Rapid Inverse Design of GaN-on-GaN Diode with

Guard Ring Termination for BV and (VrQ)! Co-
Optimization

Nathan Yee
M-PAC Lab.
San Jose State University
California, USA
nathan.yee01@sjsu.edu

Albert Lu
M-PAC Lab.
San Jose State University
California, USA
albert.lu@sjsu.edu

Yuhao Zhang
CPES
Virginia Tech
Virginia, USA
yhzhang@vt.edu

Abstract—GaN-on-GaN vertical diode is a promising device
for next-generation power electronics. Its breakdown voltage
(BV) is limited by edge termination designs such as guard rings.
The design space of guard rings is huge and it is difficult to
optimize manually. In this paper, we propose an effective
inverse design strategy to co-optimize BV and (VrQ)!, where
BV, Vr, and Q are the breakdown voltage, forward voltage, and
reserve capacitive charge of the diode, respectively. Using rapid
Technology Computer-Aided-Design (TCAD) simulations,
neural network (NN), and Pareto front generation, a GaN-on-
GaN diode is optimized within 24 hours. We can obtain
structures with 200V higher BV at medium (VrQ)™! or find a
nearly ideal BV structure with 25% higher BV%/Ron compared
to the best randomly generated TCAD data.
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1. INTRODUCTION

GaN vertical diode is a promising device for next-
generation power electronics applications [1]-[3]. GaN
vertical diode can be formed on Ga-on-Sapphire (or other
foreign substrates) wafers or GaN-on-GaN wafers. The former
has a lower cost but has a larger leakage current due to
threading dislocations [4]-[6]. Therefore, the GaN-on-GaN
diode is preferred and chosen in this study.

While GaN has a much larger breakdown field than
Silicon due to its large bandgap [7], the breakdown voltage of
a GaN vertical diode is limited by the edge termination design
[8] such as guard rings (Fig. 1) and junction termination
extension (JTE) [9]. Guard-ring designs can have superior
tolerance of process variability as compared to JTE, as they
are less sensitive to the implant dose and depth. However, the
design space of guard rings is huge because it depends on the
ring’s spacing (S), width (W), number (N), and junction
gradient (o). The design space explodes when the diode’s
capacitive charge (Q) and forward voltage (V) are considered
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which depend on the p-GaN thickness (D) and doping
concentration in the anode and the guard rings. Currently, the
GaN diode is designed based on human expertise assisted by
simulations. Machine learning was recently used to optimize
the static metrics of GaN HEMT [10]. However, there is no
effective inverse design strategy to co-optimize BV and
(VrQ)! with VrQ as a switching Figure-Of-Merit (FOM) of
power diodes.

In Ref. [11], TCAD, machine learning, and an optimizer
are used to perform inverse design to optimize the breakdown
voltage (BV) of a GaN-on-GaN vertical diode. In this paper,
for the first time, we demonstrate a rapid inverse design
strategy (~24 hours) on a GaN-on-GaN diode using TCAD,
neural network (NN), and Pareto front generation to perform
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Fig. 1. GaN-on-GaN diode used in this study (not in scale for clarity). S, W,
D, N, and o (junction gradient, not shown) are varied in the TCAD structure
generation with S € [0.25,5], W € [0.25,5], D € [0.01,1], N €
[0,32], and o € [0.01,0.1] (units all in um except for N which is
unitless). 266 structures are generated and simulated. Cylindrical
coordinates are used and thus this is equivalent to a 3D simulation. The
white dashed line shows the cutline in Fig. 10.
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Fig. 2. The BV (left), CV (left), and pulsed-IV (right) of the random rapid-
TCAD generated structure with the largest rapid-TCAD BV (-1770V). The
curves shown are simulated using full TCAD models and the BV is about -
1305V instead of -1770V rapid-TCAD BV (See also Fig. 7).

BV and (VrQ)™!' co-optimization, which allows the finding of
optimized structures by training a neural network on sub-
optimal TCAD structures (easy to obtain by randomly
assigning S, W, D, N, and o).

II. SIMULATION SETUP

TCAD Sentaurus is used to generate and simulate vertical
GaN-on-GaN diode [12]. The setup is based on Ref. [13] and
the know-how in Refs. [6] and [14]. The structure is shown in
Fig. 1 with guard rings added next to the anode for edge
termination. The n-type drift region is 11.25um and is doped
with 10'%m™ Silicon. The anode and the guard rings are p-
type and doped with 10'° cm™ magnesium. Fermi-Dirac
statistics, incomplete ionization, high-field mobility
saturation, and impact ionization are turned on. Model
parameters in Ref. [13] are used. The device has an anode
radius of 575um. To speed up the simulation, the substrate
thickness is set to 3.25um. This increases the forward current
compared to a substrate with a normal thickness (e.g. 350um)
but can be calibrated by adding external resistance with
mixed-mode simulation if needed.
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Fig. 3. Rapid-TCAD BV+CV simulation time distributions of the 266
structures using the rapid-TCAD simulation approach. High BV structures
take longer simulation time and are rarer. Therefore, it is impossible to rely
on random generation to achieve optimal structures. Some structures take
more than 10 hours and thus it is important to use multiple cores. With 50
cores, all simulations finished in 24 hours.

III. RarPiD TCAD SIMULATION

BV simulation is known to be time-consuming. The
rapid-BV simulation method in [11] that provides ~5X speed
up in BV simulations is used. In this method, impact
ionization is removed and the peak electric field is monitored
until it reaches 3.3MV/cm (GaN critical field). This allows
rapid search for high BV devices which can then be verified
using full TCAD simulation or experiment, if necessary.

266 structures have been randomly generated by
randomly varying S, W, D, N, and o (Fig. 1) and BV, pulsed-
1V, and CV are simulated with a total simulation time of
about 24 hours using 50 cores. Fig. 2 shows the TCAD results
of the structure with the highest BV. Vr is defined when the
forward current is 20A and Q is the integrated charge in the
CV curve when the reverse bias reaches 60% of the BV. Fig.
3 shows the simulation time distribution of 266 structures as
a function of BV.

IV. NEURAL NETWORK AND PARETO FRONT

Using the 266 rapid-TCAD data, an NN (Fig. 4) is trained
to predict BV, Rox, VF, and Q as surrogate models with S, ¥,
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Fig. 4. The neural network built to predict BV, Ron, Vr, and Q (reverse charge) with diode structure parameters as inputs.
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Fig. 5. Training (blue, 266 samples) and validation (orange, additionally 50
new samples) performance of the NN. Ideal prediction is shown in red lines
where x =y. The R? of the training data are shown.

D, N, and o as inputs. Fig. 5 shows the training and validation
results. It can be seen that the model can predict the training
and validation data well except for a saturation in the
prediction of the BV at the high BV region due to the lack of
high BV samples in the training data. However, this is proven
not to be an issue in inverse design.

This NN is then used as a surrogate model to co-optimize
the BV and (VrQ)"! using the NSGA-II algorithm [15] as a
multi-objective optimization problem to establish a Pareto
front by maximizing both BV and (VrQ)! (Fig. 6). 150
generations are used to construct the Pareto front.

Fig. 7 shows the rapid TCAD simulation training data
distribution and the Pareto front generated. For (VrQ)™! in the
0.03V-!(nC) ! to 0.04 V-'(nC)"! range, the BV is increased by
up to 250V in the Pareto front prediction. For low (VrQ)™,
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Fig. 6. The rapid inverse design framework. Rapid-TCAD is used to easily
and randomly generate 266 sub-optimal structures. They are used to train a
NN as the surrogated model, which will be used to find the Pareto front to
discover structures with more superior performance without human
expertise. The time used in each step is shown. Due to the rapid BV
simulation and the use of Pareto front, inverse design and optimization can
be finished in 24 hours.
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Fig. 7. Distribution of the rapid-TCAD training data and the optimized
Pareto frontin a BV vs. (VFQ)! plot. Note that the BV are obtained in rapid-
TCAD simulation. The maximum BV obtained is only -1305V when the
structure is simulated in full-TCAD simulation in Sample A.

there is a saturation in the BV prediction due to the saturation
in the NN prediction in Fig. 5. Four points with the highest
BV in the Pareto front were selected to be verified using full
TCAD simulations. Their BV curves are shown in Fig. 8 and
BV, Ron, VE, and Q are shown in Fig. 9. It can be seen that
BV as large as -1995V is achieved which is almost 95% of
the ideal 1-D parallel-plate limit (Fig. 8) and 25% higher
BV?R,, compared to the best randomly generated TCAD
data (Fig. 9).

Fig. 10 plots the E-field distribution of the structures with
the highest BV discovered by the optimization process and
by random TCAD generation using full-TCAD simulations.
It can be seen that the designs discovered by the optimization
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Fig. 8. BV plots of the 4 Pareto points with the highest BV, TCAD Best
Sample A (see Fig. 7 and Fig. 9) and 1D ideal structure (parallel-plate
limit).
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Pareto | g w G D R., Ve Q Normalized | Normalized
Points | (um) | (um) | N (m) | (um) | (m@) | (v) |(nQ) | BV(V) | BVR, (v,Q)*
1
1.40 4.26 25 0.097 0.32 1.3 4.7 10.8 1383 0.79 1.1
2
1.39 4.91 32 0.100 0.70 2.8 5.7 13.9 1944 0.72 0.71
3
1.12 2.90 29 0.095 0.51 1.7 5.1 14.4 1995 1.25 0.76
4
1.37 5.00 32 0.097 0.41 1.8 4.9 11.8 1615 0.77 0.97
TCAD
Best 1.13 3.11 9 0.094 0.30 0.91 4.6 12.2 1305 1 1

Fig. 9. The FOM and structures of the 4 best BV structures predicted by the Pareto front in Fig. 7. The structure and FOM of the training data from TCAD with the
highest BV are also shown (Sample A in Fig. 7). All the data shown are simulated with full TCAD models. The pink boxes highlight the superior performance of

the Pareto front structures compared to the training data.

process have successfully smoothed out the electric field to
increase the breakdown voltage using the guard rings.

It should also be noted that the designs predicted by the
Pareto front from (VrQ)! = 0.03V-'(nC)! to 0.04 V-!(nC)"!
do not perform as well as the front indicates in the full-TCAD
simulation. However, most of them still demonstrate an
improvement in BV compared to the rapid-TCAD data with
one of them as much as 200V.

V. CONCLUSION

Using a novel inverse design strategy, we can obtain GaN
diode structures with 200V higher BV at medium (VrQ)™! or
find a nearly ideal BV structure with 25% higher BV?/Ron
compared to the best randomly generated TCAD data. This
approach shows great potential to accelerate power device
optimization using the data of low-cost sub-optimal devices.
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Fig. 10. Electric field distribution cutting at the junction along the white dashed
line in Fig. 1 at breakdown for the TCAD Best Sample A (BV ~ -1350V) and
Pareto Point 3 (BV ~ -1995V). Dashed lines are guidance to show that the
Pareto Point 3 is more effective in smoothing the E-field.
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