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ABSTRACT

Aims. We present a variability-, color-, and morphology-based classifier designed to identify multiple classes of transients and persis-
tently variable and non-variable sources from the Zwicky Transient Facility (ZTF) Data Release 11 (DR11) light curves of extended
and point sources. The main motivation to develop this model was to identify active galactic nuclei (AGN) at different redshift ranges
to be observed by the 4MOST Chilean AGN/Galaxy Evolution Survey (ChANGES). That being said, it also serves as a more general
time-domain astronomy study.
Methods. The model uses nine colors computed from CatWISE and Pan-STARRS1 (PS1), a morphology score from PS1, and
61 single-band variability features computed from the ZTF DR11 g and r light curves. We trained two versions of the model, one
for each ZTF band, since ZTF DR11 treats the light curves observed in a particular combination of field, filter, and charge-coupled
device (CCD) quadrant independently. We used a hierarchical local classifier per parent node approach, where each node is composed
of a balanced random forest model. We adopted a taxonomy with 17 classes: non-variable stars, non-variable galaxies, three transients
(SNIa, SN-other, and CV/Nova), five classes of stochastic variables (lowz-AGN, midz-AGN, highz-AGN, Blazar, and YSO), and seven
classes of periodic variables (LPV, EA, EB/EW, DSCT, RRL, CEP, and Periodic-other).
Results. The macro-averaged precision, recall, and F1-score are 0.61, 0.75, and 0.62 for the g-band model, and 0.60, 0.74, and 0.61,
for the r-band model. When grouping the four AGN classes (lowz-AGN, midz-AGN, highz-AGN, and Blazar) into one single class,
its precision, recall, and F1-score are 1.00, 0.95, and 0.97, respectively, for both the g and r bands. This demonstrates the good per-
formance of the model in classifying AGN candidates. We applied the model to all the sources in the ZTF/4MOST overlapping sky
(−28 ≤ Dec ≤ 8.5), avoiding ZTF fields that cover the Galactic bulge (|gal_b| ≤ 9 and gal_l ≤ 50). This area includes 86 576 577 light
curves in the g band and 140 409 824 in the r band with 20 or more observations and with an average magnitude in the corresponding
band lower than 20.5. Only 0.73% of the g-band light curves and 2.62% of the r-band light curves were classified as stochastic, peri-
odic, or transient with high probability (Pinit ≥ 0.9). Even though the metrics obtained for the two models are similar, we find that, in
general, more reliable results are obtained when using the g-band model. With it, we identified 384 242 AGN candidates (including
low-, mid-, and high-redshift AGN and Blazars), 287 156 of which have Pinit ≥ 0.9.

Key words. galaxies: active – stars: variables: general – supernovae: general – surveys – methods: statistical –
methods: data analysis

⋆ Tables containing the classifications and features for the ZTF g and r bands, the labeled set, and the master catalog used to create
the labeled set are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/675/A195.
⋆⋆ Individual catalogs per class and band, as well as the labeled set catalogs, can be downloaded from Zenodo via 10.5281/zenodo.7826045
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1. Introduction

We are approaching an era in astronomy in which data sets are
too large to be processed efficiently with traditional tools and
methods. In the last few decades, a majority of astronomers have
used tools that require only the computing power of a simple lap-
top to obtain insights from a given data set. However, with the
advent of surveys such as the Zwicky Transient Facility (ZTF;
Bellm et al. 2019) and the upcoming Vera Rubin Observatory
Legacy Survey of Space and Time (LSST; Ivezić et al. 2019),
we need to develop new tools to extract the most out of the
data and manipulate the huge samples observed by these sur-
veys. Recently, several community brokers have begun to process
the ZTF public alert stream, including the Automatic Learn-
ing for the Rapid Classification of Events (ALeRCE; Förster
et al. 2021), Alert Management, Photometry and Evaluation of
Lightcurves (AMPEL; Nordin et al. 2019), Arizona-NOAO Tem-
poral Analysis and Response to Events System (ANTARES;
Narayan et al. 2018), Fink (Möller et al. 2021), and Lasair (Smith
et al. 2019). These brokers make use of different statistical and
machine learning techniques to process the large amounts of data
generated by the ZTF survey, which amounts to over 300 000
alerts per night1.

The use of alert streams is optimal for studies of transient
objects, such as supernovae (SNe), tidal disruption events, or
kilonovae, as demonstrated by several works (e.g., van Velzen
et al. 2021; Sánchez-Sáez et al. 2021b; Carrasco-Davis et al.
2021; Leoni et al. 2022; Miranda et al. 2022). However, no infor-
mation is provided by this stream when sources do not vary with
amplitudes large enough to produce an alert, or it can suffer from
strong miscalibrations due to changes in the reference images
used to generate the difference images. On the other hand, the
study of persistent and/or low-amplitude variable objects can
benefit from a denser sampling of their light curves, where all
epochs are considered without an absolute threshold in their rel-
ative variations. This is the case of the ZTF data release (ZTF
DR) light curves, which are constructed from the point spread
function (PSF) photometry over all the ZTF science images, for
objects detected in the ZTF reference images (for details, see
Masci et al. 2019). For extended sources, ZTF DR light curves
are sensitive to seeing variations and can show spurious varia-
tions; thus, they are not optimal for variability studies. Active
galactic nuclei (AGN), young stellar objects (YSOs), and binary
stars are among the persistent variable objects whose analysis
benefits the most from the use of DR light curves, as their alert
light curves can be very incomplete and biased. An example of
this is the work presented by Sánchez-Sáez et al. (2021a), where
ZTF DR5 light curves were used to identify changing-state active
galactic nucleus (CSAGN; sources that change their classifica-
tion as type 1 or type 2 AGN) candidates. Sánchez-Sáez et al.
(2021a) find that several of their promising CSAGN candidates
present only a few or even no alerts.

Chen et al. (2020) present one of the first attempts to classify
ZTF DR light curves. They used ZTF DR2 light curves to clas-
sify 781 602 periodic variable stars into 11 classes. They selected
variable stars from the DR2 light curves using the period (com-
puted using the Lomb-Scargle periodogram; Lomb 1976; Scargle
1982) and the variability amplitude, as well as other statistics,
and applied feature cuts to classify their candidates, with a mis-
classification rate of 2%. van Roestel et al. (2021) present the
1 ZTF produces an alert when there is a 5σ detection in the difference
image of a particular object. This detection can be produced by the flux
variations of persistently variable and transient objects, as well as by
moving targets, or bogus detections.

ZTF project light curve classifier, which was designed to clas-
sify all persistent point sources in the ZTF DR time series.
They present two models, one that uses variability features and
a gradient-boosted decision tree classifier and another that uses
deep neural networks applied to magnitude–time histograms
(dmdt; Mahabal et al. 2017), as well as variability features. To
test their selection technique, they applied their models to ten
pairs of ZTF fields, obtaining precision and recall scores higher
than 0.8 in most of the classes included in their taxonomy. More
recently, Aleo et al. (2022) used ZTF DR4 light curves to search
for missed transients in the ZTF alert stream, using variability
features computed with the light-curve package (Malanchev
et al. 2021) and applying a k-dimensional tree algorithm (Bentley
1975). From this model, they were able to identify 11 missing
transients.

In this work we present a ZTF DR light curve classifier that
has been designed to work with the PSF light curves of both
extended and point sources, constructed from their ZTF sci-
ence images. As previously mentioned, these light curves are
not optimal for variability studies of extended sources, but in
this work we demonstrate that they can still be used to sepa-
rate non-variable and variable extended sources, as well as to
identify transients whose host is detected directly in the science
images. The model separates sources into 17 different classes of
persistently variable objects, transient events, and non-variable
galaxies and stars. The main purpose of this classifier is to
identify AGN candidates at different redshifts to be observed
by the 4-m Multi-Object Spectroscopic Telescope (4MOST;
de Jong et al. 2019) as part of the 4MOST Chilean AGN/Galaxy
Evolution Survey (ChANGES; F. Bauer et al., in prep.). To this
end, we focus on the classification of objects located in the
region of overlap between ZTF and 4MOST skies (ZTF/4MOST
sky), excluding the Milky Way bulge. The total size of the ZTF
DR11 light curves in this area amounts to 139.5 GB in the
g band and 484.5 GB in the r band, including 86 576 577 and
140 409 824 light curves with 20 or more observations and an
average magnitude lower than 20.5, respectively.

The classifier presented here uses 61 variability features
computed using the ZTF DR11 (Masci et al. 2019; Bellm
et al. 2019) light curves, nine colors (when available) obtained
from Pan-STARRS1 (PS1; Chambers et al. 2016) and CatWISE
(Eisenhardt et al. 2020; Marocco et al. 2021), and one morphol-
ogy score from PS1 (Tachibana & Miller 2018). The classifier
is inspired by the ALeRCE broker alert light curve classifier
from Sánchez-Sáez et al. (2021b, hereafter SS21b). However,
several modifications have been made to this original model,
as we are dealing now with ZTF DR light curves: due to the
large number of sources considered in this work, and the pres-
ence of non-variable classes, we changed the taxonomy tree
(see Fig. 1) and used a fully hierarchical approach for the
classifier; we excluded the non-detection features presented in
SS21b; each ZTF light curve with a unique DR ID is treated
independently (implicitly meaning there are no multiband fea-
tures); and, in order to have an estimate of the redshift of our
AGN candidates, we separated the AGN classes into three broad
redshift bins.

The paper is organized as follows. In Sect. 2 we describe the
data used for this work. In Sect. 3 we describe the taxonomy
considered by our model and the construction of the labeled set
(LS). In Sect. 4 we define the set of features used by the model.
In Sect. 5 we explain the machine learning classifier used in this
work and evaluate its performance. In Sect. 6 we show the results
obtained when the model is applied to the ZTF light curves from
the ZTF/4MOST sky. In Sect. 7 we discuss our findings and
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Fig. 1. Hierarchical taxonomy used in this work. See Sect. 3.1 for details

compare our results with previous works. Finally, in Sect. 8 we
conclude and summarize the paper.

The code used to process ZTF DR11 light curves, compute
features, and cross-match ZTF DR11 objects with CatWISE and
PS1 catalogs is publicly available2, as is the code used to train
and evaluate this classifier and to match external catalogs with
our ZTF/4MOST classification catalog3. Catalogs that contain
the LS for each band, the original master catalog used to cross-
match with the ZTF objects, and the features and classifications
for the ZTF/4MOST sky sources are available in electronic form
at the CDS and Zenodo.

2. Data

2.1. ZTF DR11

In this work we used data from ZTF DR11, which includes
observations taken from March 2018 to March 2022. We used
the bulk download option described in Sect. 12.c of the ZTF
DR11 documentation4 to recover the light curves of the full ZTF
sky. Each ZTF field spans ≈7◦ × 7◦, and each file corresponds
to a field/chip/quadrant/filter combination. The files include the
PSF fit-based optical light curves in the g, r, and i bands. The
light curves contain the heliocentric-based modified Julian date
(MJD), which corresponds to the middle observing date of each
exposure (with integration time ≥30 s), the PSF magnitude in a
given band (calibrated for a source with color g− r = 0 in the AB
photometric system), the magnitude error, a linear color coeffi-
cient (not used in this work as it requires previous knowledge of
the simultaneous g − r color of each source) and a quality score
(catflags).

ZTF DR11 provides unique object IDs for unique combi-
nations of RA, Dec, filter, field, charge-coupled device (CCD),
and CCD quadrant. Therefore, a single astronomical source may

2 https://github.com/alercebroker/ztf_dr
3 https://github.com/PaulaSanchezSaez/
ZTF-DR11-classifier
4 https://irsa.ipac.caltech.edu/data/ZTF/docs/
releases/dr11/ztf_release_notes_dr11.pdf

be associated with more than one light curve per band. This
makes the position-matching of light curves from different bands
or observed with different CCDs computationally expensive,
especially when dealing with several million real astronomical
sources. Hence, we decided to treat each light curve indepen-
dently. This implies that some astronomical objects will have
several object IDs associated with them.

Since the aim of this work is to implement a variability-
based classifier, we only considered light curves with 20 or more
observations (Nobs ≥ 20). This minimum number of observa-
tions is more conservative than the one used by SS21b and is
selected to ensure the proper identification of intrinsic varia-
tions and proper computation of variability features from the DR
light curves, which are noisier and prone to show spurious varia-
tions compared to the ZTF alert light curves. We also decided to
exclude the i band from the analysis, as it only covers two years
of data, with fewer epochs, in the public ZTF DR11. There are
704 388 801 unique object IDs in the g band and 1 251 889 824
in the r band with Nobs ≥ 20. We call this set of sources with
Nobs ≥ 20 in at least one band the “long-lc-ZTF-DR11” sample.
We note that we avoided computing internal matches per band
for this sample, as it is computationally expensive (although this
was done for small samples, as described in Sects. 3.2.4 and 7.2).
Therefore, from this work, a real astronomical object can have
more than one set of features and classifications in a given band.

2.2. Additional photometric data

As mentioned in Sect. 2.1, sources with unique IDs are treated
independently, and thus we do not compute colors from the ZTF
DR11 light curves. However, SS21b demonstrated the impor-
tance of including average optical colors, as well as near-infrared
colors, as features for the classification of variable and transient
objects. Therefore, in this work, we also included (when avail-
able) optical photometry in the g, r, and i bands from PS1, and
W1 and W2 photometry from CatWISE. To associate a ZTF
DR11 object ID with a PS1 or CatWISE source, we used a
radius of 1.5′′ (which is the default matching radius used by
ZTF) and 2′′ (which is the standard matching radius adopted by
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ALeRCE for CatWISE data, considering the larger pixel scale of
the CatWISE images compared to ZTF), respectively.

3. Classification taxonomy and labeled set
3.1. Classification taxonomy

In this work, we use a classification taxonomy inspired by the
one presented in SS21b; although we decided to change some of
the classes presented there and add new ones. In particular, we
are working with DR light curves, which include every observa-
tion performed on a source, therefore significantly differing from
the alert light curves. Thus, it becomes necessary to modify the
taxonomy presented in SS21b and for instance to include non-
variable sources. In addition, the light curves of transient objects
in the DRs look very different from the alert ones; thus, we
decided to modify the taxonomy tree presented in SS21b, and use
one that is more suitable for the DR light curves. For instance,
the class CV/Nova is included in the transient subclass (in SS21b
it was in the stochastic subclass), since in DR light curves they
share more similarities with SNe light curves. In total, we con-
sider 17 classes, including persistent variable objects, transients,
and non-variable classes. As in SS21b, we divide the taxonomy
in a hierarchical fashion; however, we include an additional hier-
archy level in the taxonomy tree, as shown in Fig. 1. The division
is done as follows:

1. Non-variable star: sources classified as stars that do
not show variable behavior according to external catalogs
(nonvar-star).

2. Non-variable galaxy: sources classified as passive or star-
forming galaxies, or obscured (type 2) AGN (nonvar-galaxy).

3. Variable object: sources classified as persistent variable
objects or transients (variable). This class is subdivided into the
following:

(a) Transient: sources that are not persistently variable.
We include here the classes Type Ia supernova (SNIa); all
the other SN types (SN-other), including Ibc SN, type II
SN, or super luminous SN; and cataclysmic variable or nova
(CV/Nova).

(b) Stochastic: sources that show persistent stochastic vari-
ability. We include here AGN with z ≤ 0.5 (lowz-AGN);
AGN with 0.5 < z ≤ 3 (midz-AGN); AGN with z > 3
(highz-AGN); beamed jet-dominated AGN (Blazar); and
YSO (class dominated by sources at evolutionary stages
where the stochastic variations should dominate over the
periodic ones).

(c) Periodic: stars with periodic variable signal. We con-
sider here long-period variable (LPV; including regular,
semi-regular, and irregular variable stars); RR Lyrae (RRL);
Cepheid (CEP); detached eclipsing binary (EA); semide-
tached and contact variable (EB/EW); δ Scuti (DSCT); and
other periodic variable stars (Periodic-other; this includes
variable stars classified as miscellaneous, rotational, or RS
Canum Venaticorum-type systems).

3.2. Labeled set construction

We created a set of sources for training and testing (LS) by
cross-matching the sources of the long-lc-ZTF-DR11 sample
with different catalogs of objects with known labels, obtained
from multiple photometric and spectroscopic surveys. For this,
we followed a priority strategy similar to that presented in
Förster et al. (2021). However, since in this case we are deal-
ing with several million objects, we decided to create first a
master catalog of known objects, which was then cross-matched

with the long-lc-ZTF-DR11 sample. In the following sections we
describe how this master catalog was created, and how we dealt
with the cross-match of catalogs with a large number of sources.

3.2.1. Catalogs of non-variable stars

Catalogs of non-variable stars can be tricky to create, as a star
can be constant in a given survey and variable in another one
with better photometric precision. Thus, in order to generate a
catalog of constant stars in ZTF, we decided to use surveys with
photometric precision equal to or better than the ZTF precision.

To create a master catalog of non-variable stars, we used
two different surveys, namely the Sloan Digital Sky Survey
(SDSS; York et al. 2000) and the Gaia early Data Release 3
(Gaia eDR3; Gaia Collaboration 2016, 2021). We first used
the latest release of the SDSS Stripe 82 Standard Star Catalog5

(v4.2; Ivezić et al. 2007; Thanjavur et al. 2021), which contains
999 472 stars with at least 4 observations in each gri, and that
are considered non-variable from their measured χ2 per filter. In
order to reduce the contamination by variable stars in the sam-
ple, we only kept stars with 10 or more total observations (Ntot
in the original catalog) and with a mean magnitude per band
brighter than 21 magnitudes, with a root-mean-square scatter
(rms) lower than 0.16 (to reduce any possible contamination
from variable stars), without classification of variable star in
the Set of Identifications, Measurements and Bibliography for
Astronomical Data (SIMBAD) database (Wenger et al. 2000),
and that are not classified as variable star in the LS used by
SS21b. After all these filters, we ended up with a sample of
407,926 stars (SDSS_calibstar catalog).

In addition, to include a sample of non-variable stars located
at different positions in the sky, we used Gaia eDR3, follow-
ing the strategy presented in Mowlavi et al. (2021). We used the
following advanced query (ADQL) in the Gaia eDR3 database:

SELECT *
FROM gaiaedr3.gaia_source
WHERE dec>Y AND dec<X
AND abs(pmra)<1 AND abs(pmdec)<1
AND phot_g_mean_mag>14 AND phot_g_mean_mag<20
AND phot_g_n_obs>20

Here, X and Y correspond to the minimum and maximum DEC
for the query. We searched for sources in the ZTF sky using five
different ranges of declination, querying 3 million objects per
range, ending up with 15 million objects. To clean the sample
and ensure that extended sources such as galaxies, unresolved
AGNs, or sources with poor photometry are not included in the
final set, we used the corrected Gaia blue (BP) and red (RP) flux
excess factor C∗ (see Eq. (6) and Table 2 in Riello et al. 2021).
Riello et al. (2021) show in Fig. 21 that galaxies and unresolved
AGNs tend to present values of C∗ larger than 2; thus, we decided
to only include sources with −0.15 < C∗ ≤ 1, a range that is
expected to be dominated by stars. We also decided to remove
from the sample all the sources with fewer than 60 observations
in both BP and RP, to ensure that the final sample is as pure as
possible. This filtering left us with 718,983 sources.

Then, following Mowlavi et al. (2021), we measured a proxy
of the scatter in each Gaia eDR3 band by using their Eq. (2):
Aproxy =

√
N ϵ(I)

I , where N corresponds to the number of obser-
vations in the band, I to the weighted mean flux in the band,
and ϵ(I) to the error in the mean flux. We used Aproxy to remove

5 https://faculty.washington.edu/ivezic/sdss/catalogs/
stripe82.html
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Fig. 2. Amplitude proxy in the Gaia g-band magnitude versus the mean
g-band magnitude for a sample of potential non-variable stars. In blue
we show the sources that are removed from the sample, and in black the
sources included in the final sample of non-variable stars. The dashed
red line shows the mean Aproxy per bin of magnitude in the g band
(Amean).

potential variable sources by measuring the mean Aproxy per
band and per magnitude bin of size 0.05 mag (Amean), and
then removing the sources from the sample with Aproxy < Amean.
Figure 2 shows an example of this procedure for the g band. The
final sample of Gaia eDR3 non-variable stars corresponds to the
sources that satisfy this requirement in the three bands. After
this, we ended up with a sample of 43 584 non-variable stars
(Gaia_nonvarstar catalog). None of these sources is located in
the Stripe 82 area.

3.2.2. Catalogs of non-variable galaxies

Galaxies without AGN activity, as well as obscured or type
2 AGN, are not expected to show persistent optical variabil-
ity. Thus, to create a sample of non-variable galaxies, we used
catalogs of known galaxies and known type 2 AGN.

Optical emission lines have been used for years to separate
star-forming galaxies from objects with AGN activity. In partic-
ular, the Baldwin, Phillips, and Terlevich (BPT) diagram, which
consists of indexes that relate the strengths of several mission
lines (Hβ, [O III]λ5007, Hα, and [N II]λ6583) as proxies for the
state of ionization of a region (Baldwin et al. 1981), has been
widely used for this purpose. We used the Portsmouth emission
line flux measurements (Thomas et al. 2013) to select a sam-
ple of 238 773 sources classified as star-forming galaxies from
their location on the BPT diagram. Then, we removed from
the sample all the sources with public alerts reported by ZTF
(including data obtained until November 2021), as some of these
galaxies could be hosts of SNe events, or have a weak AGN in
their nuclei. After this, we ended up with 221 805 star-forming
galaxies (SDSS_galaxy catalog).

Furthermore, we use the Million Quasars Catalog
(MILLIQUAS Catalog v7.4c; Flesch 2019) to select a
sample of type 2 AGN. We selected 42 639 sources classi-
fied as type 2 narrow-line core-dominated (K) or as type 2
Seyferts/host-dominated (N) in MILLIQUAS v7.4c.

3.2.3. Catalogs of variable and transient sources

To create the sample of variable and transient sources, we used
the same catalogs described in Förster et al. (2021) and SS21b:

the ASAS-SN catalog of variable stars (ASASSN; Jayasinghe
et al. 2018, 2019b,a, 2020), the Catalina Surveys Variable Star
Catalogs (CRTS; Drake et al. 2014, 2017), the LINEAR cata-
log of periodic light curves (LINEAR; Palaversa et al. 2013), the
Gaia Data Release 2 sample of LPVs and other variable stars
(LPV_GAIA and GAIADR2VS, respectively; Mowlavi et al.
2018; Rimoldini et al. 2019), the Transient Name Server (TNS)
database (only SN classes were included)6, the Roma-BZCAT
Multi-Frequency Catalog of Blazars (ROMABZCAT; Massaro
et al. 2015), the MILLIQUAS catalog (version 7.4c), the New
Catalog of Type 1 AGN (Oh2015; Oh et al. 2015), and the
SIMBAD database (SIMBAD_variables; Wenger et al. 2000).
Some additional CV labels were obtained from different catalogs
(including Ritter & Kolb 2003), compiled by Abril et al. (2020,
called JAbril).

In addition, we included two new catalogs: the new cat-
alog of 78 hydrogen-poor super-luminous SNe observed by
ZTF (SLSN_ZTF; Chen et al. 2023), and a set of YSO cata-
logs curated by the ALeRCE collaboration (YSO_ALeRCE).
The YSO compilation set consisted of several primary sources
of targets that were then matched against the ZTF DR. These
primary sources include catalogs that are not necessarily based
on variability features and cover large portions of the sky, such
as Torres et al. (2006), Elliott et al. (2016), Vioque et al. (2020),
Kuhn et al. (2021), or Zúñiga-Fernández et al. (2021). But
also others fully motivated by variability, such as the American
Association of Variable Star Observers (AAVSO) database, or
more concrete studies focused on specific star forming regions.
Among the later we covered a large range of ages, environments
and wavelengths at which variability was confirmed, namely:
NGC 1333 (Rebull et al. 2015), GGD12-15 (Wolk et al. 2015),
the cluster IRAS 20050+2720 (Poppenhaeger et al. 2015),
Lynds 1688 (Günther et al. 2014), the Cep OB3b OB association
(Sergison et al. 2020), the Pelican Nebula (Bhardwaj et al. 2019),
the Cygnus OB2 association (Roquette et al. 2020), Praesepe
(Rebull et al. 2017), Upper Scorpius and ρ Ophiuchus (Ansdell
et al. 2018; Rebull et al. 2018), and Taurus (Rodriguez et al.
2017; Rebull et al. 2020).

3.2.4. Master catalog generation and cross-match with ZTF
DR11 sources

As mentioned in Sect. 2, ZTF DR11 contains hundreds of mil-
lions of light curves per band, making the generation of a label
set a computationally expensive task. Thus, to generate an LS,
instead of cross-matching each catalog with the ZTF sample and
then combining the results, as done in Förster et al. (2021), we
first created a master catalog that was then cross-matched against
the long-lc-ZTF-DR11 sample. To avoid having repeated objects
with different labels in the master catalog, we used a priority
order, similar to the one presented in Förster et al. (2021), which
includes the new catalogs considered in this work. These pri-
orities were defined considering the methods used to generate
each catalog and the level of disagreement in the classifications
provided by them.

The master catalog was generated by concatenating the
different catalogs presented in Sects. 3.2.1, 3.2.2, and 3.2.3, in
the following priority order (from highest to lowest): JAbril,
SLSN_ZTF, RomaBZCAT, Oh2015, MILLIQUAS, TNS, YSO_
ALeRCE, SIMBAD_variables, CRTSnorth, CRTSsouth, LIN-
EAR, LPV_GAIA, GAIADR2VS, ASASSN, SDSS_calibstar,
GAIA_nonvarstar, SDSS_galaxy. There are sources that can

6 https://www.wis-tns.org/
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Fig. 3. Number of sources per class in the LS of the g and r bands (note the log scaling on the y-axis).

appear in more than one catalog; therefore, we used the inter-
nal match available in TOPCAT (Taylor 2005) to remove all
but the first element of a group of sources within a 3′′ radius
(and keeping the order of priorities). This master catalog con-
tains 1 907 096 sources in total (1 903 799 when only including
the classes considered in this work), and it can be used as an
LS in future works. The catalog can be downloaded from CDS
or Zenodo.

To generate the LS for ZTF DR11, we cross-matched the
master catalog with the long-lc-ZTF-DR11 sample using a radius
of 1.5′′. There are more than 700 million sources and more
than 1.2 billion sources in the long-lc-ZTF-DR11 sample with
g-band light curves and r-band light curves, respectively;
therefore, to cross-match the catalogs, we used the ASTROIDE
extension (Brahem et al. 2018) for Apache Spark (Zaharia et al.
2016), which is designed to deal with large-volume astronomi-
cal data sets and includes a cross-match tool. However, instead
of using ASTROIDE with Spark, we used a Python wrapper of
ASTROIDE developed by the ALeRCE broker, which is pub-
licly available7. Only sources with more than 20 observations,
after removing epochs with catflags> 0, are considered for
the cross-match. Once the variability features were computed
(see Sect. 4.1, we also removed from the long-lc-ZTF-DR11
sample all light curves with an average magnitude greater than
20.5; m̄ > 20.5). After cross-matching, in order to avoid hav-
ing repeated light curves in a given band for a given target, we
kept the longest light curve associated with each source in each
bandpass. This internal match was done using TOPCAT, and was
possible due to the small size of the LS. From this, we ended up
with 741 263 and 936 145 sources in the LS of the g band and
the r band, respectively. Figure 3 shows the number of unique
astronomical targets per class in each band. Table 1 presents
the number of sources from each of the catalogs presented in
Sects. 3.2.1–3.2.3, included in the master catalog, and in the LS
of the g band and the r band. Catalogs containing the LS for each
band can be downloaded from CDS or Zenodo.

7 https://github.com/alercebroker/minimal_astroide

Table 1. Number of objects (#) per catalog.

Catalog # master # LS # LS
catalog g-band r-band

CVsJavierAbril 1140 494 548
SLSN_ZTF 78 14 22

RomaBZCAT 3443 1803 2173
Oh2015 5533 4046 4610

MILLIQUAS 868 952 247 561 349 640
TNS 13 215 2386 2890

YSO_ALeRCE 14 800 6037 9989
Simbad_variables 12 887 1769 3234

CRTSnorth 42 947 32 451 34 801
CRTSsouth 34 066 3316 3420
LINEAR 3044 2116 2438

LPV_GAIA 75 560 20448 20 659
GAIADR2VS 105 294 31 718 33 535

ASASSN 56 006 16 002 14 945
SDSS_calibstar 407 874 32 3488 33 8572

GAIA_nonvarstar 43 583 34 777 36 997
SDSS_galaxy 215 377 12 837 77 672

4. Features

The main purpose of this work is to classify objects in the
ZTF/4MOST sky for ChANGES; therefore, we restricted the
computation of features to the ZTF fields located in this region.
ZTF divides the sky into two grids. In this work, we focus on the
primary grid fields (637 in total), selecting the fields centered
in the sky region with −28◦ ≤ Dec. ≤ 8.5◦ (from field 245 to
field 498). We also excluded fields in the ZTF/4MOST area with
Galactic longitude 0◦ ≤ gal_l ≤ 50◦, and Galactic latitude in the
range −9◦ ≤ gal_b ≤ 9◦, in order to avoid the extremely dense
Milky Way bulge, where there is a high probability of having
blended sources, and the high-extinction regions of the Milky
Way disk. The features were computed for all the light curves
from the long-lc-ZTF-DR11 sample located in this sky region.
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In contrast, we computed the features of the sources in the LS,
regardless of their location in the ZTF sky. For each individual
light curve, a total of 61 variability features, nine colors, and one
morphology feature are included per source, giving a total of
71 features per target.

We computed features for 86 576 577 and 140 409 824 indi-
vidual light curves in the g and r bands, respectively, in the
ZTF/4MOST area. Due to the large size of these samples, we did
not perform internal cross-matches to remove repeated objects;
thus, a given astronomical object can have more than one set of
features associated per band.

4.1. Variability features

In this work we used several variability features taken from
SS21b. In particular, we used the “Detection Features” pre-
sented in Table 2 of SS21b, excluding those that are computed
using both the g and r bands at the same time since we
treat these two bands independently. The features are com-
puted for all the g and r-band light curves, as described in
Sect. 4. The following 61 features are computed for each
light curve: MHPS_ratio, MHPS_low, MHPS_high, SPM_A,
SPM_t0, SPM_gamma, SPM_beta, SPM_tau_rise, SPM_tau_
fall, SPM_chi, Amplitude, AndersonDarling, Autocor_
length, Beyond1Std, Con, Eta_e, Gskew, MaxSlope,
Meanvariance, MedianAbsDev, MedianBRP, PairSlope-
Trend, PercentAmplitude, Q31, Rcs, Skew, SmallKurtosis,
Std, StetsonK, Pvar, ExcessVar, SF_ML_amplitude,
SF_ML_gamma, IAR_phi, LinearTrend, GP_DRW_sigma,
GP_DRW_tau, Period, PPE, Power_rate_1/4, Power_
rate_1/3, Power_rate_1/2, Power_rate_2, Power_rate_
3, Power_rate_4, Psi_CS, Psi_eta, Harmonics_mag_n
(with n = 1...7), Harmonics_phase_n (with n = 2...7), and
Harmonics_mse. A detailed description of these features is
available in SS21b and the references therein.

All the features were computed as described in SS21b, except
for the period – which is computed here using the single-band
multi-harmonic analysis of variance (MHAOV) periodogram
available in the P4J Python package (Huijse et al. 2018)8 –
and the features obtained from the supernova parametric model
(SPM) – which were originally based on the model presented
in Villar et al. (2019). We used a version of the SPM model that
can properly deal with DR light curves, which can include a non-
variable component associated with the host galaxy. This SPM
model adds a constant value (Cflux) to the modeled flux:

F = Cflux +
A
(
1 − β′ t−t0

t1−t0

)
1 + exp

(
−

t−t0
τrise

) [1 − σ
( t − t1

3

)]
(1)

+
A(1 − β′) exp

(
−

t−t1
τfall

)
1 + exp

(
−

t−t0
τrise

) [
σ
( t − t1

3

)]
.

This Cflux parameter, however, is not included in the classifier as
a feature, to avoid any bias in the LS magnitude distribution.

The large number of light curves for which features have to
be calculated (several tens of millions), and the diversity of tar-
get densities in different regions of the ZTF/4MOST sky, make
the computation of features a challenging task. For this aim, we
used the super-computing infrastructure of the National Labora-
tory for High Performance Computing (NLHPC) in Chile, which
allowed us to compute features using 300 independent cores,

8 https://github.com/phuijse/P4J

with the “general” partitions9, each with an allocated memory
of 4.3 Gigabytes.

4.2. Color and morphology features

As mentioned in Sect. 2.2, colors can improve the classification
of variable and transient objects. Therefore, we used PS1 and
CatWISE photometry to compute the following colors: g − r,
r − i, g − W1, g − W2, r − W1, r − W2, i − W1, i − W2,
and W1 − W2. We note that these colors are not corrected for
Galactic extinction. We also used a morphological star/galaxy
score (ps_score) obtained from Tachibana & Miller (2018),
which used PS1 data to separate stars from galaxies.

5. Classification algorithm

5.1. The hierarchical balanced random forest

Taking into account the hierarchical structure of the taxonomy
presented in Sect. 3.1, we decided to construct a hierarchical
classifier, where each ZTF band is treated independently. There
are various approaches to performing a hierarchical classification
(e.g., Silla & Freitas 2011; Naik & Rangwala 2018); in this work,
we used a local classifier per parent node approach, where each
node of the hierarchical classifier corresponds to a multi-class
classifier. The model follows the hierarchy presented in Fig. 1.
In the first level of the model, we classify each source as nonvar-
star, nonvar-galaxy, or variable (node_init). All the sources
classified as variable go to the second level, where we classify
the sources as transient, stochastic, or periodic (node_variable).
Finally, in the third level, we further classify the transient
sources into SN Ia, SN-other, or CV/Nova (node_transient);
the stochastic sources into lowz-AGN, midz-AGN, highz-AGN,
Blazar, or YSO (node_stochastic); and the periodic sources
into LPV, RRL, CEP, EA, EB/EW, DSCT, or Periodic-other
(node_periodic).

Considering the high class imbalance of our LS, as shown in
Fig. 3, we decided to use a balanced random forest (BRF10; Chen
et al. 2004) in each node of the hierarchical classifier. There-
fore, we call this model the hierarchical balanced random forest
(HBRF). In particular, we used the BRF implementation avail-
able in the Imbalanced-learn Python package (Lemaître et al.
2017). We trained independent BRF classifiers for each node;
thus, the HBRF of each band is composed of five BRF classifiers.

We used 80% of the LS as a training set and the other 20%
as a testing set. In order to maintain the original percentage
of samples per class, we used the train_test_split method
available in scikit-learn (Pedregosa et al. 2011), in a strat-
ified fashion. For instance, for the r band, in the training set
there are 1545 SNIa, 223 680 midz-AGN, and 27 772 LPV, and
in the testing set there are 386 SNIa, 55 920 midz-AGN, and
6943 LPV.

We optimized the hyperparameters of each BRF classifier
independently. We used the K-fold randomized cross-validation
procedure available in scikit-learn, with k = 5 folds (from
the training set) and using the “F1-macro” as target score. We
searched for the optimal number of trees in the forest (number
of estimators: [100, 200, 300, 400, 500]), the fraction of features
to consider in each split (max features: [0.2, 0.4, auto, sqrt]),
and the maximum depth of each tree (max depth: [10, 30, 50,
70, 90, None]). Table 2 shows the optimized hyper-parameters

9 https://www.nlhpc.cl/infraestructura/
10 For further details about the BRF classifier, see SS21b.
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Table 2. Hyper-parameters of the HBRF.

Band Node Number of Max Max
estimators features depth

node_init 500 0.4 None
node_variable 400 0.4 30

g node_transient 300 0.4 10
node_stochastic 300 0.4 30
node_periodic 300 0.4 None

node_init 300 0.4 70
node_variable 500 0.4 70

r node_transient 200 auto 10
node_stochastic 200 0.4 70
node_periodic 400 0.4 50

used by each node of the HBRF classifier. The rest of the param-
eters were not optimized; we used entropy as the split criterion
and balanced_subsample for the class_weight parameter; for the
rest, we used the default values.

From this model, we classify objects among 17 classes,
which correspond to the final leaves of each node, and we pro-
vide the probabilities obtained by the corresponding node (P).
For instance, for SN Ia, we report the probability according to
the HBRF of the node_transient; for YSOs we report the proba-
bility of the node_stochastic; for LPVs, we report the probability
of the node_periodic; and for nonvar-stars, we report the prob-
ability of the node_init. For the sources classified as variable
in the node_init, we also report the probabilities and classifica-
tions obtained from this node (Pinit), and the probabilities and
classifications of the node_variable.

5.2. Classification performance

To evaluate the performance of the HBRF, we applied the
model to the testing set, which corresponds to the 20%
of the LS not used during training. In particular, we used
the classification_report method available in scikit-
learn, to recover the precision, recall, and F1-score for each
of the 17 classes independently, and for the full testing set
(macro-averaged scores). These scores are defined as

Precisioni =
T Pi

T Pi + FPi
, (2)

Recalli =
T Pi

T Pi + FNi
, (3)

F1-scorei = 2 ×
Precisioni × Recalli
Precisioni + Recalli

, (4)

where i corresponds to a particular class, and T Pi, FPi, FNi are
the corresponding numbers of true positives, false positives, and
false negatives, respectively.

From these scores per class, we compute the macro-averaged
scores as

Precisionmacro =
1

ncl

ncl∑
i=1

Precisioni, (5)

Recallmacro =
1

ncl

ncl∑
i=1

Recalli, (6)

Table 3. HBRF classifier metrics per band and class, and macro-
averaged scores.

Band Class Precision Recall F1-score

SNIa 0.72 0.38 0.50
SN-other 0.34 0.35 0.35
CV/Nova 0.24 0.86 0.37

lowz-AGN 0.47 0.53 0.50
midz-AGN 0.99 0.79 0.88
highz-AGN 0.22 0.89 0.36

Blazar 0.12 0.56 0.20
YSO 0.88 0.43 0.58

g LPV 0.98 0.98 0.98
EA 0.76 0.90 0.82

EB/EW 0.95 0.82 0.88
DSCT 0.39 0.83 0.53
RRL 0.98 0.90 0.94
CEP 0.30 0.86 0.45

Periodic-other 0.25 0.65 0.36
nonvar-galaxy 0.71 0.99 0.83

nonvar-star 0.99 1.00 0.99
macro-av 0.61 0.75 0.62

SNIa 0.62 0.35 0.44
SN-other 0.29 0.32 0.30
CV/Nova 0.19 0.80 0.31

lowz-AGN 0.48 0.51 0.49
midz-AGN 0.99 0.80 0.88
highz-AGN 0.32 0.89 0.47

Blazar 0.10 0.50 0.16
YSO 0.91 0.58 0.71

r LPV 0.98 0.99 0.98
EA 0.73 0.89 0.80

EB/EW 0.95 0.81 0.88
DSCT 0.30 0.84 0.44
RRL 0.97 0.88 0.92
CEP 0.18 0.83 0.30

Periodic-other 0.27 0.68 0.39
nonvar-galaxy 0.86 0.99 0.92

nonvar-star 0.99 1.00 0.99
macro-av 0.60 0.74 0.61

F1-scoremacro =
1

ncl

ncl∑
i=1

F1-scorei, (7)

where ncl is the total number of classes (17 in this work). Table 3
shows the scores obtained per class and per band for the final
classification (final leaves of each node). From the table, we
can see that the classification of nonvar-star has high precision,
recall, and F1-score, in both ZTF bands. The same is observed
for nonvar-galaxies. The lowest scores are for SN-other, Blazar,
CEP, and Periodic-other.

The low scores observed in some classes can be explained by
the confusion with classes that show similar variability behav-
iors. To better illustrate this, we show in Fig. 4 the confusion
matrices for each band. We can see in both bands that SNe
classes tend to be miss-classified as nonvar-galaxy; the same is
observed for lowz-AGN and Blazar. On the other hand, YSO are
confused with nonvar-stars and Periodic-other. Periodic-other
are confused with binary classes. These confusions between per-
sistent variable and transient classes are expected and have been
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Fig. 4. Confusion matrices of the final 17 classes obtained by using the HBRF in the testing set. The matrix for the g band is shown in the left
panel, and for the r band in the right panel. To normalize the confusion matrix results as percentages, we divided each row by the total number of
objects per class with known labels, and we rounded these percentages to integer values.

observed before in other works that use ZTF light curves (e.g.,
Sánchez-Sáez et al. 2021b; van Roestel et al. 2021). They can
be explained by the similarities between classes and the lack
of precise variability features when measured from the sparse
and irregularly sampled DR light curves. For the case of YSOs
the confusion with periodic classes can be explained by the
diversity of variability behaviors of YSOs, which can present
stochastic and periodic signals (Lakeland & Naylor 2022). The
confusion with non-variable classes can be explained by the fact
that we are using DR light curves, which can hinder variations
typically seen in the light curves of extended sources (like lowz-
AGN), or in low-amplitude point sources located in crowded
fields (like YSOs). Moreover, the confusion between SNe classes
and the nonvar-galaxy class is expected, since a transient event
does not necessarily occur in the nucleus of the host, and thus,
the DR light curves do not necessarily include the transient
signal.

Regardless of these classification confusions, the fraction of
non-variables classified as variables is close to zero. Among
nonvar-galaxies, 1% of the testing set are classified as AGN, but
this confusion is expected since the class nonvar-galaxy includes
type 2 AGN, which can, in fact, correspond to misidentified
type 1 AGN (López-Navas et al. 2023), or that can correspond
to former type 2 AGN that have transitioned to type 1 (CSAGN;
e.g., López-Navas et al. 2022). We also expect a small fraction of
nonvar-galaxies to be classified as SNe when they are the latter’s
hosts.

Moreover, when grouping the four AGN classes into one sin-
gle class (lowz-AGN, midz-AGN, highz-AGN, and Blazar), its
precision, recall, and F1-score are 1.00, 0.95, and 0.97, respec-
tively, in both g and r bands. Therefore, the low scores measured
for some of the AGN classes, can be explained by confusion
within these classes. This confusion is expected since these
four classes intrinsically represent the same astrophysical class

(AGN) but are observed under different conditions and with
different properties (such as the redshift or the presence or not
of a relativistic jet).

These results demonstrate that we can use ZTF DR light
curves to recover clean samples of variables and transients
objects, and particularly of AGN, which is encouraging, consid-
ering that we are using PSF fit-based light curves, which are very
sensitive to seeing and sky condition variations when dealing
with extended sources.

5.3. Feature ranking

The HBRF is composed of five different BRF classifiers. Each
of these classifiers will have different feature rankings, since the
classes they consider are different. In Table 4 we show the top
15 features per node and per band, ordered by relevance.
From the table, we can see that the PS1 and CatWISE col-
ors are relevant in all the classifiers. The PS1 morphology
score (ps_score) is relevant for all classifiers except the
node_periodic; this is expected, as this is the only classifier
that considers purely point sources. The most relevant variabil-
ity features remain distinct for each classifier; among the most
important ones, we highlight the following: features related to
the amplitude of the variability (ExcessVar, GP_DRW_sigma,
Meanvariance, Amplitude, among others); features related to
the timescale of the variations or the level of autocorrelation
(GP_DRW_tau, Autocor_length, and IAR_phi); the Mexican
hat power spectrum (MHPS) features; and the SPM features. For
the case of the node_periodic, the Period is the most relevant
feature, which is expected from previous works (e.g., SS21b).

The differences observed in the ranking of features are pro-
duced by the complexity of the model and the diversity of
classes considered. Therefore, we decided to keep all the features
described in Sect. 4 for the final model used in this work.
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Table 4. Feature ranking (top 15) for each node of the HBRF and for each band, ordered by relevance.

Band node_init node_variable node_transient node_stochastic node_periodic

ps_score W1 − W2 ps_score W1 − W2 Period
i − W2 SPM_chi SPM_chi g − r Skew

W1 − W2 Psi_eta MHPS_high r − W1 IAR_phi
PPE PPE SPM_A g − W1 Gskew

i − W1 ps_score g − W1 ps_score MedianAbsDev
Psi_eta i − W2 g − r i − W2 Q31

g r − W2 SPM_A SPM_tau_fall r − i GP_DRW_tau
IAR_phi g − W1 r − i SPM_chi g − W1
GP_DRW_tau g − r Skew r − W2 MedianBRP
ExcessVar r − i Gskew i − W1 Beyond1Std
SPM_chi Skew PercentAmplitude ExcessVar MHPS_ratio

Autocor_length g − W2 PPE g − W2 r − i
GP_DRW_sigma r − W2 g − W2 MHPS_low g − W2

g − r MHPS_low i − W1 IAR_phi i − W2
r − W1 Harmonics_mse GP_DRW_tau Amplitude SPM_chi

ps_score W1 − W2 ps_score r − i Period
i − W2 SPM_chi i − W1 W1 − W2 Skew

W1 − W2 Psi_eta MHPS_high g − r Gskew
i − W1 ps_score SPM_A r − W1 g − W1

GP_DRW_sigma SPM_A SPM_chi ps_score GP_DRW_tau
Psi_eta Eta_e g − W1 SPM_chi MHPS_ratio

r PPE i − W2 r − i r − W2 g − W2
r − W2 Harmonics_mse Harmonics_mse i − W2 i − W1

Meanvariance g − W2 g − r i − W1 IAR_phi
Q31 g − W1 g − W2 g − W1 i − W2
g − r r − i SPM_tau_fall IAR_phi Beyond1Std

GP_DRW_tau r − W2 PercentAmplitude ExcessVar r − W1
Harmonics_mag_1 g − r r − W2 Eta_e MedianBRP

Eta_e Amplitude r − W1 Amplitude SPM_chi
SPM_chi PPE i − W2 g − W2 MedianAbsDev

5.4. Calibration of the BRF probabilities

Random forest models tend to provide uncalibrated probabilities
(Niculescu-Mizil & Caruana 2005). For binary classification,
techniques such as Platt scaling (Platt 2000) or the isotonic
method (Zadrozny & Elkan 2001, 2002) can be used to calibrate
the output probabilities. However, for multi-class, and/or hier-
archical, and highly imbalanced classification, the use of these
techniques is not straightforward.

To understand how well calibrated the output probabilities
of each node of the HBRF classifier are, we computed the reli-
ability diagrams (Guo et al. 2017) and the expected calibration
error (ECE; Naeini et al. 2015) for each node of the classifier
independently, using the testing set for each band. To construct
the reliability diagram, we used ten bins of probabilities (each
one with a width of 0.1) and measured the positive fraction (PF;
the number of correctly classified samples versus the total of
samples; equivalent to the micro-averaged precision) per bin of
probability and the average predicted probability of the bin (con-
fidence). The reliability diagram corresponds to the comparison
of the PF versus the confidence of each bin. When this compar-
ison is close to the identity function, we can say that the prob-
abilities are well calibrated. Then we measured the gap, which
corresponds to the absolute value of the difference between the
PF and the confidence in each bin (gap = |PF− confidence|), and

calculated the ECE as

ECE =
M∑

m=1

Nbin

N
gap,

where N corresponds to the total of samples, Nbin to the total
of samples in the probability bin, and M to the total number of
probability bins. When the ECE score is close to zero, we can
say that the model is well calibrated.

Figures 5 and 611 present the reliability diagrams and the
ECE scores for each node of the HBRF, for the g-band and
the r-band testing sets, respectively. For each bin, we plot the
PF (in black) and the gap (in red) versus the confidence. From
these figures, we can see that the node_init, node_stochastic,
and node_periodic of both bands are well calibrated (except for
one bin of the node_periodic in the r band, but this bin contains
only a few samples). For the case of the node_transient, the PF
is smaller than the average probability, which implies that the
probabilities overestimate the reliability of the classifications.
These results are expected, though, as the quality of the ZTF
DR light curves is not adequate for the study of transients. For
the node_variable, the PF is larger than the average probability in
11 The code used to generate these plots corresponds to a modified
version of the code presented in https://github.com/hollance/
reliability-diagrams
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Fig. 5. Reliability diagrams for each node of the g-band HBRF classifier. We plot the PF (shown in black) and the gap (in red) versus the confidence.
The transparency of the gap represents how much each bin contributes to the ECE score (less transparent for bins with more samples). The identity
function is shown as a reference. The ECE score is shown next to the legend for each node.

most of the probability bins; however, only a small fraction of the
predictions have a probability smaller than 0.9, and thus the ECE
score for the node_variable is smaller than the score obtained for
the node_transient, node_stochastic, and node_periodic. From
this we can conclude that when the predicted probabilities of the
node_variable are lower than 0.9, there is an underestimated reli-
ability of the classifications. Since this is a hierarchical model,
this result favors the quality of the classifications, because we can
expect that the sources that go to each of the following nodes
(node_transient, node_stochastic, and node_periodic) are prop-
erly classified. We suggest that users of our classifications take
these results into account when filtering the candidates from each
node by probability.

6. Results for the ZTF/4MOST sky

We applied the g-band and r-band HBRF models to the sources
in the ZTF/4MOST sky described in Sect. 4, which includes
86 576 577 and 140 409 824 individual light curves in the g band
and the r band, respectively. Figure 7 shows the number of
candidates per class for these sources. The fraction of sources
classified as transient or persistently variable is 3.84% in the
g band, and 19.20% in the r band. This is a surprising difference
and is not reflected at all in the results obtained for the testing set
(which corresponds to 20% of the LS), presented in Sect. 5.2.
Figure 8 shows the number of sources per class, when only the
sources with a classification probability in the node_init equal
to or greater than 0.9 are considered (Pinit ≥ 0.9). The fraction
of sources classified as transient or persistently variable drops to
0.73 and 2.62% in the g and r bands, respectively. In this case,

the differences between the results of the g and r bands have
narrowed considerably, but still remain much higher when using
the r-band light curves. From Figs. 7 and 8 we see that the main
difference in the results, when going from the g to the r band,
occurs in the cases of the SN-other, CV/Nova, highz-AGN, and
YSO classes.

In Figs. 9 and 10, we show the probability distributions
obtained for all the sources in the ZTF/4MOST sky, in the
g and r bands. Figure 9 shows the probability obtained by
the node_init, Pinit, that separates the sources into nonvar-star,
nonvar-galaxy, and variable, while Fig. 10 shows the final pre-
diction of the model, P, which corresponds to the final leaves
of each node (i.e., the probability of the node_init for nonvar-
star and nonvar-galaxy, and the probability of the node_transient,
node_stochastic or node_periodic, for sources classified as vari-
able in the node_init). From these figures, it can be noticed
that in the node_init the classes with the lowest probabilities
are the transients, and the ones with the highest probabilities
are the non-variable and AGN classes. We can also notice that
the distribution of Pinit for most classes in both bands presents
a bimodal distribution, with several sources having Pinit ∼ 1,
and others having lower values. The final predicted probabili-
ties P vary strongly between classes, as was also observed in
SS21b, and is explained by the confusion between some sim-
ilar classes. The classes with the highest P in both bands are
CV/Nova, midz-AGN, LPV, and the non-variable classes.

The coordinates of the objects are not included as features in
the HBRF model, and thus we use them to inspect the quality
of the classifier by exploring the sky densities of each class in
the Galactic coordinate space. Figures 11 and 12 show the sky
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Fig. 6. As in Fig. 5, but for the r-band HBRF classifier.

density of midz-AGN and highz-AGN candidates, respectively,
in Galactic coordinates. The density maps of the remaining
15 classes are shown in Appendix A. From these maps, we can
notice that for some extragalactic classes, like highz-AGN (and
SNIa, SN-other, or Blazar), there is a high overdensity of can-
didates in the Galactic plane (gal_b ∼ 0), while for others, like
midz-AGN (and lowz-AGN) the densities drop at lower Galactic
latitudes. The overdensities of extragalactic classes in the Galac-
tic plane are unexpected, as we should see a decrease in the
number of sources belonging to these classes in this region due
to Galactic extinction. On the other hand, the enormously larger
numbers of stars in the Galactic plane provide a natural source
of false positives in this region. In the case of the g band, these
overdensities disappear when only sources with a high probabil-
ity in the node_init (Pinit ≥ 0.9) are selected. For classes that are
expected to be more prominent in the Galactic plane, like YSO,
CEP, and LPV, we see a much lower density at larger Galactic
latitudes. For all classes, we obtain more reliable results in the
g band, when Pinit ≥ 0.9. We, therefore, recommend giving pri-
ority to candidates selected from the g-band light curves, when
using ZTF DR light curves to identify variable and transient
objects.

7. Discussion

7.1. Differences in the number of variables and transient
candidates selected using the g and r ZTF bands

For some classes, like SNIa, SN-other, CV/Nova, highz-AGN,
and YSO, there is a clear difference in the number of persistent
variables and transients selected using the g and r ZTF bands.
Moreover, as previously mentioned, some of the extragalactic

classes (SNIa, SN-other, highz-AGN, and Blazar) show large
overdensities in the Galactic plane. Our hypothesis is that these
results can be explained either by the very intense observ-
ing seasons carried out in the r band by the ZTF project, as
can be seen in the ZTF DR11 documentation12, or by source
crowding.

In order to disentangle what is producing these differences
in the classification of the g-band and r-band light curves, we
first visually inspected the science images of the ZTF r band in
the zones with a high density of extragalactic candidates (around
gal_l ∼ 220 and gal_b ∼ 0), but we did not find evidence of
large numbers of source blends, or other photometric issues (like
ghosts). To perform a more quantitative analysis, we selected the
ZTF field 360, which is centered at gal_l ∼ 225 and gal_b ∼ 2.6,
and measured the number of sources with unique ZTF ID in the
r band that have a neighboring source within a radius of 3′′.
Of the 3 356 426 sources in this field in the r band, only 61 314
(2%) have a neighboring source within this radius. This corre-
sponds to a low number of sources with close neighbors, and thus
source crowding cannot explain the high density of extragalactic
candidates in the galactic plane when using the r band.

We then inspected whether the regions showing the largest
number of extragalactic candidates are consistent with regions of
very rapid cadence in the ZTF light curves. Figure 13 shows the
number of epochs and the MaxSlope (maximum absolute mag-
nitude slope between two consecutive observations) versus the
Galactic coordinates for highz-AGN candidates. We can see that
the sky regions with a higher number of candidates coincide with
regions with a larger number of observations and extreme values

12 https://irsa.ipac.caltech.edu/data/ZTF/docs/
releases/dr11/src/TspanVsDT_fid2.png
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Fig. 7. Number of candidates per class for all the sources in the ZTF/4MOST sky with more than 20 epochs. The results for the g band are shown
in the top panel, and for the r band in the bottom panel. The number of sources per band is specified on top of each bar.

of MaxSlope. When MaxSlope is large, it could mean that there
are two data points very close in time, but with different magni-
tude values. From the figure, we can see that around the Galactic
plane, there is a high concentration of sources with more than
400 epochs and that MaxSlope has extreme values in this region.
A similar behavior is observed in the r band for the other extra-
galactic classes (SNIa, SN-other, lowz-AGN, midz-AGN, and
Blazar). These large values of MaxSlope can be produced by the
very rapid cadence seasons in the r band, where in some cases
the separation between two consecutive observations can even be
less than a minute. This can be seen in Fig. 14, which shows the
light curve in the r band of a highz-AGN candidate with ZTF ID
360206100033262, located in the field 360, and the histogram
of the time difference between consecutive observations for its
light curve. This light curve has a total of 445 observations.
During the day with MJD = 58 491, a total of 189 observations
were obtained (42% of the total observations), and the day with
MJD = 58 867, there were 124 observations (28%). In the his-
togram of the time difference between consecutive observations,

we can notice that most of the epochs are separated by a few
minutes.

In order to test the effect of the rapid cadence in some ZTF
fields, we recomputed the features for the field 360 in the r band,
but keeping only one observation per night (the first observa-
tion), and we use the model trained for the r band (without any
modifications) to classify the new set of features. There were
2 107 241 light curves with more than 20 epochs (after filtering),
and of these, 12 961 were classified as one of the AGN classes
(lowz-, midz-, highz-AGN, or Blazar), with 1024 (8%) of them
having Pinit ≥ 0.9. In the same field, before the modification of
the features, there were 54 981 sources classified as AGN (with
21% having Pinit ≥ 0.9), and with the modification of the light
curves, only 5% of them are classified as AGN.

From these results, we recommend giving priority to the
classifications obtained in the g band. When using the r-band
classifications, we suggest filtering the catalogs by the classifi-
cation probability in the node_init (Pinit ≥ 0.9), and/or to avoid
the use of our model in regions with rapid cadence observations
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Fig. 8. Number of candidates per class for all the sources in the ZTF/4MOST sky with more than 20 epochs, and with a classification probability
in the node_init greater or equal than 0.9. The results for the g band are shown in the top panel, and for the r band in the bottom panel. The number
of sources per band is specified on top of each bar.

(which normally have more than 400 epochs in the r-band light
curves, according to the ZTF DR11 documentation). We also
suggest taking into account the probability distribution shown in
Figs. 9 and 10, and the reliability diagrams presented in Figs. 5
and 6 when filtering our classifications by probability.

7.2. AGN candidates

As mentioned above, the main motivation for the development of
this classifier was to identify AGN and Blazar candidates at dif-
ferent redshifts that will be followed up by the ChANGES survey.
There are 416 233 (g-band) and 4 219 094 (r-band) AGN and
Blazar candidates in total. When only sources with Pinit ≥ 0.9
are considered, we have 313 332 candidates in the g band and
1 091 798 in the r band. This difference in the number of can-
didates can be explained by the larger number of light curves
available in the r band, but also by the issues described in
Sect. 7.1; there is a large overdensity in the Galactic plane of
highz-AGN candidates detected in the r band.

Since a source can have more than one light curve per band in
the ZTF DRs, we did an internal match of the candidates in each
band, using a radius of 1.54′′, and kept only one light curve per
source per band. After this, we ended up with 384 242 candidates
in the g band, with 287 156 having Pinit ≥ 0.9, and 4 048 299
candidates in the r band, with 1 020 327 having Pinit ≥ 0.9. We
cross-matched these two samples using a radius of 1.5′′, and
found that there are 356 631 candidates that are classified as
AGN or Blazar in both bands. This corresponds to 92.8% of the
g-band candidates and only 8.8% of the r-band candidates.

To have an idea of the quality of the AGN selection, we
cross-matched the set of AGN candidates in both bands, and the
AGN sample from the LS, with the Gaia DR3 catalog of proper
motions (Gaia Collaboration 2022). From this, for each sample
we measured the signal-to-noise of the proper motion (PMsig),
by dividing the proper motion (PM) of each source by its error

in the following way: PMsig = pm/
√

e_pmRA2 + e_pmDE2,
where e_pmRA and e_pmDE are the PM errors in RA and Dec,
respectively. We would expect to measure low PMsig values for

A195, page 14 of 32



Sánchez-Sáez, P., et al.: A&A proofs, manuscript no. aa46077-23

0.00

0.05

0.10  SNIa

0.00

0.05

0.10  SN-other

0.00

0.05
 CV/Nova

0.0

0.1

0.2  lowz-AGN

0.0

0.5
 midz-AGN

0.0

0.1

0.2  highz-AGN

0.0

0.1
 Blazar

0.00

0.02

0.04  YSO

0.0

0.2

0.4  LPV

0.000

0.025

0.050  EA

0.0

0.5
 EB/EW

0.00

0.02

0.04  DSCT

0.00

0.25

0.50  RRL

0.0

0.2
 CEP

0.00

0.02

0.04  Periodic-other

0.0

0.1

0.2  nonvar-galaxy

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability node_init (Pinit) g-band

0.00

0.25

0.50  nonvar-star

0.00

0.05
 SNIa

0.00

0.05
 SN-other

0.00

0.02

0.04  CV/Nova

0.0

0.1

0.2  lowz-AGN

0.0

0.5
 midz-AGN

0.00

0.02

0.04  highz-AGN

0.00

0.05

0.10  Blazar

0.000

0.025

0.050  YSO

0.0

0.2

0.4  LPV

0.000

0.025

0.050
 EA

0.0

0.5
 EB/EW

0.00

0.02

0.04
 DSCT

0.0

0.1

0.2  RRL

0.0

0.1
 CEP

0.00

0.02

0.04  Periodic-other

0.0

0.1
 nonvar-galaxy

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability node_init (Pinit) r-band

0.0

0.2

0.4  nonvar-star

Fig. 9. Normalized probability distributions of the node_init (Pinit) for the 17 classes considered in this work. The results for the g band are shown
in the left panel, and for the r band in the right panel. The red lines show the median probability for each class. The black lines show the 5th and
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Fig. 10. As in Fig. 9, but for the final leaves (final prediction) of the model (P).
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Fig. 11. Number of targets (see the color bars) per 4 deg2 for the midz-AGN class, in Galactic coordinates. The upper panels show the densities for
all the selected candidates in the g band (upper left) and the r band (upper right). The bottom panels show the densities for candidates with large
probability in the node_init (Pinit ≥ 0.9) for the g band (bottom left) and the r band (bottom right). Note that the range of the number of targets
covered by each color bar can differ in each panel.

AGN, since they are distant sources, but a fraction of them will
present large PMsig values when they look like extended sources
in the Gaia DR3 images. We noted that 84% of the AGN in the
LS have PMsig ≤ 3, the same fraction is observed for the candi-
dates selected in the g band, while only 39% of the candidates
selected from the r band have PMsig ≤ 3. Visual inspection indi-
cates that the vast majority of the significant PM sources appear
to have a stellar origin, although a slim minority seem to be legit-
imate AGN located in the centers of resolved, host-dominated
nearby galaxies.

Moreover, we compared the optical and mid-infrared color
distributions of these three samples. These are shown in the
top panels of Fig. 15. The left panel shows the g − r distri-
bution for AGN from the LS, and AGN candidates in both
bands, the central panel shows the r − W1 color, and the right
panel shows their W1 − W2 distributions. We can note that
the AGN candidates selected from the g band have very simi-
lar colors to those from the LS, while the candidates selected
from the r band have different color distributions. We also com-
pared the feature distributions in each band. Some of these are
shown in the lower panels of Fig. 15. The bottom panel shows
the feature Amplitude (left; half of the difference between
the median magnitudes obtained with the 5% brighter and 5%

fainter measurements), GP_DRW_tau (center; relaxation time, or
timescale, from damped random walk –DRW– modeling), and
the mean magnitude (right), in the g band, for AGN in the LS
(blue) and AGN candidates (green), and in the r band, for AGN
in the LS (yellow) and AGN candidates (pink). From these fig-
ures we can see that in general the g-band candidates have feature
distributions closer to the ones of the AGN in the LS, compared
to the r band, although they are not exactly the same. This is
expected, as the LS is dominated by blue and bright AGN.

From these results, we can conclude that the AGN sample
selected with the g band is consistent with the AGN sample
from the LS, and we can suspect that the number of false pos-
itives selected from the r band are non-negligible. Therefore,
for the selection of candidates to be observed by ChANGES,
we decided to give priority to the candidates selected using the
g band, and for objects without g-band classification, the clas-
sification from the r band was used, but including only objects
with high probability in the node_init (Pinit ≥ 0.9).

7.3. Variable star candidates

The variable star classes considered in this work can be roughly
distinguished in a period versus amplitude diagram. In Fig. 16
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Fig. 12. As in Fig. 11 but for the highz-AGN class.

we show the feature Period versus the feature Amplitude for
the sources in the LS (left panel), and for candidates in the
ZTF/4MOST sky filtered by their probability in the node_init
and their final predicted probability (Pinit ≥ 0.9 and P ≥ 0.5;
right panel). We can see in the figure that the periods of some
classes have distributions that are different from expectations
(e.g., Catelan & Smith 2015). This is produced by aliasing, when
the periodogram finds a multiple of the true period, or spuri-
ous periods related to the light curve cadence (most prominently,
0.5 day, 1 day, and a month). For instance, some LPVs show
periods of one day, which can affect their proper classification.
Fortunately, the model uses other features that are related to
the timescale of the variations, which can compensate for these
miscalculated periods, such as IAR_phi (level of autocorrela-
tion using a discrete-time representation of a damped random
walk or DRW model) and GP_DRW_tau (relaxation time from
a DRW model), which are among the most relevant features in
the node_periodic (see Table 4). We can also see that there is
a large fraction of DSCT candidates with very low amplitudes
and short periods: these sources drop out when only sources
with P ≥ 0.9 are selected. In general, the distribution of the
high probability candidates (right panel in Fig. 16) is consistent
with previous findings (e.g., Catelan & Smith 2015; Chen et al.
2020). Therefore, in order to obtain reliable candidates from this
model, we suggest applying probability cuts, taking into account

the probability distribution per class shown in Figs. 9 and 10, and
the reliability diagrams presented in Figs. 5 and 6.

7.4. Comparison with other works

The ALeRCE broker alert light curve classifier (SS21b) intro-
duced a taxonomy similar to the one used in this work, but
their model does not include non-variable classes, as they were
dealing with alerts and not with DR light curves. We find that
our precision, recall, and F1-score are quite similar to those
obtained by them. Excluding the non-variable classes, the con-
fusion matrices presented in Fig. 4 are comparable to the one
presented in Fig. 7 of SS21b. However, for some classes, like
SNIa, lowz-AGN, or YSO, the recall is lower when using DR
light curves; this result is expected, since the noisy DR light
curves hinder the detection of the low-amplitude variations from
AGN and YSOs, while the alert light curves are dominated by the
most variable sources belonging to these classes. Moreover, the
DR light curves of transients have more noise compared to their
alert light curves, since the photometry of the former is centered
in the host galaxy, and the contribution from the host is removed
in the alert light curves.

In Fig. 17 we compare the classifications provided by the
ALeRCE light curve classifier with our results. The top panels
show the comparison for all the sources in common in both bands
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Fig. 13. Distribution of light curve properties as a function of the Galactic coordinates for highz-AGN candidates. The top panels show the number
of epochs, and the bottom panels the MaxSlope, for the g (left) and r (right) bands.
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Fig. 15. Feature distributions of AGN candidates and AGN from the LS. Top panels: g − r (left), r − W1 (center), and W1 − W2 (right) color
distributions of AGN from the LS (blue), AGN candidates selected from the g band (green), and AGN candidates selected from the r band (pink).
Bottom panels: Amplitude (left), GP_DRW_tau (timescale of the DRW model, center), and mean magnitude (right), for AGN from the LS in the
g band (blue), AGN from the LS in the r band (yellow), AGN candidates selected from the g band (green), and AGN candidates selected from the
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Fig. 16. Period versus Amplitude in the g band for different periodic variable star classes. The left panel shows sources from the LS, and the
right panel shows periodic variable star candidates, filtered by the probability of the node_init Pinit ≥ 0.9 and by the final probability P ≥ 0.5.

(372 125 in g and 360 322 in r), while the bottom panels show
the comparison when only sources with a final predicted prob-
ability P ≥ 0.5; in both ZTF DR11 and ZTF alert models; are
considered (123 829 in g and 116 827 in r). Clearly, there is more
confusion when all sources in common are included in the anal-
ysis, but for those with probabilities larger than 0.5, the results
agree well. We can see that a high fraction of the SNe candidates
from the ZTF alert stream are classified as non-variable galaxies
in the ZTF DR11; this is expected since the DR light curves do
not necessarily contain the flux from the transient, as the PSF
photometry is centered in the position of the host galaxy and
not at the position of the transient itself. Moreover, other classes

from the alert classification are classified as non-variable in the
ZTF DR model. This can be due to problems in the ZTF image
subtraction that produces alerts for non-variable objects (like the
bogus class from Carrasco-Davis et al. 2021), or by the difficulty
in detecting low-amplitude variations when DR light curves
are used.

When comparing the classifications provided by the
ALeRCE light curve classifier and those obtained using the ZTF
DR11, we notice that there are 49 sources classified as SNIa and
113 as SN-other, in both g and r bands, that are classified as
AGN, quasi-stellar object, or Blazar based on their alerts. After
inspecting some examples of these objects, we noticed that most
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Fig. 17. Comparison of the classifications obtained by the ALeRCE broker ZTF alert light curve classifier, and the classifications obtained by our
model for the ZTF DR11 light curves. The left panel shows the results when the g-band features are used for the DR classifier, the right panel shows
the results when the r-band features are used for the DR classifier. The bottom panels show the same results, but keeping only those sources with
high classification probabilities (P ≥ 0.5) in both the alert and DR samples. We divided each row by the total number of objects per class with alert
labels, and we rounded these percentages to integer values.

of them were transients present in ZTF that produced alerts when
the transient event ended. An example of this is presented in
Fig. 18. The figure shows the ZTF DR11 and the alert light curve
of the source ZTF19abcezrc. This source was reported to TNS by
the ATLAS team (Tonry et al. 2018), and it is classified as SNIa
in both bands from its ZTF DR11 light curves. From the figure,
we can see that the alerts are generated after the SN event fin-
ished. The source was classified by the ALeRCE broker as AGN.
This confusion can be explained by the lack of a transient event
in the alerts, and WISE and optical colors similar to those of
AGN (the color of the host galaxy). These results demonstrate
the advantage of combining alert and DR light curves when
dealing with ZTF data.

Chen et al. (2020) classified ZTF DR2 light curves into
11 classes of periodic variable stars, and provided a catalog with
classifications for 781 602 objects. There are 57 128 and 57 086
sources in their catalog located in the ZTF/4MOST sky that
also have classifications from our model in the g and r bands,
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Fig. 18. ZTF alert and ZTF DR11 light curve for the source ZTF19-
abcezrc.

A195, page 21 of 32



A&A 675, A195 (2023)

SN
Ia

SN
-o

th
er

CV
/N

ov
a

lo
wz

-A
GN

m
id

z-
AG

N
hi

gh
z-

AG
N

Bl
az

ar
YS

O
LP

V EA
EB

/E
W

DS
CT RR

L
CE

P
Pe

rio
di

c-
Ot

he
r

no
nv

ar
-g

al
ax

y
no

nv
ar

-s
ta

r
ZTF DR11 label

EW
EA

Mira
RR

RRc
BYDra

RSCVN
SR

DSCT
CEPII
CEP

Ch
en

+2
02

0 
la

be
l

0 0 1 0 0 0 0 0 0 2 90 2 0 0 0 0 4

0 0 1 0 0 0 0 0 0 84 11 0 0 1 0 0 2

0 0 1 0 0 0 0 0 97 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 96 3 0 0 0

0 0 0 0 0 0 0 0 0 0 4 1 95 0 0 0 0

0 0 5 0 0 0 0 4 0 1 1 0 2 3 0 1 82

0 0 4 0 0 0 0 5 0 4 27 12 3 8 0 1 35

0 0 2 4 1 0 1 1 80 1 0 0 0 5 0 0 4

0 0 1 0 0 0 0 0 0 0 1 97 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 5 95 0 0 0

0 0 0 0 0 0 0 1 0 3 0 0 2 93 0 0 0

Chen+2020 vs ZTF DR 11 g-band

SN
Ia

SN
-o

th
er

CV
/N

ov
a

lo
wz

-A
GN

m
id

z-
AG

N
hi

gh
z-

AG
N

Bl
az

ar
YS

O
LP

V EA
EB

/E
W

DS
CT RR

L
CE

P
Pe

rio
di

c-
Ot

he
r

no
nv

ar
-g

al
ax

y
no

nv
ar

-s
ta

r

ZTF DR11 label

EW
EA

Mira
RR

RRc
BYDra

RSCVN
SR

DSCT
CEPII
CEP

Ch
en

+2
02

0 
la

be
l

0 0 1 0 0 0 0 0 0 3 89 5 2 0 0 0 0

0 0 1 0 0 0 0 0 0 78 12 0 5 3 0 0 1

0 0 1 0 0 0 0 0 96 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 95 4 0 0 0

0 0 1 0 0 0 0 0 0 0 6 1 91 0 0 0 0

0 0 11 0 0 0 0 5 0 4 1 1 3 5 0 1 70

0 0 5 0 0 0 0 5 0 8 29 16 3 10 0 1 22

0 0 1 5 1 0 1 2 73 3 0 0 0 8 0 0 5

0 0 2 0 0 0 0 0 0 0 2 92 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 2 98 0 0 0

0 0 0 0 0 0 0 0 0 6 0 0 1 93 0 0 0

Chen+2020 vs ZTF DR 11 r-band

Fig. 19. Comparison of the classifications obtained by Chen et al. (2020), using ZTF DR2, and the classifications obtained by our model for the
ZTF DR11 light curves. The left panel shows the results when the g-band features are used for the DR classifier, the right panel shows the results
when the r-band features are used for the DR classifier. We divided each row by the total number of objects per class with Chen et al. (2020) labels,
and we rounded these percentages to integer values.
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Fig. 20. Variability properties of variable star candidates from Chen et al. (2020), classified as Variable (pink) and non-variable (green) by our
model. The left panel shows the Amplitude distribution, and the right panel the Period distribution. Sources from the LS classified as nonvar-star
are included for reference (blue).

respectively. In Fig. 19 we compare the results obtained by
Chen et al. (2020) with ours. We can see that there is broad
agreement in the classification of the sources classified as vari-
able by our model, when the classes considered are present in
both models (i.e., EA, EB/EW, LPV, RRL, DSCT, and CEP).
We can also see that very few of their objects are classified as
transient or stochastic by our model, as expected since their cat-
alog does not include this kind of variability. Although around
6% of their semi-regular (SR) variables are classified as AGN
by our model (65 of them are known AGN from the litera-
ture). The largest discrepancy by far, however, is the number
of objects that are classified as variable stars by them but non-
variable stars by us (including several of their BY Dra and RS
CVn variables in this field). In order to understand the origin
of this discrepancy, we show in Fig. 20 the Amplitude and
the Period of the common sources in the g band, separating
them according to our classification into nonvar-star and vari-
able. Sources from the LS, classified as nonvar-star are also
included for reference. A similar distribution is observed in the
r band. We can see that sources classified as nonvar-star have
lower Amplitude values compared to the ones classified as
variable, which could explain why we do not classify them as
variables with our model. We can also see that we are miss-
ing sources with Amplitude larger than 0.1, probably due to the

noise of the ZTF DR11 light curves, since known nonvar-stars
from the LS also show amplitudes larger than 0.1. The Period
distribution of the nonvar-star and the variable candidates is also
different, with many of the sources classified as non-variable by
our model, having periods of around one day. Chen et al. (2020)
did a very good job in ensuring that their periods were correct,
including masking out obvious aliases (0.5 day, 1 day, 29.5 days,
etc.), so their classification of low-amplitude sources should be
better than ours.

Finally, we decided to exclude from this comparison the
works presented by van Roestel et al. (2021) and Aleo et al.
(2022), as they do not provide full sky catalogs. We also decided
to exclude from the analysis a comparison with works that used
other surveys (such as Gaia or CRTS), since several of their
candidates were included in our training set (see Sect. 3.2.3).

8. Conclusions

In this work we present a hierarchical classifier designed to pro-
cess ZTF DR11 PSF light curves (measured over the science
images for objects detected in the reference images) of both
extended and point sources. To the best of our knowledge, this
is the first attempt to classify light curves of extended sources
using ZTF DR light curves, which are not optimal for the study
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of the variability of extended objects. In this work, however, we
demonstrate that these light curves can still be used to iden-
tify variable extended objects when a suitable set of features is
available.

The main purpose of our classifier is to select AGN and
Blazars at different redshifts from their variability, which will
be spectroscopically followed up on by the 4MOST survey
ChANGES. The main goal of ChANGES is to target an unri-
valed legacy sample of AGN with 4MOST, selected from several
existing surveys (including ZTF). Although this was the main
motivation for developing this classifier, inspired by our previ-
ous experience with the ALeRCE broker light curve classifier
(SS21b), we decided to make a more general classifier that
considers different classes of transients, persistently variable
objects, and non-variable objects. The model considers a total of
17 classes, with two non-variable, three transient, five stochastic,
and seven periodic classes.

The model was designed in a hierarchical fashion, following
the nature of the classes considered. We used a local classifier
per parent node approach, where each node is composed of a
BRF classifier. For this reason, we call our model the HBRF
classifier. We trained two versions of this model, one that uses
61 variability features computed using the ZTF g band and
another that uses the same number of features but measured
from the r-band light curves. We also included ten additional
features, which correspond to nine CatWISE and PS1 colors and
one PS1 morphology score. We decided not to include as features
the coordinates of the sources, to avoid the position-dependent
biases present in the LS. The 61 variability features used in
this work are taken from the detection features used by SS21b,
with multiband features excluded. We also modified some of the
features to properly deal with DR light curves. The LS was con-
structed using catalogs taken from SS21b, but additional catalogs
were included, notably for the non-variable classes.

We notice that, in general, better results are obtained when
using the ZTF g band. We propose that this is due to the inten-
sive cadence campaigns conducted by ZTF in the r band that
skew the feature distributions and produce a large number of
candidates in some classes, particularly CV/Nova, highz-AGN,
and YSO. Therefore, we recommend that any user of this model
give priority to the results obtained using the g band. When using
the classifications obtained in the r band, we recommend filter-
ing the catalogs by the classification probability in the node_init
(Pinit ≥ 0.9) and/or avoiding the use of the model in regions with
rapid cadence (using sources with a number of epochs lower
than 400 in DR11 light curves). Finally, when filtering the clas-
sifications by probability, we suggest taking into account the
probability distributions per class presented in Sect. 6 and the
reliability diagrams discussed in Sect. 5.4.

Using this model, we were able to identify 384 242 unique
AGN and Blazar candidates (within a radius of 1.5′′) in the
g band and 4 048 299 candidates in the r band, with 356 631
of these candidates being classified as AGN or Blazar in both
bands. Considering the issues in the selection done with the
r band, for the selection of sources to be observed by ChANGES,
we decided to give priority to the candidates selected in the
g band.

We expect to include more classes in a future version of
this classifier. In particular, with the growing sample of known
tidal disruption events (e.g., van Velzen et al. 2021; Hammerstein
et al. 2023), we can start testing new models that include them as
a class in the transients node. We also plan to expand the periodic
node to new classes and subclasses of periodic variable stars,
including, for instance, rotational classes. Furthermore, future

versions of this classifier can take advantage of new models that
use light curves directly, without the need of a feature extraction
procedure (e.g., Becker et al. 2020; Donoso-Oliva et al. 2023;
Pimentel et al. 2023; Astorga et al. 2023).
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Appendix A: Sky densities per class

The following figures (from A.1 to A.15) show the target sky densities per class, in the Galactic coordinate space.

Fig. A.1. As in Fig. 11 but for the SNIa class.

Fig. A.2. As in Fig. 11 but for the SN-other class.
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Fig. A.3. As in Fig. 11 but for the CV/Nova class.

Fig. A.4. As in Fig. 11 but for the lowz-AGN class.
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Fig. A.5. As in Fig. 11 but for the Blazar class.

Fig. A.6. As in Fig. 11 but for the YSO class.
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Fig. A.7. As in Fig. 11 but for the LPV class.

Fig. A.8. As in Fig. 11 but for the EA class.

A195, page 28 of 32



Sánchez-Sáez, P., et al.: A&A proofs, manuscript no. aa46077-23

Fig. A.9. As in Fig. 11 but for the EB/EW class.

Fig. A.10. As in Fig. 11 but for the DSCT class.
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Fig. A.11. As in Fig. 11 but for the RRL class.

Fig. A.12. As in Fig. 11 but for the CEP class.
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Fig. A.13. As in Fig. 11 but for the Periodic-other class.

Fig. A.14. As in Fig. 11 but for the nonvar-galaxy class.
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Fig. A.15. As in Fig. 11 but for the nonvar-star class.
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