

EXPLICIT RIP MATRICES: AN UPDATE

K. FORD^{1,*†}, D. KUTZAROVA^{1,‡} and G. SHAKAN^{2,§}

¹Department of Mathematics, University of Illinois at Urbana-Champaign,
1409 West Green Street, Urbana, IL 61801, USA
e-mails: ford@math.uiuc.edu, denka@math.uiuc.edu

²Department of Mathematics, University of Oxford, Radcliffe Observatory,
Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK
e-mail: george.shakan@gmail.com

(Received May 4, 2022; accepted October 3, 2022)

Abstract. Leveraging recent advances in additive combinatorics, we exhibit explicit matrices satisfying the Restricted Isometry Property with better parameters. Namely, for $\varepsilon = 3.26 \cdot 10^{-7}$, large k and $k^{2-\varepsilon} \leq N \leq k^{2+\varepsilon}$, we construct $n \times N$ RIP matrices of order k with $k = \Omega(n^{1/2+\varepsilon/4})$.

1. Introduction

Suppose $1 \leq k \leq n \leq N$ and $0 < \delta < 1$. A ‘signal’ $\mathbf{x} = (x_j)_{j=1}^N$ is said to be k -sparse if \mathbf{x} has at most k nonzero coordinates. An $n \times N$ matrix Φ is said to satisfy the Restricted Isometry Property (RIP) of order k with constant δ if for all k -sparse vectors \mathbf{x} we have

$$(1.1) \quad (1 - \delta) \|\mathbf{x}\|_2^2 \leq \|\Phi \mathbf{x}\|_2^2 \leq (1 + \delta) \|\mathbf{x}\|_2^2.$$

While most authors work with real signals and matrices, in this paper we work with complex matrices for convenience. Given a complex matrix Φ satisfying (1.1), the $2n \times 2N$ real matrix Φ' , formed by replacing each element $a + ib$ of Φ by the 2×2 matrix $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, also satisfies (1.1) with the same parameters k, δ .

We know from Candès, Romberg and Tao that matrices satisfying RIP have application to sparse signal recovery (see [7–9]). Given n, N, δ , we wish to find $n \times N$ RIP matrices of order k with constant δ , and with k as large

* Corresponding author.

† The first author was partially supported by NSF Grant DMS-1802139.

‡ The second author is supported by a Simons Travel grant.

§ The third author is supported by Ben Green’s Simons Investigator Grant 376201.

Key words and phrases: compressed sensing, restricted isometry property.

Mathematics Subject Classification: 11B13, 11B30, 11T23, 41A46, 94A12.

as possible. If the entries of Φ are independent Bernoulli random variables with values $\pm 1/\sqrt{n}$, then with high probability, Φ will have the required properties for k of order close to δn ; in different language, this was first proved by Kashin [13].

It is an open problem to find good *explicit* constructions of RIP matrices; see Tao's Weblog [17] for a discussion of the problem. All existent explicit constructions of RIP matrices are based on number theory. Prior to the work of Bourgain, Dilworth, Ford, Konyagin and Kutzarova [3], there were many constructions, e.g. Kashin [12], DeVore [10] and Nelson and Temlyakov [15], producing matrices with δ small and order

$$(1.2) \quad k \approx \delta \frac{\sqrt{n} \log n}{\log N}.$$

The \sqrt{n} barrier was broken by the aforementioned authors in [3]:

THEOREM A [3]. *There are effective constants $\varepsilon > 0$, $\varepsilon' > 0$ and explicit numbers $k_0, c > 0$ such that for any positive integers $k \geq k_0$ and $k^{2-\varepsilon} \leq N \leq k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $k \geq cn^{1/2+\varepsilon/4}$ and constant $\delta = k^{-\varepsilon'}$.*

As reported in [4], the construction in [3] produces a value $\varepsilon \approx 2 \cdot 10^{-22}$. An improved construction was presented in [4], giving Theorem A with $\varepsilon = 3.6 \cdot 10^{-15}$. The values of ε depend on two constants in additive combinatorics, which have since been improved. Incorporating these improvements into the argument in [4], we will deduce the following.

THEOREM 1. *Let $\varepsilon = 3.26 \cdot 10^{-7}$. There are $\varepsilon' > 0$ and effective numbers $k_0, c > 0$ such that for any positive integers $k \geq k_0$ and $k^{2-\varepsilon} \leq N \leq k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $k \geq cn^{1/2+\varepsilon/4}$ and constant $\delta = k^{-\varepsilon'}$.*

As of this writing, the constructions in [3] and [4] remain the only explicit constructions of RIP matrices which exceed the \sqrt{n} barrier for k .

The proof of Theorem 1 depends on two key results in additive combinatorics. For subsets A, B of an additive finite group G , we write

$$A \pm B = \{a \pm b : a \in A, b \in B\},$$

$$E(A, B) = \#\{(a_1, a_2, b_1, b_2) : a_1 + b_1 = a_2 + b_2; a_1, a_2 \in A; b_1, b_2 \in B\}.$$

Also set $x \cdot B = \{xb : b \in B\}$. Here we will mainly work with the group of residues modulo a prime p .

PROPOSITION 2. *For some c_0 , the following holds. Assume A, B are subsets of residue classes modulo p , with $0 \notin B$ and $|A| \geq |B|$. Then*

$$(1.3) \quad \sum_{b \in B} E(A, b \cdot A) = O\left((\min(p/|A|, |B|)^{-c_0} |A|^3 |B|)\right).$$

This theorem, without an explicit c_0 , was proved by Bourgain [2]. The first explicit version of Proposition 2, with $c_0 = 1/10430$, is given in Bourgain and Glibuchuk [6], and this is the value used in the papers [3,4]. Murphy and Petridis [14, Lemma 13] made a great improvement, showing that Proposition 2 holds with $c_0 = 1/3$. It is conceivable that c_0 may be taken to be any number less than 1. Taking $A = B$ we see that c_0 cannot be taken larger than 1.

We also need a version of the Balog–Szemerédi–Gowers lemma, originally proved by Balog and Szemerédi [1] and later improved by Gowers [11]. The version we use is a later improvement due to Schoen [16].

PROPOSITION 3. *For some positive c_1, c_2, c_3 and c_4 , the following holds. If $E(A, A) = |A|^3/K$, then there exist $A', B' \subseteq A$ with $|A'|, |B'| \geq c_2 \frac{|A|}{K^{c_4}}$ and $|A' - B'| \leq c_3 K^{c_1} |A'|^{1/2} |B'|^{1/2}$.*

The constants c_2, c_3 are relatively unimportant. The best result to date is due to Schoen [16], who showed that any $c_1 > 7/2$ and $c_4 > 3/4$ is admissible. It is conjectured that $c_1 = 1$ is admissible. The papers [3,4] used Proposition 3 with the weaker values $c_1 = 9$ and $c_4 = 1$, this deducible from Bourgain and Garaev [5, Lemma 2.2].

2. Construction of the matrix

Our construction is identical to that in [4]. We fix an even integer $m \geq 100$ and let p be a large prime. For $x \in \mathbb{Z}$, let $e_p(x) = e^{2\pi i x/p}$. Let

$$(2.1) \quad \mathbf{u}_{a,b} = \frac{1}{\sqrt{p}} (e_p(ax^2 + bx))_{1 \leq x \leq p}.$$

We take

$$(2.2) \quad \alpha = \frac{1}{2m}, \quad \mathcal{A} = \{1, 2, \dots, \lfloor p^\alpha \rfloor\}.$$

To define the set \mathcal{B} , we take

$$\beta = \frac{1}{2.01m}, \quad r = \left\lfloor \frac{\beta \log p}{\log 2} \right\rfloor, \quad M = \lfloor 2^{2.01m-1} \rfloor,$$

and let

$$(2.3) \quad \mathcal{B} = \left\{ \sum_{j=1}^r x_j (2M)^{j-1} : x_1, \dots, x_r \in \{0, \dots, M-1\} \right\}.$$

We interpret \mathcal{A} , \mathcal{B} as sets of residue classes modulo p . We notice that all elements of \mathcal{B} are at most $p/2$, and $|\mathcal{A}||\mathcal{B}|$ lies between two constant multiples of $p^{1+\alpha-\beta} = p^{1+1/(402m)}$.

Given large k and $k^{2-\varepsilon} \leq N \leq k^{2+\varepsilon}$, let p be a prime in the interval $[k^{2-\varepsilon}, 2k^{2-\varepsilon}]$ (such p exists by Bertrand's postulate). Let Φ_p be a $p \times (|\mathcal{A}| \cdot |\mathcal{B}|)$ matrix formed by the column vectors $\mathbf{u}_{a,b}$ for $a \in \mathcal{A}$, $b \in \mathcal{B}$ (the columns may appear in any order). We also have

$$(2.4) \quad \text{if } \varepsilon \leq \frac{1}{403m}, \quad \text{then } N \leq p^{\frac{2+\varepsilon}{2-\varepsilon}} \leq |\mathcal{A}||\mathcal{B}|.$$

Take Φ to be the matrix formed by the first N columns of Φ_p . Let $n = p$. Our task is to show that Φ satisfies the RIP condition with $\delta = p^{-\varepsilon'}$ for some constant $\varepsilon' > 0$, and of order k .

3. Main tools

LEMMA 4. *Assume that $c_0 \leq 1$ and that Proposition 2 holds. Fix an even integer $m \geq 100$, and define α , \mathcal{A} , \mathcal{B} by (2.2) and (2.3). Suppose that p is sufficiently large in terms of m . Assume also that for some constant $c_5 > 0$ and constant $0 < \gamma \leq \frac{1}{4m}$, \mathcal{B} satisfies*

$$(3.1) \quad \forall S \subseteq \mathcal{B} \text{ with } |S| \geq p^{0.49}, \quad E(S, S) \leq c_5 p^{-\gamma} |S|^3.$$

Define the vectors $\mathbf{u}_{a,b}$ by (2.1). Then for any disjoint sets $\Omega_1, \Omega_2 \subset \mathcal{A} \times \mathcal{B}$ such that $|\Omega_1| \leq \sqrt{p}$, $|\Omega_2| \leq \sqrt{p}$, the inequality

$$\left| \sum_{(a_1, b_1) \in \Omega_1} \sum_{(a_2, b_2) \in \Omega_2} \langle \mathbf{u}_{a_1, b_1}, \mathbf{u}_{a_2, b_2} \rangle \right| = O(p^{1/2-\varepsilon_1} (\log p)^2)$$

holds, where

$$(3.2) \quad \varepsilon_1 = \frac{\frac{c_0\gamma}{8} - \frac{47\alpha-23\gamma}{2m}}{1 + 93/m + c_0/2}.$$

The constant implied by the O -symbol depends only on c_0, γ and m .

Lemma 4 follows by combining Lemmas 2 and 4 from [4]; the assumption of Proposition 2 is inadvertently omitted in the statement of [4, Lemma 4].

Using Lemma 4, we shall show the following.

THEOREM 5. *Assume the hypotheses of Lemma 4, let $\varepsilon = 2\varepsilon_1 - 2\varepsilon_1^2$ and assume that $\varepsilon \leq \frac{1}{403m}$. There is $\varepsilon' > 0$ such that for sufficiently large k and $k^{2-\varepsilon} \leq N \leq k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $n = O(k^{2-\varepsilon})$ and constant $\delta = k^{-\varepsilon'}$.*

To prove Theorem 5, we first recall another additive combinatorics result from [4].

LEMMA 6 [4, Theorem 2, Corollary 2]. *Let M be a positive integer. For the set $\mathcal{B} \subset \mathbb{F}_p$ defined in (2.3) and for any subsets $A, B \subset \mathcal{B}$, we have $|A - B| \geq |A|^\tau |B|^\tau$, where τ is the unique positive solution of*

$$\left(\frac{1}{M}\right)^{2\tau} + \left(\frac{M-1}{M}\right)^\tau = 1.$$

From [4] we have the easy bounds

$$(3.3) \quad \frac{\log 2}{\log M} \left(1 - \frac{1}{\log M}\right) \leq 2\tau - 1 \leq \frac{\log 2}{\log M}.$$

COROLLARY 7. *Take \mathcal{B} as in (2.3) and assume Proposition 3. Then (3.1) holds with*

$$\gamma = \frac{0.49(2\tau - 1)}{c_1 + c_4(2\tau - 1)}.$$

PROOF. Just like the proof of [4, Lemma 3], except that we incorporate Proposition 3. Suppose that $S \subseteq \mathcal{B}$ with $|S| \geq p^{0.49}$ and $E(S, S) = |S|^3/K$. By Proposition 3, there are sets $T_1, T_2 \subset S$ such that $|T_1|, |T_2| \geq c_2 \frac{|S|}{K^{c_4}}$ and $|T_1 - T_2| \leq c_3 K^{c_1} |T_1|^{1/2} |T_2|^{1/2}$. By Lemma 6,

$$c_3 K^{c_1} |T_1|^{1/2} |T_2|^{1/2} \geq |T_1 - T_2| \geq |T_1|^\tau |T_2|^\tau,$$

and hence

$$c_3 K^{c_1} \geq (|T_1| \cdot |T_2|)^{\tau-1/2} \geq \left(\frac{c_2 p^{0.49}}{K^{c_4}}\right)^{2\tau-1}.$$

It follows that $K \geq (1/c_5)p^{-\gamma}$ for an appropriate constant $c_5 > 0$. \square

Finally, we need a tool from [3] which states that in (1.1) we need only consider vectors \mathbf{x} whose components are 0 or 1 (so-called *flat* vectors).

LEMMA 8 [3, Lemma 1]. *Let $k \geq 2^{10}$ and s be a positive integer. Assume that for all $i \neq j$ we have $\langle \mathbf{u}_i, \mathbf{u}_j \rangle \leq 1/k$. Also, assume that for some $\delta \geq 0$ and any disjoint $J_1, J_2 \subset \{1, \dots, N\}$ with $|J_1| \leq k, |J_2| \leq k$ we have*

$$\left| \left\langle \sum_{j \in J_1} \mathbf{u}_j, \sum_{j \in J_2} \mathbf{u}_j \right\rangle \right| \leq \delta k.$$

Then Φ satisfies the RIP property of order $2sk$ with constant $44s\sqrt{\delta} \log k$.

Now we show how to deduce Theorem 5. By Lemma 4 and standard bounds for Gauss sums, Φ satisfies the conditions of Lemma 8 with $k = \lfloor \sqrt{p} \rfloor$ and $\delta = O(p^{-\varepsilon_1} \log^2 p)$. Let $\varepsilon_0 < \varepsilon_1/2$ and take $s = \lfloor p^{\varepsilon_0} \rfloor$. By Lemma 8, Φ satisfies RIP with order $\geq p^{1/2+\varepsilon_0}$ and constant $O(p^{-\varepsilon_1/2+\varepsilon_0}(\log p)^3)$. If ε_0 is sufficiently close to $\varepsilon_1/2$, Theorem 5 follows with

$$\varepsilon = 2 - \frac{2}{1 + 2\varepsilon_0} = \frac{4\varepsilon_0}{1 + 2\varepsilon_0} > 2\varepsilon_1 - 2\varepsilon_1^2.$$

To prove Theorem 1, we take the construction in Section 2. We have (3.1) by Corollary 7. Also take

$$\eta = 10^{-100}, \quad c_0 = \frac{1}{3}, \quad c_1 = 7/2 + \eta, \quad c_4 = 3/4 + \eta, \quad m = 7586.$$

These values were optimized with a computer search. By Corollary 7 and (3.3), we have $\gamma \geq 9.182 \cdot 10^{-6}$. It is readily verified that $\gamma \leq \frac{1}{4m}$, $\varepsilon_1 > 1.631 \cdot 10^{-7}$ and $\varepsilon = 2\varepsilon_1 - 2\varepsilon_1^2$ satisfies $3.26 \cdot 10^{-7} \leq \varepsilon \leq \frac{1}{403m}$. Theorem 1 now follows.

References

- [1] A. Balog and E. Szemerédi, A statistical theorem of set addition, *Combinatorica*, **14** (1994), 263–268.
- [2] J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy condition on the sources, *Geom. Funct. Anal.*, **18** (2009), 1477–1502.
- [3] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova, Explicit constructions of RIP matrices and related problems, *Duke Math. J.*, **159** (2011), 145–185.
- [4] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova, Breaking the k^2 barrier for explicit RIP matrices, in: *STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing*, ACM (New York, 2011), pp. 637–644.
- [5] J. Bourgain and M. Z. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in finite fields, *Math. Proc. Cambridge Philos. Soc.*, **146** (2009), 1–21.
- [6] J. Bourgain and A. A. Glibichuk, Exponential sum estimate over subgroup in an arbitrary finite field, *J. Anal. Math.*, **115** (2011), 51–70.
- [7] E. J. Candès, The restricted isometry property and its implications for compressive sensing, *C. R. Math. Acad. Sci. Paris*, **346** (2008), 589–592.
- [8] E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, *Comm. Pure Appl. Math.*, **59** (2006), 1208–1223.
- [9] E. J. Candès and T. Tao, Decoding by linear programming, *IEEE Trans. Inform. Theory*, **51** (2005), 4203–4215.
- [10] R. DeVore, Deterministic constructions of compressed sensing matrices, *J. Complexity*, **23** (2007), 918–925.
- [11] W. T. Gowers, A new proof of Szemerédi’s theorem, *Geom. Funct. Anal.*, **11** (2001), 465–588.
- [12] B. S. Kashin, On widths of octahedron, *Uspekhi Mat. Nauk*, **30** (1975), 251–252 (in Russian).

- [13] B. S. Kashin, Widths of certain finite-dimensional sets and classes of smooth functions, *Izv. Akad. Nauk SSSR, Ser. Mat.*, **41** (1977), 334–351 (in Russian); translation in *Math. USSR Izv.*, **11** (1978), 317–333.
- [14] B. Murphy and G. Petridis, A second wave of expanders in finite fields, in: *Combinatorial and Additive Number Theory. II*, Springer Proc. Math. Stat., vol. 220, Springer (Cham, 2017), pp. 215–238.
- [15] J. Nelson and V. N. Temlyakov, On the size of incoherent systems, *J. Approx. Theory*, **163** (2011), 1238–1245.
- [16] T. Schoen, New bounds in the Balog–Szemerédi–Gowers lemma, *Combinatorica*, **35** (2015), 695–701.
- [17] T. Tao, Open question: deterministic uup matrices, <https://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices>.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.