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Abstract. Leveraging recent advances in additive combinatorics, we exhibit
explicit matrices satisfying the Restricted Isometry Property with better param-
eters. Namely, for ε = 3.26 · 10−7, large k and k

2−ε
≤ N ≤ k

2+ε, we construct
n×N RIP matrices of order k with k = Ω(n1/2+ε/4).

1. Introduction

Suppose 1 ≤ k ≤ n ≤ N and 0 < δ < 1. A ‘signal’ x = (xj)Nj=1 is said to
be k-sparse if x has at most k nonzero coordinates. An n×N matrix Φ
is said to satisfy the Restricted Isometry Property (RIP) of order k with
constant δ if for all k-sparse vectors x we have

(1.1) (1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2.

While most authors work with real signals and matrices, in this paper we
work with complex matrices for convenience. Given a complex matrix Φ sat-
isfying (1.1), the 2n× 2N real matrix Φ′, formed by replacing each element
a+ ib of Φ by the 2× 2 matrix

(
a b
−b a

)
, also satisfies (1.1) with the same

parameters k, δ.
We know from Candès, Romberg and Tao that matrices satisfying RIP

have application to sparse signal recovery (see [7–9]). Given n, N , δ, we wish
to find n×N RIP matrices of order k with constant δ, and with k as large
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as possible. If the entries of Φ are independent Bernoulli random variables
with values ±1/

√
n, then with high probability, Φ will have the required

properties for k of order close to δn; in different language, this was first
proved by Kashin [13].

It is an open problem to find good explicit constructions of RIP matrices;
see Tao’s Weblog [17] for a discussion of the problem. All existent explicit
constructions of RIP matrices are based on number theory. Prior to the work
of Bourgain, Dilworth, Ford, Konyagin and Kutzarova [3], there were many
constructions, e.g. Kashin [12], DeVore [10] and Nelson and Temlyakov [15],
producing matrices with δ small and order

(1.2) k ≈ δ

√
n logn
logN

.

The
√
n barrier was broken by the aforementioned authors in [3]:

Theorem A [3]. There are effective constants ε > 0, ε′ > 0 and explicit
numbers k0, c > 0 such that for any positive integers k ≥ k0 and k2−ε ≤ N
≤ k2+ε, there is an explicit n×N RIP matrix of order k with k ≥ cn1/2+ε/4

and constant δ = k−ε′ .

As reported in [4], the construction in [3] produces a value ε ≈ 2 · 10−22.
An improved construction was presented in [4], giving Theorem A with
ε = 3.6 ·10−15. The values of ε depend on two constants in additive combina-
torics, which have since been improved. Incorporating these improvements
into the argument in [4], we will deduce the following.

Theorem 1. Let ε = 3.26 · 10−7. There are ε′ > 0 and effective numbers
k0, c > 0 such that for any positive integers k ≥ k0 and k2−ε ≤ N ≤ k2+ε,
there is an explicit n×N RIP matrix of order k with k ≥ cn1/2+ε/4 and
constant δ = k−ε′ .

As of this writing, the constructions in [3] and [4] remain the only explicit
constructions of RIP matrices which exceed the

√
n barrier for k.

The proof of Theorem 1 depends on two key results in additive combi-
natorics. For subsets A,B of an additive finite group G, we write

A±B =
{
a± b : a ∈ A, b ∈ B

}
,

E(A,B) = #
{
(a1, a2, b1, b2) : a1 + b1 = a2 + b2; a1, a2 ∈ A; b1, b2 ∈ B

}
.

Also set x ·B = {xb : b ∈ B}. Here we will mainly work with the group of
residues modulo a prime p.

Proposition 2. For some c0, the following holds. Assume A, B are
subsets of residue classes modulo p, with 0 �∈ B and |A| ≥ |B|. Then
(1.3)

∑
b∈B

E(A, b · A) = O
(
(min(p/|A|, |B|)−c0 |A|3|B|) .
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This theorem, without an explicit c0, was proved by Bourgain [2]. The
first explicit version of Proposition 2, with c0 = 1/10430, is given in Bourgain
and Glibuchuk [6], and this is the value used in the papers [3,4]. Murphy and
Petridis [14, Lemma 13] made a great improvement, showing that Proposi-
tion 2 holds with c0 = 1/3. It is conceivable that c0 may be taken to be any
number less than 1. Taking A = B we see that c0 cannot be taken larger
than 1.

We also need a version of the Balog–Szemerédi–Gowers lemma, originally
proved by Balog and Szemerédi [1] and later improved by Gowers [11]. The
version we use is a later improvement due to Schoen [16].

Proposition 3. For some positive c1, c2, c3 and c4, the following holds.
If E(A,A) = |A|3/K, then there exist A′,B′ ⊆ A with |A′|, |B′| ≥ c2

|A|
Kc4

and

|A′ −B′| ≤ c3K
c1|A′|1/2|B′|1/2.

The constants c2, c3 are relatively unimportant. The best result to date
is due to Schoen [16], who showed that any c1 > 7/2 and c4 > 3/4 is ad-
missible. It is conjectured that c1 = 1 is admissible. The papers [3,4] used
Proposition 3 with the weaker values c1 = 9 and c4 = 1, this deducible from
Bourgain and Garaev [5, Lemma 2.2].

2. Construction of the matrix

Our construction is identical to that in [4]. We fix an even integer
m ≥ 100 and let p be a large prime. For x ∈ Z, let ep(x) = e2πix/p. Let

(2.1) ua,b =
1√
p

(
ep(ax2 + bx)

)
1≤x≤p

.

We take

(2.2) α =
1
2m

, A = {1, 2, . . . 
pα�}.

To define the set B, we take

β =
1

2.01m
, r =

⌊β log p
log 2

⌋
, M = 
22.01m−1�,

and let

(2.3) B =
{ r∑

j=1

xj(2M)j−1 : x1, . . . , xr ∈ {0, . . . ,M − 1}
}
.
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We interpret A , B as sets of residue classes modulo p. We notice that
all elements of B are at most p/2, and |A | |B| lies between two constant
multiples of p1+α−β = p1+1/(402m).

Given large k and k2−ε ≤ N ≤ k2+ε, let p be a prime in the inter-
val [k2−ε, 2k2−ε] (such p exists by Bertrand’s postulate). Let Φp be a
p× (|A | · |B|) matrix formed by the column vectors ua,b for a ∈ A , b ∈ B

(the columns may appear in any order). We also have

(2.4) if ε ≤ 1
403m

, then N ≤ p
2+ε

2−ε ≤ |A ||B|.

Take Φ to be the matrix formed by the first N columns of Φp. Let n = p.
Our task is to show that Φ satisfies the RIP condition with δ = p−ε′ for some
constant ε′ > 0, and of order k.

3. Main tools

Lemma 4. Assume that c0 ≤ 1 and that Proposition 2 holds. Fix an even
integer m ≥ 100, and define α, A , B by (2.2) and (2.3). Suppose that p is
sufficiently large in terms of m. Assume also that for some constant c5 > 0
and constant 0 < γ ≤ 1

4m , B satisfies

(3.1) ∀S ⊆ B with |S| ≥ p0.49, E(S, S) ≤ c5p
−γ |S|3.

Define the vectors ua,b by (2.1). Then for any disjoint sets Ω1,Ω2 ⊂ A ×B

such that |Ω1| ≤ √
p, |Ω2| ≤ √

p, the inequality

∣∣∣∣
∑

(a1,b1)∈Ω1

∑
(a2,b2)∈Ω2

〈
ua1,b1 ,ua2,b2

〉∣∣∣∣ = O
(
p1/2−ε1(log p)2

)

holds, where

(3.2) ε1 =
c0γ
8 − 47α−23γ

2m
1 + 93/m+ c0/2

.

The constant implied by the O-symbol depends only on c0, γ and m.

Lemma 4 follows by combining Lemmas 2 and 4 from [4]; the assumption
of Proposition 2 is inadvertently omitted in the statement of [4, Lemma 4].

Using Lemma 4, we shall show the following.

Theorem 5. Assume the hypotheses of Lemma 4, let ε = 2ε1 − 2ε2
1 and

assume that ε ≤ 1
403m . There is ε′ > 0 such that for sufficiently large k and

k2−ε ≤ N ≤ k2+ε, there is an explicit n×N RIP matrix of order k with n =
O(k2−ε) and constant δ = k−ε′ .
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To prove Theorem 5, we first recall another additive combinatorics result
from [4].

Lemma 6 [4, Theorem 2, Corollary 2]. Let M be a positive integer. For
the set B ⊂ Fp defined in (2.3) and for any subsets A,B ⊂ B, we have

|A− B| ≥ |A|τ |B|τ , where τ is the unique positive solution of

( 1
M

)2τ
+
(M − 1

M

)τ
= 1.

From [4] we have the easy bounds

(3.3)
log 2
logM

(
1− 1

logM

)
≤ 2τ − 1 ≤ log 2

logM
.

Corollary 7. Take B as in (2.3) and assume Proposition 3. Then

(3.1) holds with

γ =
0.49(2τ − 1)

c1 + c4(2τ − 1)
.

Proof. Just like the proof of [4, Lemma 3], except that we incorporate
Proposition 3. Suppose that S ⊆ B with |S| ≥ p0.49 and E(S, S) = |S|3/K.

By Proposition 3, there are sets T1, T2 ⊂ S such that |T1|, |T2| ≥ c2
|S|
Kc4

and
|T1 − T2| ≤ c3K

c1|T1|1/2|T2|1/2. By Lemma 6,

c3K
c1 |T1|1/2|T2|1/2 ≥ |T1 − T2| ≥ |T1|τ |T2|τ ,

and hence

c3K
c1 ≥ ( |T1| · |T2|

) τ−1/2 ≥
(c2p0.49

Kc4

)2τ−1
.

It follows that K ≥ (1/c5)p−γ for an appropriate constant c5 > 0. �

Finally, we need a tool from [3] which states that in (1.1) we need only
consider vectors x whose components are 0 or 1 (so-called flat vectors).

Lemma 8 [3, Lemma 1]. Let k ≥ 210 and s be a positive integer. Assume

that for all i �= j we have 〈ui,uj〉 ≤ 1/k. Also, assume that for some δ ≥ 0
and any disjoint J1, J2 ⊂ {1, . . . ,N} with |J1| ≤ k, |J2| ≤ k we have

∣∣∣∣
〈∑

j∈J1

uj ,
∑
j∈J2

uj

〉∣∣∣∣ ≤ δk.

Then Φ satisfies the RIP property of order 2sk with constant 44s
√
δ log k.
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Now we show how to deduce Theorem 5. By Lemma 4 and standard
bounds for Gauss sums, Φ satisfies the conditions of Lemma 8 with k = 
√p�
and δ = O(p−ε1 log2 p). Let ε0 < ε1/2 and take s = 
pε0�. By Lemma 8,
Φ satisfies RIP with order ≥ p1/2+ε0 and constant O(p−ε1/2+ε0(log p)3).
If ε0 is sufficiently close to ε1/2, Theorem 5 follows with

ε = 2− 2
1 + 2ε0

=
4ε0

1 + 2ε0
> 2ε1 − 2ε2

1.

To prove Theorem 1, we take the construction in Section 2. We have
(3.1) by Corollary 7. Also take

η = 10−100, c0 =
1
3
, c1 = 7/2 + η, c4 = 3/4 + η, m = 7586.

These values were optimized with a computer search. By Corollary 7
and (3.3), we have γ ≥ 9.182 · 10−6. It is readily verified that γ ≤ 1

4m ,
ε1 > 1.631 · 10−7 and ε = 2ε1 − 2ε2

1 satisfies 3.26 · 10−7 ≤ ε ≤ 1
403m . The-

orem 1 now follows.
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