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Abstract—GaN-on-GaN vertical diode is a promising device 

for next-generation power electronics. Its breakdown voltage 

(BV) is limited by edge termination designs such as guard rings. 

The design space of guard rings is huge and it is difficult to 

optimize manually. In this paper, we propose an effective 

inverse design strategy to co-optimize BV and (VFQ)-1, where 

BV, VF, and Q are the breakdown voltage, forward voltage, and 

reserve capacitive charge of the diode, respectively. Using rapid 

Technology Computer-Aided-Design (TCAD) simulations, 

neural network (NN), and Pareto front generation, a GaN-on-

GaN diode is optimized within 24 hours. We can obtain 

structures with 200V higher BV at medium (VFQ)-1 or find a 

nearly ideal BV structure with 25% higher BV2/Ron compared 

to the best randomly generated TCAD data.  

Keywords—Breakdown Voltage, Gallium Nitride (GaN), 

Machine Learning, Technology Computer-Aided Design (TCAD), 

Pareto Front 

I. INTRODUCTION 

GaN vertical diode is a promising device for next-
generation power electronics applications [1]-[3]. GaN 
vertical diode can be formed on Ga-on-Sapphire (or other 
foreign substrates) wafers or GaN-on-GaN wafers. The former 
has a lower cost but has a larger leakage current due to 
threading dislocations [4]-[6]. Therefore, the GaN-on-GaN 
diode is preferred and chosen in this study. 

 While GaN has a much larger breakdown field than 
Silicon due to its large bandgap [7], the breakdown voltage of 
a GaN vertical diode is limited by the edge termination design 
[8] such as guard rings (Fig. 1) and junction termination 
extension (JTE) [9]. Guard-ring designs can have superior 
tolerance of process variability as compared to JTE, as they 
are less sensitive to the implant dose and depth. However, the 
design space of guard rings is huge because it depends on the 
ring’s spacing (S), width (W), number (N), and junction 

gradient (). The design space explodes when the diode’s 
capacitive charge (Q) and forward voltage (VF) are considered 

which depend on the p-GaN thickness (D) and doping 
concentration in the anode and the guard rings. Currently, the 
GaN diode is designed based on human expertise assisted by 
simulations. Machine learning was recently used to optimize 
the static metrics of GaN HEMT [10]. However, there is no 
effective inverse design strategy to co-optimize BV and 
(VFQ)-1 with VFQ as a switching Figure-Of-Merit (FOM) of 
power diodes. 

In Ref. [11], TCAD, machine learning, and an optimizer 
are used to perform inverse design to optimize the breakdown 
voltage (BV) of a GaN-on-GaN vertical diode. In this paper, 
for the first time, we demonstrate a rapid inverse design 
strategy (~24 hours) on a GaN-on-GaN diode using TCAD, 
neural network (NN), and Pareto front generation to perform 
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Fig. 1. GaN-on-GaN diode used in this study (not in scale for clarity). S, W, 

D, N, and 𝜎 (junction gradient, not shown) are varied in the TCAD structure 

generation with 𝑆 ∈ [0.25,5] , 𝑊 ∈ [0.25,5] , 𝐷 ∈ [0.01,1] , 𝑁 ∈
[0,32] , and 𝜎 ∈ [0.01,0.1]  (units all in m except for N which is 

unitless). 266 structures are generated and simulated. Cylindrical 

coordinates are used and thus this is equivalent to a 3D simulation. The 

white dashed line shows the cutline in Fig. 10. 
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BV and (VFQ)-1 co-optimization, which allows the finding of 
optimized structures by training a neural network on sub-
optimal TCAD structures (easy to obtain by randomly 
assigning S, W, D, N, and σ). 

II. SIMULATION SETUP 

 TCAD Sentaurus is used to generate and simulate vertical 
GaN-on-GaN diode [12]. The setup is based on Ref. [13] and 
the know-how in Refs. [6] and [14]. The structure is shown in 
Fig. 1 with guard rings added next to the anode for edge 

termination. The n-type drift region is 11.25m and is doped 
with 1016cm-3 Silicon. The anode and the guard rings are p-
type and doped with 1019 cm-3 magnesium. Fermi-Dirac 
statistics, incomplete ionization, high-field mobility 
saturation, and impact ionization are turned on. Model 
parameters in Ref. [13] are used. The device has an anode 

radius of 575m. To speed up the simulation, the substrate 

thickness is set to 3.25m. This increases the forward current 

compared to a substrate with a normal thickness (e.g. 350m) 
but can be calibrated by adding external resistance with 
mixed-mode simulation if needed. 

III. RAPID TCAD SIMULATION 

BV simulation is known to be time-consuming. The 

rapid-BV simulation method in [11] that provides ~5X speed 

up in BV simulations is used. In this method, impact 

ionization is removed and the peak electric field is monitored 

until it reaches 3.3MV/cm (GaN critical field). This allows 

rapid search for high BV devices which can then be verified 

using full TCAD simulation or experiment, if necessary. 

 266 structures have been randomly generated by 

randomly varying S, W, D, N, and σ (Fig. 1) and BV, pulsed-

IV, and CV are simulated with a total simulation time of 

about 24 hours using 50 cores. Fig. 2 shows the TCAD results 

of the structure with the highest BV. VF is defined when the 

forward current is 20A and Q is the integrated charge in the 

CV curve when the reverse bias reaches 60% of the BV. Fig. 

3 shows the simulation time distribution of 266 structures as 

a function of BV. 

IV. NEURAL NETWORK AND PARETO FRONT 

 Using the 266 rapid-TCAD data, an NN (Fig. 4) is trained 

to predict BV, RON, VF, and Q as surrogate models with S, W, 

 

Fig. 4. The neural network built to predict BV, RON, VF, and Q (reverse charge) with diode structure parameters as inputs. 

 

 

Fig. 3. Rapid-TCAD BV+CV simulation time distributions of the 266 
structures using the rapid-TCAD simulation approach. High BV structures 

take longer simulation time and are rarer. Therefore, it is impossible to rely 

on random generation to achieve optimal structures. Some structures take 

more than 10 hours and thus it is important to use multiple cores. With 50 

cores, all simulations finished in 24 hours. 

 

Fig. 2. The BV (left), CV (left), and pulsed-IV (right) of the random rapid-

TCAD generated structure with the largest rapid-TCAD BV (-1770V). The 

curves shown are simulated using full TCAD models and the BV is about -
1305V instead of -1770V rapid-TCAD BV (See also Fig. 7). 



D, N, and σ as inputs. Fig. 5 shows the training and validation 

results. It can be seen that the model can predict the training 

and validation data well except for a saturation in the 

prediction of the BV at the high BV region due to the lack of 

high BV samples in the training data. However, this is proven 

not to be an issue in inverse design. 

This NN is then used as a surrogate model to co-optimize 

the BV and (VFQ)-1 using the NSGA-II algorithm [15] as a 

multi-objective optimization problem to establish a Pareto 

front by maximizing both BV and (VFQ)-1 (Fig. 6).  150 

generations are used to construct the Pareto front.  

Fig. 7 shows the rapid TCAD simulation training data 

distribution and the Pareto front generated. For (VFQ)-1 in the 

0.03V-1(nC)-1 to 0.04 V-1(nC)-1 range, the BV is increased by 

up to 250V in the Pareto front prediction. For low (VFQ)-1, 

there is a saturation in the BV prediction due to the saturation 

in the NN prediction in Fig. 5. Four points with the highest 

BV in the Pareto front were selected to be verified using full 

TCAD simulations. Their BV curves are shown in Fig. 8 and 

BV, RON, VF, and Q are shown in Fig. 9. It can be seen that 

BV as large as -1995V is achieved which is almost 95% of 

the ideal 1-D parallel-plate limit (Fig. 8) and 25% higher 

BV2/Ron compared to the best randomly generated TCAD 

data (Fig. 9).  

Fig. 10 plots the E-field distribution of the structures with 

the highest BV discovered by the optimization process and 

by random TCAD generation using full-TCAD simulations. 

It can be seen that the designs discovered by the optimization 

 

Fig. 6. The rapid inverse design framework. Rapid-TCAD is used to easily 

and randomly generate 266 sub-optimal structures. They are used to train a 

NN as the surrogated model, which will be used to find the Pareto front to 
discover structures with more superior performance without human 

expertise. The time used in each step is shown. Due to the rapid BV 

simulation and the use of Pareto front, inverse design and optimization can 

be finished in 24 hours. 

 

 

Fig. 5. Training (blue, 266 samples) and validation (orange, additionally 50 
new samples) performance of the NN. Ideal prediction is shown in red lines 

where x = y. The R2 of the training data are shown. 

 

Fig. 7. Distribution of the rapid-TCAD training data and the optimized 

Pareto front in a BV vs. (VFQ)-1 plot. Note that the BV are obtained in rapid-
TCAD simulation. The maximum BV obtained is only -1305V when the 

structure is simulated in full-TCAD simulation in Sample A.  

 

 

Fig. 8. BV plots of the 4 Pareto points with the highest BV, TCAD Best 
Sample A (see Fig. 7 and Fig. 9) and 1D ideal structure (parallel-plate 

limit). 

 



process have successfully smoothed out the electric field to 

increase the breakdown voltage using the guard rings. 

It should also be noted that the designs predicted by the 

Pareto front from (VFQ)-1 = 0.03V-1(nC)-1 to 0.04 V-1(nC)-1 

do not perform as well as the front indicates in the full-TCAD 

simulation. However, most of them still demonstrate an 

improvement in BV compared to the rapid-TCAD data with 

one of them as much as 200V. 

V. CONCLUSION  

Using a novel inverse design strategy, we can obtain GaN 

diode structures with 200V higher BV at medium (VFQ)-1 or 

find a nearly ideal BV structure with 25% higher BV2/Ron 

compared to the best randomly generated TCAD data. This 

approach shows great potential to accelerate power device 

optimization using the data of low-cost sub-optimal devices. 
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Fig. 9. The FOM and structures of the 4 best BV structures predicted by the Pareto front in Fig. 7. The structure and FOM of the training data from TCAD with the 

highest BV are also shown (Sample A in Fig. 7). All the data shown are simulated with full TCAD models. The pink boxes highlight the superior performance of 

the Pareto front structures compared to the training data. 

 

Fig. 10. Electric field distribution cutting at the junction along the white dashed 

line in Fig. 1 at breakdown for the TCAD Best Sample A (BV ~ -1350V) and 
Pareto Point 3 (BV ~ -1995V). Dashed lines are guidance to show that the 

Pareto Point 3 is more effective in smoothing the E-field. 


