
44 equation [36, 66]. As a result, the study of direct and inverse spectral problems for the 45
46

1 Schrödinger operator played a key role in the development of the so-called *inverse scattering transform* (IST) to solve the initial value problem for the KdV equation [36,66].
 2 The direct and inverse scattering theory was later made more rigorous, and generalizations of the theory were also studied [6,7,20,24,27,52,53,67,73,75,77,93]. In particular,
 3 the so-called finite-gap (or finite-band) solution became a primary object of study.
 4

5 Similar problems have been considered for (1.1), since it comprises the first half of the
 6 Lax pair associated to the *nonlinear Schrödinger* (NLS) equation, namely, the partial
 7 differential equation (PDE)
 8

$$10 \quad iqt + q_{xx} + 2s|q|^2q = 0. \quad (1.5) \quad 10$$

11 Here $q : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$, subscripts x and t denote partial differentiation and, as usual, the
 12 sign $s = \pm 1$ denotes the focusing and defocusing cases, respectively. Similarly to the KdV
 13 equation, the NLS equation is an infinite-dimensional Hamiltonian system. Also, similarly
 14 to the KdV equation, the NLS equation is a ubiquitous physical model. In particular,
 15 (1.5) is a universal model describing the slow modulations of a weakly monochromatic
 16 dispersive wave envelope, and therefore appears in many physical contexts, such as deep
 17 water waves, nonlinear optics, plasmas, ferromagnetics and Bose-Einstein condensates
 18 (e.g., see [1,3,81]). Therefore, the study of the NLS equation is of both theoretical and
 19 applicative interest.
 20

21 In 1972 [105], Zakharov and Shabat showed that (1.5) is the compatibility condition
 22 of the matrix Lax pair
 23

$$24 \quad \phi_x = (-iz\sigma_3 + Q(x,t))\phi, \quad (1.6a) \quad 24$$

$$25 \quad \phi_t = (-2iz^2\sigma_3 + H(x,t,z))\phi, \quad (1.6b) \quad 25$$

26 with σ_3 as above, and
 27

$$28 \quad Q(x,t) = \begin{pmatrix} 0 & q(x,t) \\ -sq(x,t) & 0 \end{pmatrix}, \quad H(x,t,z) = 2zQ - i\sigma_3(Q^2 - Q_x). \quad (1.7) \quad 29$$

30 Following [105], (1.6a) [i.e., the first half of the Lax pair] is referred to as the *Zakharov-Shabat* (ZS) scattering problem. It is easy to see that (1.6a) [with $s = 1$] is equivalent
 31 to (1.1). Thus, the solution to (1.5) [with $s = 1$] comprises the scattering potential q
 32 in (1.1). Moreover, one can also show that time evolution of q according to the focusing
 33 NLS equation (1.5) [with $s = 1$] amounts to an isospectral deformation of the potential
 34 for the Dirac operator (1.2).
 35

36 Scattering theory for the Zakharov-Shabat system have been studied extensively over
 37 the years. In [105] the IST for (1.5) in the focusing case with localized data, i.e., with
 38 $q(x,t=0) \in L^1(\mathbb{R})$, was formulated. Corresponding results for the defocusing case with
 39 constant boundary conditions (BCs), i.e., $|q(x,t)| \rightarrow q_0 \neq 0$ as $x \rightarrow \pm\infty$, were obtained
 40 in [106]. The theory was then revisited and elucidated in [1,32,78]. When $q \in L^1(\mathbb{R})$,
 41

1 the isospectral data is composed of two pieces: an absolutely continuous spectrum, and
 2 a set of discrete eigenvalues. When q is periodic, however, the isospectral data is purely
 3 absolutely continuous and has a band and gap structure.

4 Of particular interest is the effort to find classes of potentials for which the scat-
 5 tering problem can be solved exactly. Satsuma and Yajima [86] considered the case of
 6 $q(x) = A \operatorname{sech} x$, with A an arbitrary positive constant, and obtained a complete rep-
 7 resentation of eigenfunctions and scattering data. Their work was later generalized by
 8 Tovbis and Venakides [95] to potentials of the type $q(x) = A \operatorname{sech} x e^{-ia \log(\cosh x)}$, with
 9 A as above and a an arbitrary real constant. These results were then used in [57, 96]
 10 to study the behavior of solutions of the focusing NLS equation in the semiclassical
 11 limit. More recently, Trillo et al. [35] obtained similar results for potentials of the type
 12 $q(x) = A \tanh x$ in the defocusing case. In all of these cases, the ZS scattering problem
 13 is reduced to connection problems for the hypergeometric equation. Finally, Klaus and
 14 Shaw [59, 60] identified classes of “single-lobe” potentials for which the point spectrum
 15 is purely imaginary.

16 The above-mentioned works considered potentials that are either localized or tend
 17 to constant boundary conditions as $|x| \rightarrow \infty$. Spectral problems for the Schrödinger
 18 operator with a periodic potential similar to the one considered here are also a classical
 19 subject, and their study goes back to Lamé [65], and Ince [47–49], where the spectrum for
 20 a two-parameter family of potentials was studied, and necessary and sufficient conditions
 21 in order for such potentials to give rise to a spectrum with a finite number of gaps were
 22 derived (see also [4, 15, 28, 39, 72]). More recently, these results were generalized in [92]
 23 and [88], and in seminal work a characterization of all elliptic algebro-geometric solutions
 24 of the KdV and AKNS hierarchies was given by Gesztesy and Weikard in [39–41].

25 Finite-band potentials for the focusing and defocusing ZS scattering problems have
 26 also been studied [8, 40, 51, 63, 87]. In particular, the special case of genus-one potentials
 27 was explicitly considered in [16, 56], and the stability of those solutions was recently
 28 studied in [22]. On the other hand, the identification of exactly solvable cases for periodic
 29 potentials is generally challenging, and few families of finite-band potentials for (1.2) have
 30 been studied in detail (see [40, 41]).

31 Here we present an explicit, two-parameter family of finite-band potentials of the fo-
 32 cusing ZS system and we characterize the resulting spectrum. We also show that (1.1)
 33 with the potential (1.3) can be reduced to certain connection problems for Heun’s equa-
 34 tion. Unlike the case of the hypergeometric equation, the connection problem for Heun’s
 35 equation has not been solved in general [85]. Still, special cases can be solved exactly. For
 36 example, for certain classes of periodic potentials it turns out that Hill’s equation [i.e.,
 37 (1.4) with $n = 1$ and periodic potential] can be mapped to a Heun equation. Classical
 38 works [47, 48, 72] where the spectrum of Hill’s equation for a multi-parameter family of
 39 potentials was studied, resulted in the derivation of necessary and sufficient conditions
 40 for such potentials to give rise to a spectrum with a finite number of bands and gaps. Im-
 41 portantly, the absence of a gap in the spectrum of the Hill operator corresponds uniquely
 42 to the coexistence of solutions, namely, the existence of two linearly independent peri-

1 odic, or antiperiodic, solutions to the given ordinary differential equation (ODE) [72].
 2 More recently, those results were strengthened in [100,102] and [45]. The results of this
 3 work provide a direct analogue of all these results for the Dirac operator (1.2) as well as
 4 for the Hill operator with PT-symmetric potential.

5

6 *1.2. Main results*

7

8 We first introduce some definitions in order to state the main results of this work (see
 9 Appendix A.1 for further notations and standard definitions).

10

11 **Definition 1.1** (*Lax spectrum*). The Lax spectrum of the matrix-valued differential ex-
 12 pression L in (1.2) is the set

13

$$14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad \Sigma(L) := \{z \in \mathbb{C} : L\phi = z\phi, 0 < \|\phi\|_{L^\infty(\mathbb{R}; \mathbb{C}^2)} < \infty\}, \quad (1.8)$$

20 i.e., the set of complex numbers z such that (1.1) has at least one bounded nonzero
 21 solution.

22 It can be proved that for q locally integrable the Lax spectrum defined above equals the
 23 spectrum of the maximal operator associated with L in $L^2(\mathbb{R}; \mathbb{C}^2)$, the space of square-
 24 integrable two-component vector-valued functions, namely the set $\{z \in \mathbb{C} : z \notin \rho(L)\}$,
 25 where $\rho(L)$ is the resolvent set of L (see [84] p. 249). Moreover, it is well known that if q
 26 is l -periodic with minimal period l , then $\Sigma(L)$ is purely continuous and comprised of an
 27 at most countable collection of regular analytic arcs, referred to as *bands*, in the spectral
 28 plane [40,84]. Throughout this work we will occasionally use spectrum as a synonym for
 29 the Lax spectrum. Further properties of the Lax spectrum are discussed in Section 2.
 30 If the potential q is such that there are at most finitely many bands we say that q is a
 31 *finite-band potential* (see Definition 2.5). The class of finite-band potentials plays a key
 32 role in the IST for the NLS equation on the torus [8,37,71]. In particular, it was shown in
 33 [51] that the potential can be reconstructed from the knowledge of two key spectral data:
 34 (i) the periodic and antiperiodic eigenvalues of L (i.e., the set of values z associated with
 35 periodic or antiperiodic eigenfunctions, respectively), which correspond to endpoints of
 36 spectral bands, and (ii) the Dirichlet (or auxiliary) eigenvalues of L , defined as the set
 37 of zeros of the 1,2 entry of the monodromy matrix (see Section 2 for precise definitions
 38 of all these quantities). To specify the dependence of solutions associated with (1.3) on
 39 the parameters A, m , we will also occasionally use the notation $\Sigma(L; A, m)$ to denote the
 40 Lax spectrum.

41 **Theorem 1.2.** Consider (1.1) with $q \equiv A \operatorname{dn}(x; m)$, $m \in (0, 1)$, and $A > 0$. Then the
 42 potential q is finite-band if and only if $A \in \mathbb{N}$. Moreover, if $A \in \mathbb{N}$, then:

$$1 \quad \Sigma(L; A, m) \subset \mathbb{R} \cup (-iA, iA), \quad (1.9) \quad 1$$

2 and q is a $2A$ -band (i.e., a genus $2A - 1$) potential of the Dirac operator (1.2). 2

5 (Of course it is well known that $\Sigma(L)$ is Schwarz symmetric and $\mathbb{R} \subset \Sigma(L)$ [71,74].) 5
6 Theorem 1.2 is a consequence of the following more detailed description of the spectrum: 6

7 **Theorem 1.3.** *Assume the conditions of Theorem 1.2. If $A \in \mathbb{N}$ then:* 7

- 10 1. For any $m \in (0, 1)$, the non-real part of the Lax spectrum, $\Sigma(L; A, m) \setminus \mathbb{R}$, is a proper 10
11 subset of $(-iA, iA)$. (For $m = 0$, the Lax spectrum is $\Sigma(L; A, 0) = \mathbb{R} \cup [-iA, iA]$.) 11
- 12 2. For any $m \in (0, 1)$, there are exactly $2A$ symmetric bands of $\Sigma(L; A, m)$ along 12
13 $(-iA, iA)$, separated by $2A - 1$ open gaps. The central gap (i.e., the gap surrounding 13
14 the origin) contains an eigenvalue at $z = 0$, which is periodic when A is even and 14
15 antiperiodic when A is odd. 15
- 16 3. For any $m \in [0, 1)$, $\mathbb{R} \subset \Sigma(L; A, m)$ contains infinitely many interlaced periodic and 16
17 antiperiodic eigenvalues, symmetrically located with respect to $z = 0$. 17
- 18 4. Each periodic/antiperiodic eigenvalue $z \in \mathbb{R}$ has geometric multiplicity two and each 18
19 periodic/antiperiodic eigenvalue $z \in (-iA, iA) \setminus \{0\}$ has geometric multiplicity one. 19
- 20 5. Each periodic/antiperiodic eigenvalue $z \in \mathbb{R}$ is simultaneously a Dirichlet eigenvalue. 20
21 All these Dirichlet eigenvalues are immovable. 21
- 22 6. Each of the open $2A - 1$ gaps on $(-iA, iA)$ contains exactly one movable Dirichlet 22
23 eigenvalue. Thus, all of the $2A - 1$ movable Dirichlet eigenvalues of the finite-band 23
24 solution with genus $2A - 1$ are located in the gaps of the interval $(-iA, iA)$. 24

25 Recall that a movable Dirichlet eigenvalue is a Dirichlet eigenvalue whose location 25
26 changes when changing the normalization of the monodromy matrix, whereas the location 26
27 of immovable Dirichlet eigenvalues is independent of the normalization of the monodromy 27
28 matrix. For an N -band potential there are a total of $N - 1$ movable Dirichlet eigenvalues 28
29 (cf. Definition 2.12 and [34,37]). 29

30 **Theorem 1.4.** *Assume the conditions of Theorem 1.2. If $A \notin \mathbb{N}$, then:* 30

- 34 1. For any $m \in (0, 1)$, each periodic or antiperiodic eigenvalue has geometric multiplicity 34
35 one. 35
- 36 2. There are no periodic or antiperiodic eigenvalues on \mathbb{R} . 36
- 37 3. There are infinitely many spines (spectral bands emanating transversally from the 37
38 real axis) at the real critical points of the Floquet discriminant (i.e., the trace of the 38
39 monodromy matrix). 39

40 Time evolution according to the NLS equation is an isospectral deformation of a 40
41 potential of (1.2). Thus, by Theorem 1.2, if $A \in \mathbb{N}$, the initial condition $q(x, 0) =$ 41

1 $A \operatorname{dn}(x; m)$ generates a genus $2A - 1$ solution of the focusing NLS equation; conversely,
 2 if $A \notin \mathbb{N}$, the corresponding solution is not finite-genus.

3 After various preliminaries in Section 2, the proof of Theorems 1.2 and 1.3 involves
 4 several steps:

- 5 • In Section 3 we map (1.1) into Hill's equation with a complex potential, and in
 6 Section 4 we map Hill's equation into a second-order trigonometric ODE.
- 7 • In Section 4.2 we map the trigonometric ODE into a three-term recurrence relation
 8 for the Fourier coefficients.
- 9 • In Section 4.3 we demonstrate that, when $A \in \mathbb{N}$, each periodic or antiperiodic
 10 eigenvalue of L is associated to a corresponding ascending or descending semi-infinite
 11 Fourier series.
- 12 • In Section 5 we map the trigonometric ODE into Heun's equation and relate the
 13 periodic and antiperiodic eigenvalue problems for (1.1) with potential (1.3) to a
 14 connection problem for Heun's equation.
- 15 • Moreover, in Section 5 we show that the periodic and antiperiodic eigenvalues of (1.2)
 16 with potential (1.3) correspond to the eigenvalues of certain tridiagonal operators
 17 that encode the recurrence relations for the coefficients of the Frobenius series solution
 18 of Heun's equation at the origin and at infinity.
- 19 • In Section 6 we establish that all eigenvalues of the above-mentioned tridiagonal
 20 operators are real.

22 The determination of the precise number of spectral bands for any $m \in (0, 1)$ is proved
 23 in Section 8. Finally, Theorem 1.4 is proved in Section 7. Notation, standard definitions,
 24 several technical statements and additional results and observations are relegated to the
 25 appendices.

26

28 2. Preliminaries

29

30 We begin by briefly reviewing basic properties of the Lax spectrum. Unless stated
 31 otherwise, all statements in this section hold for operators L with arbitrary continuous
 32 l -periodic potentials.

33

34 2.1. Bloch-Floquet theory

35

36 While it is natural to pose (1.1) on the whole real x -axis, all of the requisite information
 37 for the spectral theory is contained in the period interval of the potential, namely, $I_{x_o} :=$
 38 $[x_o, x_o + l]$, where $x = x_o$ is an arbitrary base point. Consider the *Floquet boundary*
 39 *conditions* (BCs):

40

$$41 \quad \text{BC}_\nu(L) := \{\phi : \phi(x_o + l; z) = e^{i\nu l} \phi(x_o; z), \nu \in \mathbb{R}\}. \quad (2.1)$$

1 **Definition 2.1** (*Floquet eigenvalues of the Dirac operator*). Let the operator L :
 2 $H^1(I_{x_o}; \mathbb{C}^2) \rightarrow L^2(I_{x_o}; \mathbb{C}^2)$ be defined by (1.2). Let $\text{dom}(L) := \{\phi \in H^1(I_{x_o}; \mathbb{C}^2) : \phi \in \text{BC}_\nu(L)\}$. The set of Floquet eigenvalues of L is given by
 3

$$4 \quad 5 \quad \Sigma_\nu(L) := \{z \in \mathbb{C} : \exists \phi \neq 0 \in \text{dom}(L) \text{ s.t. } L\phi = z\phi\}. \quad (2.2) \quad 6$$

7 In particular, $\nu = 2n\pi/l$, $n \in \mathbb{Z}$, identifies periodic eigenfunctions, while $\nu = (2n-1)\pi/l$,
 8 $n \in \mathbb{Z}$, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues
 9 periodic and antiperiodic, respectively, and we will denote the set of periodic and an-
 10 tiperiodic eigenvalues by $\Sigma_\pm(L)$, respectively.

11 $(H^1$ denotes the space of square-integrable functions with square-integrable first
 12 derivative.) It is well-known that $\Sigma_\nu(L)$ is discrete and countably infinite [15,25].

13 Next we review the theory of linear homogeneous ODEs with periodic coefficients and
 14 important connections to the Lax spectrum. We set the base point $x_o = 0$ without loss of
 15 generality. Recall, the *Floquet solutions* (or *Floquet eigenfunctions*) of (1.1) are solutions
 16 such that

$$18 \quad 19 \quad \phi(x + l; z) = \mu \phi(x; z), \quad (2.3) \quad 20$$

21 where $\mu := \mu(z)$ is the Floquet multiplier. Then by Floquet's Theorem (see [15,33]) all
 22 bounded (in x) Floquet solutions of (1.1) have the form $\phi(x; z) = e^{i\nu x} \psi(x; z)$, where
 23 $\psi(x + l; z) = \psi(x; z)$ and $\nu := \nu(z) \in \mathbb{R}$. Thus, a solution of (1.1) is bounded for all
 24 $x \in \mathbb{R}$ if and only if $|\mu| = 1$, in which case one has the relation

$$25 \quad 26 \quad \mu = e^{i\nu l}, \quad (2.4) \quad 27$$

28 with $\nu \in \mathbb{R}$. The quantity $i\nu$ is the Floquet exponent. (With a slight abuse of ter-
 29 minology, we will often simply refer to ν as the Floquet exponent for brevity.) The
 30 Floquet multipliers are the eigenvalues of the *monodromy matrix* $M := M(z)$, defined
 31 by $Y(x + l; z) = Y(x; z)M(z)$, where $Y(x; z)$ is any fundamental matrix solution of (1.1).
 32 It is well-known that the monodromy matrix is entire as a function of z [71,74]. Note that
 33 $\det M(z) \equiv 1 \forall z \in \mathbb{C}$ by Abel's formula, since (1.2) is traceless. Thus, the eigenvalues of
 34 M are given by the roots of the quadratic equation $\mu^2 - 2\Delta\mu + 1 = 0$, where $\Delta := \Delta(z)$
 35 is the *Floquet discriminant*, i.e.,

$$36 \quad 37 \quad \Delta(z) = \frac{1}{2} \text{tr } M(z). \quad (2.5) \quad 38$$

39 Further, $\mu_\pm = \Delta \pm \sqrt{\Delta^2 - 1}$. Thus (1.1) admits bounded solutions if and only if $-1 \leq$
 40 $\Delta \leq 1$.

41 **Remark 2.2.** For $q \in C(\mathbb{R})$ one has $\Delta(z) = \cos(zl) + o(1)$ as $z \rightarrow \infty$ along the real z -axis
 42 (see [71,74]).

1 The above considerations yield an equivalent representation of the Lax spectrum (see
 2 [15, 28, 84]):
 3

4 **Theorem 2.3.** *The Lax spectrum $\Sigma(L)$ is given by*

$$5 \quad 6 \quad \Sigma(L) = \{z \in \mathbb{C} : \Delta(z) \in [-1, 1]\}. \quad (2.6)$$

7 *Additionally, for any fixed $\nu \in \mathbb{R}$ the Floquet eigenvalues are given by*

$$9 \quad 10 \quad \Sigma_\nu(L) = \{z \in \mathbb{C} : \Delta(z) = \cos(\nu l)\}. \quad (2.7)$$

11 *For each $\nu \in \mathbb{R}$ the set $\Sigma_\nu(L)$ is discrete and the only accumulation point occurs at
 12 infinity. Moreover,*

$$14 \quad 15 \quad \Sigma(L) = \bigcup_{\nu \in [0, 2\pi/l)} \Sigma_\nu(L). \quad (2.8)$$

16 **Remark 2.4.** By (2.3), (2.4) and (2.7), the values $z \in \mathbb{C}$ for which $\Delta(z) = \pm 1$ are the
 17 periodic and antiperiodic eigenvalues $z \in \Sigma_\pm(L)$ (see Definition 2.1), respectively. The
 18 periodic and antiperiodic eigenvalues correspond to band edges of the Lax spectrum.
 19 Further, $\Sigma_\nu(L) \cap \Sigma_{\nu'}(L) = \emptyset$ for all $\nu \neq \nu' \pmod{2\pi/l}$.

21 *2.2. General properties of the Lax spectrum*

23 Owing to (2.6), the Lax spectrum (1.8) is located along the zero level curves of
 24 $\text{Im } \Delta(z)$, i.e., $\Gamma := \{z \in \mathbb{C} : \text{Im } \Delta(z) = 0\}$. Moreover, Γ is the union of an at most
 25 countable set of regular analytic curves Γ_n [40], each starting from infinity and ending
 26 at infinity:

$$28 \quad 29 \quad \Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n. \quad (2.9)$$

30 (The precise details of the map $n \mapsto \Gamma_n$ are not important for the present purposes.)
 31 Different curves $\Gamma_i \neq \Gamma_j$ (and therefore different spectral bands) can intersect at saddle
 32 points of $\Delta(z)$. However, two distinct Γ_n can intersect at most once, as a result of the fact
 33 that each Γ_n is a level curve of the harmonic function $\text{Im } \Delta(z)$. Thus the Lax spectrum
 34 $\Sigma(L)$ cannot contain any closed curves in the finite z -plane.

35 **Definition 2.5 (Spectral band).** A spectral band is a maximally connected regular analytic
 36 arc along Γ_n where $\Delta(z) \in [-1, 1]$ holds. Each finite portion of Γ_n where $|\text{Re } \Delta(z)| > 1$,
 37 delimited by a band on either side, is called a spectral gap.

38 **Lemma 2.6.** ([12]) *The real z -axis is the only band extending to infinity; $\Sigma(L)$ contains
 39 no closed curves in the finite z -plane; and the resolvent set $\varrho := \mathbb{C} \setminus \Sigma(L)$ is comprised
 40 of two connected components.*

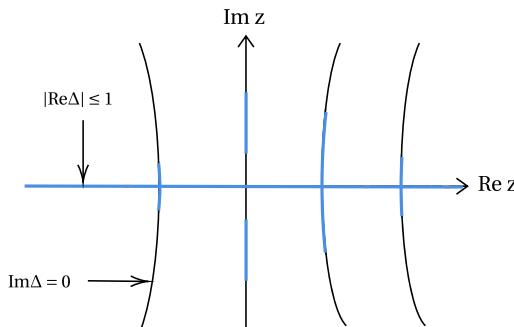


Fig. 1. Schematic diagram of the Lax spectrum for a generic potential.

With the above definition, the Lax spectrum can be decomposed into bands and gaps along each Γ_n as in a self-adjoint problem, with the crucial difference that here bands and gaps are not restricted to lie along the real z -axis (as they would be in a self-adjoint problem), but lie instead along arcs of Γ_n . Fig. 1 provides a schematic illustration of these concepts.

We call a spectral band intersecting the real or imaginary z -axis transversally a *spine* [74]. Generically, the Lax spectrum of the operator (1.2) includes infinitely many spines emanating from (infinitely many) critical points that extend to (\pm) infinity along the real z -axis [25,74], in which case we call q an *infinite-band potential*. Otherwise, we call q a *finite-band potential*. Specifically, if there are N bands (not including the real z -axis) we say that q is an N -band potential. The corresponding solutions of the focusing NLS equation are described in terms of Riemann Θ -functions determined by hyperelliptic Riemann surfaces of genus $G = N - 1$ (see [8,34,37,51,91]). For example, $q \equiv A$ is a genus-0 (i.e., a 1-band) potential of the Dirac operator (1.2), and $q \equiv \text{dn}(x; m)$ is a genus-1 (i.e., a 2-band) potential.

Remark 2.7. The following sets play a key role in the analysis:

- Periodic/antiperiodic points: points $z_{\pm} \in \mathbb{C}$ such that $\Delta(z_{\pm}) = \pm 1$ (note $z_{\pm} \in \Sigma_{\pm}(L)$);
- Critical points: points $z_c \in \mathbb{C}$ such that $\partial_z \Delta(z_c) = 0$.

We denote by $\Phi(x; z)$ the fundamental matrix solution of (1.1) normalized so that $\Phi(0; z) \equiv \mathbf{1}$, where $\mathbf{1}$ is the 2×2 identity matrix. The trace and the eigenvalues of the monodromy matrix $M(z)$ are independent of the particular fundamental matrix solution chosen, and therefore so is the Floquet discriminant $\Delta(z)$ and the Lax spectrum $\Sigma(L)$. Nonetheless, it will be convenient to use $\Phi(x; z)$, so that $M(z)$ is simply given by

$$M(z) = \Phi(l; z). \quad (2.10)$$

1 **Remark 2.8.** It is straightforward to see that, for all $z \in \mathbb{C}$, the monodromy matrix
 2 satisfies the same symmetries as the scattering matrix for the IST on the line (e.g.,
 3 see [1,2,71])

4
$$M^{-1}(z) = \sigma_2 M^T(z) \sigma_2, \quad (2.11a)$$

5
$$\overline{M(\bar{z})} = \sigma_2 M(z) \sigma_2. \quad (2.11b)$$

6 Moreover, it is also straightforward to verify the following additional symmetries (e.g.,
 7 see [12]). If q is real, then

8
$$M(-\bar{z}) = \overline{M(z)}, \quad z \in \mathbb{C}. \quad (2.12a)$$

9 Moreover, if q is even, then

10
$$M(-\bar{z}) = \sigma_1 \overline{M^{-1}(z)} \sigma_1, \quad z \in \mathbb{C}, \quad (2.12b)$$

11 while if q is odd, then

12
$$M(-\bar{z}) = \sigma_2 \overline{M^{-1}(z)} \sigma_2, \quad z \in \mathbb{C}, \quad (2.12c)$$

13 where σ_1 and σ_2 are the first and second Pauli spin matrices, respectively (see Ap-
 14 pendix A.1).

15 The symmetry (2.11b) for the monodromy matrix implies that the Floquet discrimi-
 16 nant satisfies the Schwarz symmetry

17
$$\overline{\Delta(\bar{z})} = \Delta(z), \quad z \in \mathbb{C}. \quad (2.13)$$

18 Moreover, if q is real or even or odd, (2.12) implies additionally that $\Delta(z)$ is an even
 19 function:

20
$$\Delta(-z) = \Delta(z), \quad z \in \mathbb{C}. \quad (2.14)$$

21 As a result, one has:

22 **Lemma 2.9.** *If q is real or even or odd, $\Sigma(L)$ is symmetric about the real and imaginary
 23 z -axes. Thus, the Floquet eigenvalues come in symmetric quartets $\{z, \bar{z}, -z, -\bar{z}\}$.*

24 For q real and even, it follows from (2.12a) and (2.12b) that

25
$$M(z) = \Delta(z) \mathbf{1} + c(z) \sigma_3 - i s(z) \sigma_2, \quad z \in \mathbb{C}. \quad (2.15)$$

26 Obviously, (2.15) together with the fact that $\det M(z) \equiv 1$, imply the relation

$$1 \quad \Delta^2(z) = 1 + c^2(z) - s^2(z), \quad z \in \mathbb{C}. \quad (2.16) \quad 1$$

2 Equation (2.12a) also implies that, if q is real, $M(z)$ is real when $z \in i\mathbb{R}$. Moreover, for
3 q real and even, one has:

$$5 \quad \Delta(z) = \Delta(\bar{z}) = \overline{\Delta(z)}, \quad s(z) = s(\bar{z}) = \overline{s(z)}, \quad c(z) = -c(\bar{z}) = \overline{c(z)}, \quad z \in i\mathbb{R}. \quad (2.17) \quad 6$$

7 That is, $\Delta(z)$, $s(z)$ and $c(z)$ are all real for $z \in i\mathbb{R}$. For $z \in \mathbb{R}$, $\Delta(z)$ and $s(z)$ are real,
8 whereas $c(z)$ is purely imaginary. Finally, since $M(z)$ is entire, (2.17) also implies
9

$$10 \quad s(-z) = s(z), \quad c(-z) = -c(z), \quad z \in \mathbb{C}. \quad (2.18) \quad 10$$

12 Next we show that the Lax spectrum of (1.2) with a non-constant potential is confined
13 to an *open* strip in the spectral plane. The following Lemma is proved in Appendix A.2,
14 and is instrumental for this work:

16 **Lemma 2.10.** *Suppose $q \in C(\mathbb{R})$ is l -periodic. (i) If q is not constant and $z \in \Sigma(L)$, then
17 $|\operatorname{Im} z| < \|q\|_\infty$. (ii) If q is real or even or odd, and $\Sigma_\pm(L) \subset \mathbb{R} \cup i\mathbb{R}$, then $\Sigma(L) \subset \mathbb{R} \cup i\mathbb{R}$
18 and q is finite-band.*

20 To solve the inverse problem in the IST (namely, reconstructing the potential from the
21 scattering data), an auxiliary set of spectral data is also needed—the Dirichlet eigenvalues
22 [34,51]:

24 **Definition 2.11** (*Dirichlet eigenvalues*). Let $M(z)$ be defined by (2.10). The set of Dirichlet
25 eigenvalues (see [34]) with base point $x_0 = 0$ is defined as

$$26 \quad \Sigma_{\operatorname{Dir}}(L; x_0 = 0) := \{z \in \mathbb{C} : s(z) = 0\}. \quad (2.19) \quad 26$$

28 In contrast to the Lax spectrum, the Dirichlet eigenvalues are not invariant with respect
29 to changes in the base point $x = x_0$, or to time evolution of q according to the
30 focusing NLS equation. Indeed, in the context of the integrability of NLS on the torus,
31 the Dirichlet eigenvalues correspond to angle variables and are used to coordinatize the
32 isospectral level sets. As we discuss next, the set of Dirichlet eigenvalues is discrete, con-
33 sists of movable and immovable points, and the number of movable Dirichlet eigenvalues
34 is tied to the genus of the corresponding Riemann surface (see [34,41]).

35 The monodromy matrix $M(z)$ in (2.10) was defined in terms of the fundamental matrix
36 solution $\Phi(x; z)$ normalized as $\Phi(0; z) \equiv \mathbf{1}$. The monodromy matrix $M(z; x_0)$ associated
37 with a “shifted” solution $\tilde{\Phi}(x; x_0, z)$ normalized as $\tilde{\Phi}(x_0; x_0, z) \equiv \mathbf{1}$, with $x_0 \in \mathbb{R}$, is given
38 by
39

$$40 \quad M(z; x_0) = \Phi(x_0; z) M(z) \Phi^{-1}(x_0; z). \quad (2.20) \quad 40$$

41 Let $\Sigma_{\operatorname{Dir}}(L; x_0)$ be the corresponding set of Dirichlet eigenvalues.

1 **Definition 2.12** (*Movable and immovable Dirichlet eigenvalues*). Let $z \in \mathbb{C}$ be a Dirichlet
 2 eigenvalue associated to the monodromy matrix $M(z; x_o)$ with a given base point $x = x_o$,
 3 i.e., $z \in \Sigma_{\text{Dir}}(L; x_o)$. Following [34], we say that z is an *immovable* Dirichlet eigenvalue if
 4 $z \in \Sigma_{\text{Dir}}(L; x)$ for all $x \in \mathbb{R}$. Otherwise, we say $z \in \mathbb{C}$ is a *movable* Dirichlet eigenvalue.
 5

6 **Remark 2.13.** If q is an N -band potential of the non-self-adjoint Dirac operator (1.2),
 7 then the number of movable Dirichlet eigenvalues is $N - 1$ (see [34,41]).
 8

9 An immediate consequence of (2.16) and the symmetries of $M(z)$, $\Delta(z)$, $c(z)$ and $s(z)$
 10 is the following lemma, which will be useful later (see also [34,74]):
 11

12 **Lemma 2.14.** *If $z \in \mathbb{R}$ and $|\Delta(z)| = 1$, then $c(z) = s(z) = 0$, so that z is an immovable
 13 Dirichlet eigenvalue. Conversely, if $s(z) = 0$ with $z \in i\mathbb{R}$, then $|\Delta(z)| \geq 1$.*
 14

15 **Lemma 2.15.** *Let $z_{\pm} \in \Sigma_{\pm}(L)$. If $\partial_z \Delta(z_{\pm}) \neq 0$, then the corresponding eigenspace has
 16 dimension one.*
 17

18 **Proof.** Suppose that there exist two linearly independent periodic (or antiperiodic) eigen-
 19 functions. Consider the normalized fundamental matrix solution $\Phi(x; z)$ of (1.1), namely,
 20 $L\Phi(x; z) = z\Phi(x; z)$ with $\Phi(0; z) \equiv \mathbf{1}$. Differentiating with respect to z and using varia-
 21 tion of parameters one gets
 22

$$\Delta_z = \frac{1}{2} \text{tr} \left(-i\Phi(l; z) \int_0^l \Phi^{-1}(x; z) \sigma_3 \Phi(x; z) dx \right). \quad (2.21)$$

23 By Floquet's theorem $\Phi(l; z_{\pm}) = \pm \mathbf{1}$, respectively. Then (2.21) yields $\partial_z \Delta(z_{\pm}) = 0$. \square
 24

25 The following lemma is a direct consequence of Lemmas 2.14, and 2.15:
 26

27 **Lemma 2.16.** *If $z_{\pm} \in \Sigma_{\pm}(L) \cap \mathbb{R}$, then the geometric multiplicity is two and $\partial_z \Delta(z_{\pm}) = 0$,
 28 respectively.*
 29

30 **2.3. Limits $m \rightarrow 0$ and $m \rightarrow 1$; $z = 0$**
 31

32 The two distinguished limits $m \rightarrow 0^+$ and $m \rightarrow 1^-$ of the two-parameter family of
 33 elliptic potentials (1.3) provide convenient limits of the results of this work. Interestingly,
 34 both of these limits yield exactly solvable models. Here it will be convenient to keep track
 35 of the dependence on m explicitly.
 36

37 Since $\text{dn}(x; 0) \equiv 1$, when $m = 0$ the potential (1.3) reduces to a constant background,
 38 i.e., $q \equiv A$ with period $l = 2K(0) = \pi$. Thus, (1.1) becomes a linear system of ODEs
 39 with constant coefficients, for which one easily obtains a fundamental matrix solution
 40

$$\Phi(x; z, m = 0) = e^{-i(z\sigma_3 - A\sigma_2)x}. \quad (2.22)$$

1 Hence the monodromy matrix is

$$2 \\ 3 M(z, m=0) = \cos(\sqrt{z^2 + A^2}\pi) \mathbf{1} - \frac{i \sin(\sqrt{z^2 + A^2}\pi)}{\sqrt{z^2 + A^2}} (z\sigma_3 - A\sigma_2), \quad (2.23) \\ 4 \\ 5$$

6 implying $\Sigma(L; A, 0) = \mathbb{R} \cup [-iA, iA]$. Further, $z = \pm iA$ are the only simple periodic
7 eigenvalues; all other periodic (resp. antiperiodic) eigenvalues are double points. Hence,
8 for any $A \neq 0$, $q \equiv A$ is a 1-band (i.e., genus-0) potential of (1.1). Moreover, the associated
9 solution of the focusing NLS equation [i.e., (1.5) with $s = 1$] is simply $q(x, t) = A e^{2iA^2 t}$.

10 On the other hand, the limit $m \rightarrow 1^-$ is singular, since $K(m)$, and therefore the
11 period $l = 2K(m)$ of the potential (1.3), diverges in this limit. Indeed, $\text{dn}(x; 1) \equiv \text{sech } x$,
12 so letting $m = 1$ results in the eigenvalue problem (1.1) with potential $q \equiv A \text{ sech } x$. This
13 case is also exactly solvable, and was first studied by Satsuma and Yajima [86]. The point
14 spectrum is comprised of a set of discrete eigenvalues located along the imaginary z -axis.
15 Moreover, for $A \in \mathbb{N}$ the potential is reflectionless, and the point spectrum is given by
16 $z_n = i(n - 1/2)$ for $n = 1, \dots, A$. That is, when $A \in \mathbb{N}$, $q \equiv A \text{ sech } x$ corresponds to
17 a pure bound-state A -soliton solution of the focusing NLS equation [86]. When $A = 1$, the
18 solution of the NLS equation (1.5) is simply $q(x, t) = e^{it} \text{ sech } x$. When $A > 1$, the
19 solutions are much more complicated [69, 86]. Indeed, the potential $A \text{ sech } x$ was used to
20 study the semiclassical limit of the focusing NLS equation in the pure soliton regime [57].

21 Lastly, we discuss the origin $z = 0$ of the spectral plane. When $z = 0$, the ZS
22 system (1.6a) admits closed-form solutions (see Appendix A.3). These solutions then allow
23 one to obtain the following lemma, which is proved in Appendix A.3:

24
25 **Lemma 2.17.** *Consider (1.2) with potential (1.3) and $m \in [0, 1)$. If $A \in \mathbb{N}$ is even or
26 odd, then $z = 0$ is a periodic or antiperiodic eigenvalue, respectively, with geometric
27 multiplicity two in each case.*

28 29 3. Transformation to Hill's equation

30 In this section we introduce a transformation of (1.1) that will be instrumental in
31 proving Theorem 1.2, and we consider the effect of this transformation on the Lax spec-
32 trum.

33 First we transform (1.1) to Hill's equation with a complex-valued potential via the
34 unitary linear transformation

$$35 \\ 36 \\ 37 \phi \mapsto v = \Lambda \phi, \quad \Lambda := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}, \quad (3.1) \\ 38 \\ 39$$

40 where $v := v(x; z^2) = (v^+, v^-)^T$. Differentiation of (1.1) and use of (3.1) show that, if q
41 in (1.2) is a real-valued differentiable potential, then (3.1) maps (1.1) into the diagonal
42 system

$$1 \quad Hv := (-\partial_x^2 + Q^2 - iQ_x\sigma_1)v = z^2v. \quad (3.2) \quad 1$$

2 Or, in component form,

$$5 \quad v_{xx}^\pm + (\pm iq_x + z^2 + q^2)v^\pm = 0. \quad (3.3) \quad 5$$

6 Equation (3.3) is Hill's equation with the complex (Riccati) potential $V^\pm := \mp iq_x - q^2$.

7 Thus, (3.3) amounts to the pair of eigenvalue problems

$$9 \quad H^\pm v^\pm = \lambda v^\pm, \quad \lambda := z^2, \quad (3.4) \quad 9$$

11 where

$$13 \quad H^\pm := -\partial_x^2 + V^\pm(x). \quad (3.5) \quad 13$$

15 **Remark 3.1.** If the potential q in (1.2) is real and even, then $V^\pm(-x) = \overline{V^\pm(x)}$, i.e., V^\pm is PT-symmetric.

18 Next, similarly to (2.1), we introduce the corresponding *Floquet BCs* for H^\pm :

$$20 \quad \text{BC}_\nu(H^\pm) := \{v^\pm : v^\pm(l; \lambda) = e^{i\nu l} v^\pm(0; \lambda), \quad v_x^\pm(l; \lambda) = e^{i\nu l} v_x^\pm(0; \lambda), \quad \nu \in \mathbb{R}\}. \quad (3.6) \quad 20$$

22 **Definition 3.2** (*Floquet eigenvalues of Hill's operator*). Let the operators $H^\pm : H^2([0, l]) \rightarrow L^2([0, l])$ be defined by (3.5). Let $\text{dom}(H^\pm) := \{v^\pm \in H^2([0, l]) : v^\pm \in \text{BC}_\nu(H^\pm)\}$. The 23 set of Floquet eigenvalues of H^\pm is given by

$$26 \quad \Sigma_\nu(H^\pm) := \{\lambda \in \mathbb{C} : \exists v^\pm \neq 0 \in \text{dom}(H^\pm) \text{ s.t. } H^\pm v^\pm = \lambda v^\pm\}. \quad (3.7) \quad 26$$

28 In particular, $\nu = 2n\pi/l$, $n \in \mathbb{Z}$, identifies periodic eigenfunctions, while $\nu = (2n-1)\pi/l$, $n \in \mathbb{Z}$, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues 29 periodic and antiperiodic, respectively, and we will denote the set of periodic and an- 30 tiperiodic eigenvalues by $\Sigma_\pm(H^\pm)$, respectively.

33 (H^2 denotes the space of square-integrable functions with square-integrable first and 34 second derivatives.) It is well-known that $\Sigma_\nu(H^\pm)$ is discrete and countably infinite [15, 35, 25, 28, 72].

37 **Lemma 3.3.** *If the potential q in (1.2) is real and even, then $\Sigma_\nu(H^+) = \Sigma_{-\nu}(H^-)$, the 38 dimension of the corresponding eigenspaces are equal, and each of $\Sigma_\nu(H^\pm)$ is symmetric 39 about the real λ -axis.*

41 **Proof.** Let $\lambda \in \Sigma_\nu(H^+)$ with eigenfunction $v^+(x; \lambda)$. Since q is even, it is easy to check 42 $\tilde{v} := v^+(-x; \lambda)$ satisfies $H^- \tilde{v} = \lambda \tilde{v}$. Moreover,

1
$$\tilde{v}(l; \lambda) = v^+(-l; \lambda) = e^{-i\nu l} \tilde{v}(0; \lambda), \quad (3.8a)$$

2
$$\tilde{v}_x(l; \lambda) = -v_x^+(-l; \lambda) = e^{-i\nu l} \tilde{v}_x(0; \lambda). \quad (3.8b)$$

3
4 Hence, $\lambda \in \Sigma_{-\nu}(H^-)$. Conversely, if $\lambda \in \Sigma_{-\nu}(H^-)$ with eigenfunction $v^-(x; \lambda)$, a
5 completely symmetric argument shows that $\lambda \in \Sigma_\nu(H^+)$. Finally, since the map
6 $v(x; \lambda) \mapsto v(-x; \lambda)$ is a (unitary) isomorphism, the dimension of the corresponding
7 eigenspaces are the same.8 Next, we prove the symmetry. Assume that $\lambda \in \Sigma_\nu(H^\pm)$ with corresponding eigen-
9 function $v^\pm(x; \lambda)$, respectively. Then it is easy to check that $\tilde{v}^\pm := \overline{v(-x; \lambda)^\pm}$ satisfies
10 $H^\pm \tilde{v}^\pm = \overline{\lambda} \tilde{v}^\pm$. Moreover,

11
12
$$\tilde{v}^\pm(l; \lambda) = \overline{v^\pm(-l; \lambda)} = e^{i\nu l} \tilde{v}^\pm(0; \lambda), \quad (3.9a)$$

13
14
$$\tilde{v}_x^\pm(l; \lambda) = -\overline{v_x^\pm(-l; \lambda)} = e^{i\nu l} \tilde{v}_x^\pm(0; \lambda). \quad (3.9b)$$

15 Thus, $\overline{\lambda} \in \Sigma_\nu(H^\pm)$ with eigenfunction $\tilde{v}^\pm(x; \lambda)$, respectively. \square 16
17 **Remark 3.4.** It is easy to see that Lemma 3.3 implies $\Sigma_\pm(H^+) = \Sigma_\pm(H^-)$, respectively.18
19 Next, since the Lax spectrum $\Sigma(H^\pm) = \cup_{\nu \in [0, 2\pi/l]} \Sigma_\nu(H^\pm)$, we have the following key
20 equivalence:21
22 **Lemma 3.5.** *If the potential q in (1.2) is real and even, then the unitary map (3.1) implies:*

23
24
$$\Sigma(H^+) = \Sigma(H^-) = \{\lambda = z^2 : z \in \Sigma(L)\}. \quad (3.10)$$

25
26 That is, the Lax spectrum of these three operators is related through the relation $\lambda = z^2$.
27 In particular,

28
29
$$z \in \Sigma_+(L) \Leftrightarrow \lambda = z^2 \in \Sigma_+(H^\pm), \quad z \in \Sigma_-(L) \Leftrightarrow \lambda = z^2 \in \Sigma_-(H^\pm). \quad (3.11)$$

30
31 Finally, for $z \neq 0$, the geometric multiplicity of an eigenvalue $z \in \Sigma_+(L)$ equals that of
32 $\lambda = z^2 \in \Sigma_+(H^\pm)$, and similarly for $z \in \Sigma_-(L)$ and $\lambda = z^2 \in \Sigma_-(H^\pm)$.33
34 **Proof.** If $z \in \Sigma(L)$, the transformation (3.1) implies that $v^\pm(x; \lambda)$ are both bounded
35 solutions of Hill's ODE (3.4), respectively, implying $\lambda \in \Sigma(H^\pm)$. Conversely, if $v^+(x; \lambda)$
36 is a bounded solution of (3.4) with the plus sign, it follows that $\tilde{v} := v^+(-x, \lambda)$ is a
37 bounded solution of (3.4) with the minus sign. Further, $\phi_1 = (v^+ + v^-)/\sqrt{2}$, and $\phi_2 =$
38 $i(v^- - v^+)/\sqrt{2}$ are both bounded, and the map (3.1) then implies that $\phi(x; z) = (\phi_1, \phi_2)^\top$
39 solves (1.1), implying $z \in \Sigma(L)$. A similar argument follows if one starts with $v^-(x; \lambda)$
40 bounded. Thus, (3.10) follows. Equation (3.11) follows directly from Lemma 3.3.41 It remains to show that, for $z \neq 0$, the dimension of the corresponding eigenspaces are
42 equal. The argument follows [26] where the self-adjoint case was studied. To this end, let

1 $E_{\pm}(L, z)$ denote the eigenspace associated with an eigenvalue $z \in \Sigma_{\pm}(L)$, and similarly
 2 for $L^2 := L \circ L$ and H^{\pm} . First, note that $\phi \mapsto i\sigma_2\phi$ is a (unitary) isomorphism between
 3 the eigenspaces $E_{\pm}(L, z)$ and $E_{\pm}(L, -z)$. Thus, applying the operator twice, for $z \neq 0$
 4 one easily gets
 5

$$6 \quad \dim E_{\pm}(L^2, \lambda = z^2) = 2\dim E_{\pm}(L, z). \quad (3.12) \quad 6$$

8 Next, note that L^2 is (unitary) equivalent to the diagonal system (3.2), i.e., $H =$
 9 $\frac{1}{2}\Lambda L^2 \Lambda^{-1}$. Moreover,
 10

$$11 \quad H = \begin{pmatrix} H^+ & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & H^- \end{pmatrix}, \quad (3.13) \quad 12$$

14 and so
 15

$$16 \quad E_{\pm}(H, \lambda) = (E_{\pm}(H^+, \lambda) \oplus 0) \oplus (0 \oplus E_{\pm}(H^-, \lambda)). \quad (3.14) \quad 17$$

19 Hence, by (3.12)–(3.14) and Lemma 3.3 it follows $\dim E_{\pm}(L, z) = \dim E_{\pm}(H^{\pm}, \lambda)$, re-
 20 spectively. \square
 21

22 **Remark 3.6.** By Lemma 3.5, the spectrum of the Dirac operator L in (1.2) with real and
 23 even potential is associated to that of the spectrum of the Hill operators H^{\pm} in (3.5).
 24 Importantly, note that the final statement of Lemma 3.5 does not hold at $z = 0$; that is,
 25 the geometric multiplicity of the periodic (or antiperiodic) eigenvalue $z = 0$ of the Dirac
 26 and Hill operators need not be equal (see Appendix A.3).
 27

28 All of the above results hold for generic real and even potentials. Moving forward,
 29 we restrict our attention to the Jacobi elliptic potential (1.3). By Lemma 3.5 we fix
 30 $y := v^-(x; \lambda)$ without loss of generality (dependence on A and m is omitted for brevity).
 31 Then Hill's equation $H^-v^- = \lambda v^-$ is given by
 32

$$33 \quad y_{xx} + (iAm \operatorname{sn}(x; m) \operatorname{cn}(x; m) + \lambda + A^2 \operatorname{dn}^2(x; m))y = 0. \quad (3.15) \quad 34$$

36 **Remark 3.7.** Since $\operatorname{dn}^2(x; m) \equiv 1 - m \operatorname{sn}^2(x; m)$, (3.15) can be viewed as an imaginary
 37 deformation of the celebrated Lamé equation [4,31,48,72], $y_{xx} + (\lambda + V(x))y = 0$ up to a
 38 shift of the eigenvalue λ . The Lamé equation has the remarkable property that solutions
 39 can coexist if and only if $A^2 = n(n + 1)$ where n is an integer [4,31,48,72]. Recall
 40 that solutions coexist if two linearly independent periodic (or respectively antiperiodic)
 41 solutions exist for a given λ . In the case of Hill's equation with a real potential this
 42 amounts to a “closed gap” in the spectrum (corresponding to finite gap potentials).
 43

1 **4. Transformation to a trigonometric ODE** 1

2 In this section we introduce a second transformation of (1.1). By part (ii) of 3 Lemma 2.10 moving forward we only need to consider the periodic and antiperiodic 4 eigenfunctions. 5

6 *4.1. Second-order ODE with trigonometric coefficients* 6

7 Consider the following change of independent variable: 7

8
$$x \mapsto t := 2\text{am}(x; m), \quad (4.1)$$
 9

10 where $\text{am}(x; m)$ is the Jacobi amplitude [14,43]. Equation (4.1) establishes a conformal 11 map between the strip $|\text{Im } x| < K(1 - m)$ and the complex t -plane cut along the rays 12 $(2j + 1)\pi \pm 2i\tau r$, $\tau \geq 1$, $j \in \mathbb{Z}$, where $r = \ln[(2 - m)/m]/2$ [43,79]. We then arrive at our 13 second reformulation of the Dirac eigenvalue problem: 14

15
$$4(1 - m \sin^2 \frac{t}{2})y_{tt} - (m \sin t)y_t + (\lambda + A^2(1 - m \sin^2 \frac{t}{2}) + \frac{i}{2}Am \sin t)y = 0. \quad (4.2)$$
 16

17 (The independent variable t introduced above should not be confused with the time 18 variable of the NLS equation (1.5).) 1920 **Remark 4.1.** Equation (4.2) can be written as the eigenvalue problem 21

22
$$By = \lambda y, \quad (4.3)$$
 23

24 where the operator $B : H^2([0, 2\pi]) \rightarrow L^2([0, 2\pi])$ is defined by 25

26
$$B := -4(1 - m \sin^2 \frac{t}{2})\partial_t^2 + (m \sin t)\partial_t - (A^2(1 - m \sin^2 \frac{t}{2}) + \frac{i}{2}Am \sin t). \quad (4.4)$$
 27

28 The coefficients are now 2π -periodic and as before $\Sigma_{\pm}(B)$ will denote the periodic and 29 antiperiodic eigenvalues of the operator B , respectively (see Definition 3.2). 30

31 This leads to the following result which connects the periodic/antiperiodic eigenvalues 32 of Hill's equation (3.15) to the periodic/antiperiodic eigenvalues of the trigonometric 33 equation (4.2). 34

35 **Lemma 4.2.** *Let B be the trigonometric operator (4.4). Then $\lambda \in \Sigma_{\pm}(B)$ if and only if 36 $\lambda \in \Sigma_{\pm}(H^-)$.* 3738 **Proof.** By (4.2) one gets $By = \lambda y$ if and only if $H^- \tilde{y} = \lambda \tilde{y}$, with $\tilde{y}(x; \lambda) = y(t; \lambda)$ 39 and $t = 2\text{am}(x; m)$ as per (4.1). Next, note that $\text{am}(x; m)$ is monotonic increasing for 40 $x \in (0, 2K)$, $\text{am}(x + 2K; m) = \text{am}(x; m) + \pi$, and $\text{am}(0; m) = 0$. Hence, the map (4.1) 41

1 is a bijection between $x \in [0, 2K]$ and $t \in [0, 2\pi]$. Moreover, $\tilde{y}(0; \lambda) = \pm \tilde{y}(2K; \lambda)$ if
 2 and only if $y(0; \lambda) = \pm y(2\pi; \lambda)$. Similarly, $\tilde{y}_x(0; \lambda) = \pm \tilde{y}_x(2K; \lambda)$ if and only if $y_t(0; \lambda) =$
 3 $\pm y_t(2\pi; \lambda)$. Thus, $2K$ -periodic (resp. antiperiodic) solutions of (3.15) map to 2π -periodic
 4 (resp. antiperiodic) solutions of (4.2), and vice versa. \square

5

6 **Remark 4.3.** The trigonometric ODE (4.2) can be viewed as a complex deformation of
 7 Ince's equation (see Chapter 7 of [72] for more details). Namely, one can write (4.2) as
 8

$$9 \quad (1 + a \cos t)y_{tt} + (b \sin t)y_t + (h + d \cos t + ie \sin t)y = 0, \quad (4.5) \quad 9$$

10

11 where $a = m/(2 - m)$, $b = -a/2$, $h = \lambda/(4 - 2m) + A^2/4$, $d = A^2a/4$, $e = Aa/4$. To
 12 the best of our knowledge this is the first example of a non-self-adjoint version of Ince's
 13 equation arising from applications.

14

15 *4.2. Fourier series expansion and three-term recurrence relation*

16

17 Recall that any Floquet solution $y(t; \lambda)$ of (4.2) bounded for all $t \in \mathbb{R}$ has the form
 18 $y(t; \lambda) = e^{i\nu t}f(t; \lambda)$ where $f(t + 2\pi; \lambda) = f(t; \lambda)$ and $\nu \in \mathbb{R}$ (cf. Section 2.1). Moreover,
 19 since $f(t; \lambda)$ is 2π -periodic, we can express it in terms of a Fourier series on $L^2(\mathbb{S}^1)$, where
 20 $\mathbb{S}^1 := \mathbb{R}/\mathbb{Z}$ is the unit circle. By direct calculation, let $y(t; \lambda)$ be a Floquet solution of (4.2)
 21 given by

22

$$23 \quad y(t; \lambda) = e^{i\nu t} \sum_{n \in \mathbb{Z}} c_n e^{int}. \quad (4.6) \quad 23$$

24

25 Then the coefficients $\{c_n\}_{n \in \mathbb{Z}}$ are given by the following three-term recurrence relation:

26

$$27 \quad \alpha_n c_{n-1} + (\beta_n - \lambda) c_n + \gamma_n c_{n+1} = 0, \quad n \in \mathbb{Z}, \quad (4.7) \quad 27$$

28

29 where

30

$$32 \quad \alpha_n = -\frac{1}{4}m[A - (2n + 2\nu - 2)][A + (2n + 2\nu - 1)], \quad (4.8a) \quad 32$$

33

$$33 \quad \beta_n = (1 - \frac{1}{2}m)[(2n + 2\nu)^2 - A^2], \quad (4.8b) \quad 33$$

34

$$35 \quad \gamma_n = -\frac{1}{4}m[A - (2n + 2\nu + 2)][A + (2n + 2\nu + 1)]. \quad (4.8c) \quad 35$$

36

37 **Remark 4.4.** In turn, the recurrence relation (4.7) can be written as the eigenvalue prob-
 38 lem

39

$$40 \quad B_\nu c = \lambda c, \quad (4.9) \quad 40$$

41

42 where $c = \{c_n\}_{n \in \mathbb{Z}}$

$$B_\nu := \begin{pmatrix} \ddots & \ddots & \ddots & & \\ & \alpha_n & \beta_n & \gamma_n & \\ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}. \quad (4.10)$$

Note: $\nu \in \mathbb{Z}$ corresponds to periodic, and $\nu \in \mathbb{Z} + \frac{1}{2}$ to antiperiodic eigenfunctions of (4.3).

Next, define the space $\ell^{2,p}(\mathbb{Z}) := \{c \in \ell^2(\mathbb{Z}) : \sum_{n \in \mathbb{Z}} |n|^p |c_n|^2 < \infty\}$. The requirement that $c \in \ell^{2,4}(\mathbb{Z})$ ensures $By \in L^2([0, 2\pi])$. The reason why this is the case is that B is a second-order differential operator, which implies that the Fourier coefficients of By will grow n^2 faster as $|n| \rightarrow \infty$ than those of y .

Definition 4.5 (*Eigenvalues of the tridiagonal operator*). Let the operator $B_\nu : \ell^2(\mathbb{Z}) \rightarrow \ell^2(\mathbb{Z})$ be defined by (4.10). The set of eigenvalues is given by

$$\Sigma(B_\nu) := \{\lambda \in \mathbb{C} : \exists c \neq 0 \in \ell^{2,4}(\mathbb{Z}) \text{ s.t. } B_\nu c = \lambda c\}. \quad (4.11)$$

We have the following important result:

Lemma 4.6. *If $\nu \in \mathbb{Z}$ or $\mathbb{Z} + \frac{1}{2}$, then $\Sigma_{\pm}(B) = \Sigma(B_\nu)$, and the dimension of the corresponding eigenspaces are equal, respectively.*

Proof. By standard results in Fourier analysis [82] one defines the bijective linear map

$$U : \ell^2(\mathbb{Z}) \rightarrow L^2(\mathbb{S}^1), \quad (Uc)(t) = \sum_{n \in \mathbb{Z}} c_n e^{int}, \quad (4.12)$$

and the multiplication operator

$$M_\nu : L^2([0, 2\pi]) \rightarrow L^2([0, 2\pi]), \quad (M_\nu w)(t) = e^{i\nu t} w(t). \quad (4.13)$$

By construction $B_\nu = (M_\nu U)^{-1} B M_\nu U$ in the standard basis and U , M_ν are unitary. Also, $y = M_\nu U c$ (see (4.6)). Hence, it follows $\Sigma_{\pm}(B) = \Sigma(B_\nu)$ and the dimensions of the corresponding eigenspaces are equal. \square

Remark 4.7. The Floquet exponent ν can be shifted by any integer amount without loss of generality, since doing so simply corresponds to a shift in the numbering of the Fourier coefficients in (4.6). So, for example, $\nu \mapsto \nu + s$ simply corresponds to $(\alpha_n, \beta_n, \gamma_n) \mapsto (\alpha_{n+s}, \beta_{n+s}, \gamma_{n+s})$ for all $n \in \mathbb{Z}$.

1 **4.3. Reducible tridiagonal operators and ascending and descending Fourier series** 12
3 We show that the tridiagonal operator B_ν is reducible. Recall that a tridiagonal 2
4 operator is reducible if there exists a zero element along the subdiagonal, or superdiagonal 4
5 [46]. 56
7 **Lemma 4.8.** *If $A \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ or $\mathbb{Z} + \frac{1}{2}$, then B_ν is reducible.* 7
89 **Proof.** There are two cases to consider: (i) $\nu \in \mathbb{Z}$, corresponding to periodic eigenvalues, 9
10 and (ii) $\nu \in \mathbb{Z} + \frac{1}{2}$, corresponding to antiperiodic eigenvalues. In either case, however, 10
11 when $A \in \mathbb{N}$ one has 11

12
13
$$\alpha_n = 0 \iff n = \frac{A}{2} + 1 - \nu \quad \vee \quad n = -\frac{A}{2} + \frac{1}{2} - \nu, \quad (4.14a)$$
 13
14

15
16
$$\gamma_n = 0 \iff n = \frac{A}{2} - 1 - \nu \quad \vee \quad n = -\frac{A}{2} - \frac{1}{2} - \nu. \quad (4.14b)$$
 16

17 In both cases, one can find two values of n that make α_n and γ_n zero, respectively, but 17
18 only one of them is an integer, depending on whether A is even or odd. Note also that 18
19 $\beta_n = 0$ for $n = -\nu \pm A/2$, but the corresponding value of n is integer only if A is even 19
20 and $\nu \in \mathbb{Z}$ or A is odd and $\nu \in \mathbb{Z} + \frac{1}{2}$. (The equalities in (4.14) hold for all $\nu \in \mathbb{R}$, but 20
21 only when $\nu \in \mathbb{Z}$ or $\nu \in \mathbb{Z} + \frac{1}{2}$ do they yield integer values of n .) \square 2122
23 We emphasize that, when $A \notin \mathbb{N}$, a similar statement (namely, that B_ν is reducible) 23
24 can be made for different values of ν . The precise values of ν can be immediately obtained 24
25 from the definition of the coefficients α_n , β_n and γ_n in (4.8). On the other hand, the 25
26 particular significance of integer and half-integer values of ν is that they are associated 26
27 with periodic and antiperiodic eigenvalues, which are the endpoints of the spectral bands. 27
28 In Section 5.3 we will also see how the periodic and antiperiodic eigenvalues are related 28
29 to the solution of a connection problem for a particular Heun ODE. 2930 Consider the tridiagonal operator $B_\nu : \ell^2(\mathbb{Z}) \rightarrow \ell^2(\mathbb{Z})$ in (4.10). Let $\ell_+^2 = \ell^2(\mathbb{N}_0)$ 30
31 ($\mathbb{N}_0 := \mathbb{N} \cup \{0\}$) and $\ell_-^2 = \ell^2(\mathbb{Z} \setminus \mathbb{N}_0)$, so that $\ell^2(\mathbb{Z}) = \ell_-^2 \oplus \ell_+^2$, and denote by P_\pm 31
32 orthogonal projectors from $\ell^2(\mathbb{Z})$ onto ℓ_\pm^2 respectively. Finally, introduce the block de- 32
33 composition 33

34
35
$$B_\nu = \begin{pmatrix} B_- & A_- \\ A_+ & B_+ \end{pmatrix}, \quad (4.15)$$
 35
36

37 where the semi-infinite tridiagonal operators B_\pm are defined as 37
38

39
40
$$B_- := \begin{pmatrix} \ddots & \ddots & \ddots & & \\ & \alpha_{-2} & \beta_{-2} & \gamma_{-2} & \\ & & \ddots & \ddots & \ddots \end{pmatrix}, \quad B_+ := \begin{pmatrix} \beta_0 & \gamma_0 & & & \\ \alpha_1 & \beta_1 & \gamma_1 & & \\ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}, \quad (4.16)$$
 40
41
42

1 and A_{\pm} only have one nontrivial entry each, equal to α_0 and γ_{-1} respectively, in their
 2 upper right corner and lower left corner, respectively. If $A \in \mathbb{N}$ and $\nu = (1 - A)/2$ (corre-
 3 sponding to the case of periodic eigenvalues when A is odd and antiperiodic eigenvalues
 4 when A is even), it is easy to see that $\alpha_0 = \gamma_{-1} = 0$ and therefore $A_{\pm} \equiv 0$, which implies
 5 that $B_{\nu} = B_{-} \oplus B_{+}$ and ℓ_{\pm}^2 are invariant subspaces of B_{ν} . The above considerations
 6 imply the following:

7
 8 **Lemma 4.9.** *If $A \in \mathbb{N}$ and $\nu = (1 - A)/2$, then $\Sigma(B_{\nu}) = \Sigma(B_{-}) \cup \Sigma(B_{+})$, where B_{\pm} are
 9 given by (4.16).*

10
 11 The case $A \in \mathbb{N}$ and $\nu = A/2$ is similar, but more complicated. In this case, it is
 12 necessary to also introduce a second block decomposition of B_{ν} in addition to (4.15),
 13 namely:

14
 15
$$B_{\nu} = \begin{pmatrix} \tilde{B}_{-} & \tilde{A}_{-} \\ \tilde{A}_{+} & \tilde{B}_{+} \end{pmatrix}, \quad (4.17)$$

16 where

17
 18
 19
$$\tilde{B}_{-} := \begin{pmatrix} \ddots & \ddots & \ddots & \\ & \alpha_{-1} & \beta_{-1} & \gamma_{-1} \\ & & \alpha_0 & \beta_0 \end{pmatrix}, \quad \tilde{B}_{+} := \begin{pmatrix} \beta_1 & \gamma_1 & & \\ \alpha_2 & \beta_2 & \gamma_2 & \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad (4.18)$$

20 and \tilde{A}_{\pm} only have one nontrivial entry each, equal to α_1 and γ_0 respectively, in their upper
 21 right corner and lower left corner, respectively. If $A \in \mathbb{N}$ and $\nu = A/2$ (corresponding to
 22 the case of periodic eigenvalues when A is even and antiperiodic eigenvalues when A is
 23 odd), it is easy to see that $\gamma_{-1} = \beta_0 = \alpha_1 = 0$ and therefore $A_{-} = \tilde{A}_{+} \equiv 0$. On the other
 24 hand, A_{+} and \tilde{A}_{-} are not identically zero. Thus, B_{ν} cannot be split into a direct sum of
 25 two semi-infinite tridiagonal operators. Nevertheless, an analog of Lemma 4.9 still holds.

26
 27
 28
 29
 30 **Lemma 4.10.** *If $A \in \mathbb{N}$ and $\nu = A/2$, then $\Sigma(B_{\nu}) = \Sigma(B_{-}) \cup \Sigma(B_{+}) = \Sigma(\tilde{B}_{-}) \cup \Sigma(\tilde{B}_{+})$,
 31 where B_{\pm} and \tilde{B}_{\pm} are given by (4.16) and (4.18), respectively.*

32
 33
 34 **Proof.** We first show that $\Sigma(B_{\nu}) \subset \Sigma(B_{-}) \cup \Sigma(B_{+})$. Recall that $A_{-} = 0$ but $A_{+} \neq 0$.
 35 Let λ and c be an eigenpair of B_{ν} , and let $c_{\pm} = P_{\pm}c$, so that $c = (c_{-}, c_{+})^T$. If $c_{-} \neq 0$,
 36 we have $B_{-}c_{-} = \lambda c_{-}$, and therefore $\lambda \in \Sigma(B_{-})$. Otherwise, $c_{-} = 0$ implies $c_{+} \neq 0$ and
 37 $c = (0, c_{+})^T$, and $B_{+}c_{+} = \lambda c_{+}$, i.e., $\lambda \in \Sigma(B_{+})$.

38 We show that $\Sigma(B_{-}) \cup \Sigma(B_{+}) \subset \Sigma(B_{\nu})$. Suppose that λ and $c_{+} \neq 0$ are an eigenpair
 39 of B_{+} , and let $c = (0, c_{+})^T$. Then $B_{\nu}c = \lambda c$, implying $\lambda \in \Sigma(B_{\nu})$. Finally, suppose that
 40 $\lambda \in \Sigma(B_{-}) \setminus \Sigma(B_{+})$, with associated eigenvector $c_{-} \neq 0$. In this case, let $c = (c_{-}, p)^T$.
 41 We choose p such that $p = -(B_{+} - \lambda)^{-1}A_{+}c_{-}$. One can show (similarly to Lemma 6.7)
 42 that it is always possible to do so since B_{+} is closed with compact resolvent. Therefore,

1 the operator $(B_+ - \lambda)^{-1}$ exists and is bounded, and $\lambda \notin \Sigma(B_+)$ implies that λ is in the
 2 resolvent set of B_+ . But then we have $B_\nu c = \lambda c$, which implies $\lambda \in \Sigma(B_\nu)$.

3 The proof that $\Sigma(B_\nu) = \Sigma(\tilde{B}_-) \cup \Sigma(\tilde{B}_+)$ is entirely analogous, but we report it
 4 because it is useful later. If λ and c are an eigenpair of B_ν , let $\tilde{c}_\pm = \tilde{P}_\pm c$, with \tilde{P}_\pm
 5 defined similarly as P_\pm . If $\tilde{c}_+ \neq 0$, we have $\tilde{B}_+ \tilde{c}_+ = \lambda \tilde{c}_+$ and therefore $\lambda \in \Sigma(\tilde{B}_+)$,
 6 since $\tilde{A}_+ = 0$. Otherwise, similar arguments as before show that $\tilde{B}_- \tilde{c}_- = \lambda \tilde{c}_-$ and
 7 therefore $\lambda \in \Sigma(\tilde{B}_-)$. We therefore have $\Sigma(B_\nu) \subset \Sigma(\tilde{B}_-) \cup \Sigma(\tilde{B}_+)$. Finally, to show
 8 that $\Sigma(\tilde{B}_-) \cup \Sigma(\tilde{B}_+) \subset \Sigma(B_\nu)$, we first observe that if λ and \tilde{c}_- are an eigenpair of
 9 \tilde{B}_- , and $c = (\tilde{c}_-, 0)^T$, one has $B_\nu c = \lambda c$ and therefore $\lambda \in \Sigma(B_\nu)$. Conversely, if
 10 $\lambda \in \Sigma(\tilde{B}_+) \setminus \Sigma(\tilde{B}_-)$, with eigenvector \tilde{c}_+ , it is always possible to choose p such that
 11 $p = -(\tilde{B}_- - \lambda)^{-1} \tilde{A}_- \tilde{c}_+$ (again, cf. Lemma 6.7), and therefore $c = (p, \tilde{c}_+)^T$ satisfies
 12 $B_\nu c = \lambda c$, implying $\lambda \in \Sigma(B_\nu)$. \square

13
 14 **Remark 4.11.** If $A \in \mathbb{N}$ and $\nu = A/2$, then B_+ and \tilde{B}_- can be decomposed as
 15

$$16 \quad B_+ = \begin{pmatrix} 0 & \gamma_0 \\ 0 & \tilde{B}_+ \end{pmatrix}, \quad \tilde{B}_- = \begin{pmatrix} B_- & 0 \\ \alpha_0 & 0 \end{pmatrix}. \quad (4.19)$$

18
 19 **Corollary 4.12.** If $A \in \mathbb{N}$ and $\nu = A/2$, then $\Sigma(B_\nu) = \Sigma(B_-) \cup \Sigma(\tilde{B}_+) \cup \{0\}$.
 20

21 Importantly, the proofs of Lemmas 4.9 and 4.10 also imply the following:
 22

23 **Theorem 4.13.** If $A \in \mathbb{N}$ and $\lambda \in \mathbb{C} \setminus \{0\}$ is a periodic or antiperiodic eigenvalue of the
 24 trigonometric operator (4.4), then there exists an associated eigenfunction generated by
 25 either an ascending or descending Fourier series.

26 **Proof.** The proof is trivial when $\nu = (1 - A)/2$, since in this case $B_\nu = B_- \oplus B_+$. On
 27 the other hand, the case $\nu = A/2$ requires more care. The proof of Lemma 4.10 shows
 28 that, if λ and c_+ are an eigenpair of B_+ , then $c = (0, c_+)^T$ is a corresponding eigenvector
 29 of B_ν . Next, if λ and \tilde{c}_- are an eigenpair of \tilde{B}_- , then $c = (\tilde{c}_-, 0)^T$ is a corresponding
 30 eigenvector of B_ν . Finally, note $\Sigma(\tilde{B}_-) = \Sigma(B_-) \cup \{0\}$. \square

32
 33 **Corollary 4.14.** If $A \in \mathbb{N}$ and $\lambda \in \mathbb{C}$ is a periodic or antiperiodic eigenvalue with geomet-
 34 ric multiplicity two, then a first eigenfunction can be written in terms of an ascending
 35 Fourier series, while a second linearly independent eigenfunction is given by a descending
 36 Fourier series.

37 5. Transformation to a Heun ODE

39
 40 We now introduce a final change of independent variable that maps the trigonometric
 41 ODE (4.2) into Heun's equation. All the results of Sections 5.1 and 5.2 below will hold for
 42 integer as well as non-integer values of A except where expressly indicated. This further

1 reformulation allows us to interpret the Dirac problem (1.1) as a connection problem for
 2 Heun's ODE.

3

4 *5.1. Transformation from the trigonometric ODE to Heun's equation*

5

6 Recall that Heun's equation is a second-order linear ODE with four regular singular
 7 points [31,50,85]. We first rewrite (4.2) using Euler's formula. Then we perform the
 8 following change of independent variable:

9

$$10 \quad t \mapsto \zeta := e^{it}. \quad (5.1)$$

11

12 We then obtain a third reformulation of our spectral problem, since the transformation
 13 (5.1) maps the trigonometric ODE (4.2) (and therefore (1.1) with elliptic potential
 14 (1.3)) into the following Heun ODE:

15

$$16 \quad \zeta^2 F(\zeta; m) y_{\zeta\zeta} + \zeta G(\zeta; m) y_{\zeta} + H(\zeta; \lambda, A, m) y = 0, \quad (5.2)$$

17 where

18

$$20 \quad F(\zeta; m) := -m\zeta^2 + (2m - 4)\zeta - m, \quad (5.3a)$$

21

$$22 \quad G(\zeta; m) := -\frac{3}{2}m\zeta^2 + (2m - 4)\zeta - \frac{1}{2}m, \quad (5.3b)$$

23

$$24 \quad H(\zeta; \lambda, A, m) := \frac{1}{4}A(A + 1)m\zeta^2 + \left(\lambda + A^2(1 - \frac{m}{2})\right)\zeta + \frac{1}{4}A(A - 1)m. \quad (5.3c)$$

25 Note that the trigonometric ODE (4.2) does not explicitly contain the Floquet expon-
 26 ent ν . The role of ν for Heun's ODE will be played by the Frobenius exponents discussed
 27 below.

28 Equation (5.2) has three regular singular points in the finite complex plane plus a
 29 regular singular point at infinity. Specifically, in the finite complex plane one has a regular
 30 singular point at $\zeta = 0$ and two additional regular singular points where $F(\zeta; m) = 0$,
 31 i.e., when

32

$$33 \quad \zeta^2 - 2\left(1 - \frac{2}{m}\right)\zeta + 1 = 0, \quad (5.4)$$

34 which is satisfied for

35

$$36 \quad \zeta_{1,2} = \frac{m - 2 \pm 2\sqrt{1 - m}}{m}. \quad (5.5)$$

37 Note that $\zeta_{1,2} < 0$ for all $m \in (0, 1)$, and $\zeta_2 = 1/\zeta_1$. Without loss of generality, we take
 38 $|\zeta_1| < 1 < |\zeta_2|$. Summarizing, the four real regular singular points are at $0, \zeta_1, \zeta_2, \infty$,
 39 with $\zeta_2 \in (-\infty, -1)$ and $\zeta_1 \in (-1, 0)$.

1 **Table 1**
 2 Frobenius exponents corresponding to the Heun ODE (5.2).

	$\zeta = 0$	$\zeta = \zeta_1$	$\zeta = \zeta_2$	$\zeta = \infty$
4	$\rho_1^o = A/2$	$\rho_1^1 = 0$	$\rho_1^2 = 0$	$\rho_1^\infty = A/2$
5	$\rho_2^o = -(A-1)/2$	$\rho_2^1 = 1/2$	$\rho_2^2 = -1/2$	$\rho_2^\infty = -(A+1)/2$

7 **Remark 5.1.** One can equivalently map the first-order ZS system (1.6a) into a first-order
 8 Heun system with the same four singular points using the same change of independent
 9 variable (5.1) [cf. Appendix A.4]:

$$11 \quad \zeta w_\zeta = - \left[\frac{A}{2} \sigma_3 + \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{2\lambda\zeta}{4\zeta+m(\zeta-1)^2} & \frac{(\zeta^2-1)m}{2(4\zeta+m(\zeta-1)^2)} \end{pmatrix} \right] w, \quad (5.6)$$

14 where $w(\zeta; \lambda) = (w_1, w_2)^\top$.

16 **5.2. Frobenius analysis of Heun's ODE**

18 Next we apply the method of Frobenius to (5.2) at the regular singular points $\zeta = 0$
 19 and $\zeta = \infty$. Then we construct half-infinite tridiagonal operators whose eigenvalues
 20 coincide with those of the tridiagonal operators discussed in Section 4.3. By direct cal-
 21 culation, one can easily check that the Frobenius exponents of (5.2) are as in Table 1.
 22 The Frobenius exponents $\rho_{1,2}$ at $\zeta = 0$ and $\zeta = \infty$ are obtained by looking for solutions
 23 of (5.2) in the form

$$25 \quad y_o(\zeta; \lambda) = \zeta^\rho \sum_{n=0}^{\infty} c_n \zeta^n, \quad (5.7a)$$

28 and

$$30 \quad y_\infty(\zeta; \lambda) = \zeta^\rho \sum_{n=0}^{\infty} c_n \zeta^{-n}, \quad (5.7b)$$

33 respectively, with $c_0 \neq 0$ in each case. Note, when A is even, ρ_1^o and ρ_1^∞ are integer while
 34 ρ_2^o and ρ_2^∞ are half-integer, and vice versa when A is odd. Note also that $\rho_2^o - \rho_1^o = 1/2 - A$
 35 and $\rho_1^\infty - \rho_2^\infty = 1/2 + A$, so when $A \in \mathbb{N}$, these differences are never integer, and no
 36 exceptional cases (i.e., resonances) arise.

37 Next we study the three-term recurrence relations at $\zeta = 0$ and $\zeta = \infty$, since they are
 38 key to proving the reality of the λ eigenvalues. We begin by plugging (5.7a) and (5.7b)
 39 into (5.2). The coefficients of the Frobenius series (5.7a) at $\zeta = 0$ solve the following
 40 three-term recurrence relations. For $\rho = \rho_1^o = A/2$:

$$42 \quad -\lambda c_0 + \frac{m}{2}(2A+1)c_1 = 0, \quad n = 0, \quad (5.8a)$$

$$1 \quad P_n c_{n-1} + (R_n - \lambda) c_n + S_n c_{n+1} = 0, \quad n \geq 1, \quad (5.8b) \quad 1$$

2 where

$$5 \quad P_n = \frac{m}{2}(n-1)(2A+2n-1), \quad R_n = (1 - \frac{m}{2})((A+2n)^2 - A^2), \quad 5$$

$$6 \quad S_n = \frac{m}{2}(n+1)(2A+2n+1). \quad (5.8c) \quad 6$$

8 For $\rho = \rho_2^o = -(A-1)/2$:

$$10 \quad \left[\left(\frac{m}{2} - 1 \right) (2A-1) - \lambda \right] c_0 - \frac{m}{2} (2A-3) c_1 = 0, \quad n = 0, \quad (5.9a) \quad 10$$

$$11 \quad \tilde{P}_n c_{n-1} + (\tilde{R}_n - \lambda) c_n + \tilde{S}_n c_{n+1} = 0, \quad n \geq 1, \quad (5.9b) \quad 11$$

13 where

$$15 \quad \tilde{P}_n = -\frac{m}{2}n(2A-2n+1), \quad \tilde{R}_n = (1 - \frac{m}{2})((2n+1-A)^2 - A^2), \quad 15$$

$$16 \quad \tilde{S}_n = -\frac{m}{2}(n+1)(2A-2n-3). \quad (5.9c) \quad 16$$

19 Similarly, the coefficients of the Frobenius series (5.7b) at $\zeta = \infty$ are given by the
20 following three-term recurrence relations. For $\rho = \rho_1^\infty = A/2$:

$$22 \quad -\lambda c_0 - \frac{m}{2} (2A-1) c_1 = 0, \quad n = 0, \quad (5.10a) \quad 22$$

$$23 \quad X_n c_{n-1} + (Y_n - \lambda) c_n + Z_n c_{n+1} = 0, \quad n \geq 1, \quad (5.10b) \quad 23$$

25 where

$$27 \quad X_n = -\frac{m}{2}(n-1)(2A-2n+1), \quad Y_n = (1 - \frac{m}{2})((2n-A)^2 - A^2), \quad 27$$

$$28 \quad Z_n = -\frac{m}{2}(n+1)(2A-2n-1). \quad (5.10c) \quad 28$$

30 For $\rho = \rho_2^\infty = -(A+1)/2$:

$$32 \quad \left[\left(1 - \frac{m}{2} \right) (2A+1) - \lambda \right] c_0 + \frac{m}{2} (2A+3) c_1 = 0, \quad n = 0, \quad (5.11a) \quad 32$$

$$33 \quad \tilde{X}_n c_{n-1} + (\tilde{Y}_n - \lambda) c_n + \tilde{Z}_n c_{n+1} = 0, \quad n \geq 1, \quad (5.11b) \quad 33$$

35 where

$$37 \quad \tilde{X}_n = \frac{m}{2}n(2A+2n-1), \quad \tilde{Y}_n = (1 - \frac{m}{2})((2n+1+A)^2 - A^2), \quad 37$$

$$38 \quad \tilde{Z}_n = \frac{m}{2}(n+1)(2A+2n+3). \quad (5.11c) \quad 38$$

41 **Remark 5.2.** The three-term recurrence relations at $\zeta = 0$ can be written as the eigen-
42 value problems

1
$$T_o^\pm c = \lambda c, \quad (5.12)$$
 2

3 where $T_o^\pm : \ell^{2,4}(\mathbb{N}_o) \subset \ell^2(\mathbb{N}_o) \rightarrow \ell^2(\mathbb{N}_o)$, and 4

5
$$T_o^- := \begin{pmatrix} R_0 & S_0 & & \\ P_1 & R_1 & S_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad T_o^+ := \begin{pmatrix} \tilde{R}_0 & \tilde{S}_0 & & \\ \tilde{P}_1 & \tilde{R}_1 & \tilde{S}_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix}. \quad (5.13)$$
 6

7 Similarly, the three-term recurrence relations at $\zeta = \infty$ can be written as the eigenvalue 8 problems 9

10
$$T_\infty^\pm c = \lambda c, \quad (5.14)$$
 11

12 where $T_\infty^\pm : \ell^{2,4}(\mathbb{N}_o) \subset \ell^2(\mathbb{N}_o) \rightarrow \ell^2(\mathbb{N}_o)$, and 13

14
$$T_\infty^- := \begin{pmatrix} Y_0 & Z_0 & & \\ X_1 & Y_1 & Z_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix}, \quad T_\infty^+ := \begin{pmatrix} \tilde{Y}_0 & \tilde{Z}_0 & & \\ \tilde{X}_1 & \tilde{Y}_1 & \tilde{Z}_1 & \\ & \ddots & \ddots & \ddots \end{pmatrix}. \quad (5.15)$$
 15

20

5.3. Relation between Fourier series and the connection problem for Heun's ODE

 2122 Recall that: (i) If $\lambda \in \mathbb{C}$ is a periodic or antiperiodic eigenvalue of (4.3), one has $\nu \in \mathbb{Z}$ 23 or $\nu \in \mathbb{Z} + \frac{1}{2}$, respectively. (ii) The Floquet exponents can be shifted by an arbitrary 24 integer amount by shifting the indices of the Fourier coefficients (cf. Remark 4.7). (iii) By 25 Theorem 4.13, each periodic or antiperiodic eigenvalue has an associated ascending or de- 26 scending Fourier series when $A \in \mathbb{N}$. (iv) The transformation $\zeta = e^{it}$ maps the Frobenius 27 series (5.7) to ascending or descending Fourier series (4.6), and vice versa. (v) Finally, 28 when $A \in \mathbb{N}$, the values of the Frobenius exponents for the expansions at $\zeta = 0$ and at 29 $\zeta = \infty$ are either integer or half-integer. 3031 Moreover, the Floquet exponents $\nu = (1 - A)/2$ and $\nu = A/2$ in Lemmas 4.9 and 32 33 coincide exactly with the Frobenius exponents ρ_2^ν and ρ_1^ν at $\zeta = 0$, respectively. The 34 Frobenius exponents ρ_2^∞ and ρ_1^∞ at $\zeta = \infty$ are also equivalent to the above Floquet 35 exponents upon a shift of indices. As a result, the recurrence relations (5.8), (5.9), (5.10) 36 and (5.11) associated to the Frobenius series (5.7) of Heun's ODE (5.2) are equivalent 37 to those associated to the Fourier series solutions of the trigonometric ODE (4.2). More 38 precisely: 3940 **Lemma 5.3.** *If $A \in \mathbb{N}$ and $\lambda \in \Sigma(B_\nu)$ is either a periodic or antiperiodic eigenvalue, (i.e., 41 ν integer or half-integer, respectively) then the following identities map the recurrence 42 relations generated by the Frobenius series solution of (5.2) at $\zeta = 0$ and $\zeta = \infty$ to the 43 ascending and descending recurrence relations generated by the Fourier series solution 44 of (4.2), respectively. Namely:*

1 (i) For $\nu = \rho_{1,2}^o$ one has, respectively:

$$3 (\alpha_n, \beta_n, \gamma_n) = (P_n, R_n, S_n), \quad n \geq 0, \quad (5.16a)$$

$$4 (\alpha_n, \beta_n, \gamma_n) = (\tilde{P}_n, \tilde{R}_n, \tilde{S}_n), \quad n \geq 0. \quad (5.16b)$$

6 (ii) For $\nu = \rho_{1,2}^\infty$ one has, respectively:

$$8 (\alpha_{-n}, \beta_{-n}, \gamma_{-n}) = (Z_n, Y_n, X_n), \quad n \geq 0, \quad (5.17a)$$

$$9 (\alpha_{-n-1}, \beta_{-n-1}, \gamma_{-n-1}) = (\tilde{Z}_n, \tilde{Y}_n, \tilde{X}_n), \quad n \geq 0, \quad (5.17b)$$

11 **Proof.** When $\nu = \rho_{1,2}^o$, the result follows immediately by direct comparison. Likewise
12 when $\nu = \rho_1^\infty$. Finally, when $\nu = \rho_2^\infty$ we can simply shift $\nu \mapsto \nu + 1$, which sends
13 $n \mapsto -n - 1$. \square

15 **Corollary 5.4.** If A is odd, then the eigenvalues of T_o^+ and T_∞^+ correspond to the periodic
16 eigenvalues of the Dirac operator (1.2) and T_o^- and T_∞^- to the antiperiodic ones, via the
17 map $\lambda = z^2$. Conversely, if A is even, then the eigenvalues of T_o^- and T_∞^- correspond to
18 the periodic eigenvalues of the Dirac operator and those of T_o^+ and T_∞^+ to the antiperiodic
19 ones.

21 **Remark 5.5.** We emphasize that, when $A \in \mathbb{N}$, Lemma 5.3 only holds for periodic or
22 antiperiodic solutions of (4.2) (i.e., ν integer or half-integer). On the other hand, even
23 when $A \notin \mathbb{N}$, a similar conclusion holds for certain Floquet solutions of (4.2). Namely,
24 even for generic values of A , one can establish a one-to-one correspondence between
25 certain Floquet exponents and ascending or descending Floquet eigenfunctions of (4.2),
26 and in turn with Frobenius series solutions of (5.2).

28 So far we have analyzed the properties of solutions corresponding to periodic and
29 antiperiodic eigenvalues of the problem. We now turn to the question of identifying
30 these eigenvalues. Doing so yields the desired characterization of the Lax spectrum of
31 (1.2).

33 **Remark 5.6.** A periodic/antiperiodic eigenfunction of (1.1) with potential (1.3) corre-
34 sponds to a Fourier series solution (4.6) of the trigonometric ODE (4.2) that is convergent
35 for $t \in \mathbb{R}$. The transformation (5.1) given by $\zeta = e^{it}$, which maps the real t -axis onto the
36 unit circle $|\zeta| = 1$ (cf. Fig. 2), maps these solutions into a Laurent series representation
37 for the solutions of Heun's ODE (5.2). The question of identifying which solutions of
38 Heun's ODE define periodic/antiperiodic eigenfunctions of (1.1) is discussed next.

40 **Lemma 5.7.** Let T_o be either one of the operators T_o^\pm defined in Remark 5.2 and let
41 $y_o(\zeta) = \zeta^\rho w_o(\zeta)$ be a corresponding Frobenius series solution of Heun's equation at $\zeta = 0$.
42 Then:

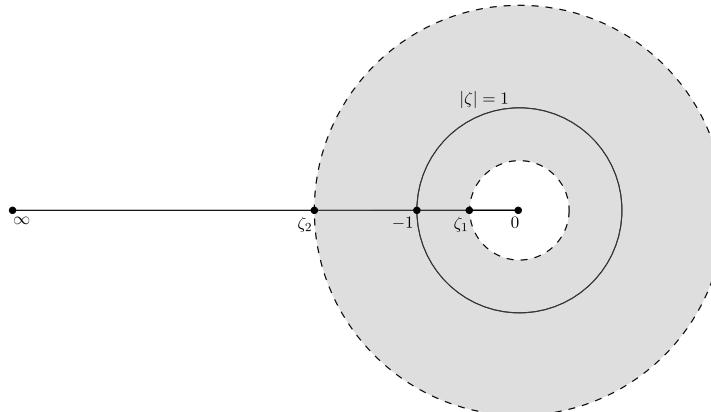


Fig. 2. The singular points $\zeta = 0, \zeta_1, \zeta_2$, and ∞ and the region $|\zeta| = 1$ in the complex ζ plane.

(i) λ is an eigenvalue of T_o if and only if $w_o(\zeta)$ is analytic in the disk $|\zeta| < |\zeta_2|$; i.e., if $y_o(\zeta)$ is analytic up to a branch cut when the Frobenius exponent ρ_o is not integer.

Similarly, let T_∞ be either one of the operators T_∞^\pm defined in Remark 5.2 and let $y_\infty(\zeta) = \zeta^\rho w_\infty(\zeta)$ be a corresponding Frobenius series solution of Heun's equation at $\zeta = \infty$. Then:

(ii) λ is an eigenvalue of T_∞ if and only if $w_\infty(\zeta)$ is analytic in the exterior disk $|\zeta| > |\zeta_1|$; i.e., if $y_\infty(\zeta)$ is analytic up to a branch cut when the Frobenius exponent ρ_∞ is not integer.

Proof. We consider T_o first. The radius of convergence of the Frobenius series representing $y(\zeta)$ in a neighborhood of $\zeta = 0$ is at least $|\zeta_1|$. Moreover, $\lambda \in \mathbb{C}$ is an eigenvalue of T_o if and only if the corresponding eigenvector $c \in \ell^{2,4}(\mathbb{N}_o)$ (see Remark 5.2). Since the entries of c coincide with the coefficients of the Frobenius power series representing $y(\zeta)$, we conclude that $\lambda \in \mathbb{C}$ is an eigenvalue of T_o if and only if the radius of convergence of this series is at least one. In this case $y(\zeta)$ is analytic in the disk $|\zeta| < |\zeta_2|$ (up to a possible branch cut), since there are no singular points of the Heun's equation in the annulus $|\zeta_1| < |\zeta| < |\zeta_2|$. The proof for T_∞ follows along the same lines. \square

Remark 5.8. The above results relate the existence of eigenvalues to the connection problem for Heun's equation (5.2). For simplicity, consider the case of periodic eigenvalues. Assume $A \in \mathbb{N}$. The Frobenius analysis of Section 5.2 yields two linearly independent solutions of Heun's ODE near each of the four singular points. Let $y_{1,2}^o(\zeta; \lambda)$ be the Frobenius series with base point $\zeta = 0$ and $y_{1,2}^1(\zeta; \lambda)$ those with base point $\zeta = \zeta_1$. Both $y_{1,2}^o(\zeta; \lambda)$ and $y_{1,2}^1(\zeta; \lambda)$ form a basis for the solutions of Heun's ODE (5.2) in their respective domains of convergence. Since these domains overlap, in the intersection region one can express one set of solutions in terms of the other, i.e., $(y_1^1, y_2^1) = (y_1^o, y_2^o) C$, with a constant non-singular connection matrix C . The Frobenius exponents at $\zeta = \zeta_1$ are 0

1 and $\frac{1}{2}$, and, when $A \in \mathbb{N}$, one of the Frobenius exponents at $\zeta = 0$ is integer and the
 2 other is half-integer. Therefore, the values of λ for which the analytic solution at $\zeta = 0$
 3 converges up to $|\zeta| = |\zeta_2|$ are precisely those values for which the Frobenius series with
 4 integer exponent at $\zeta = 0$ is exactly proportional to that with integer exponent at $\zeta = \zeta_1$.
 5 Similar arguments hold for the solutions near $\zeta = \zeta_2$ and $\zeta = \infty$. In other words, when λ
 6 is a periodic eigenvalue, the analytic solutions at $\zeta = 0$ and $\zeta = \zeta_1$ or those at $\zeta = \zeta_2$ and
 7 $\zeta = \infty$ must be proportional. This is the manifestation of an eigenvalue in terms of the
 8 connection problem for the Heun's equation (5.2). If both pairs of analytic solutions are
 9 proportional to each other, λ is a double eigenvalue, otherwise λ is a simple eigenvalue.
 10 (In Section 6 we will also see that all positive eigenvalues have multiplicity two and
 11 all negative eigenvalues have multiplicity one.) Similar results hold for the antiperiodic
 12 eigenvalues once the square root branch cut resulting from the half-integer Frobenius
 13 exponent is taken into account.

14
 15 We also mention that there is an alternative but in a sense equivalent way to look at
 16 the problem, which is to study the convergence of the Frobenius series solutions (5.7)
 17 using Perron's rule [80]. This connection is briefly discussed in Appendix A.5.

19 6. Real eigenvalues of the operators T_o^\pm and T_∞^\pm

20
 21 Thus far we have shown that the periodic and antiperiodic eigenvalues of (1.2) with
 22 Jacobi elliptic potential (1.3) and amplitude $A \in \mathbb{N}$ can be obtained from the eigenvalues
 23 of certain unbounded tridiagonal operators, namely, T_o^\pm and T_∞^\pm defined in Section 5.2.
 24 We now prove that all eigenvalues of these operators are real. We do so in two steps:
 25 First, in Section 6.1, we show that finite truncations of these operators have purely real
 26 eigenvalues. Then, in Section 6.2, we use semicontinuity to show these operators have
 27 purely real eigenvalues.

29 6.1. Real eigenvalues of the truncated operators $T_{o,N}^\pm$ and $T_{\infty,N}^\pm$

30
 31 Here we show that finite truncations of the operators T_o^\pm , T_∞^\pm have purely real eigen-
 32 values. We form the truncations by considering only the first $N - 1$ terms of the
 33 corresponding three-term recurrence relations. To this end let $T_{o,N}^\pm$ and $T_{\infty,N}^\pm$ be the
 34 $N \times N$ truncations of T_o^\pm and T_∞^\pm , respectively.

35
 36 **Lemma 6.1.** *If $A \in \mathbb{N}$ and $m \in (0, 1)$, then for any $N > 0$ the matrices $T_{o,N}^-$ and $T_{\infty,N}^\pm$
 37 have purely real eigenvalues.*

38
 39 The result is a consequence of the fact that $P_{n+1}S_n \geq 0$, $X_{n+1}Z_n \geq 0$, and
 40 $\tilde{X}_{n+1}\tilde{Z}_n > 0$, $n \geq 0$, which makes it possible to symmetrize $T_{o,N}^-$ and $T_{\infty,N}^\pm$ via a
 41 similarity transformation (see [42, 46]). The result does not apply to $T_{o,N}^+$, since there ex-
 42 exists an $n > 0$ such that $\tilde{P}_{n+1}\tilde{S}_n < 0$, and, as a result, some of the entries of the resulting

1 symmetrized matrix would be complex. Thus, another approach is needed to show the
 2 eigenvalues of $T_{o,N}^+$ are all real. To this end we introduce the following definition [46]:
 3

4 **Definition 6.2** (*Irreducibly diagonally dominant*). An $N \times N$ tridiagonal matrix is irre-
 5 reducibly diagonally dominant if (i) it is irreducible; (ii) it is diagonally dominant, i.e.,
 6 $|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$, for all $i \in \{0, \dots, N-1\}$; and (iii) there exists an $i \in \{0, \dots, N-1\}$
 7 such that $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$. Here a_{ij} denotes the entry in the i -th row and j -th column
 8 of the matrix.

9
 10 **Theorem 6.3.** (Veselic, [99] p. 171) *Let $T_{o,N}^+$ be an $N \times N$ tridiagonal matrix which is
 11 irreducibly diagonally dominant and such that $\text{sign}(\tilde{P}_n \tilde{S}_{n-1}) = \text{sign}(\tilde{R}_n \tilde{R}_{n-1})$ for $n =$
 12 $1, \dots, N-1$. Then $T_{o,N}^+$ has N real simple eigenvalues.*

13
 14 Next we show that $T_{o,N}^+$ satisfies the hypotheses of Theorem 6.3 and thus has only
 15 real eigenvalues.

16
 17 **Lemma 6.4.** *If $A \in \mathbb{N}$ and $m \in (0, 1)$, then for any $N > 0$ all eigenvalues of $T_{o,N}^+$ are
 18 real and distinct.*

19
 20 **Proof.** First, $A \in \mathbb{N}$ implies $\tilde{P}_n \tilde{S}_{n-1} \neq 0$ for $n \geq 1$. Thus, $T_{o,N}^+$ is irreducible. Next,
 21 $\tilde{R}_n < 0$ when $n \leq \lfloor A - \frac{1}{2} \rfloor$. Similarly, $\tilde{R}_{n-1} < 0$ when $n \leq \lfloor A + \frac{1}{2} \rfloor$. (Here, $\lfloor x \rfloor$ denotes
 22 the greatest integer less than or equal to x .) Thus, $\text{sign}(\tilde{R}_n \tilde{R}_{n-1}) < 0$ if and only if
 23 $A = n$. Likewise, $\tilde{P}_n < 0$ when $n \leq \lfloor A + \frac{1}{2} \rfloor$, and $\tilde{S}_{n-1} < 0$ when $n \leq \lfloor A - \frac{1}{2} \rfloor$. Thus,
 24 $\text{sign}(\tilde{P}_n \tilde{S}_{n-1}) < 0$ if and only if $A = n$. Hence,

$$\text{sign}(\tilde{P}_n \tilde{S}_{n-1}) = \text{sign}(\tilde{R}_n \tilde{R}_{n-1}), \quad n \geq 1. \quad (6.1)$$

25
 26 Finally, consider the transpose $(T_{o,N}^+)^T$. Note (6.1) remains valid. For $n = 0$ one easily
 27 gets $|\tilde{R}_0| > |\tilde{P}_1|$. Moreover, for $n \geq 1$, one has $|\tilde{R}_n| = (1 - \frac{m}{2})(2n+1)|2n+1-2A|$ and
 28 $|\tilde{P}_{n+1}| + |\tilde{S}_{n-1}| = \frac{m}{2}(2n+1)|2n+1-2A|$. Thus, $|\tilde{R}_n| > |\tilde{P}_{n+1}| + |\tilde{S}_{n-1}|$ for $n \geq 1$.
 29 Hence $(T_{o,N}^+)^T$ is an $N \times N$ irreducibly diagonally dominant tridiagonal matrix and
 30 satisfies (6.1). The result follows from Theorem 6.3. \square

31
 32 **Theorem 6.5.** *If $A \in \mathbb{N}$ and $m \in (0, 1)$, then for any $N > 0$ all eigenvalues of the tridi-
 33 agonal matrices $T_{o,N}^\pm$ and $T_{\infty,N}^\pm$ are real and have geometric multiplicity one. Moreover,
 34 all eigenvalues of $T_{o,N}^+$ and $T_{\infty,N}^+$, and all nonzero eigenvalues of $T_{o,N}^-$ and $T_{\infty,N}^-$ are
 35 simple.*

36
 37 **Proof.** For $T_{o,N}^-$ and $T_{\infty,N}^\pm$, the reality of all eigenvalues was proved in Lemma 6.1, and for
 38 $T_{o,N}^+$ it was proved in Lemma 6.4. Moreover, Lemma 6.4 also proved that the eigenvalues
 39 of $T_{o,N}^+$ are simple.

40
 41 Let λ be an eigenvalue of $T_{o,N}^-$ and $c = (c_0, \dots, c_{N-1})^T$ the corresponding eigenvector.
 42 Assume $c_0 = 0$. Then it follows from the three-term recurrence relation (5.8) that $c_n = 0$

1 for $n \geq 1$. (Note that S_0 is nonzero.) Since c is an eigenvector this is a contradiction.
 2 Hence the first component of the eigenvector is necessarily nonzero. Next, let c and \tilde{c}
 3 be two eigenvectors corresponding to the same eigenvalue of $T_{o,N}^-$. Consider the linear
 4 combination $b = \alpha c + \tilde{\alpha} \tilde{c}$. Then there exists $(\alpha, \tilde{\alpha}) \neq 0$ such that $b_0 = 0$. By the first
 5 part of the argument $b \equiv 0$. Hence the eigenvectors c and \tilde{c} are linearly dependent. The
 6 proofs for $T_{o,N}^+$ and $T_{\infty,N}^\pm$ are identical. \square

7

8 *6.2. Generalized convergence and reality of periodic and antiperiodic eigenvalues*

9

10 In Section 6.1 we showed that, for $A \in \mathbb{N}$, the $N \times N$ truncations of the tridiagonal
 11 operators have only real eigenvalues. It remains to show that the tridiagonal operators
 12 T_o^\pm and T_∞^\pm also have only real eigenvalues. This result will follow from the fact that
 13 the eigenvalues of the tridiagonal operators possess certain continuity properties as the
 14 truncation parameter N tends to infinity. Some of the proofs in this section follow from
 15 Volkmer [101]. For brevity we only present the details of the analysis for T_o^+ .

16

17 **Lemma 6.6.** *Consider the operator T_o^+ . There exists $\theta \in (0, 1)$ and $n_* \in \mathbb{N}$ such that*

18

$$19 \quad 2 \max(\tilde{P}_n^2 + \tilde{S}_n^2, \tilde{P}_{n+1}^2 + \tilde{S}_{n-1}^2) \leq \theta^2 \tilde{R}_n^2, \quad n \geq n_*. \quad (6.2)$$

20

21 The same estimate holds for the operators T_o^- and T_∞^\pm .

22

23 **Proof.** It follows from the definition of \tilde{P}_n , \tilde{R}_n , and \tilde{S}_n in (5.9c) that

24

$$25 \quad \tilde{P}_n^2 + \tilde{S}_n^2 = 2m^2 n^4 (1 + o(1)), \quad (6.3a)$$

26

$$27 \quad \tilde{P}_{n+1}^2 + \tilde{S}_{n-1}^2 = 2m^2 n^4 (1 + o(1)), \quad (6.3b)$$

28

$$28 \quad \tilde{R}_n^2 = (4 - 2m)^2 n^4 (1 + o(1)), \quad (6.3c)$$

29

30 as $n \rightarrow \infty$. Hence, let $\theta = m$. For n sufficiently large one gets $4m^2 n^4 \leq \theta^2 \tilde{R}_n^2 =$
 31 $m^2 (4 - 2m)^2 n^4$. The result holds for $m \in (0, 1)$. It is easy to check that the same
 32 estimate holds also for the operators T_o^-, T_∞^\pm . \square

33

34 Next we decompose T_o^\pm , T_∞^\pm into their diagonal and off-diagonal parts. Namely, if T
 35 is any one of the operators T_o^\pm , T_∞^\pm , we write

36

$$37 \quad T := T_D + T_O, \quad (6.4)$$

38

39 where T_D is the diagonal, and T_O the off-diagonal. This decomposition is instrumental
 40 in proving the following:

41

42 **Lemma 6.7.** *The operators T_o^\pm and T_∞^\pm are closed with compact resolvent.*

1 **Proof.** The proof follows closely that of the analogous result in [101]. We provide details
 2 of the proof for the operator T_o^+ . First, by replacing \tilde{R}_n by $\tilde{R}_n + \omega$ with sufficiently large
 3 ω , we may assume, without loss of generality, that $\tilde{R}_n > 0$ and that (6.2) holds for all
 4 $n \geq 0$. Then

$$6 \quad \|T_O c\| \leq \theta \|T_D c\| \quad \forall c \in \ell^{2,4}(\mathbb{N}_o). \quad (6.5)$$

7 Since $0 < \tilde{R}_n \rightarrow \infty$ it follows T_D^{-1} exists and is a compact operator. Moreover, by (6.5) it
 8 follows that $\|T_O T_D^{-1}\| \leq \theta < 1$. Hence $T^{-1} = T_D^{-1}(I + T_O T_D^{-1})^{-1}$ is a compact operator
 9 (see [58] p. 196). Therefore, T_o^+ is a closed operator with compact resolvent. The proofs
 10 for T_o^- , T_∞^\pm are identical. \square

12 The proof of the next lemma is identical to that of Theorem 6.5.

14 **Lemma 6.8.** *All eigenvalues of the operators T_o^\pm and T_∞^\pm have geometric multiplicity one.*

16 Next we begin to address reality of the eigenvalues. By Lemma 6.7 it follows $\Sigma(T_o^\pm)$ and
 17 $\Sigma(T_\infty^\pm)$ are comprised of a set of discrete eigenvalues with finite multiplicities. Recall that,
 18 for $z \in \Sigma(L)$, we have $|\operatorname{Im} z| < \|q\|_\infty$. Moreover, we also have $|\operatorname{Im} z| |\operatorname{Re} z| \leq \frac{1}{2} \|q_x\|_\infty$
 19 for any $z \in \Sigma(L)$ (see [12]). Hence, by the correspondence between the Dirac and Hill
 20 equations (see Section 3) we have

$$22 \quad \operatorname{Re} \lambda \geq -\|q\|_\infty^2, \quad |\operatorname{Im} \lambda| \leq \|q_x\|_\infty. \quad (6.6)$$

24 Thus there exists a curve \mathcal{C} such that the region in the complex λ -plane bounded by
 25 \mathcal{C} contains finitely many periodic (resp. antiperiodic) eigenvalues of Hill's equation with
 26 complex elliptic potential (3.15) counting multiplicity. This suggests to apply the concept
 27 of generalized convergence of closed linear operators (see Appendix A.6 for a discussion
 28 of generalized convergence). In particular, we will use the following result:

30 **Theorem 6.9.** (Kato, [58] p. 206) *Let $T, T_n \in \mathfrak{C}(\mathcal{X}, \mathcal{Y})$, $n = 1, 2, \dots$ the space of closed
 31 operators between Banach spaces. If T^{-1} exists and belongs to $\mathfrak{B}(\mathcal{X}, \mathcal{Y})$, the space of
 32 bounded operators, then $T_n \rightarrow T$ in the generalized sense if and only if T_n^{-1} exists and
 33 is bounded for sufficiently large n and $\|T_n^{-1} - T^{-1}\| \rightarrow 0$.*

35 Theorem 6.9 implies the semicontinuity of a finite system of eigenvalues counted ac-
 36 cording to multiplicity ([58] p. 213). To this end, we introduce a sequence of tridiagonal
 37 operators:

$$39 \quad T_n := T_D + P_n T_O, \quad (6.7)$$

41 where P_n is the orthogonal projection of $\ell^2(\mathbb{N}_o)$ onto $\operatorname{span}\{e_0, e_1, \dots, e_{n-1}\}$, with
 42 $\{e_i\}_{n \in \mathbb{N}_o}$ being the canonical basis. Thus, for example, T_n is determined by, say, T_o^+

1 with the off-diagonal entries \tilde{P}_j , \tilde{S}_j replaced by zeros for $j \geq n$. Clearly, $\Sigma(T_N) =$
 2 $\Sigma(T_{o,N}^+) \cup \{\tilde{R}_n\}_{n \geq N}$ for any $N \in \mathbb{N}$. The following result is obtained from Theorem
 3 2 in [101], the difference being the additional zero column for T_o^- and T_∞^- . Once the
 4 first column and row are deleted, the proof is identical. We therefore omit the proof for
 5 brevity.

6
 7 **Lemma 6.10.** *Let T be any one of the operators T_o^\pm , T_∞^\pm . If T_n is defined by (6.7), with*
 8 *T_D and T_O defined by (6.4), then $T_n \rightarrow T$ in the generalized sense (see Theorem 6.9
 9 above).*

10
 11 Using convergence in the generalized sense, we are now ready to show that T_o^\pm and
 12 T_∞^\pm have real eigenvalues only:

13
 14 **Lemma 6.11.** *If $\lambda_n \in \Sigma(T_o^\pm)$ or $\lambda_n \in \Sigma(T_\infty^\pm)$, then $\lambda_n \in \mathbb{R}$.*

15
 16 **Proof.** Let T be any one of the operators T_o^\pm or T_∞^\pm . Count eigenvalues according to their
 17 multiplicity. Fix $n \in \mathbb{N}$, and let $\lambda_n \in \Sigma(T)$. Let $\epsilon > 0$ and $C_\epsilon := \{\lambda \in \mathbb{C} : |\lambda - \lambda_n| = \epsilon\}$.
 18 Since $\|T_n^{-1} - T^{-1}\| \rightarrow 0$ as $n \rightarrow \infty$, we know for each $\delta > 0$ there exists $N \in \mathbb{N}$ such that
 19 $\|T_N^{-1} - T^{-1}\| < \delta$. By semicontinuity of a finite system of eigenvalues (see [58] p. 212),
 20 we can choose $\delta > 0$ such that C_ϵ contains an eigenvalue of T_N . Call this eigenvalue λ_N .
 21 Since ϵ is arbitrary, and λ_N is real for any N it follows $\lambda_n \in \mathbb{R}$. \square

22
 23 Summarizing, we have shown that the periodic (resp. antiperiodic) eigenvalue prob-
 24 lems for (1.2) with Jacobi elliptic potential (1.3) can be mapped to eigenvalue problems
 25 for four tridiagonal operators obtained from a Frobenius analysis of the Heun equa-
 26 tion (5.2). Moreover, all eigenvalues of the tridiagonal operators are real with geo-
 27 metric multiplicity one. Putting everything together, we are now ready to prove the first part
 28 of Theorem 1.2:

29
 30 **Theorem 6.12.** *Consider (1.2) with potential (1.3) and $m \in (0, 1)$. If $A \in \mathbb{N}$, then*
 31 $\Sigma(L; A, m) \subset \mathbb{R} \cup (-iA, iA)$, and q is a finite-band potential.

32
 33 **Proof.** Let $z \in \Sigma_\pm(L)$. Recall that we have established a direct correspondence between
 34 the periodic (resp. antiperiodic) eigenvalues of the tridiagonal operators T_o^\pm , T_∞^\pm and
 35 the periodic (resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic
 36 potential (1.3). Also, $\Sigma(T_o^\pm) \cup \Sigma(T_\infty^\pm) \subset \mathbb{R}$. Hence, by Lemma 3.5, and since $\lambda = z^2$,
 37 it follows that $\Sigma(L; A, m) \subset \mathbb{R} \cup (-iA, iA)$ (see also Lemma 2.10). Thus, the periodic
 38 (resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic potential (1.3)
 39 are real or purely imaginary. Then, by symmetry (see Lemmas 2.9 and 2.10), the entire
 40 Lax spectrum is only real and purely imaginary. Finally, that q is finite-band for all
 41 $A \in \mathbb{N}$ and $m \in (0, 1)$ follows from Lemma 2.10. \square

42 **Lemma 6.13.** *If $\lambda \in \Sigma(T_o^-) \cup \Sigma(T_\infty^+)$, then $\lambda \geq 0$.*

1 **Proof.** All entries of the tridiagonal operator T_∞^+ are positive. Consider the truncation
 2 $T_{\infty,N}^+$. Without loss of generality take the transpose. A simple calculation shows that
 3 $(T_{\infty,N}^+)^T$ is strictly diagonally dominant. Hence, by the Gershgorin circle theorem all
 4 eigenvalues of $(T_{\infty,N}^+)^T$ are strictly positive. By semicontinuity, in the limit $N \rightarrow \infty$ it
 5 follows that $\Sigma(T_\infty^+) \subset [0, \infty)$.

6 Next, note that the first column of T_o^- is comprised of all zeros. Thus, $\Sigma(T_o^-) =$
 7 $\Sigma(\tilde{T}_o^-) \cup \{0\}$, where \tilde{T}_o^- is defined by T_o^- with the first row and the first column removed.
 8 Moreover, \tilde{T}_o^- has strictly positive entries, and the transpose is diagonally dominant.
 9 Arguing as in the previous case gives the result. \square

10

11 7. Lax spectrum for non-integer values of A

12

13 All of the results in this work up to the Fourier series expansion and the three-term
 14 recurrence relation in Section 4.2 hold independently of whether or not A is integer. The
 15 same holds for the Frobenius analysis in Section 5.2. On the other hand, the reducibility
 16 of the tridiagonal operator B_ν with integer and half-integer Floquet exponents ν in
 17 Section 4.3 only holds when $A \in \mathbb{N}$ (because it is only in that case that zeros appear in
 18 the upper and lower diagonal entries). Similarly, the Frobenius exponents at $\zeta = 0$ and
 19 $\zeta = \infty$ in Section 5.2 are integer or half-integer only when $A \in \mathbb{N}$. We next show that
 20 these are not just technical difficulties, but instead reflect a fundamental difference in
 21 the properties of the Lax spectrum of (1.2) when $A \notin \mathbb{N}$.

22

23 **Lemma 7.1.** *If $A \notin \mathbb{N}$, and $m \in (0, 1)$, then all periodic and antiperiodic eigenvalues
 24 of (1.2) with Jacobi elliptic potential (1.3) have geometric multiplicity one.*

25

26 **Proof.** The proof proceeds by contradiction. For simplicity, we focus on the periodic
 27 eigenvalues. Suppose that for $A \notin \mathbb{N}$ and $\nu \in \mathbb{Z}$ there exist two linearly independent
 28 eigenfunctions. Then the transformation $\zeta = e^{it}$ yields two linearly independent solutions
 29 of Heun's ODE (5.2) on $|\zeta| = 1$. Let us denote these solutions as $\hat{y}_1(\zeta; \lambda)$ and $\hat{y}_2(\zeta; \lambda)$.
 30 Note all points on $|\zeta| = 1$ are ordinary points for Heun's ODE and, therefore, both
 31 $\hat{y}_1(\zeta; \lambda)$ and $\hat{y}_2(\zeta; \lambda)$ are analytic and single-valued in the annulus $|\zeta_1| < |\zeta| < |\zeta_2|$
 32 (cf. Fig. 2). Moreover, recall that the Frobenius exponents at $\zeta = \zeta_1$ are $\rho_1^1 = 0$ and
 33 $\rho_2^1 = 1/2$. Let $y_1^1(\zeta; \lambda)$ and $y_2^1(\zeta; \lambda)$ denote the corresponding solutions. Since $\hat{y}_1(\zeta; \lambda)$
 34 and $\hat{y}_2(\zeta; \lambda)$ are linearly independent solutions, we have $y_1^1(\zeta; \lambda) = c_1 \hat{y}_1(\zeta; \lambda) + c_2 \hat{y}_2(\zeta; \lambda)$
 35 for some constants c_1 and c_2 . Then $y_1^1(\zeta; \lambda)$ is analytic and single valued in the region
 36 $0 < |\zeta| < |\zeta_2|$

37 On the other hand, $y_1^1(\zeta; \lambda)$ is a linear combination of the Frobenius solutions $\tilde{y}_1(\zeta; \lambda)$
 38 and $\tilde{y}_2(\zeta; \lambda)$ defined at the singular point $\zeta = 0$, with Frobenius exponents $\rho_1^o = A/2$ and
 39 $\rho_2^o = (1-A)/2$ respectively, neither of which is an integer. Thus, no single-valued solution
 40 can exist around $\zeta = 0$. Therefore, there cannot be two linearly independent periodic
 41 eigenfunctions. Similar considerations apply for the antiperiodic eigenvalues. \square

1 Note Lemma 7.1 does not hold for $m = 0$, as in the limit $m \rightarrow 0$ Heun's equation (5.2)
 2 degenerates into a Cauchy-Euler equation (with two regular singular points at $\zeta = 0$ and
 3 $\zeta = \infty$). Still, together with Lemma 2.16, Lemma 7.1 implies:

4
 5 **Corollary 7.2.** *If $A \notin \mathbb{N}$, and $m \in (0, 1)$, then $\Sigma_{\pm}(L) \cap \mathbb{R} = \emptyset$.*

6
 7 In turn, since both $\Sigma_{\pm}(L)$ are infinite (see [25]), and since the periodic and antiperiodic
 8 eigenvalues are the endpoints of the spectral bands, Corollary 7.2 directly implies:

9
 10 **Corollary 7.3.** *If $A \notin \mathbb{N}$, and $m \in (0, 1)$, then $\Sigma(L)$ with Jacobi elliptic potential (1.3)
 11 has an infinite number of spines along the real z -axis.*

12 We conclude that when $A \notin \mathbb{N}$, the potential q in (1.3) is not finite-band according
 13 to Definition 2.5, which proves the only if part of Theorem 1.2, namely that $A \in \mathbb{N}$ is
 14 not only sufficient, but also necessary in order for q in (1.3) to be finite-band, as well as
 15 Theorem 1.4.

17 8. Further characterization of the spectrum and determination of the genus

19 It remains to prove the last part of Theorem 1.2, namely the determination of the
 20 genus. To this end, we need a more precise characterization of the Lax spectrum for
 21 $A \in \mathbb{N}$, which will also yield the proof of the remaining parts of Theorem 1.3. We turn
 22 to this task in this section.

24 8.1. Multiplicity of imaginary eigenvalues

26 **Theorem 8.1.** *If $z \in (-iA, iA) \setminus \{0\}$ is a periodic or an antiperiodic eigenvalue of (1.2)
 27 with potential (1.3) with $A \in \mathbb{N}$, and $m \in (0, 1)$, then it has geometric multiplicity one.*

29 **Proof.** By Lemma 3.5 it follows $z \in \Sigma_{\pm}(L)$ if and only if $\lambda = z^2 \in \Sigma_{\pm}(H^-)$, respectively.
 30 Moreover, for $z \neq 0$ the geometric multiplicity of the periodic (resp. antiperiodic) eigen-
 31 values is the same. Next, by the results of Section 5, each periodic (resp. antiperiodic)
 32 eigenfunction of H^- is associated with an eigenvector of T_o^{\pm} or T_{∞}^{\pm} , and

$$34 \quad \Sigma(T_o^{\pm}) \cup \Sigma(T_{\infty}^{\pm}) = \{\lambda = z^2 : z \in \Sigma_{\pm}(L)\}, \quad (8.1) \\ 35$$

36 with T_o^+ , T_{∞}^+ yielding periodic eigenvalues and T_o^- , T_{∞}^- antiperiodic eigenvalues when A
 37 is odd, and vice versa when A is even (cf. Corollary 5.4). By Lemma 6.8, each eigenvalue
 38 of T_o^{\pm} , T_{∞}^{\pm} has geometric multiplicity one. Therefore, a periodic (resp. antiperiodic)
 39 eigenvalue $z \in \mathbb{C}$ of L can have geometric multiplicity two if and only if $\lambda = z^2$ is
 40 simultaneously an eigenvalue of both T_o^+ and T_{∞}^+ or simultaneously an eigenvalue of
 41 both T_o^- and T_{∞}^- . On the other hand, Lemma 6.13 showed that the eigenvalues of T_o^-
 42 and T_{∞}^+ are non-negative. Hence, by the relation $\lambda = z^2$ all periodic (resp. antiperiodic)

1 eigenvalues $z \in (-iA, iA) \setminus \{0\}$ of (1.2) with potential (1.3) have geometric multiplicity
 2 one. \square

3
 4 **Corollary 8.2.** For all $m \in (0, 1)$, if $z \in (-iA, iA) \setminus \{0\}$ is a periodic or an antiperiodic
 5 eigenvalue of (1.2) with potential (1.3), then $s(z) \neq 0$.

6
 7 **Proof.** Recall that $s(z)$ is defined by (2.15). If $s(z) = 0$, the monodromy matrix $M(z)$
 8 would be diagonal, but this would imply the existence of two periodic (resp. antiperiodic)
 9 eigenfunctions, which would contradict Theorem 8.1. \square

10
 11 Note that the above results do not hold for $m = 0$ (a constant background potential),
 12 since in that case all periodic and antiperiodic eigenvalues except $z = \pm iA$ have geometric
 13 multiplicity two.

14
 15 *8.2. Dirichlet eigenvalues and behavior of the Floquet discriminant near the origin*

16
 17 In this subsection we prove some technical but important results that will be used
 18 later in the proof of Theorem 1.3.

19 As in Section 2.3, here it will be convenient to explicitly keep track of the dependence
 20 on m by writing the potential, fundamental matrix solution, and monodromy matrix re-
 21 spectively as $q(x; m)$, $\Phi(x; z, m)$ and $M(z; m)$. We begin by recalling some relevant infor-
 22 mation. We will use the structure of the monodromy matrix $M(z; m) = \Phi(2K(m); z, m)$
 23 introduced in (2.15). Also recall that, when $m = 0$ (in which case $q(x, 0) \equiv A$), $M(z, 0)$ is
 24 given by (2.23). (Recall that $l = 2K(m)$ is the (real) period of $\text{dn}(x; m)$, and $2K(0) = \pi$.)
 25 Thus, (2.15) implies

$$27 \quad \Delta(z; 0) = \cos(\sqrt{z^2 + A^2}\pi), \quad s(z; 0) = -\frac{A}{\sqrt{z^2 + A^2}} \sin(\sqrt{z^2 + A^2}\pi). \quad (8.2)$$

29
 30 Recall from Section 2.2 that $\Delta(z; m)$ and $s(z; m)$ are even functions of z while $c(z; m)$ is
 31 an odd function of z . Let $\Delta_j(m)$, $-ic_j(m)$ and $s_j(m)$ denote, respectively, the coefficients
 32 of z^{2j} , z^{2j+1} and z^{2j} in the Taylor series of $\Delta(z; m)$, $c(z; m)$ and $s(z; m)$ around $z = 0$.
 33 Combining (2.23) and (A.12b), we obtain the following expansions near $z = 0$:

$$34 \quad \Delta(z; m) = (-1)^A + \Delta_1(m)z^2 + O(z^4), \quad (8.3a)$$

$$35 \quad c(z; m) = -ic_0(m)z - ic_1(m)z^3 + O(z^5), \quad (8.3b)$$

$$36 \quad s(z; m) = s_1(m)z^2 + O(z^4). \quad (8.3c)$$

37
 38 We want to study in detail the behavior of $\Delta(z; m)$ near $z = 0$. We begin by looking
 39 at the dynamics of (closed) gaps as a function of A at $m = 0$, to show how the number of
 40 bands grows as A increases. According to (8.2), the periodic and antiperiodic eigenvalues
 41 are, respectively,

$$z_n = \pm \sqrt{4n^2 - A^2}, \quad z_n = \pm \sqrt{(2n+1)^2 - A^2}, \quad n \in \mathbb{Z}. \quad (8.4)$$

It follows that $z = 0$ is a periodic or antiperiodic eigenvalue when $A \in \mathbb{Z}$. Direct calculations show that

$$\Delta_{zz}(z; 0) = -\frac{\pi^2 z^2}{z^2 + A^2} \cos(\sqrt{z^2 + A^2}\pi) - \frac{\pi A^2}{(z^2 + A^2)^{\frac{3}{2}}} \sin(\sqrt{z^2 + A^2}\pi), \quad (8.5)$$

so that

$$\Delta_{zz}(0; 0) = -\frac{\pi \sin(A\pi)}{A}. \quad (8.6)$$

Observe that, as a function of A , $\Delta_{zz}(0; 0)$ changes sign as A passes through an integer value. For example, if A passes through an even value $n \in \mathbb{N}$, the sign of $\Delta_{zz}(0; 0)$ changes from “+” to “-”, corresponding to the transition of a pair of critical points of $\Delta(z; 0)$ from \mathbb{R} to $[-iA, iA]$. Correspondingly, a pair of zero level curves of $\text{Im } \Delta(z) = 0$ intersecting \mathbb{R} transversally will pass through $z = 0$ and intersect $[-iA, iA]$ forming an extra closed gap on $[-iA, iA]$. This is the mechanism of increase of the number of gaps on $[-iA, iA]$. Note that (8.5) implies that $\Delta_z(z; 0)$ has a third order zero at $z = 0$ when $A \in \mathbb{Z}$. Next we show that this mechanism works for any $m \in (0, 1)$. This will be accomplished through several intermediate steps.

Lemma 8.3. *For fixed $A \in \mathbb{N}$ we have $\Delta_{zz}(0; 0) = 0$, and $(-1)^A \Delta_{zz}(0; m)$ is a strictly monotonically decreasing function of m for $m \in [0, 1]$.*

Proof. The first statement follows from (8.5). The rest of the proof is devoted to show that

$$(-1)^A \Delta_{zz}(0; m) < 0, \quad (8.7)$$

when $m \in (0, 1)$. Substitution of (8.3) into (2.16) yields

$$\frac{1}{2} \Delta_{zz}(0; m) = \Delta_1(m) = \frac{1}{2} (-1)^{A+1} c_0^2(m). \quad (8.8)$$

Note that $(-1)^A \Delta_{zz}(0; m) \leq 0$ since $M(z; m)$ is real on $z \in [-iA, iA]$. Thus, it remains to show that $c_0(m) \neq 0$ for $m \in (0, 1)$. In fact, we will show below that $c_0(m)$ is monotonically increasing on $m \in [0, 1]$. That, combined with $c_0(0) = 0$ (see (8.8)), will complete the proof.

Recall that $\Phi = \Phi(x; z, m)$ is the solution of the ZS system (1.6a) normalized as $\Phi(0; z, m) \equiv \mathbf{1}$. Differentiating (1.6a) with respect to z we get the system

$$\Phi_{xz} = (-iz\sigma_3 + iq\sigma_2)\Phi_z - i\sigma_3\Phi. \quad (8.9)$$

1 Considering system (8.9) as a non-homogeneous ZS system [i.e., treating the term $-i\sigma_3\Phi$
 2 as a “forcing”] and integrating, we obtain the solution
 3

$$4 \quad \Phi_z(x; z, m) = -i\Phi(x; z, m) \int_0^x \Phi^{-1}(\xi; z, m) \sigma_3 \Phi(\xi; z, m) d\xi, \quad z \in \mathbb{C}. \quad (8.10)$$

7 Also recall that the (real) period of q in (1.3) is $l = 2K(m)$ and that $M(z; m) = \Phi(l; z, m)$.
 8 By Lemma 2.17, $A \in \mathbb{N}$ implies $\Phi(l; 0, m) \equiv (-1)^A \mathbf{1}$. At $z = 0$, we therefore have
 9

$$10 \quad M_z(0; m) = -i(-1)^A \int_0^l \Phi^{-1}(\xi) \sigma_3 \Phi(\xi) d\xi \\ 11 \quad = -i(-1)^A \int_0^l \begin{pmatrix} u_1 v_2 + u_2 v_1 & 2v_1 v_2 \\ -2u_1 u_2 & -u_1 v_2 - u_2 v_1 \end{pmatrix} d\xi, \quad (8.11)$$

17 where we introduced the notation
 18

$$19 \quad \Phi(x; z, m) = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}, \quad (8.12)$$

22 which we will use extensively below. On the other hand, in light of (2.15) we have
 23

$$24 \quad M_z = \Delta_z \mathbf{1} + c_z \sigma_3 - is_z \sigma_2, \quad z \in \mathbb{C}, \quad (8.13)$$

26 which implies
 27

$$28 \quad c_z(0; m) = -i(-1)^A \int_0^l (u_1 v_2 + u_2 v_1) dx, \\ 29 \\ 30 \quad s_z(0; m) = 2i(-1)^A \int_0^l u_1 u_2 dx = 2i(-1)^A \int_0^l v_1 v_2 dx. \quad (8.14)$$

34 Comparing this with the expansion (8.3) we then have
 35

$$36 \quad 37 \quad c_0(m) = ic_z(0; m) = (-1)^A \int_0^l (u_1 v_2 + u_2 v_1) dx. \quad (8.15)$$

40 At $z = 0$, according to Section A.3, we also have
 41

$$42 \quad \Phi(x; 0, m) = \cos(Aamx) \mathbf{1} + \sin(Aamx) i\sigma_2, \quad (8.16)$$

1 where $\text{am}x = \text{am}(x; m)$, so that

$$3 \quad \Phi^{-1}(x; 0, m)\sigma_3\Phi(x; 0, m) = \cos(2A\text{am}x)\sigma_3 + \sin(2A\text{am}x)\sigma_1. \quad (8.17)$$

4 We obtain

$$6 \quad c_0(m) = (-1)^A \int_0^{2K(m)} \cos(2A\text{am}x) dx = (-1)^A \int_0^\pi \frac{\cos 2Ay dy}{\sqrt{1 - m \sin^2 y}}, \quad (8.18)$$

10 where we used $y = \text{am}x$, $dy = \sqrt{1 - m \sin^2 y} dx$. Now, from [14], 806.01, for $m \in (0, 1)$
11 we have

$$13 \quad (-1)^A \int_0^\pi \frac{\cos 2Ay dy}{\sqrt{1 - m \sin^2 y}} = \pi \sum_{j=A}^{\infty} \frac{[(2j-1)!]^2 m^j}{4^{2j-1} (j-A)! (j+A)! [(j-1)!]^2} > 0 \quad (8.19)$$

16 since all the coefficients of the convergent Taylor series are positive. \square

18 **Corollary 8.4.** *One has $|\Delta(z; m)| > 1$ in a deleted neighborhood of $z = 0$ on $(-iA, iA)$ for any $A \in \mathbb{N}$ and $m \in (0, 1)$. Moreover, $z = 0$ is a simple critical point of $\Delta(z; m)$ and $\Delta(0; m) = (-1)^A$.*

22 **Remark 8.5.** Corollary 8.4 shows that no critical points of $\Delta(z; m)$ can move from \mathbb{R} to $i\mathbb{R}$ when we vary $m \in (0, 1)$ with a fixed $A \in \mathbb{N}$. Similarly to the case $m = 0$, the change
23 of genus in the case $m > 0$, happens when we vary A (see also Fig. 4).

26 Next, recall that the monodromy matrix $M(z; x_o)$ normalized at a base point x_o is
27 given by (2.20). Using (2.20), we prove the following lemma regarding Dirichlet eigen-
28 values.

30 **Lemma 8.6.** *Let $A \in \mathbb{N}$ and $m \in (0, 1)$. If an open gap γ on $(-iA, iA)$ contains a zero of
31 $s(z)$, then the associated Dirichlet eigenvalue is movable.*

33 **Proof.** Equations (2.15) and (2.20) and direct calculation show that

$$35 \quad M(z; x_0) = \begin{pmatrix} \Delta + c(u_1 v_2 + u_2 v_1) + s(u_1 u_2 + v_1 v_2) & -s(u_1^2 + v_1^2) - 2c u_1 v_1 \\ s(u_2^2 + v_2^2) + 2c u_2 v_2 & \Delta - c(u_1 v_2 + u_2 v_1) - s(u_1 u_2 + v_1 v_2) \end{pmatrix}, \quad (8.20)$$

38 where $c = c(z)$ and $s = s(z)$ were defined in (2.15) and the functions u_1, u_2, v_1 and v_2 ,
39 defined as in (8.12), are evaluated at $x = x_0$.

40 Consider first an open gap $\gamma \subset i\mathbb{R}$ that does not contain $z = 0$. From (2.16) it follows
41 that $c(z) \neq 0$ on γ . Note $u_1(x_0)v_1(x_0) \neq 0$ for small $x_0 > 0$ [because $u_1(0) = 1$ and
42 $v_1(0) = 0$ and u_1 and v_1 are analytic in x as solutions of (1.6a) with the potential (1.3)].

1 Therefore, it follows from (8.20) that $M_{12}(z; x_0) = 0$ implies $s(z) \neq 0$. But $M_{12}(z; 0) =$
 2 $s(z)$. Thus, each Dirichlet eigenvalue in such a gap is movable.

3 Consider now a gap $\gamma_0 \subset i\mathbb{R}$ containing $z = 0$, i.e., the *central gap*. By Corollary 8.4,
 4 such gap exists for any $m \in (0, 1)$, and by (8.2), it does not exist when $m = 0$. We
 5 consider $m \in (0, 1)$. Then by Lemma 8.3 (see (8.8)), $c(z)$ has a simple zero at $z = 0$ and,
 6 by (8.3), $s(z)$ has at least a double zero at $z = 0$. Thus, the condition $M_{12}(z; x_0) = 0$
 7 near $z = 0$ becomes

$$8 -s_1 z^2 (u_1^2(x_0; z) + v_1^2(x_0; z)) + 2ic_0 z u_1(x_0; z) v_1(x_0; z) = R(x_0; z), \quad (8.21)$$

10 where $R(x_0; z) \in \mathbb{R}$ when $z \in i\mathbb{R}$ and $R(x_0; z) = O(z^3)$ uniformly in small real x_0 . By
 11 Lemma 8.3 (see (8.8)) we have $c_0 \neq 0$. If $s_1 \neq 0$, (8.21) shows that $M_{12}(z; x_0)$ has one
 12 fixed zero at $z = 0$ whereas the location of the second zero depends on x_0 and is given
 13 by

$$15 z = \frac{2ic_0 u_1(x_0; z) v_1(x_0; z) - \frac{R(x_0; z)}{z}}{s_1(u_1^2(x_0; z) + v_1^2(x_0; z))} = \frac{2ic_0 u_1(x_0; 0) v_1(x_0; 0) + O(z)}{s_1(u_1^2(x_0; 0) + v_1^2(x_0; 0) + O(z))} \in i\mathbb{R}, \quad (8.22)$$

18 which is a point inside the central gap on $(-iA, iA)$. Indeed, the requirement $\det M(z; x_0)$
 19 $\equiv 1$ and (8.20) imply that a Dirichlet eigenvalue can not be in the interior of any band
 20 located on $(-iA, iA) \setminus \{0\}$.

21 Equations (8.21) and (8.22) show that a zero of $M_{12}(z; x_0)$ in the gap $\gamma_0 \subset (-iA, iA) \setminus$
 22 $\{0\}$ is always fixed at $z = 0$, and therefore corresponds to an immovable Dirichlet eigen-
 23 value, whereas a second zero is located at a point changing with x_0 , and is therefore
 24 a movable Dirichlet eigenvalue. Indeed, the point $z = z(x_0)$ defined by (8.22) attains
 25 $z(0) = 0$ and $z(x_0) \neq 0$ at least for small $x_0 > 0$ since $v_1(0) = 0$ and $v_1(x_0) \neq 0$ in a
 26 deleted neighborhood of zero.

27 Finally, if $s_1 = \dots = s_{k-1} = 0$ and $s_k \neq 0$, with $k > 1$, the leading-order portion of
 28 each term in the 1,2 entry of (8.21) yields instead

$$29 -s_k z^{2k} (u_1^2 + v_1^2) + 2ic_0 z u_1 v_1 = R, \quad (8.23)$$

31 where again $R = O(z^3)$ is real-valued for $z \in i\mathbb{R}$ and where for brevity we dropped the
 32 arguments. Repeating the same arguments as for (8.21), we see that at least one of the
 33 roots in (8.23) is purely imaginary. \square

35 **Remark 8.7.** It follows from (8.21) and (8.23) that $s_1(m) \neq 0$ if and only if there is
 36 exactly one movable Dirichlet eigenvalue in a vicinity of $z = 0$ for small $x_0 \in \mathbb{R}$.

38 8.3. Proof of the remaining statements of Theorem 1.3

40 Lemma 2.14 proves items 4 and 5 of Theorem 1.3. Theorem 1.2 together with
 41 Lemma 2.2 and the symmetries (2.17) implies item 3. Thus, it remains to prove items 2
 42 and 6 only, namely:

1 **Theorem 8.8.** Consider (1.2) with Jacobi elliptic potential (1.3). For all $m \in (0, 1)$, if
 2 $A \in \mathbb{N}$ then:

3

4 1. For any $m \in (0, 1)$, there are exactly $2A$ symmetric bands of $\Sigma(L; A, m)$ on $(-iA, iA)$
 5 separated by $2A - 1$ symmetric open gaps. The central gap (i.e., the gap surrounding
 6 the origin) contains an eigenvalue at $z = 0$. This eigenvalue is periodic when A is
 7 even and antiperiodic when A is odd.

8 2. Each of the open $2A - 1$ gaps on $(-iA, iA)$ contains exactly one movable Dirichlet
 9 eigenvalue. Thus, all of the $2A - 1$ movable Dirichlet eigenvalues of the finite-band
 10 solution with genus $2A - 1$ are located in the gaps of the interval $(-iA, iA)$.

11

12 **Proof.** The idea of the proof is based on continuous deformation of the elliptic parameter
 13 m , starting from $m = 0$ and going into $m \in (0, 1)$. The proof is based on the following
 14 three main steps, each of which will be discussed more fully below:

15 1. *Analysis of the spectrum for $m = 0$.* When $m = 0$, $\text{dn}(x, 0) \equiv 1$, and the ZS
 16 system (1.1) has a simple solution $\Phi(x; z, m)$. The monodromy matrix $M(z; m)$ based
 17 on $\Phi(x; z, m)$ was given explicitly in (2.23) for $m = 0$, and the Lax spectrum is $\Sigma(L) =$
 18 $\mathbb{R} \cup [-iA, iA]$ in this case. In particular, the vertical segment $[-iA, iA]$ is a single band
 19 that contains $2A - 1$ double periodic/antiperiodic eigenvalues, which we consider as being
 20 closed gaps. Each of these closed gaps contains a Dirichlet eigenvalue (a zero of $s(z; m)$,
 21 see (8.2)), which for $m = 0$ is immovable according to Lemma 2.14 (see also (8.20)).

22 2. *Analysis of the spectrum for small nonzero values of m .* Corollary 8.4 states that
 23 for all $m \in (0, 1)$ the double eigenvalue at $z = 0$ is embedded in the central gap
 24 $\gamma_0 \subset (-iA, iA)$. Moreover, Corollary 8.4 and Lemma 8.6 show that there is at least
 25 one movable Dirichlet eigenvalue on γ_0 . Next, we show that under a small deformation
 26 $m > 0$ all the remaining closed gaps on $(-iA, iA)$ must open, creating $2A$ bands and
 27 $2A - 1$ gaps on $(-iA, iA)$, with each gap containing exactly one movable Dirichlet eigen-
 28 value. Our proof of this statement is based on the fact that any periodic/antiperiodic
 29 eigenvalue on $(-iA, iA) \setminus \{0\}$ has geometric multiplicity one (see Theorem 8.1), whereas
 30 a double eigenvalue at a closed gap would have geometric multiplicity two. By a continu-
 31 ity argument, each gap on $(-iA, iA) \setminus \{0\}$ has exactly one movable Dirichlet eigenvalue.
 32 Thus, items 2,6 are proved for small $m > 0$.

33 3. *Control of the spectrum for arbitrary values of $m \in (0, 1)$.* We finally prove that the
 34 number $2A$ of separate bands on $(-iA, iA)$, as well as the fact that each gap on $(-iA, iA)$
 35 contains exactly one movable Dirichlet eigenvalue, cannot change when m varies on $(0, 1)$.

36 In what follows, we prove all the statements in items 1–3 above.

37 1. From (8.2) it follows that, for $m = 0$, we have $\Sigma(L) = \mathbb{R} \cup [-iA, iA]$ with

$$39 \quad z_n^2 = n^2 - A^2, \quad n = 0, \pm 1, \dots, \pm A \quad (8.24)$$

40

41 being (interlaced) periodic or antiperiodic eigenvalues on $[-iA, iA]$. Note that $\Delta_z(z; 0)$
 42 has a simple zero at each z_n for $n \neq 0, \pm A$. Therefore, each $z_n \neq 0, \pm iA$ identifies a

1 closed gap. On the other hand, since $\Delta_z(\pm iA; 0) \neq 0$, the endpoints $\pm iA$ of the spectrum
 2 are simple periodic eigenvalues. [By Lemma 2.10, when $m > 0$ it follows $\pm iA \notin \Sigma(L)$.]
 3 Finally, note that $\Delta_z(z; 0)$ has a double zero at $z = 0$, which will be relevant in the
 4 discussion of item 3 below.

5 Recall that the Dirichlet eigenvalues are the zeros of $s(z; 0)$. By (8.2), each closed gap
 6 on $[-iA, iA] \setminus \{0\}$ contains exactly one Dirichlet eigenvalue μ_n , $n = \pm 1, \dots, \pm(A - 1)$,
 7 which is a simple zero of $s(z; 0)$. Note also that there are exactly $2A - 1$ closed gaps on
 8 $(-iA, iA)$, and at each such gap with the exception of $z = 0$ there is exactly one zero
 9 level curve Γ_n of $\text{Im } \Delta$ orthogonally crossing $i\mathbb{R}$. Moreover, by Lemma 8.3, there are eight
 10 zero level curves of $\text{Im } \Delta$ passing through $z = 0$, including the real and imaginary axes
 11 (e.g., see Fig. 4, upper right panel). Note that, by Lemma 8.6, a Dirichlet eigenvalue μ_n
 12 becomes movable if the closed gap opens up as m is deformed away from $m = 0$.

13 Recall that the monodromy matrix $M(z; m)$ is entire in z and A and analytic in
 14 $m \in [0, 1)$ (cf. Lemma 2.10). Also recall that $s(z; m)$ is real-valued on $i\mathbb{R}$. Finally, recall
 15 that by Lemma 2.14 zeros of $s(z; m)$ cannot lie in the interior of a band. Let μ_n be the
 16 zeros of $s(z; 0)$ for $z \in i\mathbb{R}$, i.e., the Dirichlet eigenvalues along the imaginary axis when
 17 $m = 0$. Since the zeros of $s(z; m)$ are isolated, for sufficiently small $m > 0$, each Dirichlet
 18 eigenvalue μ_n must remain on $(-iA, iA)$ by continuity. Thus, for sufficiently small values
 19 of m , all the gaps on $(-iA, iA) \setminus \{0\}$ (independently of whether they are open or closed)
 20 must survive the small m deformation, with exactly one Dirichlet eigenvalue in each gap.

21 Importantly, the above arguments imply that, for small $m \in (0, 1)$, all the gaps on
 22 $(-iA, iA) \setminus \{0\}$ must be open. Indeed, the assumption that for small $m \in (0, 1)$ there exists
 23 a closed gap at $z_* \in (-iA, iA) \setminus \{0\}$ leads to a contradiction, because by Corollary 8.2,
 24 $s(z; m) \neq 0$ at the endpoints of each band. There are $2A - 2$ such open gaps. By continuity,
 25 each of them contains a zero of $s(z; m)$ and therefore a movable Dirichlet eigenvalue by
 26 Lemma 8.6. Moreover, by continuity, $s(z; m)$ must have opposite signs at the endpoints
 27 of any gap in $(-iA, iA) \setminus \{0\}$.

28 Next, recall that by Theorem 6.12, $\Sigma(L) \subset \mathbb{R} \cup (-iA, iA)$ for all $m \in (0, 1)$. It follows
 29 from Corollary 8.4 that, for all $m \in (0, 1)$, the (double) Floquet eigenvalue $z = 0$ is
 30 immersed in a gap $\gamma_o \subset (-iA, iA)$. Then, by Lemma 8.6, for small $m > 0$ there are
 31 exactly $2A - 1$ open gaps on $(-iA, iA)$, with each gap containing a movable Dirichlet
 32 eigenvalue. Therefore there are $2A$ (disjoint) bands on $(-iA, iA)$.

33 Finally, differentiation of $s(z; m)$ in (8.2) yields

$$35 \quad s_z(z; 0) = \frac{zA}{z^2 + A^2} \left[\frac{\sin(\sqrt{z^2 + A^2}\pi)}{\sqrt{z^2 + A^2}} - \cos(\sqrt{z^2 + A^2}\pi) \right], \quad (8.25)$$

36 which shows that $s_z(z; 0)$ has a simple zero at the origin. Therefore, $s_1(0) = s_{zz}(0; 0) \neq 0$
 37 and so, by Remark 8.7, there is a unique movable Dirichlet eigenvalue in a vicinity of
 38 $z = 0$ and it is situated on γ_o . Hence there is exactly one movable Dirichlet eigenvalue
 39 in each gap implying that the genus of the corresponding Riemann surface in $2A - 1$.
 40 Thus, items 2 and 6 are proved for small $m > 0$.

3. It remains to prove that the number of bands on $(-iA, iA)$ and the number of movable Dirichlet eigenvalues (which were established for small $m \in (0, 1)$ in item 2 above) do not change as m varies in $(0, 1)$. Let us consider the deformation of the collection of bands (with genus $2A - 1$) established for small $m \in (0, 1)$. A possible change of the genus can be caused only by one of the following four possibilities: (a) a collapse of a band into a point; (b) a splitting of a band into two or more separate bands; (c) a splitting of a gap into two or more separate gaps; (d) a collapse of an open gap into a closed one.

We next prove that none of these possibilities can occur. Indeed, regarding (a), the collapse of a band into a point would contradict the analyticity of $\Delta(z; m)$, since it would imply that the same value of z is simultaneously a periodic and antiperiodic eigenvalue. (Note that each band along $(-iA, iA)$ must necessarily start at a periodic eigenvalue and end at an antiperiodic one or vice versa, since otherwise there would necessarily be a critical point z_o inside the band. But a critical point z_o inside the band would imply the existence of a second band emanating transversally from the imaginary axis, contradicting Theorem 6.12.) Similarly, regarding (b), the splitting of a band would require a critical point of $\Delta(z; m)$ at some z_o inside the band. But, again, a critical point at z_o would mean that there is a zero-level curve of $\text{Im } \Delta$ crossing $i\mathbb{R}$ at z_o , which in turn would contradict Theorem 6.12.

For the same reasons we have $\Delta_z(z_*; m) \neq 0$ at any non-periodic and non-antiperiodic Floquet eigenvalue z_* , separating a band and a gap on $(-iA, iA)$. Indeed, the contrary would lead to Δ_z having an even-order zero at z_* . But that would imply at least two pairs of zero-level curves emanating from $i\mathbb{R}$ at z_* and, thus, again would contradict Theorem 6.12.

We now turn our attention to the gaps, and specifically to the possibility (c) listed above. The splitting of a gap into two or more separate gaps would imply that $\Delta(z; m)$ has a local minimum z_0 on the gap at some $m \in (0, 1)$ and simultaneously $|\Delta(z_0; m)| \leq 1$. That, again, would contradict Theorem 6.12.

Thus, it remains to exclude possibility (d), namely the collapse of a gap. By Lemma 8.6, the central gap γ_o containing $z = 0$ stays open for any $m \in (0, 1)$. Also, for small $m \in (0, 1)$, it was shown in the proof of item 2 above that the signs of $s(z; m)$ at the endpoints of any gap $\gamma \subset (-iA, iA) \setminus \{0\}$ are opposite. These signs cannot change in the course of a deformation with respect to $m \in (0, 1)$, by Corollary 8.2. Thus, each gap that was open for small $m \in (0, 1)$ must contain a zero of $s(z; m)$ and, therefore, as it was proven in item 2 above, must stay open for all $m \in (0, 1)$. So, the genus $2A - 1$ is preserved for all $m \in (0, 1)$. Moreover, each gap contains a zero of $s(z; m)$ and thus, according to Lemma 8.6, a movable Dirichlet eigenvalue.

So, we proved that each gap on $(-iA, iA)$ contains exactly one movable Dirichlet eigenvalue. It is well known [34, 40, 74] that the number of movable Dirichlet eigenvalues is equal to the genus $2A - 1$. This, completes the proof of Theorem 8.8 for all $m \in (0, 1)$. \square

Remark 8.9. It follows from Remark 8.7 that $s_1(m) \neq 0$ for all $m \in (0, 1)$.

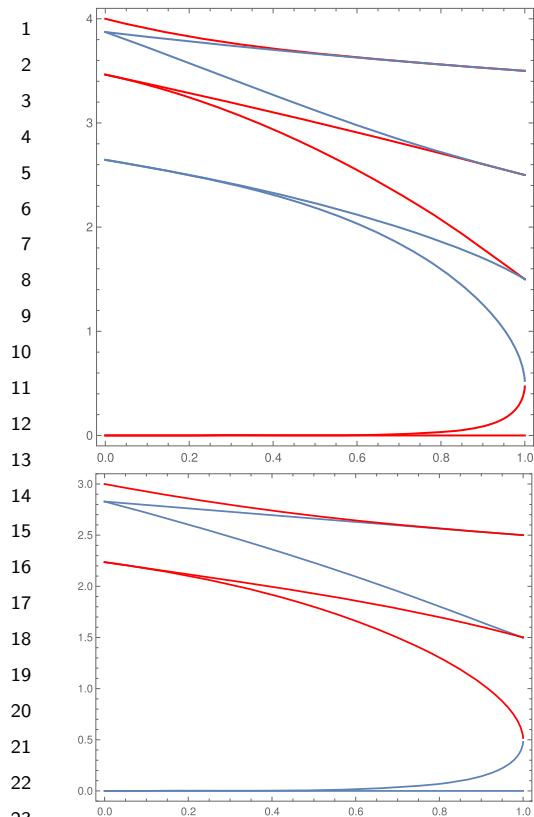


Fig. 3. Periodic (red) and antiperiodic (blue) eigenvalues (vertical axis) of the spectrum as a function of the elliptic parameter m (horizontal axis) for a few integer values of A . Bottom left: $A = 3$. Top left: $A = 4$. Right: $A = 7$. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

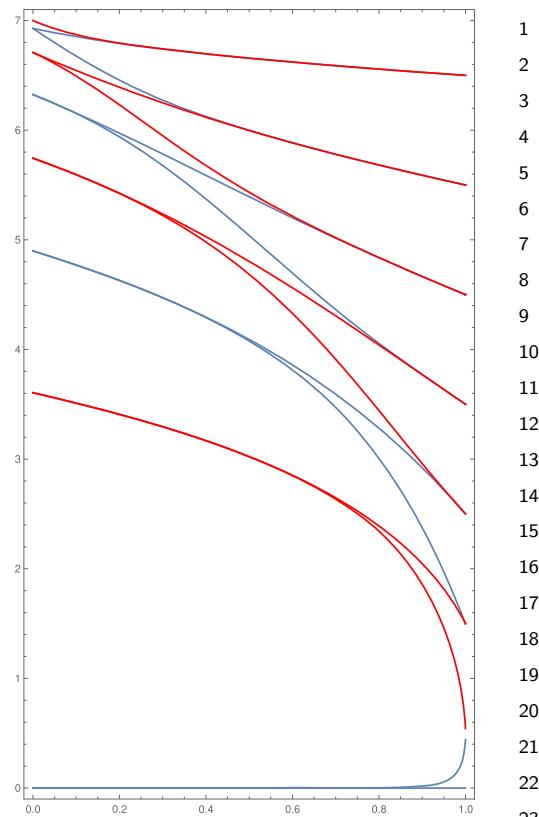
27

28 9. Dynamics of the spectrum as a function of A and m

29

30 We further illustrate the results of this work by presenting some concrete plots of
31 the spectrum. We begin with the case of $A \in \mathbb{N}$. Fig. 3 shows the periodic (red) and
32 antiperiodic (blue) eigenvalues along the imaginary z -axis (vertical axis in the plot) as
33 a function of the elliptic parameter m (horizontal axis) for a few integer values of A ,
34 namely: $A = 3$ (bottom left), $A = 4$ (top left) and $A = 7$ (right). Note how all gaps are
35 closed when $m = 0$ and how they open immediately as soon as $m > 0$ and remain open
36 for all $m \in (0, 1)$. In the singular limit $m \rightarrow 1^-$, the band widths tend to zero, and the
37 periodic and antiperiodic eigenvalues “collide” into the point spectrum of the operator
38 L on the line.

39 Next, Fig. 4 shows the Lax spectrum (blue curves) in the complex z -plane for several
40 non-integer values of A , illustrating the formation of new bands and gaps as function
41 of A . Note that the range of values for the real and imaginary parts of z allows one
42 to see only a small portion of the Lax spectrum. For example, not visible outside the



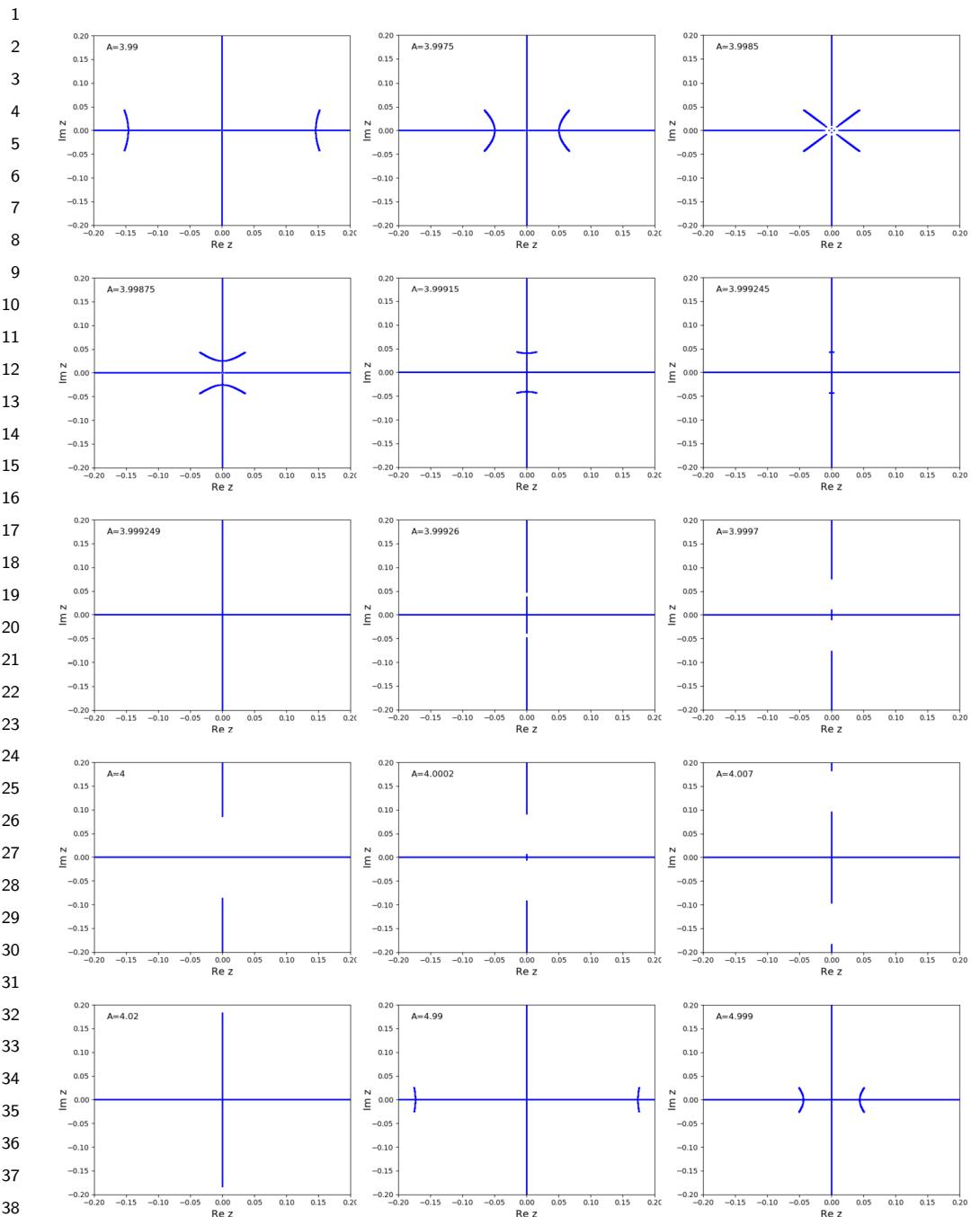


Fig. 4. The Lax spectrum $\Sigma(L)$ [computed numerically using Hill's method (see [21])] with potential $q \equiv A \operatorname{dn}(x; m)$, $m = 0.9$, and increasing values of A , illustrating the formation of new bands and gaps for non-integer values of A .

1 plot window are various bands and gaps along the imaginary axis (cf. Fig. 3) as well as
 2 the infinite number of spines growing off the real axis when $A \notin \mathbb{N}$. However, selecting
 3 a larger portion of the complex z -plane would have made it more difficult to see the
 4 dynamics of the bands and gaps near the origin. Starting from the smallest value of A
 5 in the set ($A = 3.99$, top left panel), one can see how, as A increases, a spine is pulled
 6 towards the origin, which it reaches at approximately $A = 3.9985$ (top right panel). As
 7 A increases further, the spine moves along the imaginary axis, simultaneously shrinking
 8 to zero at approximately $A = 3.999249$ (left plot in the third row). (Note that, even
 9 though the band is effectively gone at this value of A , the corresponding potential is still
 10 not finite-band due to the infinitely many spines that are still present outside the plot
 11 window.) As A increases further, the band edges of the previous spine bifurcate along
 12 the imaginary axis, giving rise to a new gap. Finally, at $A = 4$ (left plot in the fourth
 13 row), the lower edge of this new gap reaches the origin. This is also exactly the value of
 14 A at which the infinitely many spines shrink to zero. As A increases further, the band
 15 centered at $z = 0$ reappears, a new spine gets sucked towards the origin, and the cycle
 16 repeats.

17 In summary, every time A increases by one unit, two more spines from the real axis
 18 gets pulled into the imaginary axis, and a two new Schwarz symmetric gaps open on
 19 the imaginary axis. When A hits the next integer value, the lower band edges in the
 20 upper-half plane and the corresponding one in the lower-half plane reach the point $z = 0$.
 21 Simultaneously, all remaining spines emanating from the real z -axis shrink to zero, giving
 22 rise to a finite-band potential. As A keeps increasing, the spines grow back, and the
 23 process repeats.

24 It is also interesting to briefly describe the dynamics of the zero-level curves of
 25 $\text{Im } \Delta(z; m)$ near $z = 0$. Thanks to (8.5) and (8.6), we know that $\Delta_{zz}(0; 0) = 0$ if and
 26 only if $A \in \mathbb{Z}$. One can also see that $\Delta_{zzzz}(0; 0) \neq 0$ when $A \in \mathbb{Z}$. So, when $A \in \mathbb{Z}$, there
 27 are exactly eight zero-level curves of $\text{Im } \Delta$ emanating from $z = 0$. As it follows from
 28 Corollary 8.4, under a small $m > 0$ deformation from $m = 0$, a pair of these level curves
 29 will move up along the imaginary z -axis, while the other pair will symmetrically move
 30 down along $i\mathbb{R}^-$. It also follows from (8.2) that $s(z; 0)$ has a second-order zero at $z = 0$;
 31 that is, $s_1(0) \neq 0$, which will remain in place under a small $m > 0$ deformation according
 32 to (2.16), (2.17) and Corollary 8.4. This is another way to show that $s_1(m) \neq 0$ for small
 33 $m > 0$.

34

35 10. Discussion and concluding remarks

36

37 The results of this work provide an extension to the non-self-adjoint operator (1.2) of
 38 the classical works of Ince [47–49]. The results of this work also provide: (i) an example
 39 of Hill’s equation with a complex, PT-symmetric potential (and a corresponding com-
 40 plex deformation of Ince’s equation) whose spectrum is purely real, which is especially
 41 relevant, since the study of quantum mechanics with non-Hermitian, PT-symmetric po-
 42 tential continues to attract considerable interest (e.g. see [5, 9, 30] and references therein),

1 (ii) an example of an exactly solvable connection problem for Heun's ODE, and (iii) for
 2 the first time a perturbation approach to study the determination of the genus, and the
 3 movable Dirichlet eigenvalues was presented.

4 We point out that the fact that the elliptic potential (1.3) is finite-band for any
 5 $A \in \mathbb{N}$ can also be obtained as a consequence of the results of [40], where the potential
 6 $q(x) = n(\zeta(x) - \zeta(x - \omega_2) - \zeta(\omega_2))$ was studied (where $\zeta(x)$ is Weierstrass' zeta function
 7 and ω_2 one of the lattice generators [79]) and was shown to be finite-band when $n \in \mathbb{N}$
 8 using the criteria introduced there (see Appendix A.7 for details). In Appendix A.7 we
 9 also discuss other elliptic potentials satisfying the criteria laid out in [40]. On the other
 10 hand, no discussion of the spectrum (i.e., location of the periodic/antiperiodic eigenvalues
 11 and of the spectral bands) was present in [40].

12 It is also the case that the elliptic potential (1.3) is associated with the so-called
 13 Trebich-Verdier potentials [92] for Hill's equation (which are known to be algebro-
 14 geometric finite-band, see [88]) if and only if $A \in \mathbb{N}$, as we show in Appendix A.8.
 15 To the best of our knowledge, this connection had not been previously made in the
 16 literature.

17 The family of elliptic potentials (1.3) is especially important from an applicative
 18 point of view, since (as was discussed in Section 1) it interpolates between the plane
 19 wave potential $q(x) \equiv A$ when $m = 0$ and the Satsuma-Yajima (i.e., sech) potential
 20 $q(x) \equiv A \operatorname{sech} x$ when $m = 1$, which, when $A \in \mathbb{N}$, gives rise to the celebrated A -soliton
 21 bound-state solution of the focusing NLS equation [(1.5) with $s = 1$].

22 The potential $q(x) \equiv A \operatorname{sech} x$ has also been used in relation to the semiclassical limit
 23 of the focusing NLS equation. This is because, by letting $A = 1/\epsilon$ and performing a
 24 simple rescaling $x \mapsto \epsilon x$ and $t \mapsto \epsilon t$ of the spatial temporal variables, (1.5) is mapped
 25 into the semiclassical focusing NLS equation

$$27 \quad i\epsilon q_t + \epsilon^2 q_{xx} + 2|q|^2 q = 0, \quad (10.1) \quad 27$$

28 with the rescaled initial data $q(x, 0) \equiv \operatorname{dn}(x; m)$. The dynamics of solutions of (10.1) has
 29 been studied extensively in the literature (e.g., see [10, 13, 17, 19, 29, 55, 57, 70, 96]). In particular,
 30 it is known that, for a rather broad class of single-lobe initial conditions (including
 31 $q(x) \equiv \operatorname{sech} x$), the dynamics gives rise to a focusing singularity (gradient catastrophe)
 32 that is regularized by the formation of high-intensity peaks regularly arranged in the pat-
 33 tern of genus-2 solutions of the NLS equation. The caustic (i.e., breaking) curve along
 34 which the genus-2 region breaks off from the genus-0 region (characterized by a slowly
 35 modulated plane wave, in which the solution does not exhibit short-scale oscillations)
 36 has also been characterized, and it is conjectured that additional breaking curves exist,
 37 giving rise to regions of higher genus.

38 All of the above-cited works studied localized potentials on the line. However, sim-
 39 ilar behavior was observed for (10.1) with periodic potentials in [11], where a formal
 40 asymptotic characterization of the spectrum of the Zakharov-Shabat system (1.6a) in
 41 the semiclassical scaling was obtained using WKB methods, and in particular it was

1 shown that the genus is $O(1/\epsilon)$ as $\epsilon \rightarrow 0^+$. Some of the numerical results of [11] about
 2 the localization of the spectrum were rigorously proved in [12]. The results of the present
 3 work provide some rigorous evidence, for the dn potential (1.3), in support of the formal
 4 results of [11] about the genus of the potential as a function of ϵ .

5 We emphasize that, even though we limited our attention to the focusing NLS equation
 6 for simplicity, all the equations of the infinite NLS hierarchy (including the modified
 7 KdV equation, higher-order NLS equation, sine-Gordon equation, etc.) share the same
 8 Zakharov-Shabat scattering problem (1.6a). Therefore, the results of this work provide a
 9 two-parameter family of finite-band potentials for all the equations in the focusing NLS
 10 hierarchy.

11 The results of this work open up a number of interesting avenues for further study.
 12 In particular, an obvious question is whether these potentials are stable under pertur-
 13 bations. The stability of genus-1 solutions of the focusing NLS equation was recently
 14 studied in [22] by taking advantage of the machinery associated with the Lax represen-
 15 tation. A natural question is therefore whether similar results can also be used for the
 16 higher-genus potentials when $A > 1$ or whether different methods are necessary.

17 Another interesting question is whether more general elliptic finite-band potentials
 18 related to (1.3) exist. Recall that, for the focusing NLS equation on the line, the potential
 19 $q(x) = A \operatorname{sech} x e^{-ia \log(\cosh x)}$ (which reduces to $q(x) = A \operatorname{sech} x$ when $a = 0$) was shown
 20 in [95,96] to be amenable to exact analytical treatment. It is then natural to ask whether
 21 exactly solvable periodic potentials also exist related to $q(x) = A \operatorname{dn}(x; m)$ but with an
 22 extra non-trivial periodic phase.

23 Yet another question is related to the time evolution of the potential (1.3) according
 24 to the focusing NLS equation. When $A = 1$, time evolution is trivial, and the correspond-
 25 ing solution of the NLS equation is simply $q(x, t) = \operatorname{dn}(x; m) e^{i(2-m)t}$. That is not the
 26 case when $A > 1$, however. For the Dirac operator (1.2) on the line with reflectionless
 27 potentials, sufficient conditions were obtained in [68] guaranteeing that, if the discrete
 28 spectrum is purely imaginary, the corresponding solution of the focusing NLS equation
 29 is periodic in time. The natural question is then whether a similar result is also true
 30 for the elliptic potential (1.3), namely, whether such potentials generates a time-periodic
 31 solution of the focusing NLS equation when $A \in \mathbb{N}$.

32 The semiclassical limit of certain classes of periodic potentials (including the potential
 33 $\operatorname{dn}(x; m)$) generates a so-called breather gas for the focusing NLS equation (e.g., see
 34 [11,97]), which is to be understood as the thermodynamic limit of a finite-band solution
 35 of the focusing NLS equation where the genus $G \rightarrow \infty$ and simultaneously all bands
 36 but one shrink in size exponentially fast in G (see [94] for details). It was proposed that
 37 such gases be called periodic breather gases. Periodic gases have the important feature
 38 that, together with their spectral data (i.e., independent of the phase variables) such as
 39 the density of states, one also can obtain some information on a “realization” of the gas,
 40 namely, on the semiclassical evolution of the given periodic potential. Thus, progress
 41 in studying the $(2A - 1)$ -band solutions of the focusing NLS equation (with $A \in \mathbb{N}$)
 42 generated by the potential $q(x) = A \operatorname{dn}(x; m)$, and especially its large A limit, is of

1 definite interest. In fact, finite-band solutions to integrable systems (such as the KdV
 2 and NLS equations) generated by elliptic potentials, based on the work of Krichever [64],
 3 were studied in the literature. We will not go into the details of those results here, but it
 4 should be clear that any details about the family of finite-band solutions of the focusing
 5 NLS equation that homotopically “connect” the known behavior of the plane wave and
 6 the multi-soliton solutions will be very interesting to obtain and analyze.

8 Acknowledgments

10 This work was partially supported by the U.S. National Science Foundation under
 11 grant numbers DMS-2009487 (GB), and DMS-2009647 (AT), and the National Natural
 12 Science Foundation of China under grant number 12101590 (XDL). Part of this work was
 13 supported by the U.S. National Science Foundation under grant number 1440140 while
 14 JO was in residence at the Mathematical Sciences Research Institute (MSRI) in Berkeley,
 15 California, during the Fall 2021 semester program “Universality and Integrability in
 16 Random Matrix Theory and Interacting Particle Systems”.

18 Appendix A

20 A.1. Notation and function spaces

22 The Pauli spin matrices, used throughout this work, are defined as

$$24 \quad \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad (A.1)$$

27 Moreover, $L^\infty(\mathbb{R}; \mathbb{C}^2)$ is the space of essentially bounded Lebesgue measurable two-
 28 component vector functions with the essential supremum norm. Given the interval $I_{x_o} =$
 29 $[x_o, x_o + l]$ we define the inner product between two-component Lebesgue measurable
 30 functions ϕ and ψ as

$$32 \quad \langle \phi, \psi \rangle := \int_{x_o}^{x_o+l} (\phi_1 \bar{\psi}_1 + \phi_2 \bar{\psi}_2) dx. \quad (A.2)$$

36 Then $L^2(I_{x_o}; \mathbb{C}^2)$ denotes the set of two-component Lebesgue measurable vector functions
 37 that are square integrable, i.e., $\|\phi\|_{L^2(I_{x_o}; \mathbb{C}^2)} := \langle \phi, \phi \rangle^{1/2} < \infty$. Similarly, we define
 38 the inner product of two scalar Lebesgue measurable functions f and g as

$$40 \quad \langle f, g \rangle := \int_{x_o}^{x_o+l} f \bar{g} dx. \quad (A.3)$$

1 Then $L^2(I_{x_0}; \mathbb{C})$ denotes the set of scalar Lebesgue measurable functions that are square
 2 integrable, i.e., $\|f\|_{L^2(I_{x_0}; \mathbb{C})} := \langle f, f \rangle^{1/2} < \infty$. Finally, we define the inner product of
 3 two infinite sequences $c = \{c_n\}_{n \in \mathbb{Z}}$ and $d = \{d_n\}_{n \in \mathbb{Z}}$ as

$$5 \quad \langle c, d \rangle := \sum_{n \in \mathbb{Z}} c_n \bar{d}_n. \quad (A.4) \\ 6$$

7 Then $\ell^2(\mathbb{Z})$ denotes the set of square-summable sequences, i.e., $\|c\|_{\ell^2(\mathbb{Z})} := \langle c, c \rangle^{1/2} < \infty$.
 8 Finally, the space of continuous functions on the real axis is denoted $C(\mathbb{R})$, and $\mathbb{N}_0 :=$
 9 $\mathbb{N} \cup \{0\}$.

11 *A.2. Proof of two lemmas*

13 **Proof of Lemma 2.10.** To prove part (i) we begin by writing (1.1) as the coupled system of
 14 linear differential equations (1.6a). By Floquet theory $z \in \Sigma(L)$ if and only if $\phi = e^{i\nu x} \psi$,
 15 where $\psi = (\psi_1, \psi_2)^T$ with $\psi(x+l; z) = \psi(x; z)$, and $\nu \in [0, 2\pi/l]$. Plugging this expression
 16 into (1.6a) yields the modified system

$$18 \quad i\psi_{1,x} - iq\psi_2 = (z + \nu)\psi_1, \quad i\psi_{2,x} + iq\psi_1 = (-z + \nu)\psi_2. \quad (A.5) \\ 19$$

20 Multiplying the first of these equations by $\bar{\psi}_1$ and taking the complex conjugate yields
 21 two equations, which we integrate over a full period, arriving at the expressions

$$23 \quad i\langle q\psi_2, \psi_1 \rangle = -i\langle \psi_1, \psi_{1,x} \rangle - (z + \nu)\|\psi_1\|_{L^2([0,l])}^2, \\ 24 \quad i\langle \psi_1, q\psi_2 \rangle = i\langle \psi_1, \psi_{1,x} \rangle + (\bar{z} + \nu)\|\psi_1\|_{L^2([0,l])}^2,$$

26 where boundary terms vanish since $\psi_1(x+l; z) = \psi_1(x; z)$. Adding these two expressions
 27 then one gets

$$29 \quad -\text{Im } z\|\psi_1\|_{L^2([0,l])}^2 = \text{Re}\langle q\psi_2, \psi_1 \rangle. \quad (A.6) \\ 30$$

31 Similarly, the second equation of (A.5) yields

$$33 \quad i\langle \psi_1, q\psi_2 \rangle = i\langle \psi_2, \psi_{2,x} \rangle + (-z + \nu)\|\psi_2\|_{L^2([0,l])}^2, \\ 34 \quad i\langle q\psi_2, \psi_1 \rangle = -i\langle \psi_2, \psi_{2,x} \rangle + (\bar{z} - \nu)\|\psi_2\|_{L^2([0,l])}^2,$$

36 as well as

$$38 \quad -\text{Im } z\|\psi_2\|_{L^2([0,l])}^2 = \text{Re}\langle q\psi_2, \psi_1 \rangle. \quad (A.7) \\ 39$$

40 Equating (A.6) and (A.7) we conclude that if $|\text{Im } z| > 0$, then

$$42 \quad \|\psi_1\|_{L^2([0,l])} = \|\psi_2\|_{L^2([0,l])}. \quad (A.8)$$

1 Next, note that $|\langle q\psi_2, \psi_1 \rangle| \leq \langle |q\psi_2|, |\psi_1| \rangle$. Also, since q is not constant, there exists
 2 $(a, b) \subset (0, l)$ such that $|q(x)| < \|q\|_\infty$ for $x \in (a, b)$. Thus, for $|\operatorname{Im} z| > 0$ it follows
 3 from (A.8) and the Hölder inequality that

$$4 \quad 5 \quad 0 < |\operatorname{Im} z| \|\psi_1\|_{L^2([0,l])}^2 = |\operatorname{Re} \langle q\psi_2, \psi_1 \rangle| < \|q\|_\infty \langle |\psi_2|, |\psi_1| \rangle \\ 6 \quad 7 \quad \leq \|q\|_\infty \|\psi_1\|_{L^2([0,l])}^2.$$

8 Hence $|\operatorname{Im} z| < \|q\|_\infty$ for $z \in \Sigma(L)$. The proof of (ii) which can be found in [12] follows
 9 from Lemma 2.9 and since $\Delta(z)$ is an analytic function of z . \square

10
 11 **Lemma A.1.** *Consider the Dirac operator (1.2). If the potential $q \equiv A \operatorname{dn}(x; m)$, then the*
 12 *monodromy matrix $M(z; m)$ is an analytic function of m for any $m \in [0, 1)$.*

13
 14 **Proof.** The result follows from two key facts. One is that $\operatorname{dn}(x; m)$ is an analytic function
 15 of m for all $|m| \leq 1$ [103]. The second is the fact that solutions of ODEs with analytic de-
 16 pendence on variables and parameters are analytic (see [18] pp. 23–32 and [50] p. 72). \square

17
 18 *A.3. Solution of the ZS system at $z = 0$*

19
 20 We have seen that, for q real, the eigenvalue problem (1.1) can be reduced to second-
 21 order scalar ODEs (3.3). Consider (3.3) with $\lambda = 0$, namely $v_{xx}^\pm + (\pm i q_x + q^2) v^\pm = 0$.
 22 Using the ansatz $v^\pm = e^{\pm f}$, one gets $\pm f_{xx} + (f_x)^2 \pm i q_x + q^2 = 0$. Then, letting $g = f_x$
 23 yields $\pm g_x + g^2 = \mp i q_x - q^2$ with a solution given by $g = \mp i q$. In particular, it follows
 24 $g^2 = -q^2$. Hence, we have derived the following solution to the ODEs (3.3) for $\lambda = 0$,
 25 namely,

$$26 \quad 27 \quad v^\pm(x; 0) = e^{\mp i \int_0^x q(s) \, ds}. \quad (\text{A.9})$$

28
 29 Next, using the invertible change of variables (3.1), one gets the following solution to the
 30 eigenvalue problem (1.1) when $z = 0$:

$$32 \quad 33 \quad \phi(x; 0) = \left(\cos \left(\int_0^x q(s) \, ds \right), -\sin \left(\int_0^x q(s) \, ds \right) \right)^T. \quad (\text{A.10a})$$

34
 35 Moreover, using Rofe-Beketov's formula [83], one obtains a second linearly independent
 36 solution as:

$$38 \quad 39 \quad \tilde{\phi}(x; 0) = \left(\sin \left(\int_0^x q(s) \, ds \right), \cos \left(\int_0^x q(s) \, ds \right) \right)^T. \quad (\text{A.10b})$$

40
 41 Thus, the Floquet discriminant (2.5) for eigenvalue problem (1.1) at $z = 0$ is

$$\Delta(0) = \cos \left(\int_0^l q(s) \, ds \right), \quad (\text{A.11})$$

where l is the period of the potential. We can now prove Lemma 2.17.

Proof of Lemma 2.17. Using well-known properties of the Jacobi elliptic functions (see [43,79]), when $q(x) = A \operatorname{dn}(x; m)$, (A.10a), (A.10b) and (A.11) yield, respectively

$$\phi(x; 0, A, m) = \left(\cos(A \operatorname{am}(x; m)), -\sin(A \operatorname{am}(x; m)) \right)^T, \quad (\text{A.12a})$$

$$\tilde{\phi}(x; 0, A, m) = \left(\sin(A \operatorname{am}(x; m)), \cos(A \operatorname{am}(x; m)) \right)^T, \quad (\text{A.12b})$$

$$\Delta(0; A, m) = \cos(A\pi). \quad (\text{A.12c})$$

In particular, $\phi(0; 0, A, m) = (1, 0)^T$, and $\phi(2K; 0, A, m) = (\cos(A\pi), \sin(A\pi))^T$. Therefore, we have that $\phi(x + 2K; 0, A, m) = \phi(x; 0, A, m)$ if and only if $A \in 2\mathbb{Z}$, and $\phi(x + 2K; 0, A, m) = -\phi(x; 0, A, m)$ if and only if $A \in 2\mathbb{Z} + 1$, with similar relations for $\tilde{\phi}$. Thus, when A is an even integer, $z = 0 \in \Sigma_+(L)$, whereas when A is an odd integer, $z = 0 \in \Sigma_-(L)$. Finally, the above calculations also show that, for $q \equiv A \operatorname{dn}(x; m)$ with $A \in \mathbb{Z}$ the eigenvalue $z = 0$ has geometric multiplicity two. \square

A.4. Transformation of the ZS system into a Heun system

If the potential q is real, then the change of dependent variable $\phi = \frac{1}{2} \operatorname{diag}(1, -i)(\sigma_3 + \sigma_1) v$, maps the ZS system (1.6a) into the equivalent system

$$v_x = -i(z\sigma_1 + q\sigma_3)v. \quad (\text{A.13})$$

Then the transformation $t = 2\operatorname{am}(x; m)$ maps (A.13) to the trigonometric first-order system

$$v_t = -\frac{i}{2} \left(A\sigma_3 + \frac{z\sigma_1}{\sqrt{1 - m \sin^2 \frac{t}{2}}} \right) v, \quad (\text{A.14})$$

which is equivalent to (4.2). Finally, the transformation $\zeta = e^{it}$ maps (A.14) to

$$\zeta v_\zeta = -\frac{1}{2} \left(A\sigma_3 + \frac{z\sigma_1}{\sqrt{1 - \frac{m}{2}(1 - \frac{1}{2}(\zeta + \zeta^{-1}))}} \right) v, \quad (\text{A.15})$$

and the transformation

$$v = \Xi w, \quad \Xi = \operatorname{diag} \left(1, \frac{1}{z} \sqrt{1 - \frac{m}{2}(1 - \frac{1}{2}(\zeta + \zeta^{-1}))} \right), \quad (\text{A.16})$$

1 maps (A.15) to the Heun system (5.6) where $\lambda = z^2$. The Heun system (5.6) has four
 2 (regular) singular points, located at $\zeta = 0, \zeta_{1,2}, \infty$, where $\zeta_{1,2}$ are zeros of the denominator
 3 in (5.6). The Frobenius exponents at the singularities can be derived directly
 4 from (5.6).

5

6 *A.5. Augmented convergence and Perron's rule*

7

8 In general the Frobenius series (5.7a) with base point $\zeta = 0$ only converges for $|\zeta| < |\zeta_1|$
 9 and the series (5.7b) with base point $\zeta = \infty$ only converges for $|\zeta| > |\zeta_2|$. Therefore,
 10 neither expansion is convergent on $|\zeta| = 1$ in general. However, there exist certain values
 11 of λ for which one or both of the Frobenius series have a larger (i.e., augmented) radius
 12 of convergence. These are precisely the periodic/antiperiodic eigenvalues of the problem,
 13 and Perron's rule provides a constructive way to identify them (see also [4,31,48,50,85]
 14 for further details).

15 We begin by noting that, by dividing all coefficients by n^2 , all four three-term recurrence
 16 relations (5.8), (5.9), (5.10) and (5.11) can be rewritten as
 17

$$18 \quad e_0 c_0 + f_0 c_1 = 0, \quad n = 0, \quad (\text{A.17a})$$

$$19 \quad d_n c_{n-1} + e_n c_n + f_n c_{n+1} = 0, \quad n = 1, 2, \dots \quad (\text{A.17b})$$

20 with $f_n \neq 0$, and $d_n \rightarrow d$, $e_n \rightarrow e$, and $f_n \rightarrow f$ as $n \rightarrow \infty$. Perron's rule [31,80] states
 21 that, if ξ_{\pm} are the roots of the quadratic equation
 22

$$23 \quad f\xi^2 + e\xi + d = 0, \quad (\text{A.18})$$

24 with $|\xi_-| < |\xi_+|$, then $\lim_{n \rightarrow \infty} c_{n+1}/c_n = \xi_+$, unless the coefficients d_n, e_n, f_n satisfy the
 25 infinite continued fraction equation
 26

$$27 \quad \frac{e_0}{f_0} = \frac{d_1}{e_1 - \frac{d_2 f_1}{e_2 - \frac{d_3 f_2}{e_3 - \dots}}}, \quad (\text{A.19})$$

28 in which case $\lim_{n \rightarrow \infty} c_{n+1}/c_n = \xi_-$. That is, Perron's rule implies that, generically, the
 29 radius of convergence of the series $\sum_{n=0}^{\infty} c_n \zeta^n$ is $1/|\xi_+|$. However, if and only if (A.19)
 30 holds, the radius of convergence is $1/|\xi_-|$, and therefore larger. In our case, the roots
 31 ξ_{\pm} of (A.18) are exactly the singular points $\zeta_{1,2}$ of Heun's ODE (5.2). Then, since e_n
 32 depends on λ , (A.19) is a condition that determines the exceptional values of λ that
 33 guarantee augmented convergence. Indeed, (A.19) is equivalent to requiring that λ is an
 34 eigenvalue of T_o^{\pm} (resp. T_{∞}^{\pm}).
 35

1 **1.6. Generalized convergence of closed operators**2
3 Here we briefly discuss the generalized convergence of closed operators, (see [58] p. 197
4 for a detailed discussion). Consider $\mathfrak{C}(\mathcal{X}, \mathcal{Y})$ the space of closed linear operators between
5 Banach spaces. If $T, S \in \mathfrak{C}(\mathcal{X}, \mathcal{Y})$, their graphs $G(T), G(S)$ are closed linear manifolds
6 on the product space $\mathcal{X} \times \mathcal{Y}$. Set $\hat{\delta}(T, S) = \hat{\delta}(G(T), G(S))$, i.e., the *gap* between T and
7 S . (See [58] p. 197 for the definition of $\hat{\delta}(T, S)$.) Similarly, we can define the *distance*
8 $\hat{d}(T, S)$ between T and S as equal to $\hat{\delta}(G(T), G(S))$. (See [58] p. 198 for the definition
9 of $\hat{d}(T, S)$.) With this distance function $\mathfrak{C}(\mathcal{X}, \mathcal{Y})$ becomes a metric space.10 In this space the convergence of a sequence $T_n \rightarrow T \in \mathfrak{C}(\mathcal{X}, \mathcal{Y})$ is defined by
11 $\hat{\delta}(T_n, T) \rightarrow 0$. Since $\hat{\delta}(T, S) \leq \hat{d}(T, S) \leq 2\hat{\delta}(T, S)$ ([58] p. 198) this is true if and only
12 if $\hat{\delta}(T_n, T) \rightarrow 0$. In this case we say $T_n \rightarrow T$ in the *generalized sense*. This notion of
13 generalized convergence for closed operators is a generalization of convergence *in norm*.
14 Importantly, the convergence of closed operators in the generalized sense implies the
15 continuity of a finite system of eigenvalues ([58] p. 213).16 **1.7. Gesztesy-Weikard criterion for finite-band potentials**17 According to Theorem 1.2 from [40], an elliptic potential $Q(x)$ of the Dirac operator
18 ([1.2]) is finite-band if and only if its fundamental matrix solution $\Phi(x; z)$ is
19 meromorphic in x for all $z \in \mathbb{C}$.20 **Theorem A.2.** Consider (1.2), then $q \equiv A \operatorname{dn}(x; m)$ with $m \in (0, 1)$ is finite-band if and
21 only if $A \in \mathbb{Z}$.22 **Proof.** The (simple) poles of $\operatorname{dn}(x; m)$ within the fundamental period $2jK + 4niK'$ are
23 at $x = iK'$ and $x = 3iK'$ where $K' := K(1 - m)$. By the Schwarz symmetry, it is
24 sufficient to consider only the pole at iK' . The residue at iK' is $-i$ ([43], 8.151) and the
25 local Laurent expansion is odd. Let $\Phi(u) := \Phi(x - iK'; z)$ and note $\operatorname{dn}(x + iK'; m) =$
26 $-i \operatorname{cn}(u; m) / \operatorname{sn}(u; m)$ ([14], p. 20). Substitution into (A.13) gives

32
$$u\Phi_u(u) = [-izu\sigma_3 + (A + u^2 p(u))\sigma_2]\Phi(u) =: B(u)\Phi(u), \quad (\text{A.20})$$
 33

34 where $p(u)$ is analytic near $u = 0$ and even, and is meromorphic near $u = 0$ for all $z \in \mathbb{C}$.
35 The leading order term of $B(u)$ is $A\sigma_2$ with eigenvalues $\lambda = \pm A$. Thus, meromorphic
36 $\Phi(u)$ requires $A \in \mathbb{Z}$.37 To show that $A \in \mathbb{Z}$ is also a sufficient condition we need to show that $\Phi(u)$ does not
38 contain logarithms, i.e., regular singular point $u = 0$ is non-resonant. To do so we need
39 to shift the spectrum of the leading term of $B(u)$ to a single point, for example, $-A$.
40 Without loss of generality, we can assume $A > 0$. Since

41
$$\frac{1}{2}(\mathbf{1} - i\sigma_1)\sigma_2(\mathbf{1} + i\sigma_1) = \sigma_3, \quad \frac{1}{2}(\mathbf{1} - i\sigma_1)\sigma_3(\mathbf{1} + i\sigma_1) = -\sigma_2, \quad (\text{A.21})$$
 42

1 we first diagonalize the leading term $A\sigma_2$ by the transformation $\Phi = (\mathbf{1} + i\sigma_1)\tilde{\Phi}$. Then
 2 (A.20) becomes

$$4 u\tilde{\Phi}_u = [izu\sigma_2 + (A + u^2 p(u))\sigma_3]\tilde{\Phi}. \quad (A.22)$$

5 Then the shearing transformation $\tilde{\Phi} = \text{diag}(u, 1)\Psi$ reduces (A.22) to
 6

$$7 u\Psi_u = \left[\begin{pmatrix} A-1 & z \\ 0 & -A \end{pmatrix} + u^2 \begin{pmatrix} p(u) & 0 \\ -z & -p(u) \end{pmatrix} \right] \Psi. \quad (A.23)$$

10 After diagonalizing the leading term, we obtain
 11

$$12 u\tilde{\Psi}_u = \left[\begin{pmatrix} A-1 & 0 \\ 0 & -A \end{pmatrix} + u^2 \begin{pmatrix} \tilde{p}(u) & r(u) \\ -z & -\tilde{p}(u) \end{pmatrix} \right] \tilde{\Psi}, \quad (A.24)$$

15 where $\tilde{p}(u), r(u)$ are even and analytic at $u = 0$ functions. Thus, the coefficient of (A.24)
 16 is an analytic and even matrix function.

17 If $A = 1$, one more shearing transformation would produce leading order term $-\mathbf{1}$,
 18 which is non-resonant (no non trivial Jordan block) and, thus, the result would follow. If
 19 $A > 1$, we apply shearing transformations with the matrix $\text{diag}(u^2, 1)$ with consequent
 20 diagonalizations that will shift the $(1, 1)$ entry of the leading term by -2 and preserve
 21 the analyticity and evenness of the coefficient. When the difference of the eigenvalues of
 22 the leading term becomes one, we repeat the last step of the case $A = 1$. \square
 23

24 **Corollary A.3.** *For the Dirac operator (1.2), $q \equiv A \text{ cn}(x; m)$ with $m \in (0, 1)$ and $A > 0$
 25 is finite-band if and only if $A = \sqrt{mn}$ with $n \in \mathbb{Z}$, while $q \equiv A \text{ sn}(x; m)$ is not finite-band
 26 for any $A > 0$.*

27 **Proof.** The function $\text{cn}(x; m)$ has the same locations of simple poles as $\text{dn}(x; m)$. Given
 28 that the residues of the poles $2jK + iK'$ for $j \in \mathbb{Z}$ of $\text{cn}(x; m)$ are $(-1)^{j-1}i/\sqrt{m}$, it is
 29 clear that the choice of A given above leads to integer Frobenius exponents. To prove
 30 the non-resonance conditions, we notice that in Theorem A.2 we used only the fact that
 31 $\text{dn}(x; m)$ has an odd Laurent expansion at the pole. Since this is also true for ([43], 8.151)
 32 the proof is complete. Similar arguments show that $A \text{ sn}(x; m)$ is never finite-band. \square
 33

34 35 A.8. Connection between Heun's equation and Treibich-Verdier potentials

36 37 It was shown in [88] that the Heun ODE in standard form:

$$38 39 \frac{d^2y}{d\zeta^2} + \left(\frac{\gamma}{\zeta} + \frac{\delta}{\zeta-1} + \frac{\epsilon}{\zeta-a} \right) \frac{dy}{d\zeta} + \frac{\alpha\beta\zeta - \xi}{\zeta(\zeta-1)(\zeta-a)} y = 0 \quad (A.25)$$

41 42 is associated with the so-called Treibich-Verdier potentials (defined below) for Hill's
 43 equation [92], where $\alpha, \beta, \gamma, \delta, \epsilon, \xi, a$ (with each of them $\neq 0, 1$) are complex parameters

1 linked by the relation $\gamma + \delta + \epsilon = \alpha + \beta + 1$. Specifically, the Heun equation (A.25) can
 2 be transformed into

$$4 \quad \left(-\frac{d^2}{dx^2} + \sum_{i=0}^3 l_i(l_i + 1)\wp(x + \omega_i) - E \right) f(x) = 0 \quad (A.26)$$

7 via the transformation $f(x) = y\zeta^{-l_1/2}(\zeta - 1)^{-l_2/2}(\zeta - a)^{-l_3/2}$, where $\wp(x)$ is the Weier-
 8 strass \wp -function with periods $\{2\omega_1, 2\omega_3\}$, where $\omega_1/\omega_3 \notin \mathbb{R}$ and

$$10 \quad \omega_0 = 0, \quad \omega_2 = -\omega_1 - \omega_3, \quad e_i = \wp(\omega_i), \quad z = \frac{\wp(x) - e_1}{e_2 - e_1}, \quad a = \frac{e_3 - e_1}{e_2 - e_1},$$

12 $E = (e_2 - e_1)[-4\xi + (-(\alpha - \beta)^2 + 2\gamma^2 + 6\gamma\epsilon + 2\epsilon^2 - 4\gamma - 4\epsilon - \delta^2 + 2\delta + 1)/3 + (-(\alpha - \beta)^2 + 2\gamma^2 + 6\gamma\delta + 2\delta^2 - 4\gamma - 4\delta - \epsilon^2 + 2\epsilon + 1)a/3]$, and the coefficients l_i in (A.26) are
 13 connected with the parameters in (A.25) as follows:

$$16 \quad l_0 = \beta - \alpha - \frac{1}{2}, \quad l_1 = -\gamma + \frac{1}{2}, \quad l_2 = -\delta + \frac{1}{2}, \quad l_3 = -\epsilon + \frac{1}{2}. \quad (A.27)$$

18 It is known that the potential $\sum_{i=0}^3 l_i(l_i + 1)\wp(x + \omega_i)$ is a (finite-band) Treibich-Verdier
 19 potential if and only if $l_i \in \mathbb{Z}$, $i = 0, 1, 2, 3$ [92]. Note that the periods $\{2\omega_1, 2\omega_3\}$ of $\wp(x)$
 20 are not uniquely determined.

21 In this subsection we show the special case of the Heun equation (5.2) considered in
 22 this work corresponds to a Treibich-Verdier potential if and only if $A \in \mathbb{Z}$. To show this,
 23 we employ the conformal mapping $\tilde{\zeta} := \zeta/\zeta_1$. Under this transformation, and recalling
 24 the relation $\zeta_2 = 1/\zeta_1$, the Heun equation (5.2) is mapped into

$$26 \quad \frac{d^2y}{d\tilde{\zeta}^2} + \frac{\frac{3}{2}\tilde{\zeta}^2 - (\frac{2m-4}{m\zeta_1})\tilde{\zeta} + \frac{1}{2\zeta_1^2}}{\zeta(\zeta - 1)(\zeta - 1/\zeta_1^2)} \frac{dy}{d\tilde{\zeta}} - \frac{\frac{1}{4}A(A+1)\tilde{\zeta}^2 + (\frac{\lambda + A^2(1-m/2)}{m\zeta_1})\tilde{\zeta} + \frac{1}{4\zeta_1^2}A(A-1)}{\tilde{\zeta}^2(\zeta - 1)(\zeta - 1/\zeta_1^2)} y = 0. \quad (A.28)$$

29 The four regular singularities $\{0, \zeta_1, \zeta_2, \infty\}$ of (5.2) are mapped into $\{0, 1, 1/\zeta_1^2, \infty\}$.
 30 Moreover, applying the change of dependent variable $y(\zeta) = \zeta^\rho \tilde{y}(\zeta)$ to (A.25) yields
 31

$$32 \quad \tilde{y}_{\zeta\zeta} + P(\zeta)\tilde{y}_\zeta + Q(\zeta)\tilde{y} = 0, \quad (A.29)$$

34 where

$$36 \quad P(\zeta) = \frac{\gamma + 2\rho}{\zeta} + \frac{\delta}{\zeta - 1} + \frac{\epsilon}{\zeta - a},$$

$$37 \quad Q(\zeta) = \frac{\rho(\rho - 1 + \gamma)}{\zeta^2} + \frac{\delta\rho}{\zeta(\zeta - 1)} + \frac{\epsilon\rho}{\zeta(\zeta - a)} + \frac{\alpha\beta\zeta - \xi}{\zeta(\zeta - 1)(\zeta - a)}.$$

41 Note that (A.28)) and (A.29) are of the same form with $a = 1/\zeta_1^2$ and $\zeta_1 = [m - 42 \quad 2 + 2\sqrt{1-m}]/m$. Reducing to a common denominator for $P(\zeta)$ and comparing the

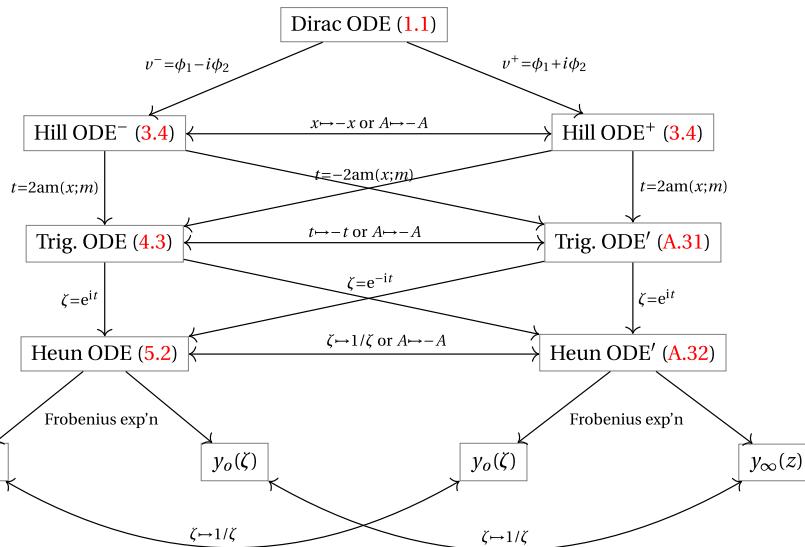


Fig. A.5. Relations between the various ODEs and solutions discussed throughout this work.

corresponding coefficients with (A.28) leads to $\gamma + 2\rho = 1/2$, $\delta = 1/2$ and $\epsilon = 1/2$, which implies that $l_2 = l_3 = 0$. Repeating the same procedure for $Q(\zeta)$, we find that: (i) $\rho = (A - 1)/2$ or $\rho = -A/2$, and; (ii) $-A(A + 1)/4 = -\rho(\rho - 1/2) + \alpha\beta$.

Now we discuss the two possible cases for ρ : If $\rho = (A - 1)/2$, then $\gamma = 3/2 - A$ and $\alpha\beta = 1/2 - A$. Combining $\alpha + \beta = \gamma + \delta + \epsilon - 1 = \gamma$, one obtains $l_1 = A - 1$ and $l_0 = -1 - A$ or A . Alternatively, if $\rho = -A/2$, then $\gamma = 1/2 + A$, $\alpha\beta = 0$, and $\alpha + \beta = 1/2 + A$. It turns out that $l_1 = -A$ and $l_0 = -1 - A$ or A . Either way, we therefore have that $l_0, l_1 \in \mathbb{Z}$ if and only if $A \in \mathbb{Z}$.

A.9. Transformations $A \mapsto -A$ and $\zeta \mapsto 1/\zeta$

The maps $A \mapsto -A$ and $\zeta \mapsto 1/\zeta$ allow one to establish a connection between several related objects. Specifically, using the change of independent variable (4.1), Hill's equation $H^+v^+ = \lambda v^+$ is mapped into the following second-order ODE with trigonometric coefficients

$$4(1 - m \sin^2 \frac{t}{2})y_{tt} - (m \sin t)y_t + (\lambda + A^2(1 - m \sin^2 \frac{t}{2}) - \frac{i}{2}Am \sin t)y = 0. \quad (\text{A.30})$$

Next, applying the transformation $\zeta = e^{it}$ to (A.30) yields another Heun ODE, namely,

$$\zeta^2 F(\zeta; m)y_{\zeta\zeta} + \zeta G(\zeta; m)y_\zeta + \tilde{H}(\zeta; \lambda, A, m)y = 0, \quad (\text{A.31})$$

where $F(\zeta; m)$ and $G(\zeta; m)$ are still given by (5.3a) and (5.3b), respectively, and with $\tilde{H} := H(\zeta; \lambda, -A, m)$. Note that the four regular singular points of (5.2) and (A.31) are

1 the same. The full chain of transformations and correspondences is summarized in the
 2 commutative diagram in Fig. A.5.

3

4 Uncited references

5

6 [23] [44] [61] [89] [90]

7

8 **References**

9

10 [1] M.J. Ablowitz, H. Segur, *Solitons and the Inverse Scattering Transform*, SIAM, Philadelphia, 1981.
 11 [2] M.J. Ablowitz, B. Prinari, A.D. Trubatch, *Discrete and Continuous Nonlinear Schrödinger Systems*, Cambridge University Press, Cambridge, 2004.
 12 [3] G.P. Agrawal, *Nonlinear Fiber Optics*, Academic Press, New York, 2007.
 13 [4] F.M. Arscott, *Periodic Differential Equations and Introduction to Mathieu, Lamé and Allied Functions*, Pergamon Press, Oxford, 1964.
 14 [5] F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil (Eds.), *Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects*, Wiley, 2015.
 15 [6] R. Beals, R. Coifman, Scattering and inverse scattering for first order systems, *Commun. Pure Appl. Math.* 37 (1984) 39–90.
 16 [7] R. Beals, P. Deift, C. Tomei, *Direct and Inverse Scattering on the Line*, American Mathematical Society, 1988.
 17 [8] E.D. Belokolos, A.I. Bobenko, V.Z. Enol'skii, A.R. Its, V.B. Matveev, *Algebro-Geometric Approach to Nonlinear Integrable Equations*, Springer-Verlag, Berlin, 1994.
 18 [9] C.M. Bender, Introduction to PT-symmetric quantum theory, *Contemp. Phys.* 46 (2005) 277–292.
 19 [10] M. Bertola, A. Tovbis, Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I, *Commun. Pure Appl. Math.* 66 (2013) 678–752.
 20 [11] G. Biondini, J. Oregero, Semiclassical dynamics in self-focusing nonlinear media with periodic initial conditions, *Stud. Appl. Math.* 145 (2020) 325–356.
 21 [12] G. Biondini, J. Oregero, A. Tovbis, On the spectrum of the periodic focusing Zakharov-Shabat operator, *J. Spectr. Theory* 12 (2022) 939–992.
 22 [13] J.C. Bronski, J.N. Kutz, Numerical simulation of the semiclassical limit of the focusing nonlinear Schrödinger equation, *Phys. Lett. A* 254 (1999) 335–336.
 23 [14] P.F. Byrd, M.D. Friedman, *Handbook of Elliptic Integrals for Engineers and Scientists*, Springer-Verlag, Berlin, 1971.
 24 [15] B.M. Brown, M.S.P. Eastham, K.M. Schmidt, *Periodic Differential Operators*, Springer, New York, 2013.
 25 [16] J.D. Carter, H. Segur, Instabilities in the two-dimensional cubic nonlinear Schrödinger equation, *Phys. Rev. E* 68 (2003) 045601.
 26 [17] S.R. Clarke, P.D. Miller, Semi-classical limit for the focusing nonlinear Schrödinger equation: sensitivity to analytic properties of the initial data, *Proc. R. Soc. Lond. A* 458 (2002) 135–156.
 27 [18] E.A. Coddington, N. Levinson, *Theory of Ordinary Differential Equations*, Krieger, 1995.
 28 [19] C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, S. Trillo, Observation of a gradient catastrophe generating solitons, *Phys. Rev. Lett.* 102 (2009) 083902.
 29 [20] E. Date, S. Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, *Prog. Theor. Phys. Suppl.* 59 (1976) 107–125.
 30 [21] B. Deconinck, J. Kutz, Computing spectra of linear operators using the Floquet-Fourier-Hill method, *J. Comput. Phys.* 219 (2006) 296–321.
 31 [22] B. Deconinck, B.L. Segal, The stability spectrum for elliptic solutions to the focusing NLS equation, *Physica D* 346 (2017) 1–19.
 32 [23] P.A. Deift, *Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach*, AMS, Providence, 1998.
 33 [24] P. Deift, E. Trubowitz, Inverse scattering on the line, *Commun. Pure Appl. Math.* 32 (1979) 121–252.
 34 [25] P. Djakov, B. Mityagin, Instability zones of periodic 1-dimensional Schrödinger and Dirac operators, *Russ. Math. Surv.* 61 (2006) 663–766.

1 [26] P. Djakov, B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, *J. Differ. Equ.* 210 (2005) 178–216.

2 [27] B. Dubrovin, Periodic problems for the Korteweg–de Vries equation in the class of finite band 3 potentials, *Funct. Anal. Appl.* 9 (3) (1975) 215–223.

4 [28] M.S.P. Eastham, *The Spectral Theory of Periodic Differential Equations*, Scottish Academic Press, 5 London, 1973.

6 [29] G.A. El, E.G. Khamis, A. Tovbis, Dam break problem for the focusing nonlinear Schrödinger 7 equation and the generation of rogue waves, *Nonlinearity* 29 (2016) 2798.

8 [30] R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, 9 Non-Hermitian physics and PT symmetry, *Nat. Phys.* 14 (2018) 11–19.

10 [31] A. Erdélyi (Ed.), *Bateman Manuscript Project. Vol. III - Higher Transcendental Functions*, 11 McGraw-Hill, New York, 1955.

12 [32] L.D. Faddeev, L.A. Takhtajan, *Hamiltonian Methods in the Theory of Solitons*, Springer, Berlin, 13 1987.

14 [33] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, *Ann. Sci. Éc. Norm. Supér.* 12 (1883) 47–88.

16 [34] M.G. Forest, J.E. Lee, Geometry and modulation theory for the periodic nonlinear Schrödinger 17 equation, in: *IMA Volumes in Mathematics and Its Applications*, Springer, New York, 1986, 18 pp. 35–69.

19 [35] A. Fratalocchi, C. Conti, G. Ruocco, S. Trillo, Free-energy transition in a gas of noninteracting 20 nonlinear wave particles, *Phys. Rev. Lett.* 101 (2008) 044101.

22 [36] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-deVries 23 equation, *Phys. Rev. Lett.* 19 (1967) 1095.

25 [37] F. Gesztesy, H. Holden, *Soliton Equations and Their Algebro–Geometric Solutions*, vol. I, Cambridge 26 University Press, Cambridge, 2003.

27 [38] F. Gesztesy, P. Deift, C. Galvez, P. Perry, W. Schlag (Eds.), *Spectral Theory and Mathematical 28 Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday*, AMS, 2007.

30 [39] F. Gesztesy, R. Weikard, Picard potentials and Hill’s equation on a torus, *Acta Math.* 176 (1996) 29 73–107.

32 [40] F. Gesztesy, R. Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS 33 hierarchy, *Acta Math.* 181 (1998) 63–108.

35 [41] F. Gesztesy, R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchy: an 36 analytic approach, *Bull. Am. Math. Soc.* 35 (1998) 271–317.

38 [42] G.H. Golub, G. Meurant, *Matrices, Moments, and Quadrature with Applications*, Princeton 39 University Press, 2010.

40 [43] I.S. Gradshteyn, I.M. Ryzhik, *Table of Integrals, Series, and Products* Seventh Ed., Academic 41 Press, Burlington, 2007.

42 [44] B. Grébert, T. Kappeler, Estimates on periodic and Dirichlet eigenvalues for the Zakharov-Shabat 43 system, *Asymptot. Anal.* 25 (2001) 201–237.

45 [45] A. Hasea-Hill, A. Hallnäs, P. Veselov, On the spectra of real and complex Lamé operators, *SIGMA* 46 13 (2017) 049.

47 [46] R.A. Horn, C.R. Johnson, *Matrix Analysis*, Cambridge University Press, New York, 1985.

48 [47] E.L. Ince, A linear differential equation with periodic coefficients, *Proc. Lond. Math. Soc.* 2 (1925) 49 56–74.

50 [48] E.L. Ince, V.–The periodic Lamé functions, *Proc. R. Soc. Edinb.* 60 (1940) 47–63.

52 [49] E.L. Ince, VII.–Further investigations into the periodic Lamé functions, *Proc. R. Soc. Edinb.* 60 53 (1940) 83–99.

54 [50] E.L. Ince, *Ordinary Differential Equations*, Dover, New York, 1956.

56 [51] A.R. Its, V.P. Kotlyarov, Explicit formulas for the solutions of a nonlinear Schroedinger equation, 57 *Dokl. Akad. Nauk Ukr.* 10 (1976) 965–968, English translation: arXiv:1401.4445 [nlin.si].

58 [52] A.R. Its, V.B. Matveev, Hill’s operator with finitely many gaps, *Funct. Anal. Appl.* 9 (1975) 69–70.

60 [53] A.R. Its, V.B. Matveev, Schrödinger operators with finite-gap spectrum and soliton solutions of 61 the Korteweg-de Vries equation, *Theor. Math. Phys.* 23 (1975) 51–67.

62 [54] C. Itzykson, J.-B. Zuber, *Quantum Field Theory*, McGraw-Hill, 1980.

64 [55] R. Jenkins, K.D.T.-R. McLaughlin, Semiclassical limit of focusing NLS for a family of square 65 barrier initial data, *Commun. Pure Appl. Math.* 67 (2013) 246–320.

66 [56] A.M. Kamchatnov, *Nonlinear Periodic Waves and Their Modulations*, World Scientific, 67 2000.

68 [57] S. Kamvissis, K.D.T.-R. McLaughlin, P.D. Miller, *Semiclassical Soliton Ensembles for the Focusing 69 Nonlinear Schrödinger Equation*, Princeton University Press, Princeton, 2003.

[58] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.

[59] M. Klaus, J.K. Shaw, On the eigenvalues of Zakharov–Shabat systems, SIAM J. Math. Anal. 34 (4) (2003) 759–773.

[60] M. Klaus, J.K. Shaw, Purely imaginary eigenvalues of Zakharov–Shabat systems, Phys. Rev. E 65 (2002) 036607.

[61] V.P. Kotlyarov, Periodic problem for the Schrödinger nonlinear equation, in: Voprosy Matematicheskoi Fiziki i Funkcionalnogo Analiza, vol. 1, Naukova Dumka, Kiev, 1976, pp. 121–131, English translation: arXiv:1401.4445 [nlin.si].

[62] I. Krichever, Potentials with zero reflection coefficient on the background of the finite-gap potentials, Funct. Anal. Appl. 9 (1975) 77–78.

[63] I. Krichever, An algebraic-geometric construction of the Zakharov–Shabat equations and their periodic solutions, Dokl. Akad. Nauk SSSR 227 (1976) 291–294.

[64] I. Krichever, Elliptic solutions of the Kadomtsev–Petviashili equation and many-body problems, Funct. Anal. Appl. 14 (1980) 45.

[65] G. Lamé, Sur les surfaces isothermes dan les corps homogénes en équilibre de température, J. Math. Pures Appl. 2 (1837) 147–188.

[66] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467–490.

[67] P.D. Lax, Periodic solutions of the KdV equation, Commun. Pure Appl. Math. 28 (1975) 141–188.

[68] S. Li, G. Biondini, Soliton interactions and degenerate soliton complexes in focusing media with non-zero background, Eur. Phys. J. Plus 133 (2018) 400.

[69] S. Li, G. Biondini, C. Schiebold, On the degenerate soliton solutions of the focusing nonlinear Schrödinger equation, J. Math. Phys. 58 (2017) 033507.

[70] L. Lee, G. Lyng, I. Vankova, The Gaussian semiclassical soliton ensemble and numerical methods for the focusing nonlinear Schrödinger equation, Physica D 241 (2012) 1767–1781.

[71] Y.-C. Ma, M.J. Ablowitz, The periodic cubic NLS equation, Stud. Appl. Math. 63 (1981) 113–158.

[72] W. Magnus, S. Winkler, Hill’s Equation, Dover, New York, 1966.

[73] H.P. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math. 29 (1976) 143–226.

[74] D.W. McLaughlin, E.A. Overman II, Whiskered tori for integrable PDE’s: chaotic behavior in near integrable PDEs, in: J.P. Keller, D.W. McLaughlin, G.P. Papanicolaou (Eds.), Surv. Appl. Math., vol. I, Plenum, 1995.

[75] K.D.T.-R. McLaughlin, P.V. Nabelek, A Riemann–Hilbert problem approach to infinite gap Hill’s operators and the Korteweg–de Vries equation, Int. Math. Res. Not. 2021 (2019) 1288–1352.

[76] A. Messiah, Quantum Mechanics, North-Holland, 1961.

[77] S.P. Novikov, The periodic problem for the Korteweg–de Vries equation, Funct. Anal. Appl. 8 (1974) 236–246.

[78] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Monographs in Contemporary Mathematics, Plenum, New York, 1984.

[79] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.

[80] O. Perron, Die Lehre von den Kettenbrüchen, Teubner Verlag, Leipzig, 1913.

[81] L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation, Clarendon Press, Oxford, 2003.

[82] M. Reed, B. Simon, Method of Mathematical Physics I: Functional Analysis, revised and enlarged ed., Academic Press, San Diego, 1980.

[83] F.S. Rofe-Beketov, Spectrum perturbations, the Kneser-type constants and the effective masses of zones-type potentials, in: Constructive Theory of Functions, Sofia, 1984, 1984, pp. 757–766.

[84] F.S. Rofe-Beketov, A.M. Khol’kin, Spectral analysis of differential operators: interplay between spectral and oscillatory properties, in: World Scientific Monograph Series in Mathematics, New Jersey, 2005.

[85] A. Ronveaux (Ed.), Heun’s Differential Equation, Oxford University Press, New York, 1995.

[86] J. Satsuma, N. Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Prog. Theor. Phys. Suppl. 55 (1974) 284–306.

[87] O.A. Smirnov, The Dirac operator with elliptic potential, Sb. Math. 186 (1995) 1213–1221.

[88] K. Takemura, Finite-gap potential, Heun’s differential equation and WKB analysis, RIMS Kôkyûroku Bessatsu 5 (2008) 61–74.

[89] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, AMS, Providence, 2000.

[90] V. Tkachenko, Non-selfadjoint periodic Dirac operators with finite band spectra, in: Integr. Eq. Oper. Theory, Birkhäuser, Basel, 2000, pp. 325–348.

1 [91] E.R. Tracy, H.H. Chen, Nonlinear self-modulation: an exactly solvable model, *Phys. Rev. A* 37
2 (1998) 815–839.

3 [92] A. Treibich, J.-L. Verdier, Revetements exceptionnels et sommes de 4 nombres triangulaires, *Duke
4 Math. J.* 68 (1992) 217–236.

5 [93] T. Trogdon, B. Deconinck, A Riemann-Hilbert problem for the finite-genus solutions of the KdV
6 equation and its numerical solution, *Physica D* 251 (2013) 1–18.

7 [94] G.A. El, A. Tovbis, Spectral theory of soliton and breather gases for the focusing nonlinear
8 Schrödinger equation, *Phys. Rev. E* 101 (2020) 052207.

9 [95] A. Tovbis, S. Venakides, The eigenvalue problem for the focusing nonlinear Schrödinger equation:
10 new solvable cases, *Physica D* 146 (2000) 150–164.

11 [96] A. Tovbis, S. Venakides, X. Zhou, On semiclassical (zero dispersion limit) solutions of the focusing
12 nonlinear Schrödinger equation, *Commun. Pure Appl. Math.* 57 (2004) 877–985.

13 [97] A. Tovbis, F. Wang, Recent developments in spectral theory of the focusing NLS soliton and
14 breather gases: the thermodynamic limit of average densities, fluxes and certain meromorphic
15 differentials; periodic gases, arXiv:2203.03566, 2022.

16 [98] E. Trubowitz, The inverse problem for periodic potentials, *Commun. Pure Appl. Math.* 30 (1977)
17 321–337.

18 [99] K. Veselić, On real eigenvalues of real tridiagonal matrices, *Linear Algebra Appl.* 27 (1979) 167–171.

19 [100] H. Volkmer, Coexistence of periodic solutions of Ince's equation, *Analysis* 23 (2003) 97–105.

20 [101] H. Volkmer, Approximation of eigenvalues of some differential equations by zeros of orthogonal
21 polynomials, *J. Comput. Appl. Math.* 213 (2008) 488–500.

22 [102] H. Volkmer, Eigenvalue problems for Lamé's differential equation, *SIGMA* 14 (2018) 131.

23 [103] P. Walker, The analyticity of Jacobian functions with respect to the parameter k , *Proc. R. Soc. A*
24 459 (2003) 2569–2574.

25 [104] S. Weinberg, *The Quantum Theory of Fields*, Cambridge University Press, Cambridge, 1995.

26 [105] V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional
27 self-modulation of waves in nonlinear media, *Sov. Phys. JETP* 34 (1972) 62–69.

28 [106] V.E. Zakharov, A.B. Shabat, Interaction between solitons in a stable medium, *Sov. Phys. JETP*
29 37 (1973) 1627–1639.

30

31

32

33

34

35

36

37

38

39

40

41

42

1 Sponsor names 1
22 Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text. 2
34 **National Science Foundation**, *country*=United States, *grants*=DMS-2009487, 4
5 DMS-2009647 5
67 **National Natural Science Foundation of China**, *country*=China, *grants*=12101590 7
89 **National Science Foundation**, *country*=United States, *grants*=1440140 9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42