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Bulk-edge correspondence, with quantized bulk topology leading to protected edge states, is a hallmark
of topological states of matter and has been experimentally observed in electronic, atomic, photonic, and
many other systems. While bulk-edge correspondence has been extensively studied in Hermitian systems, a
non-Hermitian bulk could drastically modify the Hermitian topological band theory due to the interplay
between non-Hermiticity and topology, and its effect on bulk-edge correspondence is still an ongoing
pursuit. Importantly, including non-Hermicity can significantly expand the horizon of topological states of
matter and lead to a plethora of unique properties and device applications, an example of which is a
topological laser. However, the bulk topology, and thereby the bulk-edge correspondence, in existing
topological edge-mode lasers is not well defined. Here, we propose and experimentally probe topological
edge-mode lasing with a well-defined non-Hermitian bulk topology in a one-dimensional (1D) array of
coupled ring resonators. By modeling the Hamiltonian with an additional degree of freedom (referred to as
synthetic dimension), our 1D structure is equivalent to a 2D non-Hermitian Chern insulator with precise
mapping. Our Letter may open a new pathway for probing non-Hermitian topological effects and exploring

non-Hermitian topological device applications.

DOI: 10.1103/PhysRevLett.131.023202

Introduction.—A topologically insulating state is a fasci-
nating phase of matter where fermionic materials exhibit
insulating properties in the bulk but conduct electricity at
interfaces (i.e., edges) [1,2]. Since the discovery of topo-
logical insulators in the integer quantum Hall effect, the field
of topological physics quickly flourished and has extended to
bosonic, such as atomic and electromagnetic wave systems.
With topological classifications extending to photonic crys-
tals that possess photonic band structure, similar to electronic
band structure in solid-state materials [3,4], the topological
order is ubiquitous in many areas of wave physics, including
microwaves [5], acoustics [6,7], excitonics [8], and plas-
monics [9]. The photonic analog of quantum Hall effect,
quantum spin Hall effect, topological crystalline insulator,
quantum valley Hall effect, topological insulator, and other
topological states of electrons were proposed and partially
experimentally realized [10-12]. These progresses in pho-
tonic band topology have already overturned some tradi-
tional views on electromagnetic wave propagation and
manipulation.

A hallmark of topological states of matter is the bulk-
edge correspondence [13—16], with quantized bulk topo-
logical invariants leading to protected edge states. In
photonics, such bulk-edge correspondence has been
observed, and significant experimental progress has been
made to explore topologically protected photonic edge
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modes [17]. Significantly, a feature of photonic materials
with no solid-state counterpart is material gain and
loss [18], which leads to unique applications such as active
imaging [19]. An active photonic system naturally contains
the energy exchange between the system and external
environment, yielding non-Hermiticity of the system
Hamiltonian [20-24]. The unique properties of non-
Hermitian Hamiltonians, such as complex eigenvalues [25],
eigenstate biorthonormality [26], nonreciprocity [27] and
exceptional points [28], can lead to a plethora of unique
properties and device applications with no Hermitian
counterparts.

An important non-Hermitian photonic device is laser
[3,16,29,30]. Although several topological edge-mode
lasers have been demonstrated, the non-Hermitian bulk-
edge correspondence [31-34] is not well defined in these
lasers. The pioneering work of a two-dimensional (2D)
topological insulator laser [35,36] shows that the edge state
evolves into a lasing mode under optical pumping of only
the boundary microrings. In this case, the interior micror-
ings are not pumped; namely, the unpumped bulk of the
cavity is Hermitian while the pumped edge is non-
Hermitian. Edge-mode lasing has also been observed in
Su-Schrieffer-Heeger (SSH) chains with staggered on-site
gain and loss [37,38]. For such non-Hermitian 1D SSH
chains, because the gain-loss configuration breaks chiral
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symmetry, the topological invariant of the bulk is no longer
quantized [39]. Hence, the topology of the non-Hermitian
bulk is ill defined. Consequently, the lasing edge mode is a
trivial mode not protected by the non-Hermitian bulk
topology. In short, genuinely topological edge-mode lasing
through non-Hermitian bulk-edge correspondence has not
yet been experimentally observed. Recently, topological
photonics has been extended to systems with additional
degrees of freedom (referred to as “synthetic dimensions”
[40-46]), supplementing real-space dimensions. Such syn-
thetic dimensions, defined based on either internal-state
formed Hilbert space [42,43] or suitable parameters
[40,41], enable the investigation of higher-dimensional
physics beyond the systems’ physical dimensions, reduce
the device footprint, and bring new opportunities for
exploring novel topological phenomena.

In this Letter, we experimentally demonstrate a non-
Hermitian photonic system with a well-defined bulk-edge
correspondence, probed using a 2D non-Hermitian Chern
insulator realized by a 1D microring array with a synthetic
dimension. Our 1D non-Hermitian microring array is
configured under the generalized Aubry-Andre-Harper
(AAH) model [47] with periodic gain and loss and can
be mapped to a 2D non-Hermitian Chern insulator, with an
additional synthetic dimension in the parametric momen-
tum space. In so doing, the lasing topological edge mode
originates from the topological non-Hermitian bulk, and
there is a one-to-one correspondence between the edge
mode and the non-Hermitian Chern number of the bulk.
Our Letter marks the first topological edge-mode lasing
from non-Hermitian bulk and suggests a new approach
toward realizing robust on-chip light sources. This Letter
also shows that 2D non-Hermitian topological features can
be present in 1D structures, thus enriching the versatility of
1D non-Hermitian devices. With recent advances in con-
trolling gain and loss by simply implementing active and
plasmonic materials [9], the photonic platform manifests
excellent potential to study other non-Hermitian topologi-
cal effects that have no counterparts in solid-state materials.

Model.—Our non-Hermitian photonic system is a pho-
tonic lattice array realized on the III-V semiconductor
platform, schematically shown in Fig. 1(a). The system
Hamiltonian of a chain of length N can be written as

H = —ty(ZN- {1+ 4 cos2za(x — 1) +k,]}cl, e, + Hee.)

—toZN_ {iy cos|2za(x — 1) + @] }cicy, (1)

where ¢} is the creation operator at site x, 1/a is the

modulation period, 4 and k, are the amplitude and phase of
the hopping modulation, respectively, while y and ¢ are the
amplitude and phase of the on-site potential defined by gain
or loss. In this Letter, we focuson ¢ = 1/3 and ¢p = 0, i.e.,
with energies in the three elements in each unit cell being
—iy, 10.5y, and i0.5y. With hopping amplitude ¢, as the
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FIG. 1. (a) Schematic of the 1D non-Hermitian photonic lattice
made of 17 InGaAsP microrings (shown in red) with coupling
coefficients (#, 1, t3) between rings, and metal inclusion on top
of the first ring in each period (shown in yellow), which represent
optical loss, gain, gain, respectively. The purple halo at the right
edge of the array represents the edge mode lasing. (b) Schematic
of mapping the 1D AAH array to a 2D quantum Hall model. NN
hopping is represented by solid lines; NNN hopping is denoted
by dashed lines.

energy unit, our system is equivalent to a 2D non-Hermitian
Chern insulator, with phase k, playing the role of Bloch
momentum along the synthetic y direction [as shown in
Fig. 1(b), with k, Fourier transformed to the y axis in Bloch
momentum space]. In this model, coupling along the x
direction represents nearest neighbor (NN) hopping and has
a strength of 7, while coupling along y direction represents
next nearest neighbor (NNN) hopping and has a strength of
A/2 as well as a phase. The enlarged description of the n th
period is depicted on the right-hand side of Fig. 1(b) with
the coupling strength. In one plaquette [shaded yellow
region in Fig. 1(b)], a flux of 27/3 is accumulated, forming
a synthetic magnetic field.

The Hamiltonian can also be written in the momentum
space as

iyy 1 ne
H(k, ky) = hooin I . (2a)
e 1 iy3

t; = tof1 + 4 cos[k, +2x(j —1)/3]}, (2b)

;= —rto cos[2a(j — 1)/3]. (2¢)

Here, ¢; describes hopping between the jth and (j + 1)th
site in each period (j = 1, 2, 3), and y; denotes the on-site
potential of the j th site. Figure 2(a) depicts the phase
diagram of the system in the A-y plane, in which three
phases—one trivial phase and two topological phases—are
present. The Chern numbers are (C;, C,, C3) = (1,-2,1)
for topological insulator phase 1 (TI;) and ( — 2,4, —2) for
topological insulator phase 2 (TL,) [48], and the trivial
phase may be either a gapless metal or a gapped insulator.
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FIG. 2. (a) The phase diagram of AAH model as a function of

hopping modulation amplitude y and on-site potential amplitude
A. The phases are topological insulator 1 (TI;), topological
insulator 2 (TI,), and trivial. (b) Band diagram of the Hermitian
case with 17 sites with open boundary condition. (c) Same as
(b) but for the non-Hermitian case, showing a complex band
diagram. (d) Scanning electron microscope (SEM) image of the
fabricated non-Hermitian 17-ring AAH array (top), simulated
electric field profile of the right edge mode for k, = 0.5 x 2z
with an enlarged electric field intensity distribution, and the
calculated edge-mode profile (black bar plot). (e) SEM image of
one unit cell of the AAH array. Each ring has an inner and outer
radius of 2.45 and 3 pm, respectively. The enlarged SEM image
shows details of a loss site, which has a layer of metal atop the
InGaAsP ring.

More details are in Supplemental Material Secs. 1 and 2 [49].
In this Letter, we focus on the TI; phase with 4 = 1 and y in
the range marked by the red arrow in Fig. 2(a), which can
have the largest lasing threshold difference between the edge
mode and bulk modes.

Figure 2(b) shows the band structure for the Hermitian
AAH chain with 17 rings, i.e., 3n — 1 sites with n = 6,

where n is the number of unit cells. In this scenario, the
rightmost unit cell has only two rings, and the lattice
supports three separated (gapped) bands connected by two
edge states. Non-Hermicity is introduced by including loss
(y1 < 0), gain, and gain (y, = y3 > 0) to the three sites in
each unit cell. Because the left-hand boundary is always a
loss site, only when the edge mode is at the right-hand
border will it become a lasing mode. The band structure in
the complex frequency plane for the non-Hermitian open
chain with 17 sites is shown in Fig. 2(c), in which the solid
bands correspond to bulk bands and the solid lines
represent edge states.

As ky is tuned from O toward larger values, two edge
states on the left-hand boundary with different real frequen-
cies join at exceptional point I at k, = 0.29 x 2z (marked
by two red arrows approaching a black dot) and then
bifurcate into two modes with same real frequency but
different imaginary frequencies (two black arrows depart-
ing from the black dot), before merging into the middle
bulk band separately. The edge states have similar dynam-
ics as k, is tuned from 27z through exceptional point 2 to
smaller values. Because positive (negative) imaginary
frequency can be directly translated to modal gain (loss),
the mode with the largest imaginary frequency will win the
mode competition and lase. When the topological edge
mode on the right-hand boundary (the one with a positive
imaginary frequency) has a larger modal gain than those of
bulk modes, it is expected to lase first. On the other hand,
the edge mode on the left will not become a lasing mode
before the bulk modes due to the lossy nature of the site.

It is important to note that both exceptional points 1 and
2 in the edge spectra result from parity-time (P7T) symmetry
breaking in the edge-state subspace [51-61]. In the
Hermitian limit (y = 0), the two edge states on each
boundary have a finite energy difference Aw, which
depends on k. In the non-Hermitian case (y # 0), modu-
lated gain and loss induce coupling between the two edge
states with a coupling strength proportional to y, leading to
the PT symmetry breaking at some k, point when
Aw,y ~ 3y/2. Note that the existence of edge states does
not depend on how the boundary is terminated; however,
the connection form (i.e., the edge-state spectra) varies with
different terminations (see Sec. 1 of the Supplemental
Material [49]). Figure 2(d) shows the calculated edge state
mode profile, where the mode is localized on the right-hand
boundary of the array. In the coMsOL simulation [inset of
Fig. 2(d)], as the analytical solution predicted, the edge-
mode electric field profile is also localized in the rightmost
microring, showing excellent confinement of the edge
mode [50] (see Sec. 10 of the Supplemental Material [49]).

Experiment.—A representative unit cell of the fabricated
non-Hermitian AAH array is shown in Fig. 2(e). To observe
the chiral edge mode experimentally, we bound the
microring array to glass and uniformly pump it with
modulated gain and loss with a rectangular pump beam
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FIG. 3. (a) Spectra evolution of the normalized output intensity

at five different pump power densities for k, = 0.5 x 2z, with the
edge-mode lasing peak at 1596.42 nm. (b) Output power versus
the average pump power density (light-light curve) around the
lasing wavelength of the edge mode. The black lines are linear fits
to the data (red dots). The numbers (1-5) correspond to the
spectra plotted in (a). Inset: spatially resolved emission profiles
showing the evolution of the lasing profile from single-mode
edge lasing (2 and 3) to multimode lasing as pump power is
increased (5). (c) Spatially and spectrally resolved topological
single-mode edge lasing at k, = 0.5 x 2. The metal layer is
artificially highlighted in yellow for visualization. (d) Trivial
multimode lasing of identically sized arrays as in (c) but without
gain-loss modulation.

and record both spectral- and spatial-resolved emission
characteristics (see Secs. 5 and 6 of the Supplemental
Material [49]). Figure 3(a) shows the normalized spectral
evolution from a broad photoluminescence (PL) at low
pump levels to a narrow single-mode lasing peak when
pumped above the threshold and eventually to multimode
lasing at high pump levels for k, = 0.5 x 2z array. The
integrated output power as a function of pump power
density around the lasing wavelength is presented in
Fig. 3(b), showing a clear transition from spontaneous
emission to stimulated emission by the kink, indicating
a threshold close to 25 kW/cm?. The inset spatially
resolved far-field emission profile shows localized emission
from the right-hand boundary of the microring array close to
and above lasing threshold (24.6 kW/cm? (no. 2) and
27.5 kW/cm? (no. 3), respectively), matching the single-
mode lasing spectra in Fig. 3(a) and the prediction in
Figs. 2(c) and 2(d). When the pump power increases to
35.5 kW/cm? (no. 5), the emission is distributed on both
the edge and the bulk of the array, as expected from the
multimode spectrum in Fig. 3(a). Note that when the pump
power is too strong, both the bulk and edge modes become
lasing modes, and the nonlinear lasing dynamics modify the

configuration of on-site gain and loss, resulting in a change
of the band structure (see Sec. 4 of the Supplemental
Material [49]). However, the band gap remains open; thus
the bulk topology is maintained.

Comparing the lasing behavior from two identically
sized k, = 0.5 x 2z arrays—one topological array with
gain-loss modulation and one trivial array without gain-loss
modulation (i.e., without metal inclusion)—Figs. 3(c)
and 3(d) show the edge single-mode lasing and hybridized
multimode lasing with reduced peak, respectively. This
further confirms that the edge-mode lasing arises from the
topological chiral edge mode. Additionally, an important
feature of this topological edge-mode laser is its robustness
against disorder effects. In general, perturbations are known
to modify the Hamiltonian’s off-diagonal coupling coef-
ficients and the diagonal gain or loss amount and, corre-
spondingly, change the system energy diagram. In our
design, however, energy gaps remain in the modified
energy structure; therefore, the edge states are immune
to small perturbations, which is demonstrated in Fig. S6 of
Supplemental Material [49] using a simulation method. To
confirm the robustness experimentally, multiple AAH
arrays with the same k, = 0.5 x 2z value from different
fabrication runs are characterized. The evolution from PL
to single-mode edge lasing and finally to multimode lasing
can be seen in all the samples (Fig. S7 [49]), despite
perturbations from fabrication variations and imperfections.
In addition, we construct a 15-ring array (i.e., 3n sites) non-
Hermitian AAH chain and it has similar emission behavior
as the 17-ring array (see Sec. 8 of the Supplemental
Material [49]).

To investigate the influence of the synthetic dimension
coordinate k, on the modes supported by the AAH array,
we fabricate different AAH arrays with the same 4 = 1 and
y ~ 1, but each with a different k, value. Depending on the
value of ky, an AAH array can support either topological
edge modes or topological bulk modes. Therefore, by
measuring the emission behavior of different arrays,
signatures of different k, can be accessed. Figure 4(a)
shows the calculated complex eigenfrequency for k, =
0.44 x 2z. We define the single-mode range by the differ-
ence in imaginary eigenvalue between the mode with the
largest imaginary frequency—the topological single-edge
mode denoted by the red dot—and the mode with the
second-largest imaginary frequency (a bulk mode). Thus,
the single-mode lasing dynamics of the edge mode can
be extracted from the imaginary part band diagram in
Fig. 4(b). Only in the range 0.35 x 27 < k, < 0.62 X 2z
does the edge mode have a more significant imaginary
frequency (i.e., modal gain) than that of the bulk modes
with the largest single-mode range at k, ~0.44 x 27.
Experimentally, we observed excellent agreement with this
prediction [Fig. 4(c)]: as k, is increased from 0.43 x 27 to
0.57 x 2z, a steady decrease of single-mode lasing range is
seen. Outside the ky range of 0.35 x 2z < ky < 0.62 x 2rm,
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FIG. 4. (a) Calculated complex eigenfrequency for k, =

0.44 x 2z, highlighting the lasing selectivity of topological
edge-mode lasing with the red dot. (b) Imaginary part band
structure of a 17-ring AAH array. The red and yellow dots
indicate the start and end k,, values for which the edge mode has
the largest modal gain, and the length of the red line at each &, can
be connected with the modal gain difference between the edge
and bulk modes. The shaded region between red and green dots
marks the range where a right and left edge mode coexist.
(c) Comparison of single-mode range of different k, values from
different methods.

we do not expect edge-mode lasing despite the system still
being topological. As expected, single-mode edge lasing is
seen for k, = 0.5 x 27 array, while multimode bulk lasing
is observed for k;, = 0.9 x 27 under the same pump power
density. The detailed data are in Sec. 9 of the Supplemental
Material [49].

Discussion.—In summary, we experimentally realized a
1D topological microlaser in which both the edge and bulk
of the structure are non-Hermitian, demonstrating genuine
topological edge-mode lasing from a non-Hermitian bulk in
a compact device. The well-defined bulk-edge correspon-
dence stems from the 2D quantum Hall phase in the
synthetic parametric space, which is achieved by strategi-
cally modulating the NN hopping strength and the on-site
potential in the generalized AAH model. Based on this
principle, we observe edge-mode lasing for various devices
whose ring-to-ring distances correspond to a range of k,
values in the synthetic dimension, and in addition, utilize
the lasing edge mode to probe the band diagram.
Furthermore, this Letter suggests an approach to inves-
tigating high-dimensional non-Hermitian physics in low-
dimensional geometrical structures, which may pave the
way for the investigation of various non-Hermitian topo-
logical states as well as their bulk-edge correspondence in
high dimensions. Technologically, the synthetic dimension
that assists in creating a 2D topological phase from 1D

structures allows the miniaturization of topological lasers
and provides precise control of single-mode lasing range by
fine-tuning structural parameters. This Letter takes us one
step closer to addressing the need for compact, efficient,
and tailorable light sources for photonic integrated circuits.
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