®

Check for
updates

Acta Math. Hungar., 168 (2) (2022), 509-515
https://doi.org/10.1007/s10474-022-01290-7
First published online December 19, 2022

EXPLICIT RIP MATRICES: AN UPDATE

K. FORDY*" D. KUTZAROVA'# and G. SHAKAN?#

1Dcpartmcnt of Mathematics, University of Illinois at Urbana-Champaign,
1409 West Green Street, Urbana, IL 61801, USA
e-mails: ford@math.uiuc.edu, denka@math.uiuc.edu

2Department of Mathematics, University of Oxford, Radcliffe Observatory,
Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK
e-mail: george.shakan@gmail.com

(Received May 4, 2022; accepted October 3, 2022)

Abstract. Leveraging recent advances in additive combinatorics, we exhibit
explicit matrices satisfying the Restricted Isometry Property with better param-
eters. Namely, for £ = 3.26 - 1077, large k and k*~° < N < k®T¢, we construct
n x N RIP matrices of order k with k = Q(n'/2+</4).

1. Introduction

Suppose 1 <k <n <N and 0<d < 1. A ‘signal’ x = ($j)§V:1 is said to
be k-sparse if x has at most k£ nonzero coordinates. An n x N matrix ®
is said to satisfy the Restricted Isometry Property (RIP) of order k with
constant ¢ if for all k-sparse vectors x we have

(1.1) (1= 0)lIx[l3 < lex]3 < (1+8)|Ix]3.

While most authors work with real signals and matrices, in this paper we
work with complex matrices for convenience. Given a complex matrix ® sat-
isfying (1.1), the 2n x 2N real matrix ®’, formed by replacing each element
a-+ib of ® by the 2 x 2 matrix ( % 2), also satisfies (1.1) with the same
parameters k, 9.

We know from Candes, Romberg and Tao that matrices satisfying RIP
have application to sparse signal recovery (see [7-9]). Given n, N, ¢, we wish
to find n x N RIP matrices of order k with constant d, and with & as large
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as possible. If the entries of ® are independent Bernoulli random variables
with values +1/4/n, then with high probability, ® will have the required
properties for k of order close to dn; in different language, this was first
proved by Kashin [13].

It is an open problem to find good explicit constructions of RIP matrices;
see Tao’s Weblog [17] for a discussion of the problem. All existent explicit
constructions of RIP matrices are based on number theory. Prior to the work
of Bourgain, Dilworth, Ford, Konyagin and Kutzarova [3], there were many
constructions, e.g. Kashin [12], DeVore [10] and Nelson and Temlyakov [15],
producing matrices with § small and order

Vnlogn

1.2 k~§
(1.2) log N

The /n barrier was broken by the aforementioned authors in [3]:

THEOREM A [3]. There are effective constants e > 0, &' > 0 and explicit
numbers ko, c > 0 such that for any positive integers k > ko and k*~¢ < N
< k2te there is an explicit n x N RIP matriz of order k with k > en'/?+e/4
and constant § = k< .

As reported in [4], the construction in [3] produces a value € ~ 2 - 10722,
An improved construction was presented in [4], giving Theorem A with
€ =3.6-10"". The values of € depend on two constants in additive combina-
torics, which have since been improved. Incorporating these improvements
into the argument in [4], we will deduce the following.

THEOREM 1. Lete =3.26-10"7. There are e’ > 0 and effective numbers
ko,c > 0 such that for any positive integers k > ko and k*~¢ < N < k**&,
there is an explicit n x N RIP matriz of order k with k > en'/?te/% and
constant 6 = k¢,

As of this writing, the constructions in [3] and [4] remain the only explicit
constructions of RIP matrices which exceed the \/n barrier for k.

The proof of Theorem 1 depends on two key results in additive combi-
natorics. For subsets A, B of an additive finite group G, we write

A:l:B:{a:tb:aeA,bEB},
E(A,B) :#{(al,CLQ,bl,bQ)iCh—l-lh =ag +by; ay,a0 € A; by, by EB}.

Also set z - B ={xzb:b € B}. Here we will mainly work with the group of
residues modulo a prime p.

PROPOSITION 2. For some cg, the following holds. Assume A, B are
subsets of residue classes modulo p, with 0 ¢ B and |A| > |B|. Then

(1.3) Z E(A,b-A) = O((min(p/|A], \B|)_C0|A\3\B|) .
beB
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This theorem, without an explicit ¢, was proved by Bourgain [2]. The
first explicit version of Proposition 2, with ¢g = 1/10430, is given in Bourgain
and Glibuchuk [6], and this is the value used in the papers [3,4]. Murphy and
Petridis [14, Lemma 13] made a great improvement, showing that Proposi-
tion 2 holds with ¢y = 1/3. It is conceivable that ¢y may be taken to be any
number less than 1. Taking A = B we see that ¢y cannot be taken larger
than 1.

We also need a version of the Balog—Szemerédi-Gowers lemma, originally
proved by Balog and Szemerédi [1] and later improved by Gowers [11]. The
version we use is a later improvement due to Schoen [16].

ProPOSITION 3. For some positive c1, ca, c3 and cq4, the following holds.
If E(A,A) = |A?/K, then there exist A', B’ C A with |A'|,|B'| > ¢y }{AL and
|A/ _ B/| < Cchl‘A,‘1/2|B/|1/2.

The constants co, c3 are relatively unimportant. The best result to date
is due to Schoen [16], who showed that any ¢; > 7/2 and ¢4 > 3/4 is ad-
missible. It is conjectured that ¢; = 1 is admissible. The papers [3,4] used

Proposition 3 with the weaker values ¢; = 9 and ¢4 = 1, this deducible from
Bourgain and Garaev [5, Lemma 2.2].

2. Construction of the matrix

Our construction is identical to that in [4]. We fix an even integer
m > 100 and let p be a large prime. For z € Z, let e,(z) = e2miT/P et

1
(2.1) Ugp = P (ep(ax2 + bw)) 1<z<p’
We take
1 o
(2.2) a=, & ={L2..[p"]}

To define the set A, we take

1 ﬁlong 2.01m—1
= o0im " { log2 I’ L )

(2.3) %’:{ixj(QM)j_lzxl,...,xre{o,...,M—l}}.

j=1
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We interpret o/, % as sets of residue classes modulo p. We notice that
all elements of & are at most p/2, and ||| A| lies between two constant
multiples of plte—F8 = pl+1/(402m)

Given large k and k>~ < N < k?*¢, let p be a prime in the inter-
val [k*7¢,2k>7¢] (such p exists by Bertrand’s postulate). Let ®, be a
p X (|| - |%]) matrix formed by the column vectors u,, for a € o7, b € A
(the columns may appear in any order). We also have

(2.4) if e < then N < p>+ < |o/||4B).

1
403m’
Take ® to be the matrix formed by the first N columns of ®,. Let n = p.
Our task is to show that ® satisfies the RIP condition with § = p~¢" for some
constant ¢’ > 0, and of order k.

3. Main tools

LEMMA 4. Assume that co < 1 and that Proposition 2 holds. Fiz an even
integer m > 100, and define o, o/, B by (2.2) and (2.3). Suppose that p is
sufficiently large in terms of m. Assume also that for some constant cs5 > 0
and constant 0 < v < 4in, B satisfies

(3.1) VS C A with|S| > p>1?, E(S,S) <esp?|SP.

Define the vectors ugy by (2.1). Then for any disjoint sets Q1,Q C o/ X A
such that || < \/p, Q2| < \/p, the inequality

Z Z <ua17b17ua2,b2> = O(p1/2_61(10gp)2)

(a1,b1)€Q (a2,b2)EQ2

holds, where

coy _ 4Ta—23y

3.2 =_ 8 mo
(3:2) £l 14+93/m+cp/2

The constant implied by the O-symbol depends only on cy,y and m.

Lemma 4 follows by combining Lemmas 2 and 4 from [4]; the assumption
of Proposition 2 is inadvertently omitted in the statement of [4, Lemma 4].
Using Lemma 4, we shall show the following.

THEOREM 5. Assume the hypotheses of Lemma 4, let ¢ = 2e1 — 2e% and
assume that € < 4011)%. There is € > 0 such that for sufficiently large k and
k27¢ < N < k**2, there is an explicit n x N RIP matriz of order k with n =
O(k?>7¢) and constant 6 = k.
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To prove Theorem 5, we first recall another additive combinatorics result
from [4].

LEMMA 6 [4, Theorem 2, Corollary 2]. Let M be a positive integer. For
the set # CIF,, defined in (2.3) and for any subsets A,B C A, we have
|A — B| > |A|"|B|", where T is the unique positive solution of

() + () =
From [4] we have the easy bounds

log 2 ( 1

- ) <2r—-1< log 2
log M log M

(3.3) < g il

COROLLARY 7. Take A as in (2.3) and assume Proposition 3. Then

(3.1) holds with
04927 —-1)
N Cc1 —|—C4(27’ — 1) ’

PROOF. Just like the proof of [4, Lemma 3|, except that we incorporate
Proposition 3. Suppose that S C % with |S| > p®4° and E(S,S) = |S]?/K.
By Proposition 3, there are sets T1,T5 C S such that T3], |T2] > co [‘{SL and
Ty = To| < e K |T|'/?|T5|'/2. By Lemma 6,

3K T2 > T — T| > T | T,

and hence

0.49

c —1/2 c 27—1
ke = (- ml) = ()T

It follows that K > (1/c5)p~7 for an appropriate constant c¢5 > 0. [

Finally, we need a tool from [3] which states that in (1.1) we need only
consider vectors x whose components are 0 or 1 (so-called flat vectors).

LEMMA 8 [3, Lemma 1]. Let k > 210 and s be a positive integer. Assume
that for all i # j we have (u;,u;) < 1/k. Also, assume that for some 6 >0
and any disjoint Jy,Jo C {1,..., N} with |J1]| < k,|J2| < k we have

(Soe)on

jedi jeJo

Then ® satisfies the RIP property of order 2sk with constant 44sv/5log k.
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Now we show how to deduce Theorem 5. By Lemma 4 and standard
bounds for Gauss sums, ® satisfies the conditions of Lemma 8 with k = |/p]

and § = O(p~=log?p). Let g¢ < e1/2 and take s = [p°°|. By Lemma 8,
® satisfies RIP with order > p'/?*%0 and constant O(p~=/?*%(logp)?).
If ¢ is sufficiently close to £1/2, Theorem 5 follows with

2 42’:‘0

522— =
1—|—2€0 1—|—2€0

2

To prove Theorem 1, we take the construction in Section 2. We have
(3.1) by Corollary 7. Also take

1
n =101 0= c1=T/24mn, c4=3/44+n m=T586.

These values were optimized with a computer search. By Corollary 7
and (3.3), we have 7 > 9.182-1076. It is readily verified that v < 4;,

e1>1.631-107" and & = 21 — 2¢7 satisfies 3.26- 107" <e < , ! . The-
orem 1 now follows.
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