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Abstract: To fully utilize the versatility of a multi-fingered dexterous robotic hand
for executing diverse object grasps, one must consider the rich physical constraints
introduced by hand-object interaction and object geometry. We propose an inte-
grative approach of combining a generative model and a bilevel optimization (BO)
to plan diverse grasp configurations on novel objects. First, a conditional varia-
tional autoencoder trained on merely six YCB objects predicts the finger place-
ment directly from the object point cloud. The prediction is then used to seed a
nonconvex BO that solves for a grasp configuration under collision, reachability,
wrench closure, and friction constraints. Our method achieved an 86.7% success
over 120 real world grasping trials on 20 household objects, including unseen and
challenging geometries. Through quantitative empirical evaluations, we confirm
that grasp configurations produced by our pipeline are indeed guaranteed to satisfy
kinematic and dynamic constraints. A video summary of our results is available
at youtu.be/9DTrImbN99I.
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1 Introduction

Performing diverse grasps on a variety of objects is a fundamental skill in robotic manipulation.
Diverse grasp configurations allow flexible interaction with the objects while satisfying requirements
demanded by the higher level task of interest. Dexterous grasping, which refers to object grasping
with a fully actuated, multi-finger dexterous robotic hand, has the potential to achieve diverse grasp
configurations with applicability to a wide range of objects. This is in contrast with simple grasps
achieved by parallel jaw grippers or underactuated multi-finger grippers, both of which have fingertip
workspaces restricted to a subspace of the 3D task space.

We identify two major challenges in planning diverse dexterous grasps. Firstly, the solution space
is multimodal due to the many finger placement possibilities and the lack of a metric defining an
optimal grasp among valid answers. Secondly, each valid grasp is governed by nonconvex physical
constraints such as collision, contact, and force closure.

The multimodality of dexterous grasp planning motivates the use of deep learning-based approaches.
It is challenging to produce diverse and multimodal grasp plans with regression or naive supervised
methods. Analytical approaches such as precomputing a grasp library or sampling-based grasp plan-
ning, while popular for planning simple grasps, are computationally intractable on high-dimensional
dexterous grasps. Nevertheless, learning to plan grasps that strictly obey physical constraints is diffi-
cult. Model-based optimization has historically been applied to enforce exact constraints. However,
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in practice the dexterous grasp planning problem is arguably too nonconvex to solve directly. Conse-
quently, previous works usually relax the constraints as scalar losses and solve the relaxed problem,
sacrificing exact constraint satisfaction guarantees for practicality.

We propose an integrative approach that combines learning and optimization to produce diverse
physically-feasible dexterous grasp configurations for unseen objects. Our method first predicts an
initial set of contact points using a conditional variational autoencoder (CVAE). The contact points
are then projected onto the manifold of kinematically and dynamically feasible grasps by solving a
bilevel optimization (BO) problem. Our key contributions are summarized below:

e Learning-based dexterous grasp planning pipeline that integrates CVAE and BO to produce
diverse, fully-specified, and constraint-satisfying dexterous grasps from point clouds.

o Bilevel grasp optimization formulation that takes a learning-based grasp prediction and outputs
a dexterous grasp that satisfies reachability, collision, wrench closure, and friction cone constraints.
o Successful and extensive hardware validation on 20 household objects. Our method achieved
an overall success rate of 86.7% over 120 grasp trials.

Figure 1: Our method can pick up different objects shapes with a diverse set of grasp configurations.

2 Related Work

We limit our discussion to literature on grasping in uncluttered scenes, with an emphasis on dex-
terous grasping. We exclude work that focuses on object segmentation in cluttered environments or
other types of manipulation, such as in-hand manipulation.

2.1 Dexterous Grasping

Dexterous grasping is a long standing problem in the robotics community. In general, the literature
can be split into learning-based and analytical methods. Early learning-based grasp planners seek to
fit the space of possible grasps for rapid grasp generation (e.g., [1]). More recent papers have shifted
to producing grasps directly with complex model architectures, such as generative models [2, 3, 4]
and convolutional neural networks [5, 6]. However, most of these works do not account for physical
laws and have restricted, or even missing, hardware evaluation. This issue is exacerbated by the
difficulty of simulating contact-rich interactions [7, 8]. The quality of grasps produced by learning
exclusively with simulation is questionable. Moreover, many papers do not emphasize the ability
to learn diverse grasps, thus forgoing a key benefit of dexterous hands over simple grippers. No-
tably, some publications on learning dexterous grasping originate from computer vision and graphics
communities (e.g., [9, 10, 11, 12, 13, 14]). While these papers cover diverse grasp generation on
fully dexterous hands, their ultimate objective tends to be achieving photorealistic human grasps in
simulation rather than satisfying strict real-world physical constraints.

On the other hand, analytical dexterous grasp planners are often inspired by physical constraints
such as force closure, friction cone, robustness to external disturbance wrenches, and object contact
(e.g., [15, 16, 17, 18]). Historically, analytical methods are standalone and includes both grasp
modality exploration and physical constraint compliance. We point the readers to [19, 20] for a
detailed review on these methods. Some limitations of these approaches include dependency on a
high-fidelity object model and lack of diversity in the generated grasps [20].

In recent years, some learning-based approaches have adopted a “grasp refinement” step motivated
by analytical metrics [4, 18, 21]. Nevertheless, these metrics tend to be formulated as “relaxed” op-



timizations to keep the problem tractable. Instead of enforcing the constraints directly, the violation
of each constraint is cast as a scalar loss and summed together. This results in an unconstrained opti-
mization which is significantly easier to solve. However, there is no guarantee that the optimization
output will indeed satisfy the constraints that motivated the loss design.

2.2 Simple Grasping

Due to the geometry of parallel jaw grippers, simple grasp planning can be reduced to computing a
6-DoF gripper pose in space. As such, analytical simple grasp planners may directly reason about
the object geometry (e.g., [22]) or rank grasps using grasp quality metrics [19]. Recently, learning-
based approaches that predict wrist poses have gained significant traction (e.g., [23, 24, 25]). We
refer the readers to [26, 19, 20, 27, 28] for a thorough review. These approaches seldom scale
directly to dexterous grasp planning, which is a significantly more complex problem.

2.3 Bilevel Optimization (BO) for Planning

While BO theory is established in literature [29], application of BO on motion planning is relatively
new. BO has been applied to continuous systems [30], robotic locomotion [31, 32], simple pushing
and pivoting [33], collaborative object manipulation [34], and task and motion planning [35]. To our
best knowledge, this work is the first application of BO on dexterous robotic manipulation.

3 Method

Our method consists of a learned model that predicts a plausible finger placement P € R3*3, and
an analytical process that computes a physically feasible dexterous grasp q* € R*? (Definition
1) guided by P. At inference time, the pipeline takes in an object point cloud and outputs a fully
specified grasp configuration q*. Figure 2 gives an overview of our method. We assume the object is
grasped with exactly 3 fingers. This section first formally specify the modeled physical constraints,
then discuss each of the components in the pipeline. Our implementation is available at github.
com/Stanford-TML/dex_grasp.
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Figure 2: Overview of our method. We train a CVAE that predicts finger placements P € R3*3
given an object point cloud O. At inference time, we first obtain a finger placement prediction P,
which is not guaranteed to be physically feasible. Next, we compute a grasp configuration initial
guess ¢’ € R?2 from P. Finally, we apply BO to compute a physically feasible grasp ¢* € R?2.

Definition 1 (Physically Feasible Dexterous Grasp). Given an object O in environment E, a grasp
configuration g, and a desired finger placement P = (py, p2, p3) € R3*3, we consider (O, E, q, P)
to be physically feasible if they satisfy following dynamic and kinematic constraints. In our setup,
g € R?? and E is the fixed tabletop (see Section 4.1).

3.1 Dynamic Constraints: Wrench Closure and Friction Cone

For a static dexterous grasp, the dynamic constraints include the wrench closure constraint and the
friction cone constraint. The wrench closure constraint requires the sum of the external wrench from
all contact points to be zero: 2?21 fi = 0and 2?21 p; X f; = 0. f; € R3 is the unknown contact
force applied at position p; € R? from the dexterous hand to the object.

Given the static friction coefficient p and the outward-pointing surface normal 7;, the friction cone
constraint requires the normal force to be nonnegative and the contact force to be within the friction
cone. Using a polyhedral cone approximation ([36]) with an orthogonal basis ¢; ; L n;,Vj € {1,2},
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we arrive at the following approximated friction cone constraints:
0< —fi-n; and |f; -t ;| < —pfi-ni, Vi€ {1,2,3},V5 € {1,2}. (1)

A grasp is dynamically feasible if it satisfies both wrench closure and friction cone constraints.
Leveraging the polyhedral approximation, dynamic feasibility can be cast as a quadratic program

(QP):

3 3

, Inin I Fl3+1D " pi x fill3 subjectto 0 < frim < —fi - 7 and (1). 2)
plzds i=1

The optimization in Equation (2) has objective value 0 if and only if the grasp is dynamically feasi-

ble. Note that we set an arbitrary lower bound f,,,;,, € R™ on the normal force to avoid the trivial

solution of f; = 0. The exact value of f,,;, is irrelevant because changing f,,;,, represents scaling

the optimal contact forces, which does not affect membership in the friction cone.

3.2 Kinematic Constraints: Reachability and Collision

The kinematic constraints include reachability constraints and collision constraints. Reachability
constraints enforce the kinematic ability of the robot hand to reach the contact point p; on the object
surface 00, i.e. 3q : K;(q) = p; € 00, Vi € {1,2,3}. Here K; : R?? — R3 is the forward
kinematics function that maps the hand state g to the position of the i-th fingertip. Assuming only
fingertip contacts, collision constraints ensure that no robot link L(q) is in collision with the object
O except at the fingertip or with the environment E, i.e. L(q) N {O U E} = (. Both reachability
and collision constraints are nonconvex constraints.

3.3 Learning to Predict Finger Placement from a Physically Feasible Grasp Dataset

We leverage a generative model to sample potential finger placements P given an arbitrary object
observed as a point cloud O. An immediate challenge faced by the learning approach is the lack
of large-scale datasets for dexterous robotic hands. While datasets for real human hands do exist,
retargeting human grasping configurations to a robot hand with different kinematic structures and
joint limits presents numerous challenges. We opt to synthesize a large-scale dataset of physically
feasible grasping configurations for the Allegro robot hand used in this paper.

3.3.1 Creating a Physically Feasible Dexterous Grasp Dataset

We generate physically feasible grasps of six YCB objects [37] in simulation. The chosen objects
are “cracker box,” “sugar box,” “tomato soup can,” “mustard bottle,” “gelatin box,” and “potted
meat can.” We consider a realistic scenario where the object is placed on a flat surface instead of
free floating. As such, we need to consider different object rest poses of on the surface in addition
to finger placements. In summary, we first generate random object rest poses and enumerate all
possible finger placements P using the corresponding simulated object point cloud O. If a kinemat-

ically and dynamically feasible grasp g can be found for P, (07 q, P) is added to the dataset IP. The
detailed procedure is described in the supplementary material.

3.3.2 Training a Conditional Variational Autoencoder (CVAE)

To compute diverse grasps for arbitrary objects directly from point cloud observations, we pre-
dict fingertip contact points on the object surface with a conditional variational autoencoder
(CVAE) [38]. Our model is adapted from [24] and consists of an encoder E' and a decoder D
that are based on the PointNet++ architecture [39]. The model seeks to maximize the likelipood of
producing a set of contact points P deemed feasible in Section 3.3.1 given the point cloud O.

The encoder E(z | P,O) maps a grasp P and a point cloud O to the latent space. We assume
the latent variable has a normal distribution A/ (0,7). Meanwhile, given a latent sample z ~ E,
the decoder attempts to reconstruct the finger placement P. We seek to minimize the element-wise
L*-norm reconstruction 10ss Ly.c.(P,P) £ ||P — P||; for a feasible grasp from the dataset P € P.
Additionally, a KL divergence loss Dy, is applied on the latent distribution E(- | -) to ensure a
normally distributed latent variable. The complete loss function of the network is defined as

L2 S LyP.P) +aDiys (E(z | P,0) H N(o,z)) . 3)

z~E,PeP



At inference time, E is removed and a latent sample z is drawn from N'(0,Z). This is passed into
the decoder D(P|O, z) along with the point cloud O to produce the grasp point prediction P.

3.4 Computing Grasps with Physical Feasibility Guarantees using Bilevel Optimization (BO)

While the grasps in the training dataset are physically feasible by construction, there is no guarantee
that the CVAE output, P, is physically feasible. Additionally, P only specifies the finger placement
instead of the full hand configuration. We propose a BO to obtain a physically feasible grasping pose
g given P. To seed the BO with P, we first obtain an Euclidean projection of P onto 0O, denoted as
P £ {p} | p; =arg min,, o0 ||Po — Pill2, @ € {1,2,3}} . Next, we solve an inverse kinematics
(IK) problem for a grasp configuration finger placement problem specified by P’ up to a numerical
tolerance ¢, i.e. find ¢’ : |K;(q') — plll2 <€, Ki(q') € 00, Vi € {1,2,3}. K; : R?? — R3 is
the forward kinematics function of the ith finger. K;(q’) € 0O is implemented as a constraint on
the finger-object signed distance D(p, O) € [dmin, dmaz]. The IK solution g’ serves as the initial
guess for the BO.

3.4.1 Formulating the Bilevel Optimization Grasp Refinement

Accounting for the kinematic and dynamic constraints, the naive formulation of the grasp optimiza-
tion problem is given in (4).

min 0
a,f1,f2,fs3

3 3
subjectto  K;(q) € 00, L(q)N{OUE} =0, | > fila=0, || Y_Ki(q) x fila=0, 4
i=1 i=1

Jmin < —=Fi -7, | fi 'fi,j| < —ufi-ng, Vie{1,2,3},Vj € {1,2}.
Equation (4) does not solve well in practice due to its complexity and nonconvexity. Additionally,
while ¢’ may serve as an initial guess for g, the initial guess for f is not obvious. Naively relaxing
Equation (4), e.g., replacing the objective with ming ¢, 7, 7, | S0_, fil 3+ 320, Ki(q) x fill3,
may produce suboptimal f and, consequently, incorrect conclusion on grasp’s dynamic feasibility.

We propose leveraging bilevel optimization [29, 32] to offload the dynamic feasibility computation
from the main optimization. Define J(q) as the minimum objective value of the dynamic constraint
QP in Equation (2) with p; = K;(q):

3 3
J@) = min (> Fll3+ 1D pix Fill subjectto 0.< fruin < ~fi-niand (. (5)
pl2ds i=1

We observe that the force closure constraint J(g) = 0 can be abstracted away to form a “lower-
level” QP. J(g) = 0 can be solved to optimality with exiting QP solvers without reliance on a good
initial guess for f;.

Applying this abstraction to Equation (4) yields the upper-level problem:

min 0 subjectto J(g) =0, K;(q) € 00, L(g)Nn{OUE} = . (6)
q

Equation (6) is a bilevel optimization as J(g) = 0 is a constraint on the minimizer of another

optimization problem (Equation (6)). While Equation (6) still defines a nonconvex optimization, the

choice for f; has been abstracted away entirely to the lower level QP solver. By construction, a valid

solution to Equation (6), denoted as q*, defines a physically feasible grasp.

3.4.2 Solving the Bilevel Optimization Grasp Refinement

In practice, to solve Equation (6) with a nonconvex optimizer (e.g., SNOPT [40]), one needs
to obtain the gradient of each of the constraints with respect to q. The gradients of the kine-
matic constraints can be obtained from simulators with automatic differentiation capabilities (e.g.,
Drake [41]). The gradient of J(q), V4J(q), can obtained using differentiable optimization [42]. At
a high level, differentiable optimization computes V4.J(g) by taking the matrix differentials of the
KKT conditions of the optimization problem at its solution.

We emphasize that the bilevel optimization in Equation (6) is still a highly nonconvex optimiza-
tion, and the optimizer will likely return a locally optimal g* in the vicinity of q’. Intuitively, this



could be interpreted as optimizing within the grasp family of the CVAE prediction (e.g., “left side
grasp” or “top-down grasp”), which implies the necessity of CVAE in the process. This is supported
empirically by our ablation studies in Section 4. In practice, the bilevel optimization provides a cer-
tification of physical feasibility for the CVAE prediction. A poor g’ choice will likely results in the
nonconvex optimizer returning infeasibility. This serves as the condition to reject P and generate a
different CVAE grasp prediction with another latent variable sample.

4 Experiments

Our trained CVAE achieved a test reconstruction error of 0.5cm. More training details are available
in the supplementary material. The effects of applying BO is shown in Figures 3a and 3b. The
finger placement prior to BO cannot form force closure as n; - 7o; > 0, V4, 5 € {1,2, 3}. BO shifted
the thumb and middle fingers to an antipodal configuration, which allows for force closure. This
validates our approach’s ability to make an initially infeasible grasp prediction physically feasible.
The rest of this section focuses on hardware experiments and evaluations.

planned

executed

i
i bk

(a) Before BO (q¢’). (b) After BO (g¢¥). (c) Hardware setup. (d) Planned and executed grasps.

Figure 3: 3a and 3b: Before and after BO, on a bottom-up view of a mustard bottle grasp. Using
the color encoding of red: thumb, green: index, and blue: middle, we show P (solid spheres), P’
(transparent spheres) and 7; (colored lines). The direction of the computed contact forces f; are
shown at the respective fingertip with yellow lines. The mismatch between K (q’) and P’ is due
to the numerical tolerance €. 3c: Hardware setup. See Section 4.1 for more details. 3d: Grasp
sim-to-real. Correspondence between the planned grasp in simulation and execution on hardware.

4.1 Hardware Setup

The hardware setup and evaluated objects are shown in Figure 3c.

Hardware. A 16-DoF Allegro v4.0 right hand was used for hardware grasping experiments. The
Allegro hand was mounted on a 7-DoF Franka Emika Panda arm to realize the planned wrist pose.
The object point cloud was captured by 4 stationary Intel RealSense D435 depth cameras. The
implementation details are available in the supplementary material.

Evaluated Objects. We evaluated our method on 20 rigid household objects resting on the table.
We categorize our objects into three sets:

e 3 Seen objects. (Leftmost column) mustard bottle, soup can, and sugar box from the training set.
e 4 Familiar objects. (Second-from-left column) Unseen objects with geometries similar to
training objects. Includes boxes (webcam box, mask box) and cylinders (chip can, soda can).

e 13 Novel objects. Objects whose geometries are distinct from that of any object in the training
set. From left to right, front to back: tetrahedron, massage ball, castle, pill bottle, glasses case,
condiment bottle, hairspray bottle, ramen, lego, sandwich box (side), pear, sandwich box (upright),
alcohol bottle.

4.2 Experiment Procedure

At the start of each trial, the object is placed in a specified pose in front of the robot. After observing
the point cloud and computing a grasp, the Franka arm first brings the hand to the desired wrist pose
using an ad hoc trajectory planner. The finger joint angles 8* € R from g* is then executed on
the Allegro hand. Contact forces are provided by squeezing the fingertips according to the planned
contact forces: 8* < 0* 4 k(Vgp;)” fi. Here Vgp; is the Jacobian of the fingertip locations with
respect to 0, and k is a fixed “stiffness” constant as motivated by impedance control. The Franka
then attempts to lift the object to a fixed height approximately 43cm above the table. A trial is



Figure 4: Diverse grasps generated by our method. Each image is a unique grasp generated from
different sampled latent variables. All grasps were computed for the same initial object rest pose.

considered successful if the object is lifted and all three fingers remain in contact with the object.
3 repeats are performed for hardcoded policy trials as they are deterministic up to the object point
cloud observation. All other trials are repeated 6 times. Our hardware pipeline was implemented
with the intent to execute our planned grasp as accurately as possible. Figure 3d illustrates the
simulation-hardware grasp correspondence.

4.3 Baseline and Ablation Studies

We compare our method against the following approaches. We excluded “BO only” in our ablation
studies as it does not return a result without CVAE in practice. BO seldom returns a solution if
seeded with a kinematically infeasible solution (e.g., open hand).

e Hardcoded grasp baseline. Using the set of seen objects, we designed a top-down tripod grasp
policy that chooses the wrist pose based on the point cloud and executes a fixed grasp.

e CVAE-only as an ablation study. We solved a collision-free inverse kinematics problem that at-
tempts to match the CVAE predicted fingertip positions P. This mimics a “learning only” approach.
e CVAE-kinematic as an ablation study. We ablated the “lower level” part of the optimization
(Equation (5)) away and use q’ directly without bilevel optimization. This ablation considers kine-
matic constraints but not dynamic constraints.

4.4 Grasp Trial Results

Our method achieved an overall success rate of 86.7% over 120 grasp trials on 20 objects. This
is superior to the hardcoded baseline, which achieved an overall success rate of 53.3%. On seen
objects, our CVAE-only ablation achieved a 38.9% success rate and our CVAE-kinematic ablation
achieved an 88.9% success rate. The results are summarized in Table 1, and the details are available
in the supplementary material. A video summary is available at youtu.be/9DTrImbN991T.

Our method can grasp challenging novel objects. This includes objects that are difficult for
parallel grippers and suction cups to grasp. We discuss the challenges of some of our test objects in
the supplementary material. The hardcoded baseline nearly always succeeds on objects that allow
top-down grasps and are similar in size to the seen object used for tuning. However, the baseline
fails on objects that either require a different grasp type or have significantly different size.

Our method can generate diverse grasps through sampling different latent z’s. Figure 4 shows
10 distinct successful grasps performed on the upright sugar box.

The median time to produce a grasp with our method is 14.4 seconds. The median repeats for
each component of our method when generating a grasp is two CVAE z samples, two IK solves for
q’, and two bilevel optimizations for g*. Detailed timing and repetition results are available in the
supplementary material.

Table 1: Object grasping statistics. Our method achieved superior grasp success rate compared to
the ablations and the hardcoded baseline.

Category (object count) Seen (3) Familiar (4) Novel (13) Overall (20)
Ours 17/18 94.4% 23/24 | 95.8% 64/78 82.1% 104/120 86.7%

CVAE only 7/18 38.9% - - - - - -

CVAE-+kinematics 16/18 88.9% - - - - - -
Hardcoded 8/9 88.9% 9/12 75.0% 15/39 38.5% 32/60 53.3%
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Table 2: Evaluation of physical constraint on various grasps. A physically feasible grasp should

satisfy D(p, O) € [dmin, dmaz] = [—0.68, —0.32] and zero force and torque ratios.
Median D Min D Max D Max violation Force ratio Torque ratio
Ours (all objects) -0.32 -0.68 -0.24 0.08 (0.00, 0.02) 0.01 (0.00, 2.68)
CVAE-kinematics (seen objects) -0.32 -0.64 -0.32 0.04 0.00 (0.00, 0.12) | 0.01 (0.00, 19.54)
CVAE-only (seen objects) 0.33 -1.10 1.71 2.03 - -

Table 3: Correlation between dynamic feasibility and hardware success. Only the grasps plans with

wrench closure resulted in successful hardware execution.
Successful Failed
Force ratio Torque ratio Force ratio Torque ratio
BO rejected (12 of 12 failed) - - 61.81 (25.51, 91.65) 48.53 (39.89, 78.68)
CVAE-kinematics (7 of 12 failed) | 0.00 (0.00,0.00) | 0.00 (0.00,0.01) | 50.71(19.13, 128.85) | 36.75(30.48, 131.82)

4.5 Quantitative evaluation of physical constraint enforcement

Table 2 summarizes the quantitative evaluation of physical constraints.
Kinematic constraints. The maximum finger-object distance constraint violation in a grasp planned
by our method is 0.08cm, which is negligible in practice as it is smaller than other error sources
such as camera observation error. The CVAE-kinematics ablation, which only considers kinematic
constraints, achieved comparable results. The CVAE-only ablation has a maximum violation of
2.032cm, confirming that while CVAE alone can produce qualitatively correct grasp, it cannot en-
force kinematic constraints precisely.
Dynamic constraints. To evaluate dynamic constraint satisfaction, we chose “force (torque) ra-
” 21:1,2,3 .fIHQ ” Zq‘,:l,Z,ininiH?
TS, il < 1007 and o s
is achieved, both ratios should be zero. All ratios are reported as median, (25th percentile, 75th
percentile). We computed these ratios for grasps planned with our method and CVAE-kinematics
ablations. These ratios are not computed for CVAE-only because there are often fewer than 3 finger-
object contacts. Our method achieved a median of < 0.01% on both ratios, showing that BO is
effective in enforcing wrench closure. We note that while the CVAE+kinematics ablation does not
explicitly consider external wrench, it still produced many grasps that achieve wrench closure by
coincidence. This reflects CVAE’s ability to produce qualitatively correct grasps.

tio” as our metric, i.e. x 100%. If wrench closure

To show that physical feasibility is a necessary condition for a successful grasp, we examined the
CVAE-+kinematic trials, which may not satisfy dynamic constraints, on “ramen” and “mustard bot-
tle.” We also executed grasp plans that are reported to be infeasible by BO. Table 3 summarizes
the results. There is a strong correlation between hardware success and wrench closure. Moreover,
all grasps reported to be infeasible by BO failed on hardware. This confirms that grasp refinement
derived from rigorous physics-inspired metrics can significantly improve the final grasp plan quality.

5 Limitations and Conclusion

Limitations. Our method requires an observation of the full object point cloud. As our choice
of physical constraint formulation does not include explicit robustness margins, estimation errors
from the vision pipeline is a major source of grasp failures. This may be addressed by introducing
point cloud completion (e.g., [43, 44, 45]) or grasp robustness metrics (e.g., [17]). Additionally, it
is currently not possible to specify which type grasps to generate (e.g., “top grasp” or “side grasp”)
with our method. Finally, our method currently assumes that the object to grasp is placed on a flat
surface and that there are no other objects in the scene.

Conclusion. This work presents a novel pipeline that combines learning-based grasp generation
with bilevel optimization to produce diverse and physically feasible dexterous grasps. Our method
achieved a grasp success rate of 86.7% on 20 challenging real-world objects. Ablation studies
demonstrated that an integrative approach combining learned models and rigorous physics-inspired
metrics can achieve superior grasp output quality. Grasps initially generated by CVAE may not sat-
isfy all physical constraints. However, by incorporating bilevel optimization for grasp refinement
and rejection sampling, poor grasp predictions can be removed. This paradigm of combining learn-
ing and physics-inspired bilevel optimization may be applied to other robotic manipulation tasks.



Acknowledgments

We would like to thank Oussama Khatib, Jeannette Bohg, Dorsa Sadigh, Samuel Clarke, Elena
Galbally Herrero, Wesley Guo, and Yanchao Yang for their assistance on setting up the hardware
experiments. We would also like to thank Chen Wang and Jiaman Li for advice on training the
CVAE model. Our research is supported by NSF-NRI-2024247, NSF-FRR-2153854, Stanford-
HAI-203112, and the Facebook Fellowship.

References

[1] B. Huang, S. El-Khoury, M. Li, J. J. Bryson, and A. Billard. Learning a real time grasping
strategy. In 2013 IEEE International Conference on Robotics and Automation, pages 593—
600. IEEE, 2013.

[2] J. Lundell, F. Verdoja, and V. Kyrki. Ddgc: Generative deep dexterous grasping in clutter.
IEEE Robotics and Automation Letters, 6(4):6899—6906, 2021.

[3] L. Shao, F. Ferreira, M. Jorda, V. Nambiar, J. Luo, E. Solowjow, J. A. Ojea, O. Khatib, and
J. Bohg. Unigrasp: Learning a unified model to grasp with multifingered robotic hands. IEEE
Robotics and Automation Letters, 5(2):2286-2293, 2020.

[4] W. Wei, D. Li, P. Wang, Y. Li, W. Li, Y. Luo, and J. Zhong. Dvgg: Deep variational grasp
generation for dextrous manipulation. IEEE Robotics and Automation Letters, 7(2):1659—
1666, 2022.

[5] Q.Lu, K. Chenna, B. Sundaralingam, and T. Hermans. Planning multi-fingered grasps as prob-
abilistic inference in a learned deep network. In Robotics Research, pages 455-472. Springer,
2020.

[6] P. Mandikal and K. Grauman. Learning dexterous grasping with object-centric visual affor-
dances. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6169-6176. IEEE, 2021.

[7] S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. arXiv preprint arXiv:2009.11193, 2020.

[8] Y. Jiang, J. Sun, and C. K. Liu. Data-augmented contact model for rigid body simulation. In
Learning for Dynamics and Control Conference, pages 378-390. PMLR, 2022.

[9] T.Zhu, R. Wu, X. Lin, and Y. Sun. Toward human-like grasp: Dexterous grasping via semantic
representation of object-hand. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15741-15751, 2021.

[10] S. Brahmbhatt, C. Tang, C. D. Twigg, C. C. Kemp, and J. Hays. Contactpose: A dataset of
grasps with object contact and hand pose. In European Conference on Computer Vision, pages
361-378. Springer, 2020.

[11] O. Taheri, N. Ghorbani, M. J. Black, and D. Tzionas. Grab: A dataset of whole-body human
grasping of objects. In European conference on computer vision, pages 581-600. Springer,
2020.

[12] H. Jiang, S. Liu, J. Wang, and X. Wang. Hand-object contact consistency reasoning for human
grasps generation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 11107-11116, 2021.

[13] L. Yang, X. Zhan, K. Li, W. Xu, J. Li, and C. Lu. Cpf: Learning a contact potential field to
model the hand-object interaction. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11097-11106, 2021.

[14] E. Corona, A. Pumarola, G. Alenya, F. Moreno-Noguer, and G. Rogez. Ganhand: Predicting
human grasp affordances in multi-object scenes. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5031-5041, 2020.



[15] M. T. Ciocarlie and P. K. Allen. Hand posture subspaces for dexterous robotic grasping. The
International Journal of Robotics Research, 28(7):851-867, 2009.

[16] F. T. Pokorny and D. Kragic. Classical grasp quality evaluation: New algorithms and theory.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3493—
3500. IEEE, 2013.

[17] C. Ferrari and J. F. Canny. Planning optimal grasps. In ICRA, volume 3, page 6, 1992.

[18] T.Liu, Z. Liu, Z. Jiao, Y. Zhu, and S.-C. Zhu. Synthesizing diverse and physically stable grasps
with arbitrary hand structures using differentiable force closure estimator. IEEE Robotics and
Automation Letters, 7(1):470-477, 2021.

[19] M. A. Roa and R. Sudrez. Grasp quality measures: review and performance. Autonomous
robots, 38(1):65-88, 2015.

[20] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a survey. /IEEE
Transactions on robotics, 30(2):289-309, 2013.

[21] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha. Generating grasp poses for a high-
dof gripper using neural networks. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1518-1525. IEEE, 2019.

[22] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner. Grasp planning in complex
scenes. In 2007 7th IEEE-RAS International Conference on Humanoid Robots, pages 42—-48.
IEEE, 2007.

[23] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng. Robotic grasping of novel objects. Advances
in neural information processing systems, 19, 2006.

[24] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2901-2910, 2019.

[25] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv preprint arXiv:1703.09312, 2017.

[26] G.Du, K. Wang, S. Lian, and K. Zhao. Vision-based robotic grasping from object localization,
object pose estimation to grasp estimation for parallel grippers: a review. Artificial Intelligence
Review, 54(3):1677-1734, 2021.

[27] S. Caldera, A. Rassau, and D. Chai. Review of deep learning methods in robotic grasp detec-
tion. Multimodal Technologies and Interaction, 2(3):57, 2018.

[28] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber. A survey on learning-based robotic
grasping. Current Robotics Reports, 1(4):239-249, 2020.

[29] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: from classical to evolutionary
approaches and applications. IEEE Transactions on Evolutionary Computation, 22(2):276—
295, 2017.

[30] S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne, and S. Coros. A multi-level op-
timization framework for simultaneous grasping and motion planning. IEEE Robotics and
Automation Letters, 5(2):2966-2972, 2020.

[31] Y. Zhu, Z. Pan, and K. Hauser. Contact-implicit trajectory optimization with learned de-
formable contacts using bilevel optimization. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 9921-9927. IEEE, 2021.

[32] B. Landry, J. Lorenzetti, Z. Manchester, and M. Pavone. Bilevel optimization for planning
through contact: A semidirect method. arXiv preprint arXiv:1906.04292, 2019.

10



[33] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres. Robust pivoting: Exploiting fric-
tional stability using bilevel optimization. In 2022 International Conference on Robotics and
Automation (ICRA), pages 992-998. IEEE, 2022.

[34] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar. Online hybrid motion plan-
ning for dyadic collaborative manipulation via bilevel optimization. IEEE Transactions on
Robotics, 36(5):1452-1471, 2020.

[35] Z. Zhao, Z. Zhou, M. Park, and Y. Zhao. Sydebo: Symbolic-decision-embedded bilevel op-
timization for long-horizon manipulation in dynamic environments. IEEE Access, 9:128817—
128826, 2021.

[36] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid body dynamics
with inelastic collisions and coulomb friction. International Journal for Numerical Methods
in Engineering, 39(15):2673-2691, 1996.

[37] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and A. M. Dol-
lar. Yale-cmu-berkeley dataset for robotic manipulation research. The International Journal of
Robotics Research, 36(3):261-268, 2017.

[38] D. P. Kingma and M. Welling. = Auto-encoding variational bayes.  arXiv preprint
arXiv:1312.6114,2013.

[39] C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[40] P.E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM review, 47(1):99—-131, 2005.

[41] R. Tedrake and the Drake Development Team. Drake: Model-based design and verification for
robotics, 2019. URL https://drake.mit.edu.

[42] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136—-145. PMLR, 2017.

[43] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn: Point completion network. In 2078
International Conference on 3D Vision (3DV), pages 728-737. IEEE, 2018.

[44] M. Sarmad, H. J. Lee, and Y. M. Kim. Rl-gan-net: A reinforcement learning agent controlled
gan network for real-time point cloud shape completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5898-5907, 2019.

[45] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu. High-resolution shape completion using
deep neural networks for global structure and local geometry inference. In Proceedings of the
IEEE international conference on computer vision, pages 85-93, 2017.

11


https://drake.mit.edu

	Introduction
	Related Work
	Dexterous Grasping
	Simple Grasping
	Bilevel Optimization (BO) for Planning

	Method
	Dynamic Constraints: Wrench Closure and Friction Cone
	Kinematic Constraints: Reachability and Collision
	Learning to Predict Finger Placement from a Physically Feasible Grasp Dataset
	Creating a Physically Feasible Dexterous Grasp Dataset
	Training a Conditional Variational Autoencoder (CVAE)

	Computing Grasps with Physical Feasibility Guarantees using Bilevel Optimization (BO)
	Formulating the Bilevel Optimization Grasp Refinement
	Solving the Bilevel Optimization Grasp Refinement


	Experiments
	Hardware Setup
	Experiment Procedure
	Baseline and Ablation Studies
	Grasp Trial Results
	Quantitative evaluation of physical constraint enforcement

	Limitations and Conclusion

