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Abstract: We provide a standard reference for fundamental distributional results about the
cycle type of a random permutation ¢ € §,,, emphasizing methods which are combinatorial
or probabilistic in nature and adaptable to other situations. Many of our techniques are
borrowed from methods used to prove analogous theorems about the prime factorization of
random integers. Included here are results about the proportion of permutations ¢ having a
given number of cycles with lengths from a given set, the distribution of the smallest and
largest cycle, and the distribution of the sizes of fixed sets of ©.
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1 Introduction

The theory of the cycle type of random permutations of the symmetric group 8, is very active, with many
applications in combinatorics, group theory and number theory. A selection of applications includes

* the distribution of orders of permutations (the least common multiple of cycle lengths) [1, 7, 10,
13, 22, 23, 24, 25, 26, 27, 28, 38, 50, 57, 61, 62, 63] and [40, Sec. 6];

* invariable generation of the symmetric group [16, 18, 53, 67] and other classical groups [59];
* the distribution of fixed sets (divisors) of permutations [14, 17, 18, 19, 33, 53, 73];
* permutations contained in transitive subgroups [12, 19, 45];

* irreducibility of polynomials over the rationals [8, 9];
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* permutation groups containing elements with a single cycle that is not a fixed point (Jordan groups)
[45, 37] and [69, Ch. 10];

* polynomial factorization in finite fields [3, 8, 68].

The main purpose of this paper is provide a standard reference for fundamental distributional results
about cycle types, which heretofore have been scattered across many papers with widely varying strength
and generality. We showcase methods which are both general and combinatorial. While many of the
results stated here are weaker than existing results in the literature, they are far more general, have
significantly shorter proofs and are more adaptable to new situations. This paper is an expanded version
of portions of the author’s lecture notes on permutations prepared for the course “Anatomy of integers
and random permutations”.

Our methods are borrowed from the theory of numbers, particularly the theory of sieves and the
theory of averages of multiplicative functions (see [48, Part 3, Part 4] for uses in number theory). As
positive integers factor uniquely into a product of prime numbers, and permutations factor uniquely
into a product of cycles, the connection between the distributions of the two objects, prime factors and
cycles, is not surprising. The first explicit mention of such a connection, however, is the paper of Knuth
and Trabb Pardo [46] in 1976. On the other hand, there are significant differences in the structure of
the two objects which explains why there is no simple transference principle between statements about
prime factorizations and the corresponding statement about the cycle structure of permutations. Deeper
inspection, however, reveals that the distribution of the two factorizations have many common features,
and for much the same underlying reasons.

Let ¢ denote a random permutation from the symmetric group §,, each permutation being equally
likely!. We denote by IP,, and [E, the probability and expectation with respect to a uniform random o € §,,.
Often, the subscript n will be omitted if it is clear from the context. We denote the type (or cycle type) of
o by

(Ci(0),C2(0),...,Cu(0)),

where C;(0) is the number of cycles of length j in 6. More generally, for any subset / of [n] = {1,...,n},
we let C;(0) be the number of cycles whose lengths lie in the set /. For brevity, we write C(o) for the
total number of cycles in ¢. The principal problems considered in this paper are

(a) What is the distribution of C;(o) for each j?

(b) What is the distribution of C;(o) for each I?

(c) What is the joint distribution of C, (o), ...,Cy (o) for disjoint sets Ii,...,I; C [n]?
(d) What is the distribution of C;(o) conditional on C(c) = k?

Most of the analysis of these problems in the literature utilizes recurrence relations, properties of
Stirling numbers, or complex analytic methods starting with the exponential generating function of Gruder
[41, Satz 2] for permutations having only cycle sizes from a set I. See, e.g. [29] for a general analytic
theory.

'Random permutations sampled from certain other distributions have been studied, e.g. [4], but we will not discuss these
here.
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Theorem 1.1 (Gruder). For complex x and y with |x| < 1, and subset I C N we have

Y. ) Pu(Ci(0) = k,Cpp(0) = 0)"y* = exp {y )y xm} M
k n

mel

Moreover, when I is finite the above identity holds for every complex x.

While some existing distribution theorems are very strong, in particular the recent results of
Manstavicius and Petuchovas [55, 56, 65, 66], the methods are highly specialized and not easily adaptable
to the solution of related problems. By contrast, we eschew recurrences and generating functions (for the
most part) in favor of direct arguments. We focus on guantitative results, that is, with a specific rate of
convergence, as well as results that are uniform in j,I and the sets /;.

Underlying our analysis is the Poisson model of permutations, which suggests that C;(o) is approxi-
mately Poisson with parameter 1/, and that C;(0),C,(0),. .. are nearly independent. This is already
hinted at in Cauchy’s classical formula:

Theorem 1.2 (Cauchy). If m; +2my + - -+ nm, = n, then

P, (Ci(0) = mi,...,Co(0) =m,) =

If X1,X,, ..., X, are independent Poisson random variables with parameters Ay, ..., A, respectively,
then the sum X; + - - - + X is Poisson with parameter A; + - - - + 4. Thus, for subsets I of [n] we should
expect that C;(o) will be roughly Poisson with parameter

H(I):= Zl.

jer J

In the important special case I = {1,...,n} we set

=

1
Hn: .
l

Il
_

The Poisson model has limitations, however, particularly if / contains many large elements. For example
the events “Cj(c) > 17, n/2 < j < n, are clearly disjoint. Also, if I = {2,...,n}, then P(C;(c) =0) =
1/n! whereas the Poisson model predicts a probability of about e~ D~ 1 /n. In general, permutations
lacking large cycles are much rarer than would be predicted by the Poisson model, these being analogous
to integers lacking large prime factors. We will take up this subject again later, e.g. Theorem 1.16. On the
other hand, we shall see that the Poisson model is very accurate for small j, and is reasonably accurate
for large j on average near the center of the distribution.

In the remainder of the introductory section, we describe a number of results, most of which will be
proved in subsequent sections.
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1.1 Notational conventions.

We adopt the standard Bachman-Landau, Hardy, and Vinogradov notations: f = O(g) and f < g mean
that there is a positive constant C so that |f| < Cg throughout the domain of f. The constant C is
independent of any parameters, unless specified by subscripts, e.g. f(x) = Og(xf). Also, f(x) ~ g(x) as
x — co means lim,_,. f(x)/g(x) = 1 and f(x) = o(g(x)) means that lim,_,. f(x)/g(x) = 0.

For o € §,, the notation §|c means that f3 is a divisor of the permutation o, i.e. a product of some
subset of the cycles of . |B] is the size (Iength) of f3.

1 Sistrue

1(S) is the indicator function of statement S; 1(S) = .
0 Sisfalse.

1.2 Binomial moments.

A great deal of our analysis ultimately relies on estimates for joint binomial moments of the quantities
C;(0). Recall that if X is Poisson with parameter A, then for any non-negative integer m,

X\ & [k Ak am
=)= () e

k=0
We establish an analog for joint binomial moments of the statistics Cy, (o) for disjoint Iy, ..., I.
Theorem 1.3. Let I, 1,. .. I be disjoint, nonempty subsets of [n|, and let my, ... ,my be non-negative
integers. Then
k .
E (C]l (G)) . (C]k(O')) < H H(Ij)mf ’
n niy j=1 m j!

with equality if and only ifZ];:1 mjmax(l;) < n.
In the special case k = 1, I} = [m] and m; = 1 we have
ECpy(0) = Hy =logm+y+O(1/m). @)

Theorem 1.3 will be proved in Section 3, where we will also give short deductions of Theorems 1.1
and 1.2 from Theorem 1.3.

1.3 Local limit theorems

We begin with an exact evaluation of the local limit laws for Cj(o), due to Goncharov [39].

Theorem 1.4 (Goncharov). Foranyn €N, 1 < j<nand0<m<n/j, we have

am (n/j]—m _ \h
P(c)(0) =m) = 112 )y U a<j<no<m<ny))
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A special case is the very classical derangement problem, posed in 1708 by Pierre Raymond de
Montmort. Taking j = 1 we have the exact formula for derangements

no(_q Jj

P(Ci(0) =0) = Z( ) :

= /!

Observe that if j,m vary with n such that mj < n and that either j — o or ? —m — o then

nove eI (1/ jym fm!
This establishes the Poisson distribution of C;(o) in this range.

Theorem 1.4 can be thought of as a permutation analog of Landau’s [51, p. 211] classical theorem
in number theory, which states that number of integers n < x having exactly k distinct prime factors is
asymptotic to

x (loglogx)*!
logx  (k—1)!

as x — oo,

Here we derive a very general local limit law. In such generality, we only obtain an upper bound
for the probability of the expected order. Lower bounds are also possible, as are asymptotic formulae,
when working with small cycle lengths; see Theorem 1.19 below. The behavior of P(C;(o) = 0) when
I={m+1,...,n} is very different from the Poisson model prediction and will be dealt with separately.

Theorem 1.5. Let Iy,... I, be arbitrary disjoint, nonempty subsets of [n] and my,...,m, > 0. Then

eftr 1 (H(I;)™ , m m
=mi,... =m,) < Lo HU) ) e -
P(Ch(o) =ms,....Ci(0) = m;) < n 11:11< mil j <E+H(11)7L +H(Ir) 7

where € =0 if [n]| =1, U---Ul, and € = 1 otherwise.

The analog of Theorem 1.5 for prime factors of a random integer n < x was proved by the author
[32]. We note that H, < logn + 1 for all n, thus the factor e» /n is bounded. Consequently, whenever r is
bounded and m; = O(H(I})) for each j, the right side is

O =my,....Y, =m,)),

where for each i, ¥; is Poisson with parameter H(I;), and Y1,...,Y, are independent. Thus, Theorem 1.5
gives an upper bound for counts of cycle lengths in sets /1, ..., I, of the expected order (up to a constant
factor) according to the Poisson model. As a special case of one set /; = I, we obtain:

Corollary 1.6. For any I C [n] and m > 0,

P(Ci(o)=m) < eHnnH(I) H’(Tf,)m (]1(1 # [n]) + Hn(11)>

In particular,

=" HO(1 1+ 0(1/n)).
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The first estimate is asymptotically sharp in the case I = [n] and m = o(logn) as n — ; see (3) below
for a corresponding lower bound.

A slight improvement of the final estimate, namely P(C;(c) = 0) < e?#(), is given in [37] using
different methods.

Theorem 1.5 becomes less accurate when m; is much larger than H(I;), however it still gives
roughly the right rate of decay; e.g. when I = [n] and k = n, P(C(0) = n) = 1/n! while the right side is
O(H"!'/n!).

Corollary 1.6 is a permutation analog of the Hardy-Ramanujan [43] inequality

x  (loglogx+Cy)*!
"ogx k—1)1

#{n < x: n has exactly k distinct prime factors} < C

where C;,C, are certain absolute constants.
Theorem 1.5 is a useful tool for showing that cycle counts cannot vary too much from their means.
Specifically, the local statistics obey the same tail bounds as the Poisson distribution, cf. Lemma 2.4.

Theorem 1.7. Let I be a nonempty subset of [n]. For 0 < A < 1 we have
P(Ci(o) < AH(I)) < 2¢'9WHU)]

where

OQA)=AlogA—2A+12>0

For A > 1 we have
P(Ci(0) = AH(I) +1) < 2¢! ~2AHD),

Lastly, when 0 < y < \/H(I),
(|C1( z y\VH )

The function Q is non-negative and satisfies Q(x) ~ %(x —1)? for x near 1; see also the inequality
(11) below.

When A is close to 1, we can be much more precise, showing a Central Limit Theorem for C;(0); see
Theorem 1.21 below.

Specializing to cycle lengths in a single interval I = [a,b] NN, and using that H(I) ~ log(b/a), we
obtain the following very useful estimates.

Theorem 1.8. Let a,b be real numbers with 1 < a < b < nand set I = [a,b)\N. Uniformly for0 < A <1,
we have

P(Ci(0) < Alog(b/a)) = O ((b/a) ™).
Let Ay > 1. Uniformly for 1 < A < Ao,

P(Ci(0) > Mog(b/a)) = 0z, ((b/a) M)
In particular, uniformly for 0 < y < +/log(b/a),

IP’(\CI( ) —log(b/a)| = y+/log(b/a) ) (e_%"’z).
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In particular, taking I = [n], we see that C(o) usually does not vary more that a constant times +/logn
from its mean H,,.

Theorems 1.6 and 1.7 are not very accurate when H(I) < 1, especially in the case m = 1. In this case,
we expect that C;(o) will rarely be much more than 1. The next Theorem gives an improved upper bound
in this case.

Theorem 1.9. If I is a nonempty susbet of [n], and k > 0, then

The proof is very short and we include it here. By Theorem 1.3,

C1(6)> g H(I)*
k)= kO

P(Ci(c) > k) <E <

Corollary 1.10. Let 2 < ¢ < n. The probability that a random permutation ¢ € §,, has two cycles of the
same length j for some j > {, is at most %.

Again, the proof is very short: By Theorem 1.9, P(Cj(0c) > 2) < 2—;2 Summing over j > ¢ we find
that - | = . |
< — = .
22 -1 2=

j=t

P(Cj(o) > 2 for some j > ()

N

L0y
5
\

Next, we take a first look at the random sequence Cjy;(0) (1 <m < n) for 6 € 8,,. As long as m is
not too small, it is relatively easy to deduce from Theorem 1.8 that C},, (o) is uniformly close to logm for
most & € 8.

Theorem 1.11. Let 2 < & < n. With probability 1 — O(1/(log &)'/3), we have

|Cp) —logm| < 2+/logmloglogm (§ <m < n).

Our proof is based on the analogous proof for the normal distribution of prime factors of integers
given in [42, Ch. 1]. When m is bounded, C[m}(c) has a discrete distribution which is approximately
Poisson with parameter H,,. Slightly better bounds than those in Theorem 1.11 are attainable, based
on ideas stemming from the Law of the Iterated Logarithm from probability theory. Essentially one
can replace the factor loglogm with logloglogm. See e.g., [54] for a specific statement; see also [42,
Theorem 11] for the analogous statement and proof for prime factors of integers.

Theorem 1.11 also tells us about the normal behavior of D (o), the length of the j-th smallest cycle
of o (note that D;(0) = D, 1(0) for some j when o has cycles of the same length). Since a typical
permutation ¢ € 8, has about logm cycles of length < m, we expect that D (n) ~ el.

Theorem 1.12. Let 1 < 6 < logn. With probability 1 — 0(0~'/3), we have

|logDj(0) —jl <3+/jlogj (6 <j<C(0)).

We conclude this subsection with a sharp lower bound for P(C(o) = k). This estimate is not new, but
will be needed in section 5.
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Theorem 1.13. We have

H! k—1

For each fixed A > 1, there is a constant ¢(A) > 0 such that for large enough n (depending on A),

H! —H,
-1

P(C(o) =k) = c(A) (1 <k<Alogn).

In particular, taking Corollary 1.6 and (3) together establishes the asymptotic

k—1
Hn

P(C(0) = k)~ Ly

(k= o(logn),n — ), ©)
recovering a result of Moser and Wyman [60] (the authors utilized generating functions and contour
integration). We note that (4) differs from the prediction of the Poisson model by a factor

1 h,

—€

~ el —5 ).
. e (n— oo)

Theorem 1.4, Theorem 1.5, Theorem 1.7, Theorem 1.8, Theorem 1.11, Theorem 1.12 and Theorem
1.13 will be proved in section 4.
1.4 Conditioning on the total number of cycles

If we restrict attention to permutations with k total cycles, we may obtain analogous theorems about the
distribution of C;(c). We focus on the “normal” case when k = O(logn) and prove an analog of Theorem
1.7. We expect that C;(o) will have roughly a binomial distribution with parameter p = H(I)/H,, since
if X,Y are independent Poisson random variables with parameters A, A, respectively, then

B [k v N\ A\
ey -0 () (20) (2)

Without loss of generality, we may assume that H(I) < §H,, else replace I by [n]\ I.

Theorem 1.14. Fix A > 1. Let I be a nonempty, proper subset of [n) with H(I) < $H,, suppose 2 <k <
Alogn, and define let p=H(I)/H, < 1. For any 0 < w < /p(1 —p)(k— 1) we have

P(ICi(0) —plk=1)| > y/p(L=p)(k=1) | C(o) = k) = 04 (V).

the implied constant depending only on A.

Theorem 1.14 will be proved in section 5. We also mention here work of Mez6 and Wang [58], who
found an asymptotic for the number of permutations with exactly k cycles and all cycles having length
> m, for fixed k and m with n — oo.
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1.5 Permutations without small cycles.

Sharp bounds on P(Cj,, () = 0) are a key to establishing the Poisson model. The model predicts that
P(Cy)(0) = 0) should be about e, and Corollary 1.6 contains an upper bound close to this. This
cannot be expected to hold for large m, for example P(C|,, () = 0) = 1/nif m > n/2 since a permutation
lacking cycles of length at most m must be a single n-cycle. In fact, when n/m is small, there is an
asymptotic formula P(Cj,; () = 0) ~ @(n/m)/m (n — oo, m — o) where ® is Buchstab’s function and
o(u) — e~ 7 as u — oo [40, Theorem 5]. This is analogous to the problem of counting integers n < x with
no prime factor < x'/* (see [70, Ch. IIL6]).
Our focus is to prove that P(Cj, (0) = 0) is very close to e~ when n/m is large.

Theorem 1.15. Let 1 <m < n. Then
P(C(0) = 0) =& (14 0(e /)
where g(x) = 0 for 1 < x < 20 and for x > 20,
g(x) = xlogx — xlogloglogx+ O(x).

Theorem 1.15 will be proved in section 6.

Historically, the relation lim,,_mIP’(C[m] (6) =0) — e Hn, for m fixed, is due to Gruder [41]. Exact
asymptotics for P(Cj,;(0) = 0) —e ™" have been obtained by Petuchovas [65, 66], using generating
functions (1) and a lengthy argument based on contour integration. Our method is much simpler and is
based on sieve methods in number theory.

1.6 Permutations without large cycles

The distribution of permutations without large cycles is very different from that predicted by the Poisson
model. If o has no large cycles, the fact that the cycle lengths must sum to # implies that 6 must contain
a very large number of smaller cycles, and this is a much rarer event. We define

v(n,m) = ]P)(C{m+1,...,n}(6) = 0)'
Theorem 1.16. For 1 < m < n we have

—ulogu+u—1
)

v(n,m) <e u=n/m.

This bound is reasonably sharp throughout the range 1 < m < n. For example, when m = 1, Stirling’s

formula implies
1 e—nlogn+n
\% l,m = —~ — n— oo),
(1,m) = o ( )

When m = 2, Chowla, Herstein and Moore [13] showed an asymptotic for v(2,m) which implies that

V(Z,m) = ef(n/Z)log(n/2)+0(n)‘
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At the opposite extreme, when n/m = u is bounded, then v(n,m) ~ p(u) as n — e by Goncharov [39],
where p is the Dickman function [15], the unique continuous solution of the differential-delay equation

puy=1 (0<u<1)  uwp'(u)=—pu—1) (>1). )
de Bruijn [11] found a precise asymptotic for p(u) as u — oo. In particular

p(u) = e~ logu—uloglog(3u)+0(u)

See also [70], Ch. II1.5.4.

Using complex analytic methods starting from (1), Manstavicius and Petuchovas [55] found more
precise asymptotics for v(n,m) throughout the range 1 < m < n. Their methods are motivated by the
analogous problem of counting integers lacking large prime factors, see [70, Ch. III.5]. Our next result,
which has a very short proof, provides an asymptotic in large range of n, m.

Theorem 1.17. Foralln > m > 1 we have

n n+1
p<m> (n,m) p<m+1> ©)
Theorems 1.16 and 1.17 will be proved in section 7.
We have
p(u—v)=p)elte (41 >20<v<1). (7)

This follows from strong asymptotics for p(u), e.g. [70, Theorem II1.5.13]. We give a short, direct

deduction of (7) in the Appendix. Since ;. — r’:li]l < .5 we deduce the following.

Corollary 1.18. We have
v(n,m) ~ p(n/m) (m < n=o(m*/logm),m — o).

Corollary 1.18 recovers Theorem 4 of [55]. When n >> m?/logm, v(n,m) + p(n/m), the asymptotic
having a different shape; see [65, Theorem 2.4]. Thus, the range of n in Theorem 1.18 is best possible.
When n/2 < m < n, ¢ has at most one cycle of length k € (m, n|, thus

v(inm)=1— Y EC(0) =1~ (H,—Hpn). )

m<k<n

In particular, when m = 50,n = 100, this helps to solve the “100 prisoners problem” [35]: There are
100 prisoners, numbered to 100. The numbers from 1 to 100 are placed in 100 unmarked boxes. Each
prisoner is allowed to open 50 of the boxes, and no communication between prisoners is allowed. If every
prisoner finds his own number then they all go free. Although it appears hopeless, there is a strategy
that will work about 31% of the time. If the boxes are labeled 1,...,100 on the outside, the mapping from
external label to internal number is a permutation of [100]. With probability 1 — Hyoo + Hso =~ 0.31, the
permutation contains no cycles of length more than 50. In this case, if every prisoner follows the cycle
starting with his own number (first opens the box labeled on the outside with his number, then opens the

DISCRETE ANALYSIS, 2022:9, 36pp. 10



CYCLE TYPE OF RANDOM PERMUTATIONS: A TOOLKIT

box number that he finds in the first box, etc), he’ll find his number inside one of the boxes after no more
than 50 openings.

The limiting relation lim,_,. V(n, |n/u|) = p(u) was first proved by Knuth and Trabb Pardo [46], 46
years after Dickman [15] showed the analogous statement for prime factors. The joint distribution of the
lengths of the r largest cycles of ¢, with r > 1 fixed, has also received considerable attention (see, e.g.,
[3, 52, 71]), but we will not discuss it here. We also mention the survey paper [49, Section 3.10,3.11],
which has more extensive historical information about work on the distribution of the smallest and largest
cycles.

1.7 Poisson approximation of small cycle lengths

Let 1 < k < n and consider the problem of modeling

Gk = (Cl(G),...,Ck(G))

by the random vector
Zk - (Z],,Zk)’

where Z1,...,Z; are independent Poisson random variables with parameters 1, %, ey %, respectively. We

especially desire a good approximation when k is large, as opposed to bounded (ref. Theorem 1.5). We
express our results in terms of the Total Variational Distance dry (X,Y) between two random variables X
and Y taking values in a discrete space €2, defined by

drv(X,Y):=sup P(X €U)—-P(Y €U). 9)
UucQ

Theorem 1.19. Let 1 <k < n. Then
dry (Cr, Zi) < e /b,
where f(x) = 0 for x < 20 and for x > 20 we have
f(x) =xlogx —xlogloglogx+ O(x).

Theorem 1.19 will be proved in section 8.

Theorem 1.19 is slightly weaker than the main theorem of Arratia and Tavaré [5], which states
that dry (Ck, 2x) < e~ (n/k)log(n/k)+0(n/k) Sharper bounds are known, and are expressed in terms of the
Dickman and Buchstab functions (see [55, 65]). Our proof is significantly shorter than either of these
treatments.

We immediately obtain the following corollary, by grouping together integers into sets.

Theorem 1.20. Let Iy,...,1, be disjoint subsets of [k|, with k < n. Then, for any set § C N7,

IP’((C,I (0),....C,.(0)) € 3) - IP((YI,. LX) € 3) 4 o(e TR,

where for each i, Y; is Poisson with parameter H(I;), and Yy, ...,Y,, are independent.

DISCRETE ANALYSIS, 2022:9, 36pp. 11
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1.8 Central Limit Theorems

Combining Theorem 1.20 with the Central Limit Theorem for Poisson variables (Theorem 9.1 below)
establishes a Central Limit Theorem for the count of cycles whose lengths lie in an arbitrary set I C [n].
Theorem 1.21. Let I C [n] with H(I) > 3. Uniformly for all I and any real w,

P (Ci(0) < H(1) +wy/H{D) ) = b(w) + 0 <1og5(%)> e L [Tt

The special case I = [n] was established by Goncharov [39], without a specific rate of convergence.
Goncharov analyzed carefully the asymptotics of the Stirling number of the first kind, s(n,m), the absolute
value of which counts the number of permutations ¢ € 8, with C(c) = m. Since H, = logn+ O(1) and
® has bounded derivative, we quickly arrive at the following.

Theorem 1.22. Let n > 100 and w be real. Then

loglogn
P(C(G) < logn+w\/logn> =®d(w)+0 < oen > .

The big-O term in Theorem 1.21 cannot be made smaller than 1/4/H(I) since C;(0) is integer
valued, and thus the left side is constant in intervals of w of length 1/1/H(I), while ®'(w) > 1 if w is
bounded. We remark that when H (/) is bounded, C;(0) is expected to have Poisson distribution with
small parameter, and this cannot be approximated by a Gaussian.

We also derive that the j-th smallest cycle of o, denoted D (o) (with ties allowed), also obeys the
Gaussian law, refining Theorem 1.12.

Theorem 1.23. Uniformly for j in the range
1 < j<logn—+/(logn)loglogn

and for any real w,

]P’(long(G) < j+w\ﬁ) =d(w)+0 <10g(%J)> :
Vi
The analogous statement for the j-th smallest prime factor of an integer, without a rate of convergence,
was proved by Galambos [36].
Theorems 1.21 and 1.23 will be proved in section 9.

1.9 Fixed sets and divisors of permutations

A fixed set of a permutation ¢ € 8, is a subset of [n] fixed by 6. A fixed set corresponds to a product of
some subset of the cycles in 6 (we include both the empty set and the whole set [n] as fixed sets). These
play the same role for permutations as divisors do for integers. The existence of fixed sets of a particular
size has applications to various questions in combinatorial group theory, such as generation of S, by
random permutations and the distribution of transitive subgroups of 8,,. See e.g. [12, 14, 16, 17, 18, 19,
33, 53,67, 73].

We begin with a simple result about 2€(°), which counts the number of fixed sets of &, equivalently,
the number of divisors of ©.
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Theorem 1.24. E2€(°) — 5 4 1.

By contrast, we know that C(c) ~ logn for most ¢ € §,, (for example, from Theorem 1.22), and
therefore for most & € §,,, 2€(0) s 2logn — ylog2 mych smaller than 7.

A basic problem is to estimate i(n, k), the probability that o € S, fixes some set of size k. Equivalently,
what is the probability that the cycle decomposition of ¢ contains disjoint cycles with lengths summing to
k? Evidently, i(n,k) = i(n,n — k), thus it suffices to bound i(n,k) for k < n/2. Sharpening earlier bounds
due to Diaconis, Fulman and Guralnick [14], Luczak and Pyber [53] and by Pemantle, Peres, and Rivin
[67, Theorem 1.7], the author with Eberhard and Green [17] proved that

1 1 +loglog?2

<ink) < - E=1

=0. 1
k€(1+1logk)3/2’ log2 0.08607...., (10)

k& (1+logk)3/2

uniformly for 1 < k < n/2. A full asymptotic is not known.

This is the permutation analog of counting integers with a divisor in a given interval, see e.g. [30, 31],
and is related to the Erds multiplication table problem ([20, 21]), that of estimating the number, A(N), of
distinct products of the form ab with a < N, b < N. The full proof of (10) is rather complicated. However,
using the tools we have developed in this paper, we can quickly obtain an upper bound which is close to
optimal.

Theorem 1.25. Uniformly for 1 < k < n/2 we have

1

2 Preliminaries

The following standard bounds are stated without proof.

Lemma 2.1. The harmonic sums H, satisfy
(i) logn < H, < 1+logn;
(ii) H, = logn+ v+ O(1/n), where y = 0.57721566 ... is Euler’s constant.

Lemma 2.2 (Stirling’s formula). We have n! > (n/e)" and the asymptotic
n!=+2nn(n/e)"(1+0(1/n)) (n=1).

Lemma 2.3 (Inclusion-exclusion). Let a be a non-negative integer. For 0 < m < k,
La=m)=Y (~1)" ¢
,
k
_ 1 )r—m

L) () oG

r

r
m
r

where the final term is at most ( kil) (k;l) in absolute value.
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The final claim comes from the inequality (“;’;1) < (kf;ﬁ 1)

Lemma 2.4 (Poisson tails; see Norton [64, Section 4]). Let X be Poisson with parameter A. Then

1
(1—a)Va

1 o
P(X > <min (1, —— [/ — |e 2®* >1
( o) m1n< S 2ﬂ%>e (a>1),

where Q(x) = [{'logtdt = xlogx —x+ 1. Furthermore,

P(X < aA) < min (1, >e_Q(O‘M O<a<l),

2
S <0+ <E (W< (1D
and, when 0 < x1 < xp < 1 we have
O(x1) — O(x2) < (—logxy)(x2 —x1). (12)

3 Binomial moments

We begin by proving a special case of Theorem 1.3, where each set /; is a singleton. This is Theorem 7 in
[72].

Lemma 3.1. Let my,...,m, be non-negative integers with m, +2my + - - - +nm, < n. Then
n C:o n 1/7)™
e1 () -
=1\ M =1 My

If my+2my + - - - +nm, > n, then the left side is zero.

Proof. The second assertion is obvious, since the only way for the product on the left to be positive is
for the sum of the cycle lengths to exceed n. Now assume that m; +2my + - - - + nm,, < n. The number
of ways of choosing from [n] a disjoint collection of m; 1—element sets, m, 2—element sets, ..., m,
n—element sets is equal to

< n > 1 B n!/t!
Lo 12 2eepent )y ooyl T ()i,

my my my,

where t =n— (mj +2my +---+nm,). A k-element set may be arranged into a cycle in (k— 1)! ways.
Thus, the number of ways to arrange the elements of these sets into cycles is (0!)"1(1!)"2--- (n—1)!"*.
Finally, the ¢ elements not used in any of these cycles may be permuted in ¢! ways. O

This special case suffices to prove Theorems 1.1 and 1.2.
Proof of Theorem 1.2 (Cauchy’s Theorem). Apply Lemma 3.1, noting that (C-;,S?)) # 0 for all j if and
only if Cj(o) = m; for every j. ' O
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Proof of Theorem 1.1. Using Cauchy’s formula, we have

an(CI(G) :k¢c[n]\](0) = O)XHyk :Zx Z H
n,k n,k ZZ,EIa,—k icl a;!
icriai=n

_ xkiaiykai(] /)d
a;>0siel [Ta;!

= exp {yZ } O

iel

Proof of Theorem 1.3. Consider a set A of size Cy,(0), and partition A into subsets A,, where |A,| = C,(0)

where the summation is over tuples (m j,r)]g j<krel; satisfying the system

Y mj,=m; (1<;<k). (13)
I’EIJ'

Thus,
Eﬁ( ", > %Eﬂg<cm(]6)> (14)

Using Lemma 3.1, the expectation on the right side of (14) equals

1 rm’/
[Ty 4

j=1rel; mpj!

provided that
k
Z Z rmyj < n, (15)
j=1rel;

and is zero otherwise.
If Z];':1 mjmax(/;) < n, then (15) will always be satisfied as long as (13) holds, and therefore

r.J

H(IJ)’”"
m;!

=11(%7) -IE I - 11

j=103)rel; r,] j=1
as claimed. On the other hand, if Z];:I mjmax(l;) > n, then there is some choice of the parameters (1, ,)

satisfying (13) but violating (15), and the left side is strictly less than the right side. Specifically, we may
take 7 max [ =mj for each j and m;, = 0 otherwise. O
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4 Local limit theorems

Proof of Goncharov’s local limit theorem, Theorem 1.4. By Lemma 2.3 and Lemma 3.1, we obtain

r=m \"

The desired equality follows by setting r = A+ m. O

While Theorem 1.4 provides a exact formula for the local statistic P(C;j(c) = m), an analogous
formula for P(C;(o) = m) with an arbitrary set I will necessarily be far more complicated. However,
borrowing ideas from the theory of averages of multiplicative functions in number theory, we give a
relatively sharp upper bound for this quantity, and more generally for the joint probability of C;,(c) = m;
forj=1,...,k

We begin with a rather complicated identity for the joint distribution of the quantities Cj,.

Lemma 4.1. Let I,,...,I, be disjoint subsets of [n] and my,...,m, be non-negative integers. Denote
Ip=[n]\ (11 U---UL). Let T be the set of indices i with m; > 0, together with the number 0 if Iy is
nonempty. Then

: 1 o (1/i)b
emosen-iEE L [
N A S

Yier; bi=mj—1(1=j), (1<j<r)

Proof. Evidently

n#{c € 8,:Cy,(6) =my,...,Cp(0) =m,} = Y Y ol

oes, olo
Cij(o)=m; (1<j<r) o acycle

Write 6 = af8 and let 4 = |¢|. Thus, for some ¢ € T, we have || = h € I; and

(CL(B),....CL.(B) = (m—1(t=1),....,m.—1(t =r)).

It is permissible to think of B € 8, and thus

tcThel, aes,,|o|=h BES,
aacycle  Cp(B)=m;—1(t=i),(1<i<r)

n!
p— 1.
;T’;r (I’l—h)' ﬁ%h
Cr(B)=mi—1(t=i),(1<i<r)

Now subdivide the sum according the cycle type (by,...,b,) of the permutation 3, use Cauchy’s formula
(Thm. 1.2) to count such permutations for each type, and divide by n. The desired identity follows. [
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Proof of Theorem 1.5. The right side in Lemma 4.1 is at most

reT by ooy >0 i b
Yier; bi=mj—1(1=j) (1<j<r)

say. By the multinomial theorem,

Y = Z ; #
eT b;>0 (iel, U--UI,) [licr,u--ur, b;libi b0 Gehy) [Lics, b;libi
Yier; bi=m;—1(t=j) (1<j<r)
_ Z m 1 H(Ij)mj eH(Io)_
teTH(I’) j=1 m;!
The claimed bound now follows from H(ly) = H, —H(l,) —--- — H(I}). O

Later, we will sharpen the conclusion when r = 1, I} = [k], m; = 0 (permutations lacking small cycles)
and when r =1, I} = {k+1,...,n} and m; = 0 (permutations lacking large cycles).

Proof of Theorem 1.7. For brevity, let H = H(I). For the first inequality, apply Corollary 1.6 for all
m < AH, using H, < logn+ 1, followed by an application of Lemma 2.4. This gives

P(Ci(o) <2 ) e HY < get-etnm

m<AH

The second inequality is similar. We have

m m—1
P(C(0) > AH+1)< Y el—H<H+H)

m>AH+1 m! (m—1)!
H™

< 2 Z el*Hi' < 2617Q(1)H.
m=>AH m:

The third assertion is trivial if ¥ < 1, thus we may assume that ¥ > 1, and in particular that H > 1.
Define A * by
A"H=H—-yvH, A"H+1=H+ywVH.
In particular, 0 < A~ < 1 < AT < 2. Apply the first inequality in Theorem 1.7 with A = A~ and the
second inequality in Theorem 1.7 with A = AT, obtaining

P(ICi(0) — H| > yVH ) < 261703 gl -0,
By (11),
o v v
00)=0(1- 17) > 35
and )
+\ _ L4 1 L _ 2 y -2
00 =0 (1= 55+ ) = g v 1VAP = YT
and the third assertion follows, since 2e + 2¢&%/3 < 20. O
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Proof of Theorem 1.8. Let I = [a,b)NN, H = H(I) and let K be a sufficiently large constant. The
conclusions are trivial when b/a < K, henceforth we assume that 5/a > K. By (11), the assertions are

also trivial when .
1

]l - ————— <A<
Viogja) =" ST ogora)

and henceforth we assume that
1

A=1> ——nw—. (16)
SN0

By Lemma 2.1,
H =log(b/a)+O(1). (17)

As the first assertion follows from Theorem 1.7 if A = 0, we may assume that A > 0.
Firstly, suppose that 0 < A < 1 and that (16) holds. If we define A’ by

Alog(b/a) = A'H,
then A’ < 1, and thus by Theorem 1.7,

P (C;(0) < Alog(b/a)) = P(Ci(c) < A'H) < 2! ~CA0H,

By (1),
s min(A,1")
A S g/
and hence (12) implies that
min(A,1") 1 1

and the first assertion follows.
The proof of the second bound is similar. Suppose that 1 < A < Ap and (16) holds. If we define A’ by

Alog(b/a) = AH+1,
then 1 <A’ <24 if K is large enough. Theorem 1.7 then implies that
P(C/(0) = Alog(b/a)) =P(Ci(c) = A'H +1) < 2¢! 24,

By (17), |A = A/| <y, W < 1/H. Since Q' (x) < log(2p) for 1 < x < 249, we have

[0(4) — QM) <3, 1/H

and the second assertion follows.
The final estimate follows from the first two, with A9 = 2, and the bound (11) for Q(u). O
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Proof of Theorem 1.11. We may assume that y is sufficiently large. Let
ky = [log&|+1, ky = |logn],

and for k; < k < ky, let 7 = . Put tk,—1 = & and t,1; = n. For brevity, write C(0;t) := Y« Cj(o). For
each k, k; — 1 <k < kp+ 1, let Ny(x) be the probability that

|C(0:1;) —logty| > 2+/(k—1)log(k— 1) — 1. (18)
As logty = k+ O(1) for all ¢ (including the endpoints),

27/ (k—1)log(k—1)—1 = y+/logtx, W =2+/logk~+0(1/Vk).
Since k is sufficiently large, for all k > k; we have y < +/logt;. By the third part of Theorem 1.8,

12 1
Ne(x) <e 3V < %
Summing over k, we see that the probability that (18) holds for some k is bounded by O(1/(log&)'/3).
Now suppose that (18) fails for every k with k; —1 <k < kp +1. Let & < < x and suppose that
tr <t < tg41- Evidently,
C(G;tk) < (G;l) < C(G;tk+1).

C
Since log#; > k and logt;+; < k+1, k <logt < k+ 1. By the failure of (18) at every &,

C(o:t) = logty —2+/(k—1)log(k— 1)+ 1 > logt — 21/logtloglog?

and
C(o:t) <logty1 +2+/klogk —1 < logt +2+/logtloglogt. O

Proof of Theorem 1.12. We may suppose that 0 > 6y, where 0 is a sufficiently large, absolute constant,
for otherwise the conclusion of the Corollary is trivial if the implied constant is large enough. Let
&= [6(2/3)9J. By Theorem 1.11, with probability 1 —O(1/6'/3), we have

|Cyj(0) —logm| < 24/logmloglogm (E <m<n). (19)

Also, by Corollary 1.10, with probability 1 — O(1/&) all the cycles of o of length > & have distinct
lengths. Now suppose that ¢ is a permutation satisfying (19), and such that the cycles of o with lengths
> & have distinct lengths. We suppose that 6 is so large that the right side of the inequality in (19) is at
most %logm for every m > &. In particular,

Ci(o) < %105;5 <0,

that is, Dg (o) > &. Thus, we may apply (19) with m = D;(c) forall 6 < j < C(0). As the cycle lengths
> & are distinct, we have j = C,,(0) > JlogD;(c) and hence

|j—logDj(0)| < 2\/10ng(6) loglogD;(0) < 24/2jlog(2)) < 31/ jlog j

provided that 6, is large enough (and hence j is large enough). O

DISCRETE ANALYSIS, 2022:9, 36pp. 19



KEVIN FORD

Proof of Theorem 1.13. If k=1, P(C(c) =1) = 1/n. Now suppose k > 2. We begin with Lemma 4.1,
which implies that

1
ey § T

b1+2by+--<n
bi+-+by,=k—1

(20)

We restrict the summations to b; =0 (i > m) for some parameter m € [1,n] to be chosen later. Using

(b1 + 2bs 4+ by < 1) > n—(by+2by+---+mby,)

n
and the multinomial theorem,
! — (b1 42by+---+mb
n-P(C(o)=k)> - n—(b1+ 2+.b.—|—m )
n bi,...,by =0 Higmbi!l i

byt by =k—1
HY m HE?

(k—1)! n (k—=2)!
_HEU (L m(k=1)
~ (k—1)! nH, )
When 1 < k < logn, we take m = n and note that H,, = H,, > logn. This proves (3).

To obtain the 2nd part of Theorem 1.13, we fix A > 2 and take m = n/(2A). We have H,, =
H, + O(logA) and k < Alogn < AH,. Hence, for n large enough,

Hk*l Hk*l
P(C(G) =k) > — " > c(A) et
(Clo) =k >3 5= Z Wt
for some positive c(A). O

S Conditioning on the total number of cycles

We will use an explicit Chernoff bound for tails of the binomial distribution. Denote by Bin(k,p) a
binomial random variable corresponding to k trials, and parameter p € [0, 1].

Lemma 5.1 ([2, Lemma 4.7.2]). If0 < p < 1 and B < p then we have

P(Bin(n, p) < Bn) <exp{_n (Blogi+(1_ﬁ)1ogtg)} <exp{ _w)’}.

Replacing p with 1 — p we also have for B > p,

—B)2n
P(Bin(n,p) > Bn) < exp{ — ;l;(lli)p)}
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Proof of Theorem 1.14. Apply Theorem 1.5 with two sets: I and [n] \ I. Here € = 0. Divide the right side
in Theorem 1.5 by P(C(0) = k), where a lower bound is given in Theorem 1.13. Set p = H(I)/H,. Then,
for 0 < h <k,

P(cit0) = (o) =4) = HHO LS D

< P(Bin(k—1,p) = h—1) +P(Bin(k— 1,p) = h),

Set B~ =p—w\/p(1-p)/(k—1). By Lemma 5.1,

]P’(C,(G) <B (k—1) | C(0) =Fk) <4 ]P’(Bin(k— 1,p) < B~ (k— 1)) e IV,

Let B+ = p+y+/p(1—p)/(k—1)— 2. Since 0 < ¥ < /p(1 = p)(k— 1),

]P’(CI(G) > B (k—1)+1 | C(o) :k) <4 P(Bin(kf 1,p) >ﬁ+(k—1)>

(w/p(1—p)—1/Vk— 1>2}
3p(1—p)

<A exp{ —
< e 3V

This completes the proof. O

6 Permutations without small cycles

Proof of Theorem 1.15. Our proof is based on the Brun-Hooley sieve [34] from number theory. Let
K > e!% be fixed and sufficiently large and let u = n/m. If u < K, then Corollary 1.6 implies that
P(Cjyy(0) = 0) < 1/m and the conclusion follows. Now assume that u > K and let

D =logu,
so that D > 10. Partition [m] into intervals /; = [zj,z;—1) NN, where z; =m/D/, 0 < j < Hggg-‘ =t. Let
ki,...,k be positive, even integers, subject to
Lo(ki+1
k; > 10logD (1< j<1), (’Dj_l)'"gn. 1)

j=1

With o fixed, let
kj
5=10(0)=0). »=Y -1 (V).

r=0 r

Ci.(o)—1 Cr(o
0<)’j—x]'=< Ij(kj >< (kj-JErl))
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Using the elementary inequality

t 13
xi-x zyeye— Y, e —x0) [ [y
=1 =1
J#
together with P(Cj,,)(0) = 0) = Ex; - - x;, we thus obtain
M —E <P(Cpy(0) =0) < M, (22)

where .
Cy (G)
zz; ke+1 g
The condition (21) implies that
Y (kj+1)max1; < n. (23)
J
Thus, by Theorem 1.3,

M= Y (C)TUE (Chff)) (c,, f,c))

77777

0<r;<k; (1<j<r)

— (_1)r1+-~+r1 H Ij ( Z, H(I ))r_,-) )

Jj=1 ri=0 ]‘

Since H(I;) =logD+ O(1) for every j, and recalling (21), we have

kZ (“H(I)" _ (H(Ij)" )
ri=0 I"j! (k] )
( (D(logD—i—O ))kf“))
= +0
ki+1)!
kj+1
= i) exp 0<D logD+0 )) )] (24)
Hence, the main term satisfies
t 1 D+0(1 kj+1
M =e Hnexp (Z = k++1() ) )] (25)

Similarly, using (23), the error term satisfies

t
oy (C1(0) C,(0)
E: (_1)2]#1VJE< ¢ > ( J
f:ZI rj(jZ;éf) k1/+1 Jl;lf rj
0<r;<k; (j#0))

ki -
Zt: (Ip)ket! I Z’: (—H(L;))" _
kg+1 A rj:() rj!

(=1
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Hence, by (24),

i H(le) (log D + O(l))kf+1
= (ke+1)!

Hn exp

(i 1ogD++ol<) .>>'ff“)] | 26)

Jj=1

We now take

—1 u
i P P> — _
k=k+2(-1) (21, k= 2{ > 2J 6,

and readily verify that the conditions (21) hold if K is large enough. Thus, by Stirling’s formula,

i (logD+0(1))ki*t D(logD+O(1))k+!
= (kj+1)! (ky+1)!
< e—ulogu+ulogloglogu+0(u)

and likewise
i HU) (log D+ 0(1))k !
= (kp+1)! =

efulog u+ulogloglogu+0(u)

Inserting these last two bounds into (25) and (26), and recalling (22), the proof is complete. 0

7 Permutations without large cycles

The traditional approach to the problem of estimating the probability that a random permutation has no
cycle of size > m is via generating functions, e.g. Theorem 1. The sharpest results depend on a lengthy
complex-analytic argument, see [55, 65].

Proof of Theorem 1.16. Letw > 1. If o has no cycles of length > m, then }.7°, jC; (0) = n and hence

V(”7 m) < EuwC (6)+2C(0)++mCpy(c)—n

For 1 < j < m, write w/ = 1+ (w/ — 1). By the binomial theorem and Lemma 3.1,

m) < w‘”Ef{l (kio(wj 1y <CJ‘]§;’)>>

— w1V (" — 1)k Ci(o) ) Cn(0)
a kl...%,,go( 1) ( 1) . < ki ) < kim >
< wh (W . l)k (Wm _ l)k’” ﬁ (llij‘)k/

ki yenkn =0 j=1 J
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A good all-purpose choice is w = u'/”, where u = n /m. The mean value theorem implies that
w =M<+ (wu—1)j/m  (1<j<m)

and hence

2_1 whn — mn _1
W_1_|_W 4. + Z (1 ]/m =u—1. 27)
j=1

We conclude that
v(n,m) < ufn/meufl _ efulogquufl' 0

For the proof of Theorem 1.17, we need only very basic facts about the Dickman function p (u),
namely that it is positive and decreasing. These facts follow quickly from the definition plus the relation

:/ pydu  (v=1) (28)
v—1
obtained by integrating (5) fromu = 1to u = v.

Proof of Theorem 1.17. When m < n < 2m, the desired bounds (6) follow from (8), the fact that p(u) =
1 —logu for 1 < u < 2 and the easy inequalities

n+1 ntl dt m dt n
| - T <n,—n,< | L= (f)
Og<m+1> /m+1 t " " /n t o8 m

For larger n, we fix m and argue by induction. For 1 < ¢ < m, there are (’;) (¢—1)! ways to form an
{—cycle from [n]. Hence

1 1 1 M /n
v(n,m):a Ggs . Z \r]:’mge(£>(£ D!(n—0)'v(n—£,m)
n T|o /=1
Cinpn(0)=0  tTacycle
1 n—1
= - v(k,m)
nk:n—m
Now fix m > 1, let N > 2m+ 1 and assume that (6) holds when m < n < N — 1. Using (28) and the
monotonicity of p,
1 A 1 N=l 1 N=1  kt1
=N Y vk Z N Y. plk/m)> Z / p(t/m)dr
k=N—m k=N—m k N—m
I 1 [N/m
== v/m)dv = —— vidv=p(N/m
N/N_mp” v = 7 fo POV =P /m)
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and

k=N—m k=N—m"“ "
1 p(v)d
= — v)dv
N Jae
m+1/%1i m41 o
= =" [ pw)ay
N Irvn%rln N mI-vH

N+1

_N+1 _(N+1 m+1 fa1
N m-+1 N [

m+1

p(v)dv.

The final integral on the right side is > -15p (5£}) and thus v(N,m) < p (2£}). The claimed bounds

(6) now follow by induction on 7. 0

8 Poisson approximation of small cycle lengths

In this section, we prove Theorem 1.19, which shows that C;(o) is approximately Poisson with parameter
1/j, uniformly for small j.

We begin by relating dry (Ck, Zx) to P(Cj,,) (o) = 0) using a variant of a special case of [6, eq. (33)].
Define U (n,m) = IP,,(C},y(0) = 0) for n > 0 and U(n,m) = 0 for n < 0.

Lemma 8.1. We have

k NN
dTV ek,Zk Z H 1/J|) ] max (Oﬂe_Hk - U(l’l/,k)>,
heNk Jj= h;!

S

wheren' =n'(h) =n— lezl Jjh;j.
Proof. We begin with the easy identity

dry (€, 2¢) = Y max (0 P(Z; = h) — P(& :h)>.
heNk

Clearly,
k A\
1
P(Zx =h) =e "] /i

iz hy!
Now fix h, write g = hy +2hy + - - - + khy and consider P(Cx = h). If g > n, then P(C; =h) = 0. Now
suppose that g < n. Write 6 = 00>, where o7 is the product of the cycles of length at most k and
permutes a subset I of [n] of size g, and 03 is the product of the cycles of length greater than k and
permutes [n] \ I of size n’ = n— g. By Cauchy’s formula (Theorem 1.2), applied to o7, it follows that

k AR
Mm:mszwfﬂ%?,
j= ]

and the lemma follows. O
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Proof of Theorem 1.19. We may assume that k < n/100. We will use Lemma 8.1 and estimate the
contribution to dry (Cy,Zy) from the tuples h = (hy,--- ) € N’{). The main idea of the proof is to
separately consider those vectors which constitute rare events (many /; large): specifically, let

Hy ={h e N&: hy +2hy + -+ khy < n— 50k},
Hy = {h € N§: hy +2hy + -+ kly > n— 50k}.

First, consider h € H; and let ' = n— (h; +2hy + - - - + khy) > 50k. By Theorem 1.15,
U k) = e (14 0esM) ),
where g(x) = —xlogx+ xlogloglogx+ O(x) when x > 50. It follows that

k 1'hj
y 112
J

—H, U( /k)‘ < —H, 2: g(n' /k) lkl l/j)hj
c — n € e
’ heH =1 h}
1 J=

heXH, j:1
For h € HH,, we use a trivial bound
max (O,e*Hk - U(n/,k)) <e e <1k,

We conclude that

k N\hj k NY
Y 112 (0.7 ~u('0) <y O Y 1 121’) NG
j : 50<r<n/k+1 heng j=1 7J°
n <rk

As in the proof of Theorem 1.16, we invoke the method of parameters, also known as the tilting method
(this is commonly used in Chernoff inequalities; see Section 0.5 in [42] for number theoretic applications).
For any real number w > 1 we have

y H 1/] <Y 2+ — n+rkH l/j)hj

heN§ Jj=1 heNk hj!
n <rk

1 1
—w"“kexp{w—i-zw + - —|—kwk}

Take w = (u—r+2)"/* where u = %~ By the argument in (27),

1 1
w—|—§w2+~-+%wk<Hk+u—r+1 Llogk+u—r+2.

It follows that

k hj
Z H(l/]) <kexp{—(u—r)log(u—r+2)+(u—r+2)}.

] !
heNf Jj=1 hj!
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Inserting this into (29), we find that

dTV(eku Z'k) < eulogloglogu+0(u) Z efrlogrf(ufr) log(u—r+2)

50<r<u+1
< eulogloglogu+0(u) 1
50<r<u+1 ri(u+2—r)!
< e—u10gu+ulog10g10gu+0(u)‘ ]

9 C(Central Limit Theorems

A principal tool is the fact that, as A — o, the Poisson random variable with parameter A approaches a
Gaussian distribution with mean A and variance A. The following is a special case of the Central Limit
Theorem with Berry-Esseen type rate of convergence. For completeness, we give a short proof in the
Appendix using only Stirling’s formula and Euler summation.

Lemma 9.1 (Poisson CLT). Let A > 1, and let X be Poisson with parameter A. Uniformly for real A > 1
and real z, we have

]P’(Xé/'t—i—z\/I) :¢(z)+0(l’1/2), @(z)—\/lzfn/_leétzdt.

Proof of Theorem 1.21. Let H = H(I). We may assume that H > 100, the assertion being trivial
otherwise. If |w| > y/3logH then the result follows from Theorem 1.7, since the left side is thus
O(1/H) =®(w)+O(1/H) if w < —/31ogH and is 1 — O(1/H) = ®(w) + O(1/H) if w > \/31ogH.
Suppose now that |w| < \/3logH, let

n
A=H vVH = | — J=1 .
+wVvH, m LogH}’ N [m]
Because
1
H(I\J)= Y — <H((mn]NN)<loglogH +0(1)
m<k<nk

kel

we have H(J) = H+ O(loglog H). Thus,

A—HU) 4w JHT), w=w+0 <
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Let Y be a Poisson random variable with parameter H(J). Thus, by Theorem 1.20 and Lemma 9.1,

We also have

logH
A—logH=H(J)+w'\/H(J), w' :w—l—O( (\)/gﬁ )

and it follows that

P(Ci(0) <A) 2P (Cs(0) <A—logH and Cp\;(0) < logH)
=P(C/(0) <A—logH),

since min(/\ J) > n/log H implies that Cp ;(0) < logH always. Hence, by Theorem 1.20 and Lemma
9.1,

P(Ci(0) <A) > d(w")+0(1/VH)

=d(w)+0 (kj}‘%{) :

The theorem follows by combining the upper and lower bounds for P(C;(c) < A). O

Proof of Theorem 1.23. We may assume that j > 10 and that 7 is sufficiently large, the statement being
trivial otherwise. We may also assume that |w| < y/log j, since the statement for w outside this range
follows from the monotonicity of P(logD;(c) < j+ w+/j), as a function of w, the statement for the two

points w = ++/log j and the fact that &(—/log j) < 1/;j'/? and ®(\/Tog j) = 1 — O(1/'/?).
Let k = Leﬁw\ﬁj , s0 by hypothesis,

logk < j++/jlogj < j++/(logn)loglogn < logn.

Then D;(0) < k is equivalent to (o) > j. As Hy = logk+O(1) and \/H = \/j+ O(|w| + 1), we have

. w241
j—1=Hp—u\/Hy, where u=w+0 7 )
J
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By Theorem 1.21,

=1-®(u)+0 (l(\’/g%">
o D(u) = D(w)+ 0 <W2\; 1) = ®(w)+0 <1°“f%j )>
and the proof is complete. 0

10 Fixed sets and divisors of permutations

Proof of Theorem 1.24. Evidently, 26(°) equals the number of divisors 8|c. The permutation 3 fixes a
set I. Summing over / we see that

1

1
EX =Sy Y=} Lo

‘o€, Blo " IC[n] o€,
o fixes 1

- Xn:(n_j)!j!<r]l_>:§1:n+l. [

Proof of Theorem 1.25. The statement is trivial for 1 < k < 100, thus we may assume that k£ > 100. Let

ro = 1({%, so that rp = % +O(1). By Theorem 1.8,

P(Cyy(0) > ro) < k~2/10e2) = =&,

If o has a fixed set of size k, then ¢ factors as 0 = a8, where || = k and |B| = n — k. Hence, if
Cy (o) < ro, then for some non-negative integers j,h with j+h < ro we have

Cla)=j, Cy(B)=nr (30)
With j, h fixed the number of pairs a, B with (30) is at most

. J+h —2H,
<k> kIPL(C() = j)(n— k) Py (Ciy (B) = h) < ”'H];v

upon invoking Lemma 1.5. Summing first over all j, & with A+ j = r using the binomial theorem, and
then over r < rp we see that the probability that Cjy(0) < ro and o factors as 0 = aff with |a| =k is
bounded above by

) @L"‘V < k) — ¢,

r<ro r:

upon invoking Lemma 2.4. O
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Appendix
In this appendix, we proof Lemma 9.1 and (7).

Proof of Lemma 9.1. We give a short, direct proof using Stirling’s formula and Euler summation. Let
h* =34/log(1+A). We may assume that A is sufficiently large. By Proposition 2.4 and the crude bounds
for Q(x) given in (11), we have

2

. * < 2e3log(1+4) _ -
P(IX — 4| > h*VA) < 2e (ESNE

Likewise,

a1 31)
(1+4)3

[t]>h*

Consequently, we may assume that |z| < 7%, and deduce

k
IED(X@IJFZ\/I):e*l Y 1“!+0<;3).

A—hVA<kSA+zVA

For |k — A| < h*v/A, Stirling’s formula implies that

oo () s (o(42Y)

Write k = A + u. Then, for |u| < h* VA, we have

Jee] 41 |u|+1
ok 1o (M >e’1< ol >A+u_1+0( B

= e Vark (/A

k! V21mA
Jue] +1
U)o (G-3G)+0(G)))
(o (M) )

kk
ef’l Z 7‘:M‘|’E7

k
A= VA<k<A+zVA

It follows that

where
1

V2wA Z ¢ 7
A= VA<k<A+zVA

M=
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and

1+|k M k= AP\ _kar
lz 12 e 21

k

= a+a3> (a 1) /2 1
< e <L —=.
E( Vi Vi

By Euler summation, and writing {¢t} = — [¢],

1 A+zVA (1—2)2 A+zvVA r—A (
M= / e 2 dt—/ {t} (> e
V27A | Ja-wva A~V A

The integral involving {¢} is O(1). The first integral equals, by (31),

(1]

Z 1

ﬁ/ e7“2du:\/%/Z e*%“zdu—i-O(/l*s/z),

_h* —oo
and hence | | .
=— [ e ™du+0(— | =0 +0( — ). O
Lo (p) =eervo( )
Proof of (7). It suffices to show that
_p'(u)
o) < l+logu (u>1). (32)
From (5) and (28),
P plu—1) (33)

o) I p)dy
Let By = max; .,</2(—p'(v)/p(v)). We have
1/v 1
By = = =1.629....
YT IS T Tlogy — 2(1—log2)
If k >4 and k/2 < u < (k+1)/2 then the denominator on the right side of (33) is at least

u—1/2 u—1/2 (ui 1)(1 ,e—jBk)
> - —Bi(v—u+1) _ p ]
/u_l p(v)dv=p(u 1)/u_] e dv B,

Using that e~ 28 < e~ 2B+ < 1/2, we infer that

B
By < 7](1 < By (1 +267%B"> .
1 —e 25

The function x(1 +2e~ x/ 2) is increasing for x > 0, hence if C is large and By < Clogk then
Biy1 < (Clogh)(142/k°/%) < Clog(k+1).
Therefore, By < logk and (32) follows. ]
Somewhat stronger local bounds on p(u), also proved by elementary methods, can be found in section

2 of [44].
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