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We present an explicit two-parameter family of finite-band
Jacobi elliptic potentials given by q ≡ A dn(x; m), where
m ∈ (0, 1) and A can be taken to be positive without loss
of generality, for a non-self-adjoint Dirac operator L, which
connects two well-known limiting cases of the plane wave
(m = 0) and of the sech potential (m = 1). We show that, if
A ∈ N, then the spectrum consists of R plus 2A Schwarz
symmetric segments (bands) on iR. This characterization
of the spectrum is obtained by relating the periodic and
antiperiodic eigenvalue problems for the Dirac operator to
corresponding eigenvalue problems for tridiagonal operators
acting on Fourier coefficients in a weighted Hilbert space,
and to appropriate connection problems for Heun’s equation.
Conversely, if A /∈ N, then the spectrum of L consists of
infinitely many bands in C. When A ∈ N, the corresponding
potentials generate finite-genus solutions for all the positive
and negative flows associated with the focusing nonlinear
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Schrödinger hierarchy, including the modified Korteweg-
deVries equation and the sine-Gordon equation.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction and main results

1.1. Background

In this work we study a non-self-adjoint Dirac operator with a Jacobi elliptic potential,

namely,

Lφ = zφ , z ∈ C , (1.1)

where φ(x; z) = (φ1, φ2)T, the superscript “T” denoting matrix transpose, L is given

formally by

L := iσ3(∂x − Q(x)) , Q(x) =

(
0 q(x)

−q(x) 0

)
, x ∈ R , (1.2)

the potential Q(x) is l-periodic, σ3 := diag(1, −1) (cf. Appendix A.1) and overline de-

notes the complex conjugate. In particular, let

q(x; A, m) = A dn(x; m) , (1.3)

where dn(x; m) is one of the three basic Jacobi elliptic functions (cf. [43,79]), and m ∈
(0, 1) is the elliptic parameter. Finally, A is an arbitrary constant, which one can take

to be real and positive without loss of generality. (It is easy to see that arg A 6= 0 leaves

the spectrum invariant.) We will do so throughout this work. Recall that dn(x; m) has

minimal period l = 2K along the real x-axis, where K := K(m) is the complete elliptic

integral of the first kind [43,79]. Also recall that dn(x; 0) ≡ 1 and dn(x; 1) ≡ sech x. Both

of the limiting cases m = 0 and m = 1 are exactly solvable (i.e., the spectrum is known

in closed form), and therefore provide convenient “bookends” for the results of this work.

There are several factors that motivate the present study. A first one is that Dirac

operators arise naturally in quantum field theory [54,104], and therefore the identification

of exactly solvable potentials is relevant in that context. A second one is the obvious

similarity between the study of (1.1) and that of eigenvalue problems for the time-

independent Schrödinger equation, namely

(−∆ + V (x)) φ = λ φ , (1.4)

where ∆ denotes the n-dimensional Laplacian operator and φ : R
n → C, which has been

an integral component of mathematical physics since its first appearance in the 1920’s

(e.g., see [38,76,82]), and which received renewed interest in the late 1960’s and 1970’s

(e.g., see [1,24,62,78,98]) thanks to the connection with infinite-dimensional integrable

systems. Namely, the fact that the one-dimensional time-independent Schrödinger equa-

tion [i.e., (1.4) with n = 1] is the first half of the Lax pair for the Korteweg-deVries (KdV)

equation [36,66]. As a result, the study of direct and inverse spectral problems for the
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188
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Schrödinger operator played a key role in the development of the so-called inverse scat-

tering transform (IST) to solve the initial value problem for the KdV equation [36,66].

The direct and inverse scattering theory was later made more rigorous, and generaliza-

tions of the theory were also studied [6,7,20,24,27,52,53,67,73,75,77,93]. In particular,

the so-called finite-gap (or finite-band) solution became a primary object of study.

Similar problems have been considered for (1.1), since it comprises the first half of the

Lax pair associated to the nonlinear Schrödinger (NLS) equation, namely, the partial

differential equation (PDE)

iqt + qxx + 2s|q|2q = 0 . (1.5)

Here q : R × R → C, subscripts x and t denote partial differentiation and, as usual, the

sign s = ±1 denotes the focusing and defocusing cases, respectively. Similarly to the KdV

equation, the NLS equation is an infinite-dimensional Hamiltonian system. Also, similarly

to the KdV equation, the NLS equation is a ubiquitous physical model. In particular,

(1.5) is a universal model describing the slow modulations of a weakly monochromatic

dispersive wave envelope, and therefore appears in many physical contexts, such as deep

water waves, nonlinear optics, plasmas, ferromagnetics and Bose-Einstein condensates

(e.g., see [1,3,81]). Therefore, the study of the NLS equation is of both theoretical and

applicative interest.

In 1972 [105], Zakharov and Shabat showed that (1.5) is the compatibility condition

of the matrix Lax pair

φx = (−iz σ3 + Q(x, t)) φ , (1.6a)

φt = (−2iz2σ3 + H(x, t, z)) φ , (1.6b)

with σ3 as above, and

Q(x, t) =

(
0 q(x, t)

−sq(x, t) 0

)
, H(x, t, z) = 2zQ − iσ3(Q2 − Qx) . (1.7)

Following [105], (1.6a) [i.e., the first half of the Lax pair] is referred to as the Zakharov-

Shabat (ZS) scattering problem. It is easy to see that (1.6a) [with s = 1] is equivalent

to (1.1). Thus, the solution to (1.5) [with s = 1] comprises the scattering potential q

in (1.1). Moreover, one can also show that time evolution of q according to the focusing

NLS equation (1.5) [with s = 1] amounts to an isospectral deformation of the potential

for the Dirac operator (1.2).

Scattering theory for the Zakharov-Shabat system have been studied extensively over

the years. In [105] the IST for (1.5) in the focusing case with localized data, i.e., with

q(x, t = 0) ∈ L1(R), was formulated. Corresponding results for the defocusing case with

constant boundary conditions (BCs), i.e., |q(x, t)| → qo 6= 0 as x → ±∞, were obtained

in [106]. The theory was then revisited and elucidated in [1,32,78]. When q ∈ L1(R),
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188
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the isospectral data is composed of two pieces: an absolutely continuous spectrum, and

a set of discrete eigenvalues. When q is periodic, however, the isospectral data is purely

absolutely continuous and has a band and gap structure.

Of particular interest is the effort to find classes of potentials for which the scat-

tering problem can be solved exactly. Satsuma and Yajima [86] considered the case of

q(x) = A sech x, with A an arbitrary positive constant, and obtained a complete rep-

resentation of eigenfunctions and scattering data. Their work was later generalized by

Tovbis and Venakides [95] to potentials of the type q(x) = A sech x e−ia log(cosh x), with

A as above and a an arbitrary real constant. These results were then used in [57,96]

to study the behavior of solutions of the focusing NLS equation in the semiclassical

limit. More recently, Trillo et al. [35] obtained similar results for potentials of the type

q(x) = A tanh x in the defocusing case. In all of these cases, the ZS scattering problem

is reduced to connection problems for the hypergeometric equation. Finally, Klaus and

Shaw [59,60] identified classes of “single-lobe” potentials for which the point spectrum

is purely imaginary.

The above-mentioned works considered potentials that are either localized or tend

to constant boundary conditions as |x| → ∞. Spectral problems for the Schrödinger

operator with a periodic potential similar to the one considered here are also a classical

subject, and their study goes back to Lamé [65], and Ince [47–49], where the spectrum for

a two-parameter family of potentials was studied, and necessary and sufficient conditions

in order for such potentials to give rise to a spectrum with a finite number of gaps were

derived (see also [4,15,28,39,72]). More recently, these results were generalized in [92]

and [88], and in seminal work a characterization of all elliptic algebro-geometric solutions

of the KdV and AKNS hierarchies was given by Gesztesy and Weikard in [39–41].

Finite-band potentials for the focusing and defocusing ZS scattering problems have

also been studied [8,40,51,63,87]. In particular, the special case of genus-one potentials

was explicitly considered in [16,56], and the stability of those solutions was recently

studied in [22]. On the other hand, the identification of exactly solvable cases for periodic

potentials is generally challenging, and few families of finite-band potentials for (1.2) have

been studied in detail (see [40,41]).

Here we present an explicit, two-parameter family of finite-band potentials of the fo-

cusing ZS system and we characterize the resulting spectrum. We also show that (1.1)

with the potential (1.3) can be reduced to certain connection problems for Heun’s equa-

tion. Unlike the case of the hypergeometric equation, the connection problem for Heun’s

equation has not been solved in general [85]. Still, special cases can be solved exactly. For

example, for certain classes of periodic potentials it turns out that Hill’s equation [i.e.,

(1.4) with n = 1 and periodic potential] can be mapped to a Heun equation. Classical

works [47,48,72] where the spectrum of Hill’s equation for a multi-parameter family of

potentials was studied, resulted in the derivation of necessary and sufficient conditions

for such potentials to give rise to a spectrum with a finite number of bands and gaps. Im-

portantly, the absence of a gap in the spectrum of the Hill operator corresponds uniquely

to the coexistence of solutions, namely, the existence of two linearly independent peri-
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188
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odic, or antiperiodic, solutions to the given ordinary differential equation (ODE) [72].

More recently, those results were strengthened in [100,102] and [45]. The results of this

work provide a direct analogue of all these results for the Dirac operator (1.2) as well as

for the Hill operator with PT-symmetric potential.

1.2. Main results

We first introduce some definitions in order to state the main results of this work (see

Appendix A.1 for further notations and standard definitions).

Definition 1.1 (Lax spectrum). The Lax spectrum of the matrix-valued differential ex-

pression L in (1.2) is the set

Σ(L) :=
{

z ∈ C : Lφ = zφ, 0 < ‖φ‖L∞(R;C2) < ∞
}

, (1.8)

i.e., the set of complex numbers z such that (1.1) has at least one bounded nonzero

solution.

It can be proved that for q locally integrable the Lax spectrum defined above equals the

spectrum of the maximal operator associated with L in L2(R; C
2), the space of square-

integrable two-component vector-valued functions, namely the set {z ∈ C : z /∈ ρ(L)},

where ρ(L) is the resolvent set of L (see [84] p. 249). Moreover, it is well known that if q

is l-periodic with minimal period l, then Σ(L) is purely continuous and comprised of an

at most countable collection of regular analytic arcs, referred to as bands, in the spectral

plane [40,84]. Throughout this work we will occasionally use spectrum as a synonym for

the Lax spectrum. Further properties of the Lax spectrum are discussed in Section 2.

If the potential q is such that there are at most finitely many bands we say that q is a

finite-band potential (see Definition 2.5). The class of finite-band potentials plays a key

role in the IST for the NLS equation on the torus [8,37,71]. In particular, it was shown in

[51] that the potential can be reconstructed from the knowledge of two key spectral data:

(i) the periodic and antiperiodic eigenvalues of L (i.e., the set of values z associated with

periodic or antiperiodic eigenfunctions, respectively), which correspond to endpoints of

spectral bands, and (ii) the Dirichlet (or auxiliary) eigenvalues of L, defined as the set

of zeros of the 1,2 entry of the monodromy matrix (see Section 2 for precise definitions

of all these quantities). To specify the dependence of solutions associated with (1.3) on

the parameters A, m, we will also occasionally use the notation Σ(L; A, m) to denote the

Lax spectrum.

Theorem 1.2. Consider (1.1) with q ≡ A dn(x; m), m ∈ (0, 1), and A > 0. Then the

potential q is finite-band if and only if A ∈ N. Moreover, if A ∈ N, then:
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188
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Σ(L; A, m) ⊂ R ∪ (−iA, iA) , (1.9)

and q is a 2A-band (i.e., a genus 2A − 1) potential of the Dirac operator (1.2).

(Of course it is well known that Σ(L) is Schwarz symmetric and R ⊂ Σ(L) [71,74].)

Theorem 1.2 is a consequence of the following more detailed description of the spectrum:

Theorem 1.3. Assume the conditions of Theorem 1.2. If A ∈ N then:

1. For any m ∈ (0, 1), the non-real part of the Lax spectrum, Σ(L; A, m)\R, is a proper

subset of (−iA, iA). (For m = 0, the Lax spectrum is Σ(L; A, 0) = R ∪ [−iA, iA].)

2. For any m ∈ (0, 1), there are exactly 2A symmetric bands of Σ(L; A, m) along

(−iA, iA), separated by 2A − 1 open gaps. The central gap (i.e., the gap surrounding

the origin) contains an eigenvalue at z = 0, which is periodic when A is even and

antiperiodic when A is odd.

3. For any m ∈ [0, 1), R ⊂ Σ(L; A, m) contains infinitely many interlaced periodic and

antiperiodic eigenvalues, symmetrically located with respect to z = 0.

4. Each periodic/antiperiodic eigenvalue z ∈ R has geometric multiplicity two and each

periodic/antiperiodic eigenvalue z ∈ (−iA, iA)\{0} has geometric multiplicity one.

5. Each periodic/antiperiodic eigenvalue z ∈ R is simultaneously a Dirichlet eigenvalue.

All these Dirichlet eigenvalues are immovable.

6. Each of the open 2A − 1 gaps on (−iA, iA) contains exactly one movable Dirichlet

eigenvalue. Thus, all of the 2A − 1 movable Dirichlet eigenvalues of the finite-band

solution with genus 2A − 1 are located in the gaps of the interval (−iA, iA).

Recall that a movable Dirichlet eigenvalue is a Dirichlet eigenvalue whose location

changes when changing the normalization of the monodromy matrix, whereas the location

of immovable Dirichlet eigenvalues is independent of the normalization of the monodromy

matrix. For an N -band potential there are a total of N −1 movable Dirichlet eigenvalues

(cf. Definition 2.12 and [34,37]).

Theorem 1.4. Assume the conditions of Theorem 1.2. If A /∈ N, then:

1. For any m ∈ (0, 1), each periodic or antiperiodic eigenvalue has geometric multiplicity

one.

2. There are no periodic or antiperiodic eigenvalues on R.

3. There are infinitely many spines (spectral bands emanating transversally from the

real axis) at the real critical points of the Floquet discriminant (i.e., the trace of the

monodromy matrix).

Time evolution according to the NLS equation is an isospectral deformation of a

potential of (1.2). Thus, by Theorem 1.2, if A ∈ N, the initial condition q(x, 0) =
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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A dn(x; m) generates a genus 2A − 1 solution of the focusing NLS equation; conversely,

if A /∈ N, the corresponding solution is not finite-genus.

After various preliminaries in Section 2, the proof of Theorems 1.2 and 1.3 involves

several steps:

• In Section 3 we map (1.1) into Hill’s equation with a complex potential, and in

Section 4 we map Hill’s equation into a second-order trigonometric ODE.

• In Section 4.2 we map the trigonometric ODE into a three-term recurrence relation

for the Fourier coefficients.

• In Section 4.3 we demonstrate that, when A ∈ N, each periodic or antiperiodic

eigenvalue of L is associated to a corresponding ascending or descending semi-infinite

Fourier series.

• In Section 5 we map the trigonometric ODE into Heun’s equation and relate the

periodic and antiperiodic eigenvalue problems for (1.1) with potential (1.3) to a

connection problem for Heun’s equation.

• Moreover, in Section 5 we show that the periodic and antiperiodic eigenvalues of (1.2)

with potential (1.3) correspond to the eigenvalues of certain tridiagonal operators

that encode the recurrence relations for the coefficients of the Frobenius series solu-

tion of Heun’s equation at the origin and at infinity.

• In Section 6 we establish that all eigenvalues of the above-mentioned tridiagonal

operators are real.

The determination of the precise number of spectral bands for any m ∈ (0, 1) is proved

in Section 8. Finally, Theorem 1.4 is proved in Section 7. Notation, standard definitions,

several technical statements and additional results and observations are relegated to the

appendices.

2. Preliminaries

We begin by briefly reviewing basic properties of the Lax spectrum. Unless stated

otherwise, all statements in this section hold for operators L with arbitrary continuous

l-periodic potentials.

2.1. Bloch-Floquet theory

While it is natural to pose (1.1) on the whole real x-axis, all of the requisite information

for the spectral theory is contained in the period interval of the potential, namely, Ixo
:=

[xo, xo + l], where x = xo is an arbitrary base point. Consider the Floquet boundary

conditions (BCs):

BCν(L) := {φ : φ(xo + l; z) = eiνlφ(xo; z) , ν ∈ R} . (2.1)
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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Definition 2.1 (Floquet eigenvalues of the Dirac operator). Let the operator L :

H1(Ixo
; C

2) → L2(Ixo
; C

2) be defined by (1.2). Let dom(L) := {φ ∈ H1(Ixo
; C

2) :

φ ∈ BCν(L)}. The set of Floquet eigenvalues of L is given by

Σν(L) := {z ∈ C : ∃φ 6≡ 0 ∈ dom(L) s.t. Lφ = zφ} . (2.2)

In particular, ν = 2nπ/l, n ∈ Z, identifies periodic eigenfunctions, while ν = (2n−1)π/l,

n ∈ Z, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues

periodic and antiperiodic, respectively, and we will denote the set of periodic and an-

tiperiodic eigenvalues by Σ±(L), respectively.

(H1 denotes the space of square-integrable functions with square-integrable first

derivative.) It is well-known that Σν(L) is discrete and countably infinite [15,25].

Next we review the theory of linear homogeneous ODEs with periodic coefficients and

important connections to the Lax spectrum. We set the base point xo = 0 without loss of

generality. Recall, the Floquet solutions (or Floquet eigenfunctions) of (1.1) are solutions

such that

φ(x + l; z) = µ φ(x; z) , (2.3)

where µ := µ(z) is the Floquet multiplier. Then by Floquet’s Theorem (see [15,33]) all

bounded (in x) Floquet solutions of (1.1) have the form φ(x; z) = eiνxψ(x; z), where

ψ(x + l; z) = ψ(x; z) and ν := ν(z) ∈ R. Thus, a solution of (1.1) is bounded for all

x ∈ R if and only if |µ| = 1, in which case one has the relation

µ = eiνl , (2.4)

with ν ∈ R. The quantity iν is the Floquet exponent. (With a slight abuse of ter-

minology, we will often simply refer to ν as the Floquet exponent for brevity.) The

Floquet multipliers are the eigenvalues of the monodromy matrix M := M(z), defined

by Y (x+ l; z) = Y (x; z)M(z), where Y (x; z) is any fundamental matrix solution of (1.1).

It is well-known that the monodromy matrix is entire as a function of z [71,74]. Note that

det M(z) ≡ 1 ∀z ∈ C by Abel’s formula, since (1.2) is traceless. Thus, the eigenvalues of

M are given by the roots of the quadratic equation µ2 − 2∆ µ + 1 = 0, where ∆ := ∆(z)

is the Floquet discriminant, i.e.,

∆(z) = 1
2 tr M(z) . (2.5)

Further, µ± = ∆ ±
√

∆2 − 1. Thus (1.1) admits bounded solutions if and only if −1 ≤
∆ ≤ 1.

Remark 2.2. For q ∈ C(R) one has ∆(z) = cos(zl) + o(1) as z → ∞ along the real z-axis

(see [71,74]).
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The above considerations yield an equivalent representation of the Lax spectrum (see

[15,28,84]):

Theorem 2.3. The Lax spectrum Σ(L) is given by

Σ(L) = {z ∈ C : ∆(z) ∈ [−1, 1]} . (2.6)

Additionally, for any fixed ν ∈ R the Floquet eigenvalues are given by

Σν(L) = {z ∈ C : ∆(z) = cos(νl)} . (2.7)

For each ν ∈ R the set Σν(L) is discrete and the only accumulation point occurs at

infinity. Moreover,

Σ(L) =
⋃

ν∈[0,2π/l)

Σν(L) . (2.8)

Remark 2.4. By (2.3), (2.4) and (2.7), the values z ∈ C for which ∆(z) = ±1 are the

periodic and antiperiodic eigenvalues z ∈ Σ±(L) (see Definition 2.1), respectively. The

periodic and antiperiodic eigenvalues correspond to band edges of the Lax spectrum.

Further, Σν(L) ∩ Σν′(L) = ∅ for all ν 6= ν′ mod 2π/l.

2.2. General properties of the Lax spectrum

Owing to (2.6), the Lax spectrum (1.8) is located along the zero level curves of

Im ∆(z), i.e., Γ := {z ∈ C : Im ∆(z) = 0}. Moreover, Γ is the union of an at most

countable set of regular analytic curves Γn [40], each starting from infinity and ending

at infinity:

Γ = ∪n∈NΓn . (2.9)

(The precise details of the map n 7→ Γn are not important for the present purposes.)

Different curves Γi 6= Γj (and therefore different spectral bands) can intersect at saddle

points of ∆(z). However, two distinct Γn can intersect at most once, as a result of the fact

that each Γn is a level curve of the harmonic function Im ∆(z). Thus the Lax spectrum

Σ(L) cannot contain any closed curves in the finite z-plane.

Definition 2.5 (Spectral band). A spectral band is a maximally connected regular analytic

arc along Γn where ∆(z) ∈ [−1, 1] holds. Each finite portion of Γn where | Re ∆(z)| > 1,

delimited by a band on either side, is called a spectral gap.

Lemma 2.6. ([12]) The real z-axis is the only band extending to infinity; Σ(L) contains

no closed curves in the finite z-plane; and the resolvent set ̺ := C \ Σ(L) is comprised

of two connected components.
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Fig. 1. Schematic diagram of the Lax spectrum for a generic potential.

With the above definition, the Lax spectrum can be decomposed into bands and gaps

along each Γn as in a self-adjoint problem, with the crucial difference that here bands

and gaps are not restricted to lie along the real z-axis (as they would be in a self-adjoint

problem), but lie instead along arcs of Γn. Fig. 1 provides a schematic

illustration of these concepts.

We call a spectral band intersecting the real or imaginary z-axis transversally a spine

[74]. Generically, the Lax spectrum of the operator (1.2) includes infinitely many spines

emanating from (infinitely many) critical points that extend to (±) infinity along the

real z-axis [25,74], in which case we call q an infinite-band potential. Otherwise, we call

q a finite-band potential. Specifically, if there are N bands (not including the real z-axis)

we say that q is an N -band potential. The corresponding solutions of the focusing NLS

equation are described in terms of Riemann Θ-functions determined by hyperelliptic

Riemann surfaces of genus G = N − 1 (see [8,34,37,51,91]). For example, q ≡ A is a

genus-0 (i.e., a 1-band) potential of the Dirac operator (1.2), and q ≡ dn(x; m) is a

genus-1 (i.e., a 2-band) potential.

Remark 2.7. The following sets play a key role in the analysis:

• Periodic/antiperiodic points: points z± ∈ C such that ∆(z±) = ±1 (note z± ∈
Σ±(L));

• Critical points: points zc ∈ C such that ∂z∆(zc) = 0.

We denote by Φ(x; z) the fundamental matrix solution of (1.1) normalized so that

Φ(0; z) ≡ 1, where 1 is the 2 × 2 identity matrix. The trace and the eigenvalues of the

monodromy matrix M(z) are independent of the particular fundamental matrix solution

chosen, and therefore so is the Floquet discriminant ∆(z) and the Lax spectrum Σ(L).

Nonetheless, it will be convenient to use Φ(x; z), so that M(z) is simply given by

M(z) = Φ(l; z) . (2.10)
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188



ARTICLE IN PRESS
JID:YAIMA AID:109188 /FLA [m1L; v1.338] P.12 (1-63)

12 G. Biondini et al. / Advances in Mathematics ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
Remark 2.8. It is straightforward to see that, for all z ∈ C, the monodromy matrix

satisfies the same symmetries as the scattering matrix for the IST on the line (e.g.,

see [1,2,71])

M−1(z) = σ2MT(z) σ2 , (2.11a)

M(z) = σ2M(z) σ2 . (2.11b)

Moreover, it is also straightforward to verify the following additional symmetries (e.g.,

see [12]). If q is real, then

M(−z) = M(z) , z ∈ C . (2.12a)

Moreover, if q is even, then

M(−z) = σ1M−1(z)σ1 , z ∈ C , (2.12b)

while if q is odd, then

M(−z) = σ2M−1(z)σ2 , z ∈ C , (2.12c)

where σ1 and σ2 are the first and second Pauli spin matrices, respectively (see Ap-

pendix A.1).

The symmetry (2.11b) for the monodromy matrix implies that the Floquet discrimi-

nant satisfies the Schwarz symmetry

∆(z) = ∆(z) , z ∈ C . (2.13)

Moreover, if q is real or even or odd, (2.12) implies additionally that ∆(z) is an even

function:

∆(−z) = ∆(z) , z ∈ C . (2.14)

As a result, one has:

Lemma 2.9. If q is real or even or odd, Σ(L) is symmetric about the real and imaginary

z-axes. Thus, the Floquet eigenvalues come in symmetric quartets {z, z, −z, −z}.

For q real and even, it follows from (2.12a) and (2.12b) that

M(z) = ∆(z) 1 + c(z) σ3 − is(z) σ2 , z ∈ C . (2.15)

Obviously, (2.15) together with the fact that det M(z) ≡ 1, imply the relation
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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∆2(z) = 1 + c2(z) − s2(z) , z ∈ C . (2.16)

Equation (2.12a) also implies that, if q is real, M(z) is real when z ∈ iR. Moreover, for

q real and even, one has:

∆(z) = ∆(z) = ∆(z), s(z) = s(z) = s(z), c(z) = −c(z) = c(z) , z ∈ iR . (2.17)

That is, ∆(z), s(z) and c(z) are all real for z ∈ iR. For z ∈ R, ∆(z) and s(z) are real,

whereas c(z) is purely imaginary. Finally, since M(z) is entire, (2.17) also implies

s(−z) = s(z) , c(−z) = −c(z) , z ∈ C . (2.18)

Next we show that the Lax spectrum of (1.2) with a non-constant potential is confined

to an open strip in the spectral plane. The following Lemma is proved in Appendix A.2,

and is instrumental for this work:

Lemma 2.10. Suppose q ∈ C(R) is l-periodic. (i) If q is not constant and z ∈ Σ(L), then

| Im z| < ‖q‖∞. (ii) If q is real or even or odd, and Σ±(L) ⊂ R ∪ iR, then Σ(L) ⊂ R ∪ iR

and q is finite-band.

To solve the inverse problem in the IST (namely, reconstructing the potential from the

scattering data), an auxiliary set of spectral data is also needed–the Dirichlet eigenvalues

[34,51]:

Definition 2.11 (Dirichlet eigenvalues). Let M(z) be defined by (2.10). The set of Dirich-

let eigenvalues (see [34]) with base point x0 = 0 is defined as

ΣDir(L; xo = 0) := {z ∈ C : s(z) = 0} . (2.19)

In contrast to the Lax spectrum, the Dirichlet eigenvalues are not invariant with re-

spect to changes in the base point x = xo, or to time evolution of q according to the

focusing NLS equation. Indeed, in the context of the integrability of NLS on the torus,

the Dirichlet eigenvalues correspond to angle variables and are used to coordinatize the

isospectral level sets. As we discuss next, the set of Dirichlet eigenvalues is discrete, con-

sists of movable and immovable points, and the number of movable Dirichlet eigenvalues

is tied to the genus of the corresponding Riemann surface (see [34,41]).

The monodromy matrix M(z) in (2.10) was defined in terms of the fundamental matrix

solution Φ(x; z) normalized as Φ(0; z) ≡ 1. The monodromy matrix M(z; xo) associated

with a “shifted” solution Φ̃(x; xo, z) normalized as Φ̃(xo; xo, z) ≡ 1, with x0 ∈ R, is given

by

M(z; xo) = Φ(xo; z)M(z)Φ−1(xo; z). (2.20)

Let ΣDir(L; xo) be the corresponding set of Dirichlet eigenvalues.
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Definition 2.12 (Movable and immovable Dirichlet eigenvalues). Let z ∈ C be a Dirichlet

eigenvalue associated to the monodromy matrix M(z; xo) with a given base point x = xo,

i.e., z ∈ ΣDir(L; xo). Following [34], we say that z is an immovable Dirichlet eigenvalue if

z ∈ ΣDir(L; x) for all x ∈ R. Otherwise, we say z ∈ C is a movable Dirichlet eigenvalue.

Remark 2.13. If q is an N -band potential of the non-self-adjoint Dirac operator (1.2),

then the number of movable Dirichlet eigenvalues is N − 1 (see [34,41]).

An immediate consequence of (2.16) and the symmetries of M(z), ∆(z), c(z) and s(z)

is the following lemma, which will be useful later (see also [34,74]):

Lemma 2.14. If z ∈ R and |∆(z)| = 1, then c(z) = s(z) = 0, so that z is an immovable

Dirichlet eigenvalue. Conversely, if s(z) = 0 with z ∈ iR, then |∆(z)| ≥ 1.

Lemma 2.15. Let z± ∈ Σ±(L). If ∂z∆(z±) 6= 0, then the corresponding eigenspace has

dimension one.

Proof. Suppose that there exist two linearly independent periodic (or antiperiodic) eigen-

functions. Consider the normalized fundamental matrix solution Φ(x; z) of (1.1), namely,

LΦ(x; z) = zΦ(x; z) with Φ(0; z) ≡ 1. Differentiating with respect to z and using varia-

tion of parameters one gets

∆z = 1
2 tr

(
− iΦ(l; z)

l∫

0

Φ−1(x; z)σ3Φ(x; z) dx
)

. (2.21)

By Floquet’s theorem Φ(l; z±) = ±1, respectively. Then (2.21) yields ∂z∆(z±) = 0. 2

The following lemma is a direct consequence of Lemmas 2.14, and 2.15:

Lemma 2.16. If z± ∈ Σ±(L)∩R, then the geometric multiplicity is two and ∂z∆(z±) = 0,

respectively.

2.3. Limits m → 0 and m → 1; z = 0

The two distinguished limits m → 0+ and m → 1− of the two-parameter family of

elliptic potentials (1.3) provide convenient limits of the results of this work. Interestingly,

both of these limits yield exactly solvable models. Here it will be convenient to keep track

of the dependence on m explicitly.

Since dn(x; 0) ≡ 1, when m = 0 the potential (1.3) reduces to a constant background,

i.e., q ≡ A with period l = 2K(0) = π. Thus, (1.1) becomes a linear system of ODEs

with constant coefficients, for which one easily obtains a fundamental matrix solution

Φ(x; z, m = 0) = e−i(zσ3−Aσ2)x . (2.22)
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Hence the monodromy matrix is

M(z, m = 0) = cos
(√

z2 + A2π
)

1 − i sin
(√

z2 + A2π
)

√
z2 + A2

(
zσ3 − Aσ2

)
, (2.23)

implying Σ(L; A, 0) = R ∪ [−iA, iA]. Further, z = ±iA are the only simple periodic

eigenvalues; all other periodic (resp. antiperiodic) eigenvalues are double points. Hence,

for any A 6= 0, q ≡ A is a 1-band (i.e., genus-0) potential of (1.1). Moreover, the associated

solution of the focusing NLS equation [i.e., (1.5) with s = 1] is simply q(x, t) = A e2iA2t.

On the other hand, the limit m → 1− is singular, since K(m), and therefore the

period l = 2K(m) of the potential (1.3), diverges in this limit. Indeed, dn(x; 1) ≡ sech x,

so letting m = 1 results in the eigenvalue problem (1.1) with potential q ≡ A sech x. This

case is also exactly solvable, and was first studied by Satsuma and Yajima [86]. The point

spectrum is comprised of a set of discrete eigenvalues located along the imaginary z-axis.

Moreover, for A ∈ N the potential is reflectionless, and the point spectrum is given by

zn = i(n − 1/2) for n = 1, . . . , A. That is, when A ∈ N, q ≡ A sech x corresponds to

a pure bound-state A-soliton solution of the focusing NLS equation [86]. When A = 1,

the solution of the NLS equation (1.5) is simply q(x, t) = eit sech x. When A > 1, the

solutions are much more complicated [69,86]. Indeed, the potential A sech x was used to

study the semiclassical limit of the focusing NLS equation in the pure soliton regime [57].

Lastly, we discuss the origin z = 0 of the spectral plane. When z = 0, the ZS sys-

tem (1.6a) admits closed-form solutions (see Appendix A.3). These solutions then allow

one to obtain the following lemma, which is proved in Appendix A.3:

Lemma 2.17. Consider (1.2) with potential (1.3) and m ∈ [0, 1). If A ∈ N is even or

odd, then z = 0 is a periodic or antiperiodic eigenvalue, respectively, with geometric

multiplicity two in each case.

3. Transformation to Hill’s equation

In this section we introduce a transformation of (1.1) that will be instrumental in

proving Theorem 1.2, and we consider the effect of this transformation on the Lax spec-

trum.

First we transform (1.1) to Hill’s equation with a complex-valued potential via the

unitary linear transformation

φ 7→ v = Λφ , Λ :=
1√
2

(
1 i

1 −i

)
, (3.1)

where v := v(x; z2) = (v+, v−)T. Differentiation of (1.1) and use of (3.1) show that, if q

in (1.2) is a real-valued differentiable potential, then (3.1) maps (1.1) into the diagonal

system
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Hv := (−∂2
x + Q2 − iQxσ1)v = z2v . (3.2)

Or, in component form,

v±
xx + (±iqx + z2 + q2)v± = 0 . (3.3)

Equation (3.3) is Hill’s equation with the complex (Riccati) potential V ± := ∓iqx − q2.

Thus, (3.3) amounts to the pair of eigenvalue problems

H±v± = λv± , λ := z2 , (3.4)

where

H± := −∂2
x + V ±(x) . (3.5)

Remark 3.1. If the potential q in (1.2) is real and even, then V ±(−x) = V ±(x), i.e., V ±

is PT-symmetric.

Next, similarly to (2.1), we introduce the corresponding Floquet BCs for H±:

BCν(H±) := {v± : v±(l; λ) = eiνl v±(0; λ) , v±
x (l; λ) = eiνlv±

x (0; λ) , ν ∈ R} . (3.6)

Definition 3.2 (Floquet eigenvalues of Hill’s operator). Let the operators H± : H2([0, l]) →
L2([0, l]) be defined by (3.5). Let dom(H±) := {v± ∈ H2([0, l]) : v± ∈ BCν(H±)}. The

set of Floquet eigenvalues of H± is given by

Σν(H±) := {λ ∈ C : ∃v± 6≡ 0 ∈ dom(H±) s.t. H±v± = λv±} . (3.7)

In particular, ν = 2nπ/l, n ∈ Z, identifies periodic eigenfunctions, while ν = (2n−1)π/l,

n ∈ Z, identifies antiperiodic eigenfunctions. We will call the corresponding eigenvalues

periodic and antiperiodic, respectively, and we will denote the set of periodic and an-

tiperiodic eigenvalues by Σ±(H±), respectively.

(H2 denotes the space of square-integrable functions with square-integrable first and

second derivatives.) It is well-known that Σν(H±) is discrete and countably infinite [15,

25,28,72].

Lemma 3.3. If the potential q in (1.2) is real and even, then Σν(H+) = Σ−ν(H−), the

dimension of the corresponding eigenspaces are equal, and each of Σν(H±) is symmetric

about the real λ-axis.

Proof. Let λ ∈ Σν(H+) with eigenfunction v+(x; λ). Since q is even, it is easy to check

ṽ := v+(−x; λ) satisfies H−ṽ = λṽ. Moreover,
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ṽ(l; λ) = v+(−l; λ) = e−iνlṽ(0; λ) , (3.8a)

ṽx(l; λ) = −v+
x (−l; λ) = e−iνlṽx(0; λ) . (3.8b)

Hence, λ ∈ Σ−ν(H−). Conversely, if λ ∈ Σ−ν(H−) with eigenfunction v−(x; λ), a

completely symmetric argument shows that λ ∈ Σν(H+). Finally, since the map

v(x; λ) 7→ v(−x; λ) is a (unitary) isomorphism, the dimension of the corresponding

eigenspaces are the same.

Next, we prove the symmetry. Assume that λ ∈ Σν(H±) with corresponding eigen-

function v±(x; λ), respectively. Then it is easy to check that ṽ± := v(−x; λ)± satisfies

H±ṽ± = λṽ±. Moreover,

ṽ±(l; λ) = v±(−l; λ) = eiνlṽ±(0; λ) , (3.9a)

ṽ±
x (l; λ) = −v±

x (−l; λ) = eiνlṽ±
x (0; λ) . (3.9b)

Thus, λ ∈ Σν(H±) with eigenfunction ṽ±(x; λ), respectively. 2

Remark 3.4. It is easy to see that Lemma 3.3 implies Σ±(H+) = Σ±(H−), respectively.

Next, since the Lax spectrum Σ(H±) = ∪ν∈[0,2π/l)Σν(H±), we have the following key

equivalence:

Lemma 3.5. If the potential q in (1.2) is real and even, then the unitary map (3.1) implies:

Σ(H+) = Σ(H−) = {λ = z2 : z ∈ Σ(L)} . (3.10)

That is, the Lax spectrum of these three operators is related through the relation λ = z2.

In particular,

z ∈ Σ+(L) ⇔ λ = z2 ∈ Σ+(H±) , z ∈ Σ−(L) ⇔ λ = z2 ∈ Σ−(H±) . (3.11)

Finally, for z 6= 0, the geometric multiplicity of an eigenvalue z ∈ Σ+(L) equals that of

λ = z2 ∈ Σ+(H±), and similarly for z ∈ Σ−(L) and λ = z2 ∈ Σ−(H±).

Proof. If z ∈ Σ(L), the transformation (3.1) implies that v±(x; λ) are both bounded

solutions of Hill’s ODE (3.4), respectively, implying λ ∈ Σ(H±). Conversely, if v+(x; λ)

is a bounded solution of (3.4) with the plus sign, it follows that ṽ := v+(−x, λ) is a

bounded solution of (3.4) with the minus sign. Further, φ1 = (v+ + v−)/
√

2, and φ2 =

i(v−−v+)/
√

2 are both bounded, and the map (3.1) then implies that φ(x; z) = (φ1, φ2)T

solves (1.1), implying z ∈ Σ(L). A similar argument follows if one starts with v−(x; λ)

bounded. Thus, (3.10) follows. Equation (3.11) follows directly from Lemma 3.3.

It remains to show that, for z 6= 0, the dimension of the corresponding eigenspaces are

equal. The argument follows [26] where the self-adjoint case was studied. To this end, let
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E±(L, z) denote the eigenspace associated with an eigenvalue z ∈ Σ±(L), and similarly

for L2 := L ◦ L and H±. First, note that φ 7→ iσ2φ is a (unitary) isomorphism between

the eigenspaces E±(L, z) and E±(L, −z). Thus, applying the operator twice, for z 6= 0

one easily gets

dimE±(L2, λ = z2) = 2dimE±(L, z) . (3.12)

Next, note that L2 is (unitary) equivalent to the diagonal system (3.2), i.e., H =
1
2ΛL2Λ−1 Moreover,

H =

(
H+ 0
0 0

)
+

(
0 0
0 H−

)
, (3.13)

and so

E±(H, λ) = (E±(H+, λ) ⊕ 0) ⊕ (0 ⊕ E±(H−, λ)) . (3.14)

Hence, by (3.12)–(3.14) and Lemma 3.3 it follows dimE±(L, z) = dimE±(H±, λ), re-

spectively. 2

Remark 3.6. By Lemma 3.5, the spectrum of the Dirac operator L in (1.2) with real and

even potential is associated to that of the spectrum of the Hill operators H± in (3.5).

Importantly, note that the final statement of Lemma 3.5 does not hold at z = 0; that is,

the geometric multiplicity of the periodic (or antiperiodic) eigenvalue z = 0 of the Dirac

and Hill operators need not be equal (see Appendix A.3).

All of the above results hold for generic real and even potentials. Moving forward,

we restrict our attention to the Jacobi elliptic potential (1.3). By Lemma 3.5 we fix

y := v−(x; λ) without loss of generality (dependence on A and m is omitted for brevity).

Then Hill’s equation H−v− = λv− is given by

yxx + (iAm sn(x; m) cn(x; m) + λ + A2 dn2(x; m))y = 0 . (3.15)

Remark 3.7. Since dn2(x; m) ≡ 1 − m sn2(x; m), (3.15) can be viewed as an imaginary

deformation of the celebrated Lamé equation [4,31,48,72], yxx + (λ + V (x)) y = 0 up to a

shift of the eigenvalue λ. The Lamé equation has the remarkable property that solutions

can coexist if and only if A2 = n(n + 1) where n is an integer [4,31,48,72]. Recall

that solutions coexist if two linearly independent periodic (or respectively antiperiodic)

solutions exist for a given λ. In the case of Hill’s equation with a real potential this

amounts to a “closed gap” in the spectrum (corresponding to finite gap potentials).
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4. Transformation to a trigonometric ODE

In this section we introduce a second transformation of (1.1). By part (ii) of

Lemma 2.10 moving forward we only need to consider the periodic and antiperiodic

eigenfunctions.

4.1. Second-order ODE with trigonometric coefficients

Consider the following change of independent variable:

x 7→ t := 2am(x; m) , (4.1)

where am(x; m) is the Jacobi amplitude [14,43]. Equation (4.1) establishes a conformal

map between the strip | Im x | < K(1 − m) and the complex t-plane cut along the rays

(2j + 1)π ± 2iτr, τ ≥ 1, j ∈ Z, where r = ln[(2 − m)/m]/2 [43,79]. We then arrive at our

second reformulation of the Dirac eigenvalue problem:

4(1 − m sin2 t
2)ytt − (m sin t)yt + (λ + A2(1 − m sin2 t

2 ) + i
2Am sin t)y = 0 . (4.2)

(The independent variable t introduced above should not be confused with the time

variable of the NLS equation (1.5).)

Remark 4.1. Equation (4.2) can be written as the eigenvalue problem

By = λy , (4.3)

where the operator B : H2([0, 2π]) → L2([0, 2π]) is defined by

B := −4(1 − m sin2 t
2 )∂2

t + (m sin t)∂t − (A2(1 − m sin2 t
2 ) + i

2Am sin t)) . (4.4)

The coefficients are now 2π-periodic and as before Σ±(B) will denote the periodic and

antiperiodic eigenvalues of the operator B, respectively (see Definition 3.2).

This leads to the following result which connects the periodic/antiperiodic eigenvalues

of Hill’s equation (3.15) to the periodic/antiperiodic eigenvalues of the trigonometric

equation (4.2).

Lemma 4.2. Let B be the trigonometric operator (4.4). Then λ ∈ Σ±(B) if and only if

λ ∈ Σ±(H−).

Proof. By (4.2) one gets By = λy if and only if H−ỹ = λỹ, with ỹ(x; λ) = y(t; λ)

and t = 2am(x; m) as per (4.1). Next, note that am(x; m) is monotonic increasing for

x ∈ (0, 2K), am(x + 2K; m) = am(x; m) + π, and am(0; m) = 0. Hence, the map (4.1)
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is a bijection between x ∈ [0, 2K] and t ∈ [0, 2π]. Moreover, ỹ(0; λ) = ±ỹ(2K; λ) if

and only if y(0; λ) = ±y(2π; λ). Similarly, ỹx(0; λ) = ±ỹx(2K; λ) if and only if yt(0; λ) =

±yt(2π; λ). Thus, 2K-periodic (resp. antiperiodic) solutions of (3.15) map to 2π-periodic

(resp. antiperiodic) solutions of (4.2), and vice versa. 2

Remark 4.3. The trigonometric ODE (4.2) can be viewed as a complex deformation of

Ince’s equation (see Chapter 7 of [72] for more details). Namely, one can write (4.2) as

(1 + a cos t)ytt + (b sin t)yt + (h + d cos t + ie sin t)y = 0 , (4.5)

where a = m/(2 − m), b = −a/2, h = λ/(4 − 2m) + A2/4, d = A2a/4, e = Aa/4. To

the best of our knowledge this is the first example of a non-self-adjoint version of Ince’s

equation arising from applications.

4.2. Fourier series expansion and three-term recurrence relation

Recall that any Floquet solution y(t; λ) of (4.2) bounded for all t ∈ R has the form

y(t; λ) = eiνtf(t; λ) where f(t + 2π; λ) = f(t; λ) and ν ∈ R (cf. Section 2.1). Moreover,

since f(t; λ) is 2π-periodic, we can express it in terms of a Fourier series on L2(S1), where

S
1 := R/Z is the unit circle. By direct calculation, let y(t; λ) be a Floquet solution of (4.2)

given by

y(t; λ) = eiνt
∑

n∈Z

cneint . (4.6)

Then the coefficients {cn}n∈Z are given by the following three-term recurrence relation:

αncn−1 + (βn − λ)cn + γncn+1 = 0 , n ∈ Z , (4.7)

where

αn = −1
4m [A − (2n + 2ν − 2)][A + (2n + 2ν − 1)] , (4.8a)

βn = (1 − 1
2m)[(2n + 2ν)2 − A2] , (4.8b)

γn = −1
4m [A − (2n + 2ν + 2)][A + (2n + 2ν + 1)] . (4.8c)

Remark 4.4. In turn, the recurrence relation (4.7) can be written as the eigenvalue prob-

lem

Bνc = λc , (4.9)

where c = {cn}n∈Z
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Bν :=




. . .
. . .

. . .

αn βn γn

. . .
. . .

. . .


 . (4.10)

Note: ν ∈ Z corresponds to periodic, and ν ∈ Z + 1
2 to antiperiodic eigenfunctions

of (4.3).

Next, define the space ℓ2,p(Z) := {c ∈ ℓ2(Z) :
∑

n∈Z
|n|p|cn|2 < ∞}. The requirement

that c ∈ ℓ2,4(Z) ensures By ∈ L2([0, 2π]). The reason why this is the case is that B is a

second-order differential operator, which implies that the Fourier coefficients of By will

grow n2 faster as |n| → ∞ than those of y.

Definition 4.5 (Eigenvalues of the tridiagonal operator). Let the operator Bν : ℓ2(Z) →
ℓ2(Z) be defined by (4.10). The set of eigenvalues is given by

Σ(Bν) := {λ ∈ C : ∃c 6≡ 0 ∈ ℓ2,4(Z) s.t. Bνc = λc} . (4.11)

We have the following important result:

Lemma 4.6. If ν ∈ Z or Z + 1
2 , then Σ±(B) = Σ(Bν), and the dimension of the corre-

sponding eigenspaces are equal, respectively.

Proof. By standard results in Fourier analysis [82] one defines the bijective linear map

U : ℓ2(Z) → L2(S1) , (Uc)(t) =
∑

n∈Z

cneint , (4.12)

and the multiplication operator

Mν : L2([0, 2π]) → L2([0, 2π]) , (Mνw)(t) = eiνtw(t) . (4.13)

By construction Bν = (MνU)−1BMνU in the standard basis and U , Mν are unitary.

Also, y = MνUc (see (4.6)). Hence, it follows Σ±(B) = Σ(Bν) and the dimensions of the

corresponding eigenspaces are equal. 2

Remark 4.7. The Floquet exponent ν can be shifted by any integer amount without

loss of generality, since doing so simply corresponds to a shift in the numbering of

the Fourier coefficients in (4.6). So, for example, ν 7→ ν + s simply corresponds to

(αn, βn, γn) 7→ (αn+s, βn+s, γn+s) for all n ∈ Z.
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4.3. Reducible tridiagonal operators and ascending and descending Fourier series

We show that the tridiagonal operator Bν is reducible. Recall that a tridiagonal

operator is reducible if there exists a zero element along the subdiagonal, or superdiagonal

[46].

Lemma 4.8. If A ∈ N and ν ∈ Z or Z + 1
2 , then Bν is reducible.

Proof. There are two cases to consider: (i) ν ∈ Z, corresponding to periodic eigenvalues,

and (ii) ν ∈ Z + 1
2 , corresponding to antiperiodic eigenvalues. In either case, however,

when A ∈ N one has

αn = 0 ⇐⇒ n = A
2 + 1 − ν ∨ n = −A

2 + 1
2 − ν , (4.14a)

γn = 0 ⇐⇒ n = A
2 − 1 − ν ∨ n = −A

2 − 1
2 − ν . (4.14b)

In both cases, one can find two values of n that make αn and γn zero, respectively, but

only one of them is an integer, depending on whether A is even or odd. Note also that

βn = 0 for n = −ν ± A/2, but the corresponding value of n is integer only if A is even

and ν ∈ Z or A is odd and ν ∈ Z + 1
2 . (The equalities in (4.14) hold for all ν ∈ R, but

only when ν ∈ Z or ν ∈ Z + 1
2 do they yield integer values of n.) 2

We emphasize that, when A /∈ N, a similar statement (namely, that Bν is reducible)

can be made for different values of ν. The precise values of ν can be immediately obtained

from the definition of the coefficients αn, βn and γn in (4.8). On the other hand, the

particular significance of integer and half-integer values of ν is that they are associated

with periodic and antiperiodic eigenvalues, which are the endpoints of the spectral bands.

In Section 5.3 we will also see how the periodic and antiperiodic eigenvalues are related

to the solution of a connection problem for a particular Heun ODE.

Consider the tridiagonal operator Bν : ℓ2(Z) → ℓ2(Z) in (4.10). Let ℓ2
+ = ℓ2(No)

(No := N ∪ {0}) and ℓ2
− = ℓ2(Z \ No), so that ℓ2(Z) = ℓ2

− ⊕ ℓ2
+, and denote by P±

orthogonal projectors from ℓ2(Z) onto ℓ2
± respectively. Finally, introduce the block de-

composition

Bν =

(
B− A−

A+ B+

)
, (4.15)

where the semi-infinite tridiagonal operators B± are defined as

B− :=




. . .
. . .

. . .

α−2 β−2 γ−2

α β


 , B+ :=




β0 γ0

α1 β1 γ1

. . .
. . .

. . .


 , (4.16)
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and A± only have one nontrivial entry each, equal to α0 and γ−1 respectively, in their

upper right corner and lower left corner, respectively. If A ∈ N and ν = (1−A)/2 (corre-

sponding to the case of periodic eigenvalues when A is odd and antiperiodic eigenvalues

when A is even), it is easy to see that α0 = γ−1 = 0 and therefore A± ≡ 0, which implies

that Bν = B− ⊕ B+ and ℓ2
± are invariant subspaces of Bν . The above considerations

imply the following:

Lemma 4.9. If A ∈ N and ν = (1 − A)/2, then Σ(Bν) = Σ(B−) ∪ Σ(B+), where B± are

given by (4.16).

The case A ∈ N and ν = A/2 is similar, but more complicated. In this case, it is

necessary to also introduce a second block decomposition of Bν in addition to (4.15),

namely:

Bν =

(
B̃− Ã−

Ã+ B̃+

)
, (4.17)

where

B̃− :=




. . .
. . .

. . .

α−1 β−1 γ−1

α0 β0


 , B̃+ :=




β1 γ1

α2 β2 γ2

. . .
. . .

. . .


 , (4.18)

and Ã± only have one nontrivial entry each, equal to α1 and γ0 respectively, in their upper

right corner and lower left corner, respectively. If A ∈ N and ν = A/2 (corresponding to

the case of periodic eigenvalues when A is even and antiperiodic eigenvalues when A is

odd), it is easy to see that γ−1 = β0 = α1 = 0 and therefore A− = Ã+ ≡ 0. On the other

hand, A+ and Ã− are not identically zero. Thus, Bν cannot be split into a direct sum of

two semi-infinite tridiagonal operators. Nevertheless, an analog of Lemma 4.9 still holds.

Lemma 4.10. If A ∈ N and ν = A/2, then Σ(Bν) = Σ(B−) ∪ Σ(B+) = Σ(B̃−) ∪ Σ(B̃+),

where B± and B̃± are given by (4.16) and (4.18), respectively.

Proof. We first show that Σ(Bν) ⊂ Σ(B−) ∪ Σ(B+). Recall that A− = 0 but A+ 6= 0.

Let λ and c be an eigenpair of Bν , and let c± = P±c, so that c = (c−, c+)T. If c− 6= 0,

we have B−c− = λc−, and therefore λ ∈ Σ(B−). Otherwise, c− = 0 implies c+ 6= 0 and

c = (0, c+)T, and B+c+ = λc+, i.e., λ ∈ Σ(B+).

We show that Σ(B−) ∪ Σ(B+) ⊂ Σ(Bν). Suppose that λ and c+ 6= 0 are an eigenpair

of B+, and let c = (0, c+)T. Then Bνc = λc, implying λ ∈ Σ(Bν). Finally, suppose that

λ ∈ Σ(B−) \ Σ(B+), with associated eigenvector c− 6= 0. In this case, let c = (c−, p)T.

We choose p such that p = −(B+ − λ)−1A+c−. One can show (similarly to Lemma 6.7)

that it is always possible to do so since B+ is closed with compact resolvent. Therefore,
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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the operator (B+ − λ)−1 exists and is bounded, and λ /∈ Σ(B+) implies that λ is in the

resolvent set of B+. But then we have Bνc = λc, which implies λ ∈ Σ(Bν).

The proof that Σ(Bν) = Σ(B̃−) ∪ Σ(B̃+) is entirely analogous, but we report it

because it is useful later. If λ and c are an eigenpair of Bν , let c̃± = P̃±c, with P̃±

defined similarly as P±. If c̃+ 6= 0, we have B̃+c̃+ = λc̃+ and therefore λ ∈ Σ(B̃+),

since Ã+ = 0. Otherwise, similar arguments as before show that B̃−c̃− = λc̃− and

therefore λ ∈ Σ(B̃−). We therefore have Σ(Bν) ⊂ Σ(B̃−) ∪ Σ(B̃+). Finally, to show

that Σ(B̃−) ∪ Σ(B̃+) ⊂ Σ(Bν), we first observe that if λ and c̃− are an eigenpair of

B̃−, and c = (c̃−, 0)T, one has Bνc = λc and therefore λ ∈ Σ(Bν). Conversely, if

λ ∈ Σ(B̃+) \ Σ(B̃−), with eigenvector c̃+, it is always possible to choose p such that

p = −(B̃− − λ)−1Ã−c̃+ (again, cf. Lemma 6.7), and therefore c = (p, c̃+)T satisfies

Bνc = λc, implying λ ∈ Σ(Bν). 2

Remark 4.11. If A ∈ N and ν = A/2, then B+ and B̃− can be decomposed as

B+ =

(
0 γ0

0 B̃+

)
, B̃− =

(
B− 0
α0 0

)
. (4.19)

Corollary 4.12. If A ∈ N and ν = A/2, then Σ(Bν) = Σ(B−) ∪ Σ(B̃+) ∪ {0}.

Importantly, the proofs of Lemmas 4.9 and 4.10 also imply the following:

Theorem 4.13. If A ∈ N and λ ∈ C \ {0} is a periodic or antiperiodic eigenvalue of the

trigonometric operator (4.4), then there exists an associated eigenfunction generated by

either an ascending or descending Fourier series.

Proof. The proof is trivial when ν = (1 − A)/2, since in this case Bν = B− ⊕ B+. On

the other hand, the case ν = A/2 requires more care. The proof of Lemma 4.10 shows

that, if λ and c+ are an eigenpair of B+, then c = (0, c+)T is a corresponding eigenvector

of Bν . Next, if λ and c̃− are an eigenpair of B̃−, then c = (c̃−, 0)T is a corresponding

eigenvector of Bν . Finally, note Σ(B̃−) = Σ(B−) ∪ {0}. 2

Corollary 4.14. If A ∈ N and λ ∈ C is a periodic or antiperiodic eigenvalue with geomet-

ric multiplicity two, then a first eigenfunction can be written in terms of an ascending

Fourier series, while a second linearly independent eigenfunction is given by a descending

Fourier series.

5. Transformation to a Heun ODE

We now introduce a final change of independent variable that maps the trigonometric

ODE (4.2) into Heun’s equation. All the results of Sections 5.1 and 5.2 below will hold for

integer as well as non-integer values of A except where expressly indicated. This further
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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reformulation allows us to interpret the Dirac problem (1.1) as a connection problem for

Heun’s ODE.

5.1. Transformation from the trigonometric ODE to Heun’s equation

Recall that Heun’s equation is a second-order linear ODE with four regular singular

points [31,50,85]. We first rewrite (4.2) using Euler’s formula. Then we perform the

following change of independent variable:

t 7→ ζ := eit . (5.1)

We then obtain a third reformulation of our spectral problem, since the transforma-

tion (5.1) maps the trigonometric ODE (4.2) (and therefore (1.1) with elliptic poten-

tial (1.3)) into the following Heun ODE:

ζ2F (ζ; m)yζζ + ζG(ζ; m)yζ + H(ζ; λ, A, m)y = 0 , (5.2)

where

F (ζ; m) := −mζ2 + (2m − 4)ζ − m , (5.3a)

G(ζ; m) := −3
2mζ2 + (2m − 4)ζ − 1

2m , (5.3b)

H(ζ; λ, A, m) := 1
4A(A + 1)m ζ2 +

(
λ + A2(1 − m

2 )
)

ζ + 1
4A(A − 1)m . (5.3c)

Note that the trigonometric ODE (4.2) does not explicitly contain the Floquet expo-

nent ν. The role of ν for Heun’s ODE will be played by the Frobenius exponents discussed

below.

Equation (5.2) has three regular singular points in the finite complex plane plus a

regular singular point at infinity. Specifically, in the finite complex plane one has a regular

singular point at ζ = 0 and two additional regular singular points where F (ζ; m) = 0,

i.e., when

ζ2 − 2(1 − 2
m ) ζ + 1 = 0 , (5.4)

which is satisfied for

ζ1,2 =
m − 2 ± 2

√
1 − m

m
. (5.5)

Note that ζ1,2 < 0 for all m ∈ (0, 1), and ζ2 = 1/ζ1. Without loss of generality, we take

|ζ1| < 1 < |ζ2|. Summarizing, the four real regular singular points are at 0, ζ1, ζ2, ∞,

with ζ2 ∈ (−∞, −1) and ζ1 ∈ (−1, 0).
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Table 1

Frobenius exponents corresponding to the Heun ODE (5.2).

ζ = 0 ζ = ζ1 ζ = ζ2 ζ = ∞

ρ1 ρo

1
= A/2 ρ1

1
= 0 ρ2

1
= 0 ρ∞

1
= A/2

ρ2 ρo

2
= −(A − 1)/2 ρ1

2
= 1/2 ρ2

2
= −1/2 ρ∞

2
= −(A + 1)/2

Remark 5.1. One can equivalently map the first-order ZS system (1.6a) into a first-order

Heun system with the same four singular points using the same change of independent

variable (5.1) [cf. Appendix A.4]:

ζwζ = −
[

A

2
σ3 +

(
0 1

2
2λζ

4ζ+m(ζ−1)2

(ζ2−1)m
2(4ζ+m(ζ−1)2)

)]
w , (5.6)

where w(ζ; λ) = (w1, w2)T.

5.2. Frobenius analysis of Heun’s ODE

Next we apply the method of Frobenius to (5.2) at the regular singular points ζ = 0

and ζ = ∞. Then we construct half-infinite tridiagonal operators whose eigenvalues

coincide with those of the tridiagonal operators discussed in Section 4.3. By direct cal-

culation, one can easily check that the Frobenius exponents of (5.2) are as in Table 1.

The Frobenius exponents ρ1,2 at ζ = 0 and ζ = ∞ are obtained by looking for solutions

of (5.2) in the form

yo(ζ; λ) = ζρ
∞∑

n=0

cn ζ n , (5.7a)

and

y∞(ζ; λ) = ζρ
∞∑

n=0

cn ζ−n , (5.7b)

respectively, with c0 6= 0 in each case. Note, when A is even, ρo
1 and ρ∞

1 are integer while

ρo
2 and ρ∞

2 are half-integer, and vice versa when A is odd. Note also that ρo
2−ρo

1 = 1/2−A

and ρ∞
1 − ρ∞

2 = 1/2 + A, so when A ∈ N, these differences are never integer, and no

exceptional cases (i.e., resonances) arise.

Next we study the three-term recurrence relations at ζ = 0 and ζ = ∞, since they are

key to proving the reality of the λ eigenvalues. We begin by plugging (5.7a) and (5.7b)

into (5.2). The coefficients of the Frobenius series (5.7a) at ζ = 0 solve the following

three-term recurrence relations. For ρ = ρo
1 = A/2:

−λc0 + m (2A + 1) c1 = 0 , n = 0 , (5.8a)
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Pncn−1 + (Rn − λ)cn + Sncn+1 = 0 , n ≥ 1 , (5.8b)

where

Pn = m
2 (n − 1)(2A + 2n − 1) , Rn = (1 − m

2 )((A + 2n)2 − A2) ,

Sn = m
2 (n + 1)(2A + 2n + 1) . (5.8c)

For ρ = ρo
2 = −(A − 1)/2:

[
(m

2 − 1)(2A − 1) − λ
]

c0 − m
2 (2A − 3) c1 = 0 , n = 0 , (5.9a)

P̃ncn−1 + (R̃n − λ)cn + S̃ncn+1 = 0 , n ≥ 1 , (5.9b)

where

P̃n = −m
2 n(2A − 2n + 1) , R̃n = (1 − m

2 )((2n + 1 − A)2 − A2) ,

S̃n = −m
2 (n + 1)(2A − 2n − 3) . (5.9c)

Similarly, the coefficients of the Frobenius series (5.7b) at ζ = ∞ are given by the

following three-term recurrence relations. For ρ = ρ∞
1 = A/2:

−λc0 − m
2 (2A − 1)c1 = 0 , n = 0 , (5.10a)

Xncn−1 + (Yn − λ)cn + Zncn+1 = 0 , n ≥ 1 , (5.10b)

where

Xn = −m
2 (n − 1)(2A − 2n + 1) , Yn = (1 − m

2 )((2n − A)2 − A2) ,

Zn = −m
2 (n + 1)(2A − 2n − 1) . (5.10c)

For ρ = ρ∞
2 = −(A + 1)/2:

[
(1 − m

2 )(2A + 1) − λ
]

c0 + m
2 (2A + 3) c1 = 0 , n = 0 , (5.11a)

X̃ncn−1 + (Ỹn − λ)cn + Z̃ncn+1 = 0 , n ≥ 1 , (5.11b)

where

X̃n = m
2 n(2A + 2n − 1) , Ỹn = (1 − m

2 )((2n + 1 + A)2 − A2) ,

Z̃n = m
2 (n + 1)(2A + 2n + 3) . (5.11c)

Remark 5.2. The three-term recurrence relations at ζ = 0 can be written as the eigen-

value problems
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T ±
o c = λc , (5.12)

where T ±
o : ℓ2,4(No) ⊂ ℓ2(No) → ℓ2(No), and

T −
o :=




R0 S0

P1 R1 S1

. . .
. . .

. . .


 , T +

o :=




R̃0 S̃0

P̃1 R̃1 S̃1

. . .
. . .

. . .


 . (5.13)

Similarly, the three-term recurrence relations at ζ = ∞ can be written as the eigenvalue

problems

T ±
∞c = λc , (5.14)

where T ±
∞ : ℓ2,4(No) ⊂ ℓ2(No) → ℓ2(No), and

T −
∞ :=




Y0 Z0

X1 Y1 Z1

. . .
. . .

. . .


 , T +

∞ :=




Ỹ0 Z̃0

X̃1 Ỹ1 Z̃1

. . .
. . .

. . .


 . (5.15)

5.3. Relation between Fourier series and the connection problem for Heun’s ODE

Recall that: (i) If λ ∈ C is a periodic or antiperiodic eigenvalue of (4.3), one has ν ∈ Z

or ν ∈ Z + 1
2 , respectively. (ii) The Floquet exponents can be shifted by an arbitrary

integer amount by shifting the indices of the Fourier coefficients (cf. Remark 4.7). (iii) By

Theorem 4.13, each periodic or antiperiodic eigenvalue has an associated ascending or de-

scending Fourier series when A ∈ N. (iv) The transformation ζ = eit maps the Frobenius

series (5.7) to ascending or descending Fourier series (4.6), and vice versa. (v) Finally,

when A ∈ N, the values of the Frobenius exponents for the expansions at ζ = 0 and at

ζ = ∞ are either integer or half-integer.

Moreover, the Floquet exponents ν = (1 − A)/2 and ν = A/2 in Lemmas 4.9 and

4.10 coincide exactly with the Frobenius exponents ρo
2 and ρo

1 at ζ = 0, respectively.

The Frobenius exponents ρ∞
2 and ρ∞

1 at ζ = ∞ are also equivalent to the above Floquet

exponents upon a shift of indices. As a result, the recurrence relations (5.8), (5.9), (5.10)

and (5.11) associated to the Frobenius series (5.7) of Heun’s ODE (5.2) are equivalent

to those associated to the Fourier series solutions of the trigonometric ODE (4.2). More

precisely:

Lemma 5.3. If A ∈ N and λ ∈ Σ(Bν) is either a periodic or antiperiodic eigenvalue, (i.e.,

ν integer or half-integer, respectively) then the following identities map the recurrence

relations generated by the Frobenius series solution of (5.2) at ζ = 0 and ζ = ∞ to the

ascending and descending recurrence relations generated by the Fourier series solution

of (4.2), respectively. Namely:
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(i) For ν = ρo
1,2 one has, respectively:

(αn, βn, γn) = (Pn, Rn, Sn) , n ≥ 0 , (5.16a)

(αn, βn, γn) = (P̃n, R̃n, S̃n) , n ≥ 0 . (5.16b)

(ii) For ν = ρ∞
1,2 one has, respectively:

(α−n, β−n, γ−n) = (Zn, Yn, Xn) , n ≥ 0 , (5.17a)

(α−n−1, β−n−1, γ−n−1) = (Z̃n, Ỹn, X̃n), n ≥ 0 , (5.17b)

Proof. When ν = ρo
1,2, the result follows immediately by direct comparison. Likewise

when ν = ρ∞
1 . Finally, when ν = ρ∞

2 we can simply shift ν 7→ ν + 1, which sends

n 7→ −n − 1. 2

Corollary 5.4. If A is odd, then the eigenvalues of T +
o and T +

∞ correspond to the periodic

eigenvalues of the Dirac operator (1.2) and T −
o and T −

∞ to the antiperiodic ones, via the

map λ = z2. Conversely, if A is even, then the eigenvalues of T −
o and T −

∞ correspond to

the periodic eigenvalues of the Dirac operator and those of T +
o and T +

∞ to the antiperiodic

ones.

Remark 5.5. We emphasize that, when A ∈ N, Lemma 5.3 only holds for periodic or

antiperiodic solutions of (4.2) (i.e., ν integer or half-integer). On the other hand, even

when A /∈ N, a similar conclusion holds for certain Floquet solutions of (4.2). Namely,

even for generic values of A, one can establish a one-to-one correspondence between

certain Floquet exponents and ascending or descending Floquet eigenfunctions of (4.2),

and in turn with Frobenius series solutions of (5.2).

So far we have analyzed the properties of solutions corresponding to periodic and

antiperiodic eigenvalues of the problem. We now turn to the question of identifying

these eigenvalues. Doing so yields the desired characterization of the Lax spectrum of

(1.2).

Remark 5.6. A periodic/antiperiodic eigenfunction of (1.1) with potential (1.3) corre-

sponds to a Fourier series solution (4.6) of the trigonometric ODE (4.2) that is convergent

for t ∈ R. The transformation (5.1) given by ζ = eit, which maps the real t-axis onto the

unit circle |ζ| = 1 (cf. Fig. 2), maps these solutions into a Laurent series representation

for the solutions of Heun’s ODE (5.2). The question of identifying which solutions of

Heun’s ODE define periodic/antiperiodic eigenfunctions of (1.1) is discussed next.

Lemma 5.7. Let To be either one of the operators T ±
o defined in Remark 5.2 and let

yo(ζ) = ζρwo(ζ) be a corresponding Frobenius series solution of Heun’s equation at ζ = 0.

Then:
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Fig. 2. The singular points ζ = 0, ζ1, ζ2, and ∞ and the region |ζ| = 1 in the complex ζ plane.

(i) λ is an eigenvalue of To if and only if wo(ζ) is analytic in the disk |ζ| < |ζ2|; i.e., if

yo(ζ) is analytic up to a branch cut when the Frobenius exponent ρo is not integer.

Similarly, let T∞ be either one of the operators T ±
∞ defined in Remark 5.2 and let y∞(ζ) =

ζρw∞(ζ) be a corresponding Frobenius series solution of Heun’s equation at ζ = ∞. Then:

(ii) λ is an eigenvalue of T∞ if and only if w∞(ζ) is analytic in the exterior disk |ζ| >

|ζ1|; i.e., if y∞(ζ) is analytic up to a branch cut when the Frobenius exponent ρ∞ is

not integer.

Proof. We consider To first. The radius of convergence of the Frobenius series represent-

ing y(ζ) in a neighborhood of ζ = 0 is at least |ζ1|. Moreover, λ ∈ C is an eigenvalue of

To if and only if the corresponding eigenvector c ∈ ℓ2,4(No) (see Remark 5.2). Since the

entries of c coincide with the coefficients of the Frobenius power series representing y(ζ),

we conclude that λ ∈ C is an eigenvalue of To if and only if the radius of convergence

of this series is at least one. In this case y(ζ) is analytic in the disk |ζ| < |ζ2| (up to

a possible branch cut), since there are no singular points of the Heun’s equation in the

annulus |ζ1| < |ζ| < |ζ2|. The proof for T∞ follows along the same lines. 2

Remark 5.8. The above results relate the existence of eigenvalues to the connection prob-

lem for Heun’s equation (5.2). For simplicity, consider the case of periodic eigenvalues.

Assume A ∈ N. The Frobenius analysis of Section 5.2 yields two linearly independent

solutions of Heun’s ODE near each of the four singular points. Let yo
1,2(ζ; λ) be the

Frobenius series with base point ζ = 0 and y1
1,2(ζ; λ) those with base point ζ = ζ1. Both

yo
1,2(ζ; λ) and y1

1,2(ζ; λ) form a basis for the solutions of Heun’s ODE (5.2) in their re-

spective domains of convergence. Since these domains overlap, in the intersection region

one can express one set of solutions in terms of the other, i.e., (y1
1 , y1

2) = (yo
1, yo

2) C, with

a constant non-singular connection matrix C. The Frobenius exponents at ζ = ζ1 are 0
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and 1
2 , and, when A ∈ N, one of the Frobenius exponents at ζ = 0 is integer and the

other is half-integer. Therefore, the values of λ for which the analytic solution at ζ = 0

converges up to |ζ| = |ζ2| are precisely those values for which the Frobenius series with

integer exponent at ζ = 0 is exactly proportional to that with integer exponent at ζ = ζ1.

Similar arguments hold for the solutions near ζ = ζ2 and ζ = ∞. In other words, when λ

is a periodic eigenvalue, the analytic solutions at ζ = 0 and ζ = ζ1 or those at ζ = ζ2 and

ζ = ∞ must be proportional. This is the manifestation of an eigenvalue in terms of the

connection problem for the Heun’s equation (5.2). If both pairs of analytic solutions are

proportional to each other, λ is a double eigenvalue, otherwise λ is a simple eigenvalue.

(In Section 6 we will also see that all positive eigenvalues have multiplicity two and

all negative eigenvalues have multiplicity one.) Similar results hold for the antiperiodic

eigenvalues once the square root branch cut resulting from the half-integer Frobenius

exponent is taken into account.

We also mention that there is an alternative but in a sense equivalent way to look at

the problem, which is to study the convergence of the Frobenius series solutions (5.7)

using Perron’s rule [80]. This connection is briefly discussed in Appendix A.5.

6. Real eigenvalues of the operators T
±
o

and T
±
∞

Thus far we have shown that the periodic and antiperiodic eigenvalues of (1.2) with

Jacobi elliptic potential (1.3) and amplitude A ∈ N can be obtained from the eigenvalues

of certain unbounded tridiagonal operators, namely, T ±
o and T ±

∞ defined in Section 5.2.

We now prove that all eigenvalues of these operators are real. We do so in two steps:

First, in Section 6.1, we show that finite truncations of these operators have purely real

eigenvalues. Then, in Section 6.2, we use semicontinuity to show these operators have

purely real eigenvalues.

6.1. Real eigenvalues of the truncated operators T ±
o,N and T ±

∞,N

Here we show that finite truncations of the operators T ±
o , T ±

∞ have purely real eigen-

values. We form the truncations by considering only the first N − 1 terms of the

corresponding three-term recurrence relations. To this end let T ±
o,N and T ±

∞,N be the

N × N truncations of T ±
o and T ±

∞, respectively.

Lemma 6.1. If A ∈ N and m ∈ (0, 1), then for any N > 0 the matrices T −
o,N and T ±

∞,N

have purely real eigenvalues.

The result is a consequence of the fact that Pn+1Sn ≥ 0, Xn+1Zn ≥ 0, and

X̃n+1Z̃n > 0, n ≥ 0, which makes it possible to symmetrize T −
o,N and T ±

∞,N via a

similarity transformation (see [42,46]). The result does not apply to T +
o,N , since there ex-

ists an n > 0 such that P̃n+1S̃n < 0, and, as a result, some of the entries of the resulting
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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symmetrized matrix would be complex. Thus, another approach is needed to show the

eigenvalues of T +
o,N are all real. To this end we introduce the following definition [46]:

Definition 6.2 (Irreducibly diagonally dominant). An N × N tridiagonal matrix is irre-

ducibly diagonally dominant if (i) it is irreducible; (ii) it is diagonally dominant, i.e.,

|aii| ≥ ∑
j 6=i |aij |, for all i ∈ {0, . . . , N − 1}; and (iii) there exists an i ∈ {0, . . . , N − 1}

such that |aii| >
∑

j 6=i |aij |. Here aij denotes the entry in the i-th row and j-th column

of the matrix.

Theorem 6.3. (Veselic, [99] p. 171) Let T +
o,N be an N × N tridiagonal matrix which is

irreducibly diagonally dominant and such that sign(P̃nS̃n−1) = sign(R̃nR̃n−1) for n =

1, . . . , N − 1. Then T +
o,N has N real simple eigenvalues.

Next we show that T +
o,N satisfies the hypotheses of Theorem 6.3 and thus has only

real eigenvalues.

Lemma 6.4. If A ∈ N and m ∈ (0, 1), then for any N > 0 all eigenvalues of T +
o,N are

real and distinct.

Proof. First, A ∈ N implies P̃nS̃n−1 6= 0 for n ≥ 1. Thus, T +
o,N is irreducible. Next,

R̃n < 0 when n ≤ ⌊A − 1
2⌋. Similarly, R̃n−1 < 0 when n ≤ ⌊A + 1

2⌋. (Here, ⌊x⌋ denotes

the greatest integer less than or equal to x.) Thus, sign(R̃nR̃n−1) < 0 if and only if

A = n. Likewise, P̃n < 0 when n ≤ ⌊A + 1
2⌋, and S̃n−1 < 0 when n ≤ ⌊A − 1

2⌋. Thus,

sign(P̃nS̃n−1) < 0 if and only if A = n. Hence,

sign(P̃nS̃n−1) = sign(R̃nR̃n−1) , n ≥ 1 . (6.1)

Finally, consider the transpose (T +
o,N )T. Note (6.1) remains valid. For n = 0 one easily

gets |R̃0| > |P̃1|. Moreover, for n ≥ 1, one has |R̃n| = (1 − m
2 )(2n + 1)|2n + 1 − 2A| and

|P̃n+1| + |S̃n−1| = m
2 (2n + 1)|2n + 1 − 2A|. Thus, |R̃n| > |P̃n+1| + |S̃n−1| for n ≥ 1.

Hence (T +
o,N )T is an N × N irreducibly diagonally dominant tridiagonal matrix and

satisfies (6.1). The result follows from Theorem 6.3. 2

Theorem 6.5. If A ∈ N and m ∈ (0, 1), then for any N > 0 all eigenvalues of the tridi-

agonal matrices T ±
o,N and T ±

∞,N are real and have geometric multiplicity one. Moreover,

all eigenvalues of T +
o,N and T +

∞,N , and all nonzero eigenvalues of T −
o,N and T −

∞,N are

simple.

Proof. For T −
o,N and T ±

∞,N , the reality of all eigenvalues was proved in Lemma 6.1, and for

T +
o,N it was proved in Lemma 6.4. Moreover, Lemma 6.4 also proved that the eigenvalues

of T +
o,N are simple.

Let λ be an eigenvalue of T −
o,N and c = (c0, . . . , cN−1)T the corresponding eigenvector.

Assume c0 = 0. Then it follows from the three-term recurrence relation (5.8) that cn = 0
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for n ≥ 1. (Note that S0 is nonzero.) Since c is an eigenvector this is a contradiction.

Hence the first component of the eigenvector is necessarily nonzero. Next, let c and c̃

be two eigenvectors corresponding to the same eigenvalue of T −
o,N . Consider the linear

combination b = αc + α̃c̃. Then there exists (α, α̃) 6= 0 such that b0 = 0. By the first

part of the argument b ≡ 0. Hence the eigenvectors c and c̃ are linearly dependent. The

proofs for T +
o,N and T ±

∞,N are identical. 2

6.2. Generalized convergence and reality of periodic and antiperiodic eigenvalues

In Section 6.1 we showed that, for A ∈ N, the N × N truncations of the tridiagonal

operators have only real eigenvalues. It remains to show that the tridiagonal operators

T ±
o and T ±

∞ also have only real eigenvalues. This result will follow from the fact that

the eigenvalues of the tridiagonal operators possess certain continuity properties as the

truncation parameter N tends to infinity. Some of the proofs in this section follow from

Volkmer [101]. For brevity we only present the details of the analysis for T +
o .

Lemma 6.6. Consider the operator T +
o . There exists θ ∈ (0, 1) and n∗ ∈ N such that

2 max(P̃ 2
n + S̃ 2

n , P̃ 2
n+1 + S̃ 2

n−1) ≤ θ2R̃ 2
n , n ≥ n∗ . (6.2)

The same estimate holds for the operators T −
o and T ±

∞.

Proof. It follows from the definition of P̃n, R̃n, and S̃n in (5.9c) that

P̃ 2
n + S̃2

n = 2m2n4(1 + o(1)) , (6.3a)

P̃ 2
n+1 + S̃2

n−1 = 2m2n4(1 + o(1)) , (6.3b)

R̃2
n = (4 − 2m)2n4(1 + o(1)) , (6.3c)

as n → ∞. Hence, let θ = m. For n sufficiently large one gets 4m2n4 ≤ θ2R̃2
n =

m2(4 − 2m)2n4. The result holds for m ∈ (0, 1). It is easy to check that the same

estimate holds also for the operators T −
o , T ±

∞. 2

Next we decompose T ±
o , T ±

∞ into their diagonal and off-diagonal parts. Namely, if T

is any one of the operators T ±
o , T ±

∞, we write

T := TD + TO , (6.4)

where TD is the diagonal, and TO the off-diagonal. This decomposition is instrumental

in proving the following:

Lemma 6.7. The operators T ±
o and T ±

∞ are closed with compact resolvent.
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Proof. The proof follows closely that of the analogous result in [101]. We provide details

of the proof for the operator T +
o . First, by replacing R̃n by R̃n +ω with sufficiently large

ω, we may assume, without loss of generality, that R̃n > 0 and that (6.2) holds for all

n ≥ 0. Then

‖TOc‖ ≤ θ‖TDc‖ ∀c ∈ ℓ2,4(No) . (6.5)

Since 0 < R̃n → ∞ it follows T −1
D exists and is a compact operator. Moreover, by (6.5) it

follows that ‖TOT −1
D ‖ ≤ θ < 1. Hence T −1 = T −1

D (I + TOT −1
D )−1 is a compact operator

(see [58] p. 196). Therefore, T +
o is a closed operator with compact resolvent. The proofs

for T −
o , T ±

∞ are identical. 2

The proof of the next lemma is identical to that of Theorem 6.5.

Lemma 6.8. All eigenvalues of the operators T ±
o and T ±

∞ have geometric multiplicity one.

Next we begin to address reality of the eigenvalues. By Lemma 6.7 it follows Σ(T ±
o ) and

Σ(T ±
∞) are comprised of a set of discrete eigenvalues with finite multiplicities. Recall that,

for z ∈ Σ(L), we have | Im z| < ‖q‖∞. Moreover, we also have | Im z| | Re z| ≤ 1
2‖qx‖∞

for any z ∈ Σ(L) (see [12]). Hence, by the correspondence between the Dirac and Hill

equations (see Section 3) we have

Re λ ≥ −‖q‖2
∞ , | Im λ| ≤ ‖qx‖∞ . (6.6)

Thus there exists a curve C such that the region in the complex λ-plane bounded by

C contains finitely many periodic (resp. antiperiodic) eigenvalues of Hill’s equation with

complex elliptic potential (3.15) counting multiplicity. This suggests to apply the concept

of generalized convergence of closed linear operators (see Appendix A.6 for a discussion

of generalized convergence). In particular, we will use the following result:

Theorem 6.9. (Kato, [58] p. 206) Let T , Tn ∈ C(X , Y ), n = 1, 2, . . . the space of closed

operators between Banach spaces. If T −1 exists and belongs to B(X , Y ), the space of

bounded operators, then Tn → T in the generalized sense if and only if T −1
n exists and

is bounded for sufficiently large n and ‖T −1
n − T −1‖ → 0.

Theorem 6.9 implies the semicontinuity of a finite system of eigenvalues counted ac-

cording to multiplicity ([58] p. 213). To this end, we introduce a sequence of tridiagonal

operators:

Tn := TD + PnTO , (6.7)

where Pn is the orthogonal projection of ℓ2(No) onto span{e0, e1, . . . , en−1}, with

{ei}n∈No
being the canonical basis. Thus, for example, Tn is determined by, say, T +

o
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with the off-diagonal entries P̃j , S̃j replaced by zeros for j ≥ n. Clearly, Σ(TN ) =

Σ(T +
o,N ) ∪ {R̃n}n≥N for any N ∈ N. The following result is obtained from Theorem

2 in [101], the difference being the additional zero column for T −
o and T −

∞. Once the

first column and row are deleted, the proof is identical. We therefore omit the proof for

brevity.

Lemma 6.10. Let T be any one of the operators T ±
o , T ±

∞. If Tn is defined by (6.7), with

TD and TO defined by (6.4), then Tn → T in the generalized sense (see Theorem 6.9

above).

Using convergence in the generalized sense, we are now ready to show that T ±
o and

T ±
∞ have real eigenvalues only:

Lemma 6.11. If λn ∈ Σ(T ±
o ) or λn ∈ Σ(T ±

∞), then λn ∈ R.

Proof. Let T be any one of the operators T ±
o or T ±

∞. Count eigenvalues according to their

multiplicity. Fix n ∈ N, and let λn ∈ Σ(T ). Let ǫ > 0 and Cǫ := {λ ∈ C : |λ − λn| = ǫ}.

Since ‖T −1
n −T −1‖ → 0 as n → ∞, we know for each δ > 0 there exists N ∈ N such that

‖T −1
N − T −1‖ < δ. By semicontinuity of a finite system of eigenvalues (see [58] p. 212),

we can choose δ > 0 such that Cǫ contains an eigenvalue of TN . Call this eigenvalue λN .

Since ǫ is arbitrary, and λN is real for any N it follows λn ∈ R. 2

Summarizing, we have shown that the periodic (resp. antiperiodic) eigenvalue prob-

lems for (1.2) with Jacobi elliptic potential (1.3) can be mapped to eigenvalue problems

for four tridiagonal operators obtained from a Frobenius analysis of the Heun equa-

tion (5.2). Moreover, all eigenvalues of the tridiagonal operators are real with geometric

multiplicity one. Putting everything together, we are now ready to prove the first part

of Theorem 1.2:

Theorem 6.12. Consider (1.2) with potential (1.3) and m ∈ (0, 1). If A ∈ N, then

Σ(L; A, m) ⊂ R ∪ (−iA, iA), and q is a finite-band potential.

Proof. Let z ∈ Σ±(L). Recall that we have established a direct correspondence between

the periodic (resp. antiperiodic) eigenvalues of the tridiagonal operators T ±
o , T ±

∞ and

the periodic (resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic

potential (1.3). Also, Σ(T ±
o ) ∪ Σ(T ±

∞) ⊂ R. Hence, by Lemma 3.5, and since λ = z2,

it follows that Σ(L; A, m) ⊂ R ∪ (−iA, iA) (see also Lemma 2.10). Thus, the periodic

(resp. antiperiodic) eigenvalues of the Dirac operator (1.2) with elliptic potential (1.3)

are real or purely imaginary. Then, by symmetry (see Lemmas 2.9 and 2.10), the entire

Lax spectrum is only real and purely imaginary. Finally, that q is finite-band for all

A ∈ N and m ∈ (0, 1) follows from Lemma 2.10. 2

Lemma 6.13. If λ ∈ Σ(T −
o ) ∪ Σ(T +

∞), then λ ≥ 0.
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Proof. All entries of the tridiagonal operator T +
∞ are positive. Consider the truncation

T +
∞,N . Without loss of generality take the transpose. A simple calculation shows that

(T +
∞,N )T is strictly diagonally dominant. Hence, by the Gershgorin circle theorem all

eigenvalues of (T +
∞,N )T are strictly positive. By semicontinuity, in the limit N → ∞ it

follows that Σ(T +
∞) ⊂ [0, ∞).

Next, note that the first column of T −
o is comprised of all zeros. Thus, Σ(T −

o ) =

Σ(T̃ −
o )∪{0}, where T̃ −

o is defined by T −
o with the first row and the first column removed.

Moreover, T̃ −
o has strictly positive entries, and the transpose is diagonally dominant.

Arguing as in the previous case gives the result. 2

7. Lax spectrum for non-integer values of A

All of the results in this work up to the Fourier series expansion and the three-term

recurrence relation in Section 4.2 hold independently of whether or not A is integer. The

same holds for the Frobenius analysis in Section 5.2. On the other hand, the reducibility

of the tridiagonal operator Bν with integer and half-integer Floquet exponents ν in

Section 4.3 only holds when A ∈ N (because it is only in that case that zeros appear in

the upper and lower diagonal entries). Similarly, the Frobenius exponents at ζ = 0 and

ζ = ∞ in Section 5.2 are integer or half-integer only when A ∈ N. We next show that

these are not just technical difficulties, but instead reflect a fundamental difference in

the properties of the Lax spectrum of (1.2) when A /∈ N.

Lemma 7.1. If A /∈ N, and m ∈ (0, 1), then all periodic and antiperiodic eigenvalues

of (1.2) with Jacobi elliptic potential (1.3) have geometric multiplicity one.

Proof. The proof proceeds by contradiction. For simplicity, we focus on the periodic

eigenvalues. Suppose that for A /∈ N and ν ∈ Z there exist two linearly independent

eigenfunctions. Then the transformation ζ = eit yields two linearly independent solutions

of Heun’s ODE (5.2) on |ζ| = 1. Let us denote these solutions as ŷ1(ζ; λ) and ŷ2(ζ; λ).

Note all points on |ζ| = 1 are ordinary points for Heun’s ODE and, therefore, both

ŷ1(ζ; λ) and ŷ2(ζ; λ) are analytic and single-valued in the annulus |ζ1| < |ζ| < |ζ2|
(cf. Fig. 2). Moreover, recall that the Frobenius exponents at ζ = ζ1 are ρ1

1 = 0 and

ρ1
2 = 1/2. Let y1

1(ζ; λ) and y1
2(ζ; λ) denote the corresponding solutions. Since ŷ1(ζ; λ)

and ŷ2(ζ; λ) are linearly independent solutions, we have y1
1(ζ; λ) = c1ŷ1(ζ; λ)+c2ŷ2(ζ; λ)

for some constants c1 and c2. Then y1
1(ζ; λ) is analytic and single valued in the region

0 < |ζ| < |ζ2|
On the other hand, y1

1(ζ; λ) is a linear combination of the Frobenius solutions ỹ1(ζ; λ)

and ỹ2(ζ; λ) defined at the singular point ζ = 0, with Frobenius exponents ρo
1 = A/2 and

ρo
2 = (1−A)/2 respectively, neither of which is an integer. Thus, no single-valued solution

can exist around ζ = 0. Therefore, there cannot be two linearly independent periodic

eigenfunctions. Similar considerations apply for the antiperiodic eigenvalues. 2
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Note Lemma 7.1 does not hold for m = 0, as in the limit m → 0 Heun’s equation (5.2)

degenerates into a Cauchy-Euler equation (with two regular singular points at ζ = 0 and

ζ = ∞). Still, together with Lemma 2.16, Lemma 7.1 implies:

Corollary 7.2. If A /∈ N, and m ∈ (0, 1), then Σ±(L) ∩ R = ∅.

In turn, since both Σ±(L) are infinite (see [25]), and since the periodic and antiperiodic

eigenvalues are the endpoints of the spectral bands, Corollary 7.2 directly implies:

Corollary 7.3. If A /∈ N, and m ∈ (0, 1), then Σ(L) with Jacobi elliptic potential (1.3)

has an infinite number of spines along the real z-axis.

We conclude that when A /∈ N, the potential q in (1.3) is not finite-band according

to Definition 2.5, which proves the only if part of Theorem 1.2, namely that A ∈ N is

not only sufficient, but also necessary in order for q in (1.3) to be finite-band, as well as

Theorem 1.4.

8. Further characterization of the spectrum and determination of the genus

It remains to prove the last part of Theorem 1.2, namely the determination of the

genus. To this end, we need a more precise characterization of the Lax spectrum for

A ∈ N, which will also yield the proof of the remaining parts of Theorem 1.3. We turn

to this task in this section.

8.1. Multiplicity of imaginary eigenvalues

Theorem 8.1. If z ∈ (−iA, iA) \ {0} is a periodic or an antiperiodic eigenvalue of (1.2)

with potential (1.3) with A ∈ N, and m ∈ (0, 1), then it has geometric multiplicity one.

Proof. By Lemma 3.5 it follows z ∈ Σ±(L) if and only if λ = z2 ∈ Σ±(H−), respectively.

Moreover, for z 6= 0 the geometric multiplicity of the periodic (resp. antiperiodic) eigen-

values is the same. Next, by the results of Section 5, each periodic (resp. antiperiodic)

eigenfunction of H− is associated with an eigenvector of T ±
o or T ±

∞, and

Σ(T ±
o ) ∪ Σ(T ±

∞) = {λ = z2 : z ∈ Σ±(L)} , (8.1)

with T +
o , T +

∞ yielding periodic eigenvalues and T −
o , T −

∞ antiperiodic eigenvalues when A

is odd, and vice versa when A is even (cf. Corollary 5.4). By Lemma 6.8, each eigenvalue

of T ±
o , T ±

∞ has geometric multiplicity one. Therefore, a periodic (resp. antiperiodic)

eigenvalue z ∈ C of L can have geometric multiplicity two if and only if λ = z2 is

simultaneously an eigenvalue of both T +
o and T +

∞ or simultaneously an eigenvalue of

both T −
o and T −

∞. On the other hand, Lemma 6.13 showed that the eigenvalues of T −
o

and T +
∞ are non-negative. Hence, by the relation λ = z2 all periodic (resp. antiperiodic)
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eigenvalues z ∈ (−iA, iA) \ {0} of (1.2) with potential (1.3) have geometric multiplicity

one. 2

Corollary 8.2. For all m ∈ (0, 1), if z ∈ (−iA, iA) \ {0} is a periodic or an antiperiodic

eigenvalue of (1.2) with potential (1.3), then s(z) 6= 0.

Proof. Recall that s(z) is defined by (2.15). If s(z) = 0, the monodromy matrix M(z)

would be diagonal, but this would imply the existence of two periodic (resp. antiperiodic)

eigenfunctions, which would contradict Theorem 8.1. 2

Note that the above results do not hold for m = 0 (a constant background potential),

since in that case all periodic and antiperiodic eigenvalues except z = ±iA have geometric

multiplicity two.

8.2. Dirichlet eigenvalues and behavior of the Floquet discriminant near the origin

In this subsection we prove some technical but important results that will be used

later in the proof of Theorem 1.3.

As in Section 2.3, here it will be convenient to explicitly keep track of the dependence

on m by writing the potential, fundamental matrix solution, and monodromy matrix re-

spectively as q(x; m), Φ(x; z, m) and M(z; m). We begin by recalling some relevant infor-

mation. We will use the structure of the monodromy matrix M(z; m) = Φ(2K(m); z, m)

introduced in (2.15). Also recall that, when m = 0 (in which case q(x, 0) ≡ A), M(z, 0) is

given by (2.23). (Recall that l = 2K(m) is the (real) period of dn(x; m), and 2K(0) = π.)

Thus, (2.15) implies

∆(z; 0) = cos
(√

z2 + A2π
)

, s(z; 0) = − A√
z2 + A2

sin
(√

z2 + A2π
)

. (8.2)

Recall from Section 2.2 that ∆(z; m) and s(z; m) are even functions of z while c(z; m) is

an odd function of z. Let ∆j(m), −icj(m) and sj(m) denote, respectively, the coefficients

of z2j , z2j+1 and z2j in the Taylor series of ∆(z; m), c(z; m) and s(z; m) around z = 0.

Combining (2.23) and (A.12b), we obtain the following expansions near z = 0:

∆(z; m) = (−1)A + ∆1(m)z2 + O(z4) , (8.3a)

c(z; m) = −ic0(m)z − ic1(m)z3 + O(z5) , (8.3b)

s(z; m) = s1(m)z2 + O(z4) . (8.3c)

We want to study in detail the behavior of ∆(z; m) near z = 0. We begin by looking

at the dynamics of (closed) gaps as a function of A at m = 0, to show how the number of

bands grows as A increases. According to (8.2), the periodic and antiperiodic eigenvalues

are, respectively,
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zn = ±
√

4n2 − A2 , zn = ±
√

(2n + 1)2 − A2 , n ∈ Z . (8.4)

It follows that z = 0 is a periodic or antiperiodic eigenvalue when A ∈ Z. Direct calcu-

lations show that

∆zz(z; 0) = − π2z2

z2 + A2
cos(

√
z2 + A2π) − πA2

(z2 + A2)
3

2

sin(
√

z2 + A2π), (8.5)

so that

∆zz(0; 0) = −π sin(Aπ)

A
. (8.6)

Observe that, as a function of A, ∆zz(0; 0) changes sign as A passes through an integer

value. For example, if A passes through an even value n ∈ N, the sign of ∆zz(0; 0) changes

from “+” to “−”, corresponding to the transition of a pair of critical points of ∆(z; 0) from

R to [−iA, iA]. Correspondingly, a pair of zero level curves of Im ∆(z) = 0 intersecting R

transversally will pass through z = 0 and intersect [−iA, iA] forming an extra closed gap

on [−iA, iA]. This is the mechanism of increase of the number of gaps on [−iA, iA]. Note

that (8.5) implies that ∆z(z; 0) has a third order zero at z = 0 when A ∈ Z. Next we

show that this mechanism works for any m ∈ (0, 1). This will be accomplished through

several intermediate steps.

Lemma 8.3. For fixed A ∈ N we have ∆zz(0; 0) = 0, and (−1)A∆zz(0; m) is a strictly

monotonically decreasing function of m for m ∈ [0, 1).

Proof. The first statement follows from (8.5). The rest of the proof is devoted to show

that

(−1)A∆zz(0; m) < 0 , (8.7)

when m ∈ (0, 1). Substitution of (8.3) into (2.16) yields

1
2∆zz(0; m) = ∆1(m) = 1

2 (−1)A+1c2
0(m) . (8.8)

Note that (−1)A∆zz(0; m) ≤ 0 since M(z; m) is real on z ∈ [−iA, iA]. Thus, it remains

to show that c0(m) 6= 0 for m ∈ (0, 1). In fact, we will show below that c0(m) is

monotonically increasing on m ∈ [0, 1). That, combined with c0(0) = 0 (see (8.8)), will

complete the proof.

Recall that Φ = Φ(x; z, m) is the solution of the ZS system (1.6a) normalized as

Φ(0; z, m) ≡ 1. Differentiating (1.6a) with respect to z we get the system

Φxz = (−izσ3 + iqσ2)Φz − iσ3Φ . (8.9)
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Considering system (8.9) as a non-homogeneous ZS system [i.e., treating the term −iσ3Φ

as a “forcing”] and integrating, we obtain the solution

Φz(x; z, m) = −iΦ(x; z, m)

x∫

0

Φ−1(ξ; z, m)σ3Φ(ξ; z, m) dξ , z ∈ C . (8.10)

Also recall that the (real) period of q in (1.3) is l = 2K(m) and that M(z; m) = Φ(l; z, m).

By Lemma 2.17, A ∈ N implies Φ(l; 0, m) ≡ (−1)A
1. At z = 0, we therefore have

Mz(0; m) = −i(−1)A

l∫

0

Φ−1(ξ)σ3Φ(ξ) dξ

= −i(−1)A

l∫

0

(
u1v2 + u2v1 2v1v2

−2u1u2 −u1v2 − u2v1

)
dξ , (8.11)

where we introduced the notation

Φ(x; z, m) =

(
u1 v1

u2 v2

)
, (8.12)

which we will use extensively below. On the other hand, in light of (2.15) we have

Mz = ∆z1 + czσ3 − iszσ2 , z ∈ C , (8.13)

which implies

cz(0; m) = −i(−1)A

l∫

0

(u1v2 + u2v1) dx ,

sz(0; m) = 2i(−1)A

l∫

0

u1u2 dx = 2i(−1)A

l∫

0

v1v2 dx . (8.14)

Comparing this with the expansion (8.3) we then have

c0(m) = icz(0; m) = (−1)A

l∫

0

(u1v2 + u2v1) dx . (8.15)

At z = 0, according to Section A.3, we also have

Φ(x; 0, m) = cos(Aamx) 1 + sin(Aamx) iσ2 , (8.16)
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where amx = am(x; m), so that

Φ−1(x; 0, m)σ3Φ(x; 0, m) = cos(2Aamx)σ3 + sin(2Aamx)σ1 . (8.17)

We obtain

c0(m) = (−1)A

2K(m)∫

0

cos(2Aamx) dx = (−1)A

π∫

0

cos 2Ay dy√
1 − m sin2 y

, (8.18)

where we used y = amx, dy =
√

1 − m sin2 y dx. Now, from [14], 806.01, for m ∈ (0, 1)

we have

(−1)A

π∫

0

cos 2Ay dy√
1 − m sin2 y

= π

∞∑

j=A

[(2j − 1)!]2mj

42j−1(j − A)!(j + A)![(j − 1)!]2
> 0 (8.19)

since all the coefficients of the convergent Taylor series are positive. 2

Corollary 8.4. One has |∆(z; m)| > 1 in a deleted neighborhood of z = 0 on (−iA, iA)

for any A ∈ N and m ∈ (0, 1). Moreover, z = 0 is a simple critical point of ∆(z; m) and

∆(0; m) = (−1)A.

Remark 8.5. Corollary 8.4 shows that no critical points of ∆(z; m) can move from R to

iR when we vary m ∈ (0, 1) with a fixed A ∈ N. Similarly to the case m = 0, the change

of genus in the case m > 0, happens when we vary A (see also Fig. 4).

Next, recall that the monodromy matrix M(z; xo) normalized at a base point xo is

given by (2.20). Using (2.20), we prove the following lemma regarding Dirichlet eigen-

values.

Lemma 8.6. Let A ∈ N and m ∈ (0, 1). If an open gap γ on (−iA, iA) contains a zero of

s(z), then the associated Dirichlet eigenvalue is movable.

Proof. Equations (2.15) and (2.20) and direct calculation show that

M(z; x0)=

(
∆+c(u1v2+u2v1)+s(u1u2+v1v2) −s(u2

1+v2
1) − 2cu1v1

s(u2
2+v2

2)+2cu2v2 ∆ − c(u1v2+u2v1) − s(u1u2+v1v2)

)
,

(8.20)

where c = c(z) and s = s(z) were defined in (2.15) and the functions u1, u2, v1 and v2,

defined as in (8.12), are evaluated at x = x0.

Consider first an open gap γ ⊂ iR that does not contain z = 0. From (2.16) it follows

that c(z) 6= 0 on γ. Note u1(x0)v1(x0) 6= 0 for small x0 > 0 [because u1(0) = 1 and

v1(0) = 0 and u1 and v1 are analytic in x as solutions of (1.6a) with the potential (1.3)].
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Therefore, it follows from (8.20) that M12(z; x0) = 0 implies s(z) 6= 0. But M12(z; 0) =

s(z). Thus, each Dirichlet eigenvalue in such a gap is movable.

Consider now a gap γ0 ⊂ iR containing z = 0, i.e., the central gap. By Corollary 8.4,

such gap exists for any m ∈ (0, 1), and by (8.2), it does not exist when m = 0. We

consider m ∈ (0, 1). Then by Lemma 8.3 (see (8.8)), c(z) has a simple zero at z = 0 and,

by (8.3), s(z) has at least a double zero at z = 0. Thus, the condition M12(z; x0) = 0

near z = 0 becomes

−s1z2(u2
1(x0; z) + v2

1(x0; z)) + 2ic0zu1(x0; z)v1(x0; z) = R(x0; z) , (8.21)

where R(x0; z) ∈ R when z ∈ iR and R(x0; z) = O(z3) uniformly in small real x0. By

Lemma 8.3 (see (8.8)) we have c0 6= 0. If s1 6= 0, (8.21) shows that M12(z; x0) has one

fixed zero at z = 0 whereas the location of the second zero depends on x0 and is given

by

z =
2ic0u1(x0; z)v1(x0; z) − R(x0;z)

z

s1(u2
1(x0; z) + v2

1(x0; z))
=

2ic0u1(x0; 0)v1(x0; 0) + O(z)

s1(u2
1(x0; 0) + v2

1(x0; 0) + O(z))
∈ iR , (8.22)

which is a point inside the central gap on (−iA, iA). Indeed, the requirement det M(z; x0)

≡ 1 and (8.20) imply that a Dirichlet eigenvalue can not be in the interior of any band

located on (−iA, iA) \ {0}.

Equations (8.21) and (8.22) show that a zero of M12(z; x0) in the gap γ0 ⊂ (−iA, iA)\
{0} is always fixed at z = 0, and therefore corresponds to an immovable Dirichlet eigen-

value, whereas a second zero is located at a point changing with x0, and is therefore

a movable Dirichlet eigenvalue. Indeed, the point z = z(x0) defined by (8.22) attains

z(0) = 0 and z(x0) 6= 0 at least for small x0 > 0 since v1(0) = 0 and v1(x0) 6= 0 in a

deleted neighborhood of zero.

Finally, if s1 = · · · = sk−1 = 0 and sk 6= 0, with k > 1, the leading-order portion of

each term in the 1,2 entry of (8.21) yields instead

−skz2k(u2
1 + v2

1) + 2ic0zu1v1 = R , (8.23)

where again R = O(z3) is real-valued for z ∈ iR and where for brevity we dropped the

arguments. Repeating the same arguments as for (8.21), we see that at least one of the

roots in (8.23) is purely imaginary. 2

Remark 8.7. It follows from (8.21) and (8.23) that s1(m) 6= 0 if and only if there is

exactly one movable Dirichlet eigenvalue in a vicinity of z = 0 for small x0 ∈ R.

8.3. Proof of the remaining statements of Theorem 1.3

Lemma 2.14 proves items 4 and 5 of Theorem 1.3. Theorem 1.2 together with

Lemma 2.2 and the symmetries (2.17) implies item 3. Thus, it remains to prove items 2

and 6 only, namely:
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Theorem 8.8. Consider (1.2) with Jacobi elliptic potential (1.3). For all m ∈ (0, 1), if

A ∈ N then:

1. For any m ∈ (0, 1), there are exactly 2A symmetric bands of Σ(L; A, m) on (−iA, iA)

separated by 2A − 1 symmetric open gaps. The central gap (i.e., the gap surrounding

the origin) contains an eigenvalue at z = 0. This eigenvalue is periodic when A is

even and antiperiodic when A is odd.

2. Each of the open 2A − 1 gaps on (−iA, iA) contains exactly one movable Dirichlet

eigenvalue. Thus, all of the 2A − 1 movable Dirichlet eigenvalues of the finite-band

solution with genus 2A − 1 are located in the gaps of the interval (−iA, iA).

Proof. The idea of the proof is based on continuous deformation of the elliptic parameter

m, starting from m = 0 and going into m ∈ (0, 1). The proof is based on the following

three main steps, each of which will be discussed more fully below:

1. Analysis of the spectrum for m = 0. When m = 0, dn(x, 0) ≡ 1, and the ZS

system (1.1) has a simple solution Φ(x; z, m). The monodromy matrix M(z; m) based

on Φ(x; z, m) was given explicitly in (2.23) for m = 0, and the Lax spectrum is Σ(L) =

R ∪ [−iA, iA] in this case. In particular, the vertical segment [−iA, iA] is a single band

that contains 2A−1 double periodic/antiperiodic eigenvalues, which we consider as being

closed gaps. Each of these closed gaps contains a Dirichlet eigenvalue (a zero of s(z; m),

see (8.2)), which for m = 0 is immovable according to Lemma 2.14 (see also (8.20)).

2. Analysis of the spectrum for small nonzero values of m. Corollary 8.4 states that

for all m ∈ (0, 1) the double eigenvalue at z = 0 is embedded in the central gap

γ0 ⊂ (−iA, iA). Moreover, Corollary 8.4 and Lemma 8.6 show that there is at least

one movable Dirichlet eigenvalue on γ0. Next, we show that under a small deformation

m > 0 all the remaining closed gaps on (−iA, iA) must open, creating 2A bands and

2A − 1 gaps on (−iA, iA), with each gap containing exactly one movable Dirichlet eigen-

value. Our proof of this statement is based on the fact that any periodic/antiperiodic

eigenvalue on (−iA, iA) \ {0} has geometric multiplicity one (see Theorem 8.1), whereas

a double eigenvalue at a closed gap would have geometric multiplicity two. By a continu-

ity argument, each gap on (−iA, iA) \ {0} has exactly one movable Dirichlet eigenvalue.

Thus, items 2,6 are proved for small m > 0.

3. Control of the spectrum for arbitrary values of m ∈ (0, 1). We finally prove that the

number 2A of separate bands on (−iA, iA), as well as the fact that each gap on (−iA, iA)

contains exactly one movable Dirichlet eigenvalue, cannot change when m varies on (0, 1).

In what follows, we prove all the statements in items 1–3 above.

1. From (8.2) it follows that, for m = 0, we have Σ(L) = R ∪ [−iA, iA] with

z2
n = n2 − A2, n = 0, ±1, . . . , ±A (8.24)

being (interlaced) periodic or antiperiodic eigenvalues on [−iA, iA]. Note that ∆z(z; 0)

has a simple zero at each zn for n 6= 0, ±A. Therefore, each zn 6= 0, ±iA identifies a
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closed gap. On the other hand, since ∆z(±iA; 0) 6= 0, the endpoints ±iA of the spectrum

are simple periodic eigenvalues. [By Lemma 2.10, when m > 0 it follows ±iA /∈ Σ(L).]

Finally, note that ∆z(z; 0) has a double zero at z = 0, which will be relevant in the

discussion of item 3 below.

Recall that the Dirichlet eigenvalues are the zeros of s(z; 0). By (8.2), each closed gap

on [−iA, iA] \ {0} contains exactly one Dirichlet eigenvalue µn, n = ±1, . . . , ±(A − 1),

which is a simple zero of s(z; 0). Note also that there are exactly 2A − 1 closed gaps on

(−iA, iA), and at each such gap with the exception of z = 0 there is exactly one zero

level curve Γn of Im ∆ orthogonally crossing iR. Moreover, by Lemma 8.3, there are eight

zero level curves of Im ∆ passing through z = 0, including the real and imaginary axes

(e.g., see Fig. 4, upper right panel). Note that, by Lemma 8.6, a Dirichlet eigenvalue µn

becomes movable if the closed gap opens up as m is deformed away from m = 0.

2. Recall that the monodromy matrix M(z; m) is entire in z and A and analytic in

m ∈ [0, 1) (cf. Lemma 2.10). Also recall that s(z; m) is real-valued on iR. Finally, recall

that by Lemma 2.14 zeros of s(z; m) cannot lie in the interior of a band. Let µn be the

zeros of s(z; 0) for z ∈ iR, i.e., the Dirichlet eigenvalues along the imaginary axis when

m = 0. Since the zeros of s(z; m) are isolated, for sufficiently small m > 0, each Dirichlet

eigenvalue µn must remain on (−iA, iA) by continuity. Thus, for sufficiently small values

of m, all the gaps on (−iA, iA) \ {0} (independently of whether they are open or closed)

must survive the small m deformation, with exactly one Dirichlet eigenvalue in each gap.

Importantly, the above arguments imply that, for small m ∈ (0, 1), all the gaps on

(−iA, iA)\{0} must be open. Indeed, the assumption that for small m ∈ (0, 1) there exists

a closed gap at z∗ ∈ (−iA, iA) \ {0} leads to a contradiction, because by Corollary 8.2,

s(z; m) 6= 0 at the endpoints of each band. There are 2A−2 such open gaps. By continuity,

each of them contains a zero of s(z; m) and therefore a movable Dirichlet eigenvalue by

Lemma 8.6. Moreover, by continuity, s(z; m) must have opposite signs at the endpoints

of any gap in (−iA, iA) \ {0}.

Next, recall that by Theorem 6.12, Σ(L) ⊂ R ∪ (−iA, iA) for all m ∈ (0, 1). It follows

from Corollary 8.4 that, for all m ∈ (0, 1), the (double) Floquet eigenvalue z = 0 is

immersed in a gap γo ⊂ (−iA, iA). Then, by Lemma 8.6, for small m > 0 there are

exactly 2A − 1 open gaps on (−iA, iA), with each gap containing a movable Dirichlet

eigenvalue. Therefore there are 2A (disjoint) bands on (−iA, iA).

Finally, differentiation of s(z; m) in (8.2) yields

sz(z; 0) =
zA

z2 + A2

[
sin

(√
z2 + A2π

)
√

z2 + A2
− cos

(√
z2 + A2π

)]
, (8.25)

which shows that sz(z; 0) has a simple zero at the origin. Therefore, s1(0) = szz(0; 0) 6= 0

and so, by Remark 8.7, there is a unique movable Dirichlet eigenvalue in a vicinity of

z = 0 and it is situated on γo. Hence there is exactly one movable Dirichlet eigenvalue

in each gap implying that the genus of the corresponding Riemann surface in 2A − 1.

Thus, items 2 and 6 are proved for small m > 0.
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3. It remains to prove that the number of bands on (−iA, iA) and the number of

movable Dirichlet eigenvalues (which were established for small m ∈ (0, 1) in item 2

above) do not change as m varies in (0, 1). Let us consider the deformation of the

collection of bands (with genus 2A − 1) established for small m ∈ (0, 1). A possible

change of the genus can be caused only by one of the following four possibilities: (a) a

collapse of a band into a point; (b) a splitting of a band into two or more separate bands;

(c) a splitting of a gap into two or more separate gaps; (d) a collapse of an open gap

into a closed one.

We next prove that none of these possibilities can occur. Indeed, regarding (a), the

collapse of a band into a point would contradict the analyticity of ∆(z; m), since it would

imply that the same value of z is simultaneously a periodic and antiperiodic eigenvalue.

(Note that each band along (−iA, iA) must necessarily start at a periodic eigenvalue

and end at an antiperiodic one or vice versa, since otherwise there would necessarily

be a critical point zo inside the band. But a critical point zo inside the band would

imply the existence of a second band emanating transversally from the imaginary axis,

contradicting Theorem 6.12.) Similarly, regarding (b), the splitting of a band would

require a critical point of ∆(z; m) at some zo inside the band. But, again, a critical point

at zo would mean that there is a zero-level curve of Im ∆ crossing iR at z0, which in turn

would contradict Theorem 6.12.

For the same reasons we have ∆z(z∗; m) 6= 0 at any non-periodic and non-antiperiodic

Floquet eigenvalue z∗, separating a band and a gap on (−iA, iA). Indeed, the contrary

would lead to ∆z having an even-order zero at z∗. But that would imply at least two

pairs of zero-level curves emanating from iR at z∗ and, thus, again would contradict

Theorem 6.12.

We now turn our attention to the gaps, and specifically to the possibility (c) listed

above. The splitting of a gap into two or more separate gaps would imply that ∆(z; m)

has a local minimum z0 on the gap at some m ∈ (0, 1) and simultaneously |∆(z0; m)| ≤ 1.

That, again, would contradict Theorem 6.12.

Thus, it remains to exclude possibility (d), namely the collapse of a gap. By

Lemma 8.6, the central gap γo containing z = 0 stays open for any m ∈ (0, 1). Also, for

small m ∈ (0, 1), it was shown in the proof of item 2 above that the signs of s(z; m) at

the endpoints of any gap γ ⊂ (−iA, iA) \ {0} are opposite. These signs cannot change

in the course of a deformation with respect to m ∈ (0, 1), by Corollary 8.2. Thus, each

gap that was open for small m ∈ (0, 1) must contain a zero of s(z; m) and, therefore, as

it was proven in item 2 above, must stay open for all m ∈ (0, 1). So, the genus 2A − 1

is preserved for all m ∈ (0, 1). Moreover, each gap contains a zero of s(z; m) and thus,

according to Lemma 8.6, a movable Dirichlet eigenvalue.

So, we proved that each gap on (−iA, iA) contains exactly one movable Dirichlet

eigenvalue. It is well known [34,40,74] that the number of movable Dirichlet eigenvalues is

equal to the genus 2A−1. This, completes the proof of Theorem 8.8 for all m ∈ (0, 1). 2

Remark 8.9. It follows from Remark 8.7 that s1(m) 6= 0 for all m ∈ (0, 1).
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188



J

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
Fig. 3. Periodic (red) and antiperiodic (blue) eigenvalues (vertical axis) of the spectrum as a function of the
elliptic parameter m (horizontal axis) for a few integer values of A. Bottom left: A = 3. Top left: A = 4.
Right: A = 7. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

9. Dynamics of the spectrum as a function of A and m

We further illustrate the results of this work by presenting some concrete plots of

the spectrum. We begin with the case of A ∈ N. Fig. 3 shows the periodic (red) and

antiperiodic (blue) eigenvalues along the imaginary z-axis (vertical axis in the plot) as

a function of the elliptic parameter m (horizontal axis) for a few integer values of A,

namely: A = 3 (bottom left), A = 4 (top left) and A = 7 (right). Note how all gaps are

closed when m = 0 and how they open immediately as soon as m > 0 and remain open

for all m ∈ (0, 1). In the singular limit m → 1−, the band widths tend to zero, and the

periodic and antiperiodic eigenvalues “collide” into the point spectrum of the operator

L on the line.

Next, Fig. 4 shows the Lax spectrum (blue curves) in the complex z-plane for several

non-integer values of A, illustrating the formation of new bands and gaps as function

of A. Note that the range of values for the real and imaginary parts of z allows one

to see only a small portion of the Lax spectrum. For example, not visible outside the
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Fig. 4. The Lax spectrum Σ(L) [computed numerically using Hill’s method (see [21])] with potential q ≡
A dn(x; m), m = 0.9, and increasing values of A, illustrating the formation of new bands and gaps for
non-integer values of A.
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plot window are various bands and gaps along the imaginary axis (cf. Fig. 3) as well as

the infinite number of spines growing off the real axis when A /∈ N. However, selecting

a larger portion of the complex z-plane would have made it more difficult to see the

dynamics of the bands and gaps near the origin. Starting from the smallest value of A

in the set (A = 3.99, top left panel), one can see how, as A increases, a spine is pulled

towards the origin, which it reaches at approximately A = 3.9985 (top right panel). As

A increases further, the spine moves along the imaginary axis, simultaneously shrinking

to zero at approximately A = 3.999249 (left plot in the third row). (Note that, even

though the band is effectively gone at this value of A, the corresponding potential is still

not finite-band due to the infinitely many spines that are still present outside the plot

window.) As A increases further, the band edges of the previous spine bifurcate along

the imaginary axis, giving rise to a new gap. Finally, at A = 4 (left plot in the fourth

row), the lower edge of this new gap reaches the origin. This is also exactly the value of

A at which the infinitely many spines shrink to zero. As A increases further, the band

centered at z = 0 reappears, a new spine gets sucked towards the origin, and the cycle

repeats.

In summary, every time A increases by one unit, two more spines from the real axis

gets pulled into the imaginary axis, and a two new Scwarz symmetric gaps open on

the imaginary axis. When A hits the next integer value, the lower band edges in the

upper-half plane and the corresponding one in the lower-half plane reach the point z = 0.

Simultaneously, all remaining spines emanating from the real z-axis shrink to zero, giving

rise to a finite-band potential. As A keeps increasing, the spines grow back, and the

process repeats.

It is also interesting to briefly describe the dynamics of the zero-level curves of

Im ∆(z; m) near z = 0. Thanks to (8.5) and (8.6), we know that ∆zz(0; 0) = 0 if and

only if A ∈ Z. One can also see that ∆zzzz(0; 0) 6= 0 when A ∈ Z. So, when A ∈ Z, there

are exactly eight zero-level curves of Im ∆ emanating from z = 0. As it follows from

Corollary 8.4, under a small m > 0 deformation from m = 0, a pair of these level curves

will move up along the imaginary z-axis, while the other pair will symmetrically move

down along iR−. It also follows from (8.2) that s(z; 0) has a second-order zero at z = 0;

that is, s1(0) 6= 0, which will remain in place under a small m > 0 deformation according

to (2.16), (2.17) and Corollary 8.4. This is another way to show that s1(m) 6= 0 for small

m > 0.

10. Discussion and concluding remarks

The results of this work provide an extension to the non-self-adjoint operator (1.2) of

the classical works of Ince [47–49]. The results of this work also provide: (i) an example

of Hill’s equation with a complex, PT-symmetric potential (and a corresponding com-

plex deformation of Ince’s equation) whose spectrum is purely real, which is especially

relevant, since the study of quantum mechanics with non-Hermitian, PT-symmetric po-

tential continues to attract considerable interest (e.g. see [5,9,30] and references therein),
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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(ii) an example of an exactly solvable connection problem for Heun’s ODE, and (iii) for

the first time a perturbation approach to study the determination of the genus, and the

movable Dirichlet eigenvalues was presented.

We point out that the fact that the elliptic potential (1.3) is finite-band for any

A ∈ N can also be obtained as a consequence of the results of [40], where the potential

q(x) = n (ζ(x) − ζ(x − ω2) − ζ(ω2)) was studied (where ζ(x) is Weierstrass’ zeta function

and ω2 one of the lattice generators [79]) and was shown to be finite-band when n ∈ N

using the criteria introduced there (see Appendix A.7 for details). In Appendix A.7 we

also discuss other elliptic potentials satisfying the criteria laid out in [40]. On the other

hand, no discussion of the spectrum (i.e., location of the periodic/antiperiodic eigenvalues

and of the spectral bands) was present in [40].

It is also the case that the elliptic potential (1.3) is associated with the so-called

Trebich-Verdier potentials [92] for Hill’s equation (which are known to be algebro-

geometric finite-band, see [88]) if and only if A ∈ N, as we show in Appendix A.8.

To the best of our knowledge, this connection had not been previously made in the

literature.

The family of elliptic potentials (1.3) is especially important from an applicative

point of view, since (as was discussed in Section 1) it interpolates between the plane

wave potential q(x) ≡ A when m = 0 and the Satsuma-Yajima (i.e., sech) potential

q(x) ≡ A sech x when m = 1, which, when A ∈ N, gives rise to the celebrated A-soliton

bound-state solution of the focusing NLS equation [(1.5) with s = 1].

The potential q(x) ≡ A sech x has also been used in relation to the semiclassical limit

of the focusing NLS equation. This is because, by letting A = 1/ǫ and performing a

simple rescaling x 7→ ǫx and t 7→ ǫt of the spatial temporal variables, (1.5) is mapped

into the semiclassical focusing NLS equation

iǫqt + ǫ2qxx + 2|q|2q = 0 , (10.1)

with the rescaled initial data q(x, 0) ≡ dn(x; m). The dynamics of solutions of (10.1) has

been studied extensively in the literature (e.g., see [10,13,17,19,29,55,57,70,96]). In partic-

ular, it is known that, for a rather broad class of single-lobe initial conditions (including

q(x) ≡ sech x), the dynamics gives rise to a focusing singularity (gradient catastrophe)

that is regularized by the formation of high-intensity peaks regularly arranged in the pat-

tern of genus-2 solutions of the NLS equation. The caustic (i.e., breaking) curve along

which the genus-2 region breaks off from the genus-0 region (characterized by a slowly

modulated plane wave, in which the solution does not exhibit short-scale oscillations)

has also been characterized, and it is conjectured that additional breaking curves exist,

giving rise to regions of higher genus.

All of the above-cited works studied localized potentials on the line. However, sim-

ilar behavior was observed for (10.1) with periodic potentials in [11], where a formal

asymptotic characterization of the spectrum of the Zakharov-Shabat system (1.6a) in

the semiclassical scaling was obtained using WKB methods, and in particular it was
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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shown that the genus is O(1/ǫ) as ǫ → 0+. Some of the numerical results of [11] about

the localization of the spectrum were rigorously proved in [12]. The results of the present

work provide some rigorous evidence, for the dn potential (1.3), in support of the formal

results of [11] about the genus of the potential as a function of ǫ.

We emphasize that, even though we limited our attention to the focusing NLS equation

for simplicity, all the equations of the infinite NLS hierarchy (including the modified

KdV equation, higher-order NLS equation, sine-Gordon equation, etc.) share the same

Zakharov-Shabat scattering problem (1.6a). Therefore, the results of this work provide a

two-parameter family of finite-band potentials for all the equations in the focusing NLS

hierarchy.

The results of this work open up a number of interesting avenues for further study.

In particular, an obvious question is whether these potentials are stable under pertur-

bations. The stability of genus-1 solutions of the focusing NLS equation was recently

studied in [22] by taking advantage of the machinery associated with the Lax represen-

tation. A natural question is therefore whether similar results can also be used for the

higher-genus potentials when A > 1 or whether different methods are necessary.

Another interesting question is whether more general elliptic finite-band potentials

related to (1.3) exist. Recall that, for the focusing NLS equation on the line, the potential

q(x) = A sech x e−ia log(cosh x) (which reduces to q(x) = A sech x when a = 0) was shown

in [95,96] to be amenable to exact analytical treatment. It is then natural to ask whether

exactly solvable periodic potentials also exist related to q(x) = A dn(x; m) but with an

extra non-trivial periodic phase.

Yet another question is related to the time evolution of the potential (1.3) according

to the focusing NLS equation. When A = 1, time evolution is trivial, and the correspond-

ing solution of the NLS equation is simply q(x, t) = dn(x; m) ei(2−m)t. That is not the

case when A > 1, however. For the Dirac operator (1.2) on the line with reflectionless

potentials, sufficient conditions were obtained in [68] guaranteeing that, if the discrete

spectrum is purely imaginary, the corresponding solution of the focusing NLS equation

is periodic in time. The natural question is then whether a similar result is also true

for the elliptic potential (1.3), namely, whether such potentials generates a time-periodic

solution of the focusing NLS equation when A ∈ N.

The semiclassical limit of certain classes of periodic potentials (including the potential

dn(x; m)) generates a so-called breather gas for the focusing NLS equation (e.g., see

[11,97]), which is to be understood as the thermodynamic limit of a finite-band solution

of the focusing NLS equation where the genus G → ∞ and simultaneously all bands

but one shrink in size exponentially fast in G (see [94] for details). It was proposed that

such gases be called periodic breather gases. Periodic gases have the important feature

that, together with their spectral data (i.e., independent of the phase variables) such as

the density of states, one also can obtain some information on a “realization” of the gas,

namely, on the semiclassical evolution of the given periodic potential. Thus, progress

in studying the (2A − 1)-band solutions of the focusing NLS equation (with A ∈ N)

generated by the potential q(x) = A dn(x; m), and especially its large A limit, is of
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
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definite interest. In fact, finite-band solutions to integrable systems (such as the KdV

and NLS equations) generated by elliptic potentials, based on the work of Krichever [64],

were studied in the literature. We will not go into the details of those results here, but it

should be clear that any details about the family of finite-band solutions of the focusing

NLS equation that homotopically “connect” the known behavior of the plane wave and

the multi-soliton solutions will be very interesting to obtain and analyze.
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Appendix A

A.1. Notation and function spaces

The Pauli spin matrices, used throughout this work, are defined as

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0

0 −1

)
. (A.1)

Moreover, L∞(R; C
2) is the space of essentially bounded Lebesgue measurable two-

component vector functions with the essential supremum norm. Given the interval Ixo
=

[xo, xo + l] we define the inner product between two-component Lebesgue measurable

functions φ and ψ as

〈φ, ψ〉 :=

xo+l∫

xo

(
φ1ψ1 + φ2ψ2

)
dx . (A.2)

Then L2(Ixo
; C

2) denotes the set of two-component Lebesgue measurable vector func-

tions that are square integrable, i.e., ‖φ‖L2(Ixo
;C2) := 〈φ, φ〉1/2 < ∞. Similarly, we define

the inner product of two scalar Lebesgue measurable functions f and g as

〈f, g〉 :=

xo+l∫
fg dx . (A.3)
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Then L2(Ixo
; C) denotes the set of scalar Lebesgue measurable functions that are square

integrable, i.e., ‖f‖L2(Ixo
;C) := 〈f, f〉1/2 < ∞. Finally, we define the inner product of

two infinite sequences c = {cn}n∈Z and d = {dn}n∈Z as

〈c, d〉 :=
∑

n∈Z

cndn . (A.4)

Then ℓ2(Z) denotes the set of square-summable sequences, i.e., ‖c‖ℓ2(Z) := 〈c, c〉1/2 < ∞.

Finally, the space of continuous functions on the real axis is denoted C(R), and No :=

N ∪ {0}.

A.2. Proof of two lemmas

Proof of Lemma 2.10. To prove part (i) we begin by writing (1.1) as the coupled system of

linear differential equations (1.6a). By Floquet theory z ∈ Σ(L) if and only if φ = eiνxψ,

where ψ = (ψ1, ψ2)T with ψ(x+l; z) = ψ(x; z), and ν ∈ [0, 2π/l). Plugging this expression

into (1.6a) yields the modified system

iψ1,x − iqψ2 = (z + ν)ψ1 , iψ2,x + iqψ1 = (−z + ν)ψ2 . (A.5)

Multiplying the first of these equations by ψ1 and taking the complex conjugate yields

two equations, which we integrate over a full period, arriving at the expressions

i〈qψ2, ψ1〉 = −i〈ψ1, ψ1,x〉 − (z + ν)‖ψ1‖2
L2([0,l]) ,

i〈ψ1, qψ2〉 = i〈ψ1, ψ1,x〉 + (z + ν)‖ψ1‖2
L2([0,l]) ,

where boundary terms vanish since ψ1(x+ l; z) = ψ1(x; z). Adding these two expressions

then one gets

− Im z‖ψ1‖2
L2([0,l]) = Re〈qψ2, ψ1〉 . (A.6)

Similarly, the second equation of (A.5) yields

i〈ψ1, qψ2〉 = i〈ψ2, ψ2,x〉 + (−z + ν)‖ψ2‖2
L2([0,l]) ,

i〈qψ2, ψ1〉 = −i〈ψ2, ψ2,x〉 + (z − ν)‖ψ2‖2
L2([0,l]) ,

as well as

− Im z‖ψ2‖2
L2([0,l]) = Re〈qψ2, ψ1〉 . (A.7)

Equating (A.6) and (A.7) we conclude that if | Im z| > 0, then

‖ψ1‖L2([0,l]) = ‖ψ2‖L2([0,l]) . (A.8)
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Next, note that |〈qψ2, ψ1〉| ≤ 〈|qψ2|, |ψ1|〉. Also, since q is not constant, there exists

(a, b) ⊂ (0, l) such that |q(x)| < ‖q‖∞ for x ∈ (a, b). Thus, for | Im z| > 0 it follows

from (A.8) and the Hölder inequality that

0 < | Im z|‖ψ1‖2
L2([0,l]) = | Re〈qψ2, ψ1〉| < ‖q‖∞〈|ψ2|, |ψ1|〉

≤ ‖q‖∞‖ψ1‖2
L2([0,l]) .

Hence | Im z| < ‖q‖∞ for z ∈ Σ(L). The proof of (ii) which can be found in [12] follows

from Lemma 2.9 and since ∆(z) is an analytic function of z. 2

Lemma A.1. Consider the Dirac operator (1.2). If the potential q ≡ A dn(x; m), then the

monodromy matrix M(z; m) is an analytic function of m for any m ∈ [0, 1).

Proof. The result follows from two key facts. One is that dn(x; m) is an analytic function

of m for all |m| ≤ 1 [103]. The second is the fact that solutions of ODEs with analytic de-

pendence on variables and parameters are analytic (see [18] pp. 23–32 and [50] p. 72). 2

A.3. Solution of the ZS system at z = 0

We have seen that, for q real, the eigenvalue problem (1.1) can be reduced to second-

order scalar ODEs (3.3). Consider (3.3) with λ = 0, namely v±
xx + (±iqx + q2)v± = 0.

Using the ansatz v± = e±f , one gets ±fxx + (fx)2 ± iqx + q2 = 0. Then, letting g = fx

yields ±gx + g2 = ∓iqx − q2 with a solution given by g = ∓iq. In particular, it follows

g2 = −q2. Hence, we have derived the following solution to the ODEs (3.3) for λ = 0,

namely,

v±(x; 0) = e∓i
∫

x

0
q(s) ds . (A.9)

Next, using the invertible change of variables (3.1), one gets the following solution to the

eigenvalue problem (1.1) when z = 0:

φ(x; 0) =

(
cos

( x∫

0

q(s) ds
)

, − sin
( x∫

0

q(s) ds
))T

. (A.10a)

Moreover, using Rofe-Beketov’s formula [83], one obtains a second linearly independent

solution as:

φ̃(x; 0) =

(
sin

( x∫

0

q(s) ds
)

, cos
( x∫

0

q(s) ds
))T

. (A.10b)

Thus, the Floquet discriminant (2.5) for eigenvalue problem (1.1) at z = 0 is
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∆(0) = cos
( l∫

0

q(s) ds
)

, (A.11)

where l is the period of the potential. We can now prove Lemma 2.17.

Proof of Lemma 2.17. Using well-known properties of the Jacobi elliptic functions (see

[43,79]), when q(x) = A dn(x; m), (A.10a), (A.10b) and (A.11) yield, respectively

φ(x; 0, A, m) =
(

cos(A am(x; m)), − sin(A am(x; m))
)T

, (A.12a)

φ̃(x; 0, A, m) =
(

sin(A am(x; m)), cos(A am(x; m))
)T

, (A.12b)

∆(0; A, m) = cos(Aπ) . (A.12c)

In particular, φ(0; 0, A, m) = (1, 0)T, and φ(2K; 0, A, m) = (cos(Aπ), sin(Aπ))T. There-

fore, we have that φ(x + 2K; 0, A, m) = φ(x; 0, A, m) if and only if A ∈ 2Z, and

φ(x + 2K; 0, A, m) = −φ(x; 0, A, m) if and only if A ∈ 2Z + 1, with similar relations

for φ̃. Thus, when A is an even integer, z = 0 ∈ Σ+(L), whereas when A is an odd inte-

ger, z = 0 ∈ Σ−(L). Finally, the above calculations also show that, for q ≡ A dn(x; m)

with A ∈ Z the eigenvalue z = 0 has geometric multiplicity two. 2

A.4. Transformation of the ZS system into a Heun system

If the potential q is real, then the change of dependent variable φ = 1
2 diag(1, −i)(σ3 +

σ1) v, maps the ZS system (1.6a) into the equivalent system

vx = −i(zσ1 + qσ3)v . (A.13)

Then the transformation t = 2am(x; m) maps (A.13) to the trigonometric first-order

system

vt = − i
2

(
Aσ3 +

zσ1√
1 − m sin2 t

2

)
v , (A.14)

which is equivalent to (4.2). Finally, the transformation ζ = eit maps (A.14) to

ζvζ = −1
2

(
Aσ3 +

zσ1√
1 − m

2

(
1 − 1

2 (ζ + ζ−1)
)

)
v , (A.15)

and the transformation

v = Ξw , Ξ = diag

(
1,

1

z

√
1 − m

2
(1 − 1

2
(ζ + ζ−1))

)
, (A.16)
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maps (A.15) to the Heun system (5.6) where λ = z2. The Heun system (5.6) has four

(regular) singular points, located at ζ = 0, ζ1,2, ∞, where ζ1,2 are zeros of the denom-

inator in (5.6). The Frobenius exponents at the singularities can be derived directly

from (5.6).

A.5. Augmented convergence and Perron’s rule

In general the Frobenius series (5.7a) with base point ζ = 0 only converges for |ζ| < |ζ1|
and the series (5.7b) with base point ζ = ∞ only converges for |ζ| > |ζ2|. Therefore,

neither expansion is convergent on |ζ| = 1 in general. However, there exist certain values

of λ for which one or both of the Frobenius series have a larger (i.e., augmented) radius

of convergence. These are precisely the periodic/antiperiodic eigenvalues of the problem,

and Perron’s rule provides a constructive way to identify them (see also [4,31,48,50,85]

for further details).

We begin by noting that, by dividing all coefficients by n2, all four three-term recur-

rence relations (5.8), (5.9), (5.10) and (5.11) can be rewritten as

e0c0 + f0c1 = 0 , n = 0 , (A.17a)

dncn−1 + encn + fncn+1 = 0 , n = 1, 2, . . . (A.17b)

with fn 6= 0, and dn → d, en → e, and fn → f as n → ∞. Perron’s rule [31,80] states

that, if ξ± are the roots of the quadratic equation

fξ2 + eξ + d = 0 , (A.18)

with |ξ−| < |ξ+|, then limn→∞ cn+1/cn = ξ+, unless the coefficients dn, en, fn satisfy the

infinite continued fraction equation

eo

fo
=

d1

e1 −
d2f1

e2 −
d3f2

e3 − · · ·

, (A.19)

in which case limn→∞ cn+1/cn = ξ−. That is, Perron’s rule implies that, generically, the

radius of convergence of the series Σ∞
n=0cnζn is 1/|ξ+|. However, if and only if (A.19)

holds, the radius of convergence is 1/|ξ−|, and therefore larger. In our case, the roots

ξ± of (A.18) are exactly the singular points ζ1,2 of Heun’s ODE (5.2). Then, since en

depends on λ, (A.19) is a condition that determines the exceptional values of λ that

guarantee augmented convergence. Indeed, (A.19) is equivalent to requiring that λ is an

eigenvalue of T ±
o (resp. T ±

∞).
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A.6. Generalized convergence of closed operators

Here we briefly discuss the generalized convergence of closed operators, (see [58] p. 197

for a detailed discussion). Consider C(X , Y ) the space of closed linear operators between

Banach spaces. If T , S ∈ C(X , Y ), their graphs G(T ), G(S) are closed linear manifolds

on the product space X × Y . Set δ̂(T, S) = δ̂(G(T ), G(S)), i.e., the gap between T and

S. (See [58] p. 197 for the definition of δ̂(T, S).) Similarly, we can define the distance

d̂(T, S) between T and S as equal to d̂(G(T ), G(S)). (See [58] p. 198 for the definition

of d̂(T, S).) With this distance function C(X , Y ) becomes a metric space.

In this space the convergence of a sequence Tn → T ∈ C(X , Y ) is defined by

(̂Tn, T ) → 0. Since δ̂(T, S) ≤ d̂(T, S) ≤ 2δ̂(T, S) ([58] p. 198) this is true if and only

if δ̂(Tn, T ) → 0. In this case we say Tn → T in the generalized sense. This notion of

generalized convergence for closed operators is a generalization of convergence in norm.

Importantly, the convergence of closed operators in the generalized sense implies the

continuity of a finite system of eigenvalues ([58] p. 213).

A.7. Gesztesy-Weikard criterion for finite-band potentials

According to Theorem 1.2 from [40], an elliptic potential Q(x) of the Dirac op-

erator (1.2) is finite-band if and only if its fundamental matrix solution Φ(x; z) is

meromorphic in x for all z ∈ C.

Theorem A.2. Consider (1.2), then q ≡ A dn(x; m) with m ∈ (0, 1) is finite-band if and

only if A ∈ Z.

Proof. The (simple) poles of dn(x; m) within the fundamental period 2jK + 4niK ′ are

at x = iK ′ and x = 3iK ′ where K ′ := K(1 − m). By the Schwarz symmetry, it is

sufficient to consider only the pole at iK ′. The residue at iK ′ is −i ([43], 8.151) and the

local Laurent expansion is odd. Let Φ(u) := Φ(x − iK ′; z) and note dn(x + iK ′; m) =

−i cn(u; m)/ sn(u; m) ([14], p. 20). Substitution into (A.13) gives

uΦu(u) = [−izuσ3 + (A + u2p(u))σ2]Φ(u) =: B(u)Φ(u), (A.20)

where p(u) is analytic near u = 0 and even, and is meromorphic near u = 0 for all z ∈ C.

The leading order term of B(u) is Aσ2 with eigenvalues λ = ±A. Thus, meromorphic

Φ(u) requires A ∈ Z.

To show that A ∈ Z is also a sufficient condition we need to show that Φ(u) does not

contain logarithms, i.e., regular singular point u = 0 is non-resonant. To do so we need

to shift the spectrum of the leading term of B(u) to a single point, for example, −A.

Without loss of generality, we can assume A > 0. Since

1 (1 − iσ1)σ2(1 + iσ1) = σ3, 1 (1 − iσ1)σ3(1 + iσ1) = −σ2, (A.21)
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188

2 2



ARTICLE IN PRESS
JID:YAIMA AID:109188 /FLA [m1L; v1.338] P.57 (1-63)

G. Biondini et al. / Advances in Mathematics ••• (••••) •••••• 57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
we first diagonalize the leading term Aσ2 by the transformation Φ = (1 + iσ1)Φ̃. Then

(A.20) becomes

uΦ̃u = [izuσ2 + (A + u2p(u))σ3]Φ̃. (A.22)

Then the shearing transformation Φ̃ = diag(u, 1)Ψ reduces (A.22) to

uΨu =

[(
A − 1 z

0 −A

)
+ u2

(
p(u) 0

−z −p(u)

)]
Ψ. (A.23)

After diagonalizing the leading term, we obtain

uΨ̃u =

[(
A − 1 0

0 −A

)
+ u2

(
p̃(u) r(u)

−z −p̃(u)

)]
Ψ̃, (A.24)

where p̃(u), r(u) are even and analytic at u = 0 functions. Thus, the coefficient of (A.24)

is an analytic and even matrix function.

If A = 1, one more shearing transformation would produce leading order term −1,

which is non-resonant (no non trivial Jordan block) and, thus, the result would follow. If

A > 1, we apply shearing transformations with the matrix diag(u2, 1) with consequent

diagonalizations that will shift the (1, 1) entry of the leading term by −2 and preserve

the analyticity and evenness of the coefficient. When the difference of the eigenvalues of

the leading term becomes one, we repeat the last step of the case A = 1. 2

Corollary A.3. For the Dirac operator (1.2), q ≡ A cn(x; m) with m ∈ (0, 1) and A > 0

is finite-band if and only if A =
√

mn with n ∈ Z, while q ≡ A sn(x; m) is not finite-band

for any A > 0.

Proof. The function cn(x; m) has the same locations of simple poles as dn(x; m). Given

that the residues of the poles 2jK + iK ′ for j ∈ Z of cn(x; m) are (−1)j−1i/
√

m, it is

clear that the choice of A given above leads to integer Frobenius exponents. To prove

the non-resonance conditions, we notice that in Theorem A.2 we used only the fact that

dn(x; m) has an odd Laurent expansion at the pole. Since this is also true for ([43], 8.151)

the proof is complete. Similar arguments show that A sn(x; m) is never finite-band. 2

A.8. Connection between Heun’s equation and Treibich-Verdier potentials

It was shown in [88] that the Heun ODE in standard form:

d2y

dζ2
+

(
γ

ζ
+

δ

ζ − 1
+

ǫ

ζ − a

)
dy

dζ
+

αβζ − ξ

ζ(ζ − 1)(ζ − a)
y = 0 (A.25)

is associated with the so-called Treibich-Verdier potentials (defined below) for Hill’s

equation [92], where α, β, γ, δ, ǫ, ξ, a (with each of them 6= 0, 1) are complex parameters
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linked by the relation γ + δ + ǫ = α + β + 1. Specifically, the Heun equation (A.25) can

be transformed into

(
− d2

dx2
+

3∑

i=0

li(li + 1)℘(x + ωi) − E

)
f(x) = 0 (A.26)

via the transformation f(x) = yζ−l1/2(ζ − 1)−l2/2(ζ − a)−l3/2, where ℘(x) is the Weier-

strass ℘-function with periods {2ω1, 2ω3}, where ω1/ω3 /∈ R and

ω0 = 0 , ω2 = −ω1 − ω3 , ei = ℘(ωi) , z =
℘(x) − e1

e2 − e1
, a =

e3 − e1

e2 − e1
,

E = (e2 − e1)[−4ξ + (−(α − β)2 + 2γ2 + 6γǫ + 2ǫ2 − 4γ − 4ǫ − δ2 + 2δ + 1)/3 + (−(α −
β)2 + 2γ2 + 6γδ + 2δ2 − 4γ − 4δ − ǫ2 + 2ǫ + 1)a/3], and the coefficients li in (A.26) are

connected with the parameters in (A.25) as follows:

l0 = β − α − 1
2 , l1 = −γ + 1

2 , l2 = −δ + 1
2 , l3 = −ǫ + 1

2 . (A.27)

It is known that the potential
∑3

i=0 li(li + 1)℘(x + ωi) is a (finite-band) Treibich-Verdier

potential if and only if li ∈ Z, i = 0, 1, 2, 3 [92]. Note that the periods {2ω1, 2ω3} of ℘(x)

are not uniquely determined.

In this subsection we show the special case of the Heun equation (5.2) considered in

this work corresponds to a Treibich-Verdier potential if and only if A ∈ Z. To show this,

we employ the conformal mapping ζ̃ := ζ/ζ1 Under this transformation, and recalling

the relation ζ2 = 1/ζ1, the Heun equation (5.2) is mapped into

d2y

dζ̃2
+

3
2 ζ̃2 −

(
2m−4
mζ1

)
ζ̃ + 1

2ζ2
1

ζ̃(ζ̃ − 1)(ζ̃ − 1/ζ2
1 )

dy

dζ̃
−

1
4A(A + 1)ζ̃2 +

( λ+A2(1−m/2)
mζ1

)
ζ̃ + 1

4ζ2
1

A(A − 1)

ζ̃2(ζ̃ − 1)(ζ̃ − 1/ζ2
1 )

y = 0 .

(A.28)

The four regular singularities {0, ζ1, ζ2, ∞} of (5.2) are mapped into {0, 1, 1/ζ2
1 , ∞}.

Moreover, applying the change of dependent variable y(ζ) = ζρỹ(ζ) to (A.25)) yields

ỹζζ + P (ζ)ỹζ + Q(ζ)ỹ = 0 , (A.29)

where

P (ζ) =
γ + 2ρ

ζ
+

δ

ζ − 1
+

ǫ

ζ − a
,

Q(ζ) =
ρ(ρ − 1 + γ)

ζ2
+

δρ

ζ(ζ − 1)
+

ǫρ

ζ(ζ − a)
+

αβζ − ξ

ζ(ζ − 1)(ζ − a)
.

Note that (A.28)) and (A.29) are of the same form with a = 1/ζ2
1 and ζ1 = [m −

2 + 2
√

1 − m]/m. Reducing to a common denominator for P (ζ) and comparing the
Please cite this article in press as: G. Biondini et al., Elliptic finite-band potentials of a non-self-adjoint
Dirac operator, Adv. Math. (2023), https://doi.org/10.1016/j.aim.2023.109188



ARTICLE IN PRESS
JID:YAIMA AID:109188 /FLA [m1L; v1.338] P.59 (1-63)

G. Biondini et al. / Advances in Mathematics ••• (••••) •••••• 59

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
Fig. A.5. Relations between the various ODEs and solutions discussed throughout this work.

corresponding coefficients with (A.28) leads to γ + 2ρ = 1/2, δ = 1/2 and ǫ = 1/2,

which implies that l2 = l3 = 0. Repeating the same procedure for Q(ζ), we find that:

(i) ρ = (A − 1)/2 or ρ = −A/2, and; (ii) −A(A + 1)/4 = −ρ(ρ − 1/2) + αβ.

Now we discuss the two possible cases for ρ: If ρ = (A − 1)/2, then γ = 3/2 − A

and αβ = 1/2 − A. Combining α + β = γ + δ + ǫ − 1 = γ, one obtains l1 = A − 1

and l0 = −1 − A or A. Alternatively, if ρ = −A/2, then γ = 1/2 + A, αβ = 0, and

α + β = 1/2 + A. It turns out that l1 = −A and l0 = −1 − A or A. Either way, we

therefore have that l0, l1 ∈ Z if and only if A ∈ Z.

A.9. Transformations A 7→ −A and ζ 7→ 1/ζ

The maps A 7→ −A and ζ 7→ 1/ζ allow one to establish a connection between several

related objects. Specifically, using the change of independent variable (4.1), Hill’s equa-

tion H+v+ = λv+ is mapped into the following second-order ODE with trigonometric

coefficients

4(1 − m sin2 t
2 )ytt − (m sin t)yt + (λ + A2(1 − m sin2 t

2 ) − i
2Am sin t)y = 0 . (A.30)

Next, applying the transformation ζ = eit to (A.30) yields another Heun ODE, namely,

ζ2F (ζ; m)yζζ + ζG(ζ; m)yζ + H̃(ζ; λ, A, m)y = 0 , (A.31)

where F (ζ; m) and G(ζ; m) are still given by (5.3a) and (5.3b), respectively, and with

H̃ := H(ζ; λ, −A, m). Note that the four regular singular points of (5.2)) and (A.31) are
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the same. The full chain of transformations and correspondences is summarized in the

commutative diagram in Fig. A.5.
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