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Abstract We study the extent to which divisors of a typical integer n are
concentrated. In particular, defining �(n) := maxt #{d|n, log d ∈ [t, t + 1]},
we show that �(n) � (log log n)0.35332277... for almost all n, a bound we
believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We
also prove analogs for the concentration of divisors of a random permutation
and of a random polynomial over a finite field. Most of the paper is devoted
to a study of the following much more combinatorial problem of independent
interest. Pick a random set A ⊂ N by selecting i to lie in A with probability
1/ i . What is the supremum of all exponents βk such that, almost surely as
D →∞, some integer is the sum of elements of A ∩ [Dβk , D] in k different
ways? We characterise βk as the solution to a certain optimisation problem
over measures on the discrete cube {0, 1}k , and obtain lower bounds for βk
which we believe to be asymptotically sharp.
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Part I. Main results and overview of the paper

1 Introduction

1.1 The concentration of divisors

Given an integer n, we define the Delta function

�(n) := max
t

#{d|n, log d ∈ [t, t + 1]},

that is to say the maximum number of divisors n has in any interval of log-
arithmic length 1. Its normal order (almost sure behaviour) has proven quite
mysterious, and indeed it was a celebrated achievement of Maier and Tenen-
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Equal sums in random sets 1029

baum [20], answering a question ofErdős from1948 [9], to show that�(n) > 1
for almost all1 n.

Work on the distribution of � began in the 1970s with Erdős and Nicolas
[7,8]. However, it was not until the work of Hooley [16] that the Delta function
received proper attention. Among other things, Hooley showed how bounds on
the average size of� can be used to count points on certain algebraic varieties.
Further work on the normal and average behavior of � can be found in the
papers of Tenenbaum [23,24], Hall and Tenenbaum [12–14], and ofMaier and
Tenenbaum [20–22]. See also [15, Ch. 5,6,7]. Finally, Tenenbaum’s survey
paper [26, p. 652–658] includes a history of the Delta function and description
of many applications in number theory.

The best bounds for �(n) for “normal” n currently known were obtained
in a more recent paper of Maier and Tenenbaum [22].

Theorem MT (Maier–Tenenbaum [22]) Let ε > 0 be fixed. Then

(log log n)c1−ε � �(n) � (log log n)log 2+ε,

for almost all n, where

c1 = log 2

log
(1−1/ log 27
1−1/ log 3

) ≈ 0.33827.

It is conjectured in [22] that the lower bound is optimal.
One of the main results of this paper is a disproof of this conjecture.

Theorem 1 Let ε > 0 be fixed. Then

�(n) � (log log n)η−ε

for almost all n, where η = 0.35332277270132346711 . . ..

The constant η, which we believe to be sharp, is described in relation (1.3)
below, just after the statement of Theorem 2.

1.2 Packing divisors

Let us briefly attempt to explain, without details, why it was natural for Maier
and Tenenbaum to make their conjecture, and what it is that allows us to find
even more tightly packed divisors.

1 A property of natural numbers is said to occur for almost all n if the number of exceptions
below x is o(x) as x →∞.
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1030 K. Ford et al.

We start with a simple observation. Let n be an integer, and suppose we can
find pairs of divisors di , d ′i of n, i = 1, . . . , k, such that

• 1 < di/d ′i � 21/k ;
• The sets of primes dividing did ′i are disjoint, as i varies in {1, . . . , k}.
Then we can find 2k different divisors of n in a dyadic interval, namely all
products a1 . . . ak where ai is either di or d ′i .

In [22], Maier and Tenenbaum showed how to find many such pairs of
divisors di , d ′i . To begin with, they look only at the large prime factors of
n. They first find one pair d1, d ′1 using the technique of [20]. Then, using a
modification of the argument, they locate a further pair d2 and d ′2, but with
these divisors not having any primes in common with d1, d ′1. They continue
in this fashion to find d3, d ′3, d4, d ′4, etc., until essentially all the large prime
divisors of n have been used. After this, they move on to a smaller range of
prime factors of n, and so on.

By contrast, we eschew an iterative approach and select 2k close divisors
from amongst the large prime divisors of n in one go, in a manner that is
combinatorially quite different to that ofMaier and Tenenbaum.We then apply
a similar technique to a smaller range of prime factors of n, and so on. This
turns out to be a more efficient way of locating proximal divisors.

In fact, we provide a general framework that encapsulates all possible com-
binatorial constructions one might use to pack many divisors close to each
other. To work in this generality it is necessary to use a probabilistic formal-
ism. One effect of this is that, even though our work contains that of Maier and
Tenenbaum as a special case, the arguments here will look totally different.

1.3 Random sets and equal sums

For most of the paper we do not talk about integers and divisors, but rather
about the following model setting. Throughout the paper, A will denote a ran-
dom set of positive integers in which i is included in A with probability 1/ i ,
these choices being independent for different is.We refer toA as a logarithmic
random set.

A large proportion of our paper will be devoted to understanding conditions
under which there is an integer which can be represented as a sum of elements
of A in (at least) k different ways. In particular, we wish to obtain bounds on
the quantities βk defined in the following problem.

Problem 1 Let k � 2 be an integer. Determine βk , the supremum of all expo-
nents c < 1 for which the following is true: with probability tending to 1 as
D →∞, there are distinct sets A1, . . . , Ak ⊂ A ∩ [Dc, D] with equal sums,
i.e.,

∑
a∈A1

a = · · · =∑a∈Ak
a.
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Equal sums in random sets 1031

The motivation for the random set A comes from our knowledge of the
anatomy of integers, permutations and polynomials. For a random integer
m � x , with x large, let Uk be the event that m has a prime factor in the
interval (ek, ek+1]. For a random permutation σ ∈ Sn , let Vk be the event that
σ has a cycle of size k, and for a random monic polynomial f of degree n
over Fq , with n large, let Wk be the event that f has an irreducible factor of
degree k. Then it is known (see e.g., [2,3,15]) that Uk , Vk and Wk each occur
with probability close to 1/k, and also that the Uk are close to independent
for k = o(log x), the Vk are close to independent for k = o(n), and the Wk
are close to independent for k large and k = o(n). Thus, the model set A
captures the factorization structure of random integers, random permutations
and random polynomials over a finite field. It is then relatively straightforward
to transfer results about subset sums of A to divisors of integers, permutations
and polynomials. Section 2 belowcontains details of the transference principle.

The main result of this paper is an asymptotic lower bound on βk .

Theorem 2 We have lim infr→∞(β2r )
1/r � ρ/2, where

ρ = 0.28121134969637466015 . . .

is a specific constant defined as the unique solution in [0, 1/3] of
1

1− ρ/2
= lim

j→∞
log a j

2 j−2 , (1.1)

where the sequence a j is defined by

a1 = 2, a2 = 2+ 2ρ, a j = a2j−1 + aρ
j−1 − a2ρj−2 ( j � 3).

The proof of Theorem 2 will occupy the bulk of this paper, and has three
basic parts:

(a) Showing that for every r � 1, β2r � θr for a certain explicitly defined
constant θr ;

(b) Showing that limr→∞ θ
1/r
r exists;

(c) Showing that (1.1) has a unique solution ρ ∈ [0, 1/3] and that

ρ = 2 lim
r→∞ θ

1/r
r .

In the sequel we shall refer to “Theorem 2 (a)”, “Theorem 2 (b)” and “The-
orem 2 (c)”. Parts (a), (b) and (c) are quite independent of one another, with
the proof of (a) (given in Sect. 9.2) being by far the longest of the three. The
definition of θr , while somewhat complicated, is fairly self-contained: see Def-
inition 9.6. Parts (b) and (c) are then problems of an analytic and combinatorial

123



1032 K. Ford et al.

flavour which can be addressed largely independently of the main arguments
of the paper. The formula (1.1) allows for a quick computation of ρ to many
decimal places, as the limit on the right side converges extremely rapidly. See
Sect. 12 for details.

Let us now state an important corollary of Theorem 2.

Corollary 1 Define

ζ+ = lim sup
k→∞

log k

log(1/βk)
and ζ− = lim inf

k→∞
log k

log(1/βk)
. (1.2)

Then

ζ+ � ζ− � η := log 2

log(2/ρ)
= 0.3533227 . . . . (1.3)

Proof Evidently, ζ+ � ζ−. In addition, observe the trivial bound βk � βk+1.
Hence,

ζ+ = lim sup
r→∞

r log 2

log(1/β2r )
and ζ− = lim inf

r→∞
r log 2

log(1/β2r )
. (1.4)

We then use Theorem 2 to find that ζ− � η.

We conjecture that our lower bounds on βk are asymptotically sharp, so that
the following holds:

Conjecture 1 We have ζ+ = ζ− = η.

We will address the exact values of βk in a future paper; in particular, we
will show that

β3 = log 3− 1

log 3+ 1
ξ

= 0.02616218797316965133 . . .

and

β4 = log 3− 1

log 3+ 1
ξ
+ 1

ξλ

= 0.01295186091360511918 . . .

where

ξ = log 2− log(e − 1)

log(3/2)
, λ = log 2− log(e − 1)

1+ log 2− log(e − 1)− log(1+ 21−ξ )
.
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Equal sums in random sets 1033

1.4 Application to divisors of integers, permutations and polynomials

The link between Problem 1 and the concentration of divisors is given by the
following Theorems. The proofs are relatively straightforward and given in
the next section. Recall from (1.2) the definition of ζ+.

Theorem 3 For any ε > 0, we have

�(n) � (log log n)ζ+−ε

for almost every n.

Remark In principle, the proof of Theorem 3 yields an explicit bound on the
size of the set of integers n with�(n) � (log log n)ζ+−ε. However, incorporat-
ing such an improvement is a very complicated task. In addition, the obtained
bound will presumably be rather weak without a better understanding of the
theoretical tools we develop (cf. Sect. 3).

The same probabilistic setup allows us to quickly make similar conclusions
about the distribution of divisors (product of cycles) of permutations and of
polynomials over finite fields.

Theorem 4 For a permutation σ on Sn, denote by

�(σ) := max
r

#{d|σ : length(d) = r},

where d denotes a generic divisor of σ ; that is, d is the product of a subset of
the cycles of σ .

Let ε > 0 be fixed. If n is sufficiently large in terms of ε, then for at least
(1− ε)(n!) of the permutations σ ∈ Sn, we have

�(σ) � (log n)ζ+−ε.

Theorem 5 Let q be any prime power. For a polynomial f ∈ Fq [t], let
�( f ) = max

r
#{g| f : deg(g) = r}.

Let ε > 0 be fixed. If n is sufficiently large in terms of ε, then at least
(1− ε)qn monic polynomials of degree n satisfy

�( f ) � (log n)ζ+−ε.

Conjecture 2 The lower bounds given in Theorems 3, 4 and 5 are sharp. That
is, corresponding upper bounds with exponent ζ+ + ε hold.
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1034 K. Ford et al.

If both Conjectures 1 and 2 hold, then we deduce that the optimal exponent
in the above theorems is equal to η.

Remark The exponent ζ+−ε in Theorems 3, 4 and 5 depends only on accurate
asymptotics for βk as k → ∞ or, even more weakly, for β2r as r → ∞
(cf. (1.4)). In this work, however, we develop a framework for determining βk
exactly for each k.

The quantityβk is also closely related to the densest packing of k divisors of a
typical integer. Tobe specific,wedefineαk be the supremumof all real numbers
α such that for almost every n ∈ N, n has k divisors d1 < · · · < dk with
dk � d1(1+ (log n)−α). In 1964, Erdős [10] conjectured that α2 = log 3− 1,
and this was confirmed by Erdős and Hall [6] (upper bound) and Maier and
Tenenbaum [20] (lower bound). The best bounds on αk for k � 3 are given by
Maier and Tenenbaum [22], who showed that

αk � log 2

k + 1
(k � 3)

and (this is not stated explicitly in [22])

αk � (log 3− 1)m3m−1

(3 log 3− 1)m−1
(2m−1 < k � 2m,m ∈ N). (1.5)

See also [26, p. 655–656].2 In particular, it is not known if α3 > α4, although
Tenenbaum [26] conjectures that the sequence (αk)k�2 is strictly decreasing.

We can quickly deduce a lower bound for αk in terms of βk .

Theorem 6 For all k � 2 we have αk � βk/(1− βk).

In particular,

α3 � β3

1− β3
= 0.0268650 . . . ,

which is substantially larger than the bound from (1.5), which is α3 �
0.0127069 . . ..

Combining Theorem 6 with the bounds on βk given in Theorem 2, we have
improved the lower bounds (1.5) for large k.

The upper bound on αk is more delicate, and a subject which we will return
to in a future paper. For now, we record our belief that the lower bound in
Theorem 6 is sharp.

Conjecture 3 For all k � 2 we have αk = βk/(1− βk).

2 The factor 3m−1 is missing in the stated lower bounds for αk in [26].
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Equal sums in random sets 1035

2 Application to random integers, random permutations and random
polynomials

In this section we assume the validity of Theorem 2 and use it to prove The-
orems 3, 4, 5 and 6. The two main ingredients in this deduction are a simple
combinatorial device (Lemma 2.1), of a type often known as a “tensor power
trick”, used for building a large collection of equal subset sums, and transfer-
ence results (Lemmas 2.2, 2.3 and 2.4) giving a correspondence between the
random set A and prime factors of a random integer, the cycle structure of a
random permutation and the factorization of a random polynomial over a finite
field. In the integer setting, this is a well-known principle following, e.g. from
the Kubilius model of the integers (Kubilius, Elliott [4,5], Tenenbaum [25]).
We give a self-contained (modulo using the sieve) proof below.

Throughout this section, A denotes a logarithmic random set.

2.1 A “tensor power” argument

In this section we give a simple combinatorial argument, first used in a related
context in the work of Maier–Tenenbaum [20], which shows how to use equal
subsums in multiple intervals ((D′)c, D′] to create many more common sub-
sums in A.

Lemma 2.1 Let k ∈ Z�2 and ε > 0 be fixed. Let D1, D2 be parameters
depending on D with 3 � D1 < D2 � D, log log D1 = o(log log D) and
log log D2 = (1 − o(1)) log log D as D → ∞. Then, with probability→ 1
as D→∞, there are distinct A1, . . . , AM ⊂ A ∩ [D1, D2] with∑a∈A1

a =
· · · =∑a∈AM

a and M � (log D)(log k)/ log(1/βk)−ε.

Remark In particular, the result applies when D1 = 3 and D2 = D, in which
case it has independent combinatorial interest, giving a (probably tight) lower
bound on the growth of the representation function for a random set.

Proof Since increasing the value of D1 onlymakes the proposition stronger,we
may assume that D1 →∞ as D→∞. Let 0 < δ < βk , and set α := βk − δ.
Set

m :=
⌊ log log D2 − log log D1

− log(βk − δ)

⌋

and consider the intervals [Dαi+1
2 , Dαi

2 ), i = 0, 1, . . . ,m−1. Due to the choice
of m, these all lie in [D1, D2].

Let Ei , i = 0, 1, 2, . . . be the event that there are distinct A(i)
1 , . . . , A(i)

k ⊂
[Dαi+1

2 , Dαi

2 ) with
∑

a∈A(i)
1
a = · · · = ∑

a∈A(i)
k
a. Then, by the definition of

123



1036 K. Ford et al.

βk and the fact that D1 → ∞, we have P(Ei ) = 1 − o(1), uniformly in
i = 0, 1, . . . ,m − 1. Here and throughout the proof, o(1) means a function
tending to zero as D→∞, at a rate which may depend on k, δ. These events
Ei are all independent. The Law of Large Numbers then implies that, with
probability 1− o(1), at least (1− o(1))m of them occur, let us say for i ∈ I ,
|I | = (1− o(1))m.

From the above discussion, we have found M := k|I | = k(1−o(1))m distinct
sets B j = ⋃

i∈I A
(i)
ji
, j ∈ [k]I , such that all of the sums

∑
a∈B j

a are the
same. Note that

M = k(1+Ok(δ)+o(1)) log log D/ log(1/βk).

Taking δ small enough and D large enough, the result follows.

2.2 Modeling prime factors with a logarithmic random set

Let X be a large parameter, suppose that

1 � K � (log X)1/2, (2.1)

and let I = [i1, i2] ∩ N, where

i1 =
⌊
K (log log X)3

⌋
, i2 =

⌊
K log X

2 log log log X

⌋
. (2.2)

For a uniformly random positive integer n � X , let n = ∏p pvp be the the
prime factorization of n, where the product is over all primes. Let Pi be the
set of primes in (ei/K , e(i+1)/K ], and define the random set

I = {i ∈ I : ∃p ∈Pi such that p|n}. (2.3)

that is, the set of i for which n has a prime factor in Pi . By the sieve, it is
known that the random variables vp are nearly independent for p = Xo(1),
and thus the probability that bi � 1 is roughly

Ri :=
∑

p∈Pi

1

p
≈ 1

i
.

The next lemma makes this precise.
Recall the notion of total variation distance dTV(X, Y ) between two discrete

real random vectors X, Y defined on the same probability space (�,F, P):

dTV(X, Y ) = max
A∈F |P(X ∈ A)− P(Y ∈ A)|.
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Equal sums in random sets 1037

We have

dTV((X1, . . . , Xk), (Y1, . . . , Yk)) �
k∑

j=1
dTV(X j , Y j ), (2.4)

provided that the random variables X j , Y j live on the same probability space
for each j , that X1, . . . , Xk are independent, and Y1, . . . , Yk are also inde-
pendent. Although we believe this is a standard inequality, we could not find
a good reference for it and give a proof of (2.4) in Lemma A.8. In addition,
recall the identity

dTV(X, Y ) = 1

2

∑

t∈�

|P(X = t)− P(Y = t)| (2.5)

when X and Y take values in a probability space (�,F, P) with � countable
and F being the power set of �. See, e.g. [19, Proposition 4.2].

Lemma 2.2 Uniformly for any collection I of subsets of I , we have

P(A ∩ I ∈ I ) = P(I ∈ I )+ O(1/ log log X).

Proof For i1 � i � i2, let ωi be the indicator function of the event that n has
a prime factor from Pi , let Qi be a Poisson random variable with parameter
Ri , with the different Qi independent, and let Zi = 1Qi�1.3 Also, let Yi be a
Bernoulli random variable with P(Yi = 1) = 1/ i , again with the Yi indepen-
dent. Let ω,Z,Y denote the vectors of the variables ωi , Zi , Yi , respectively.
By assumption, each Pi ⊂ [log X, X1/3 log log log X ]. Hence, Theorem 1 of
[11] implies that

dTV(ω,Z)
 1

log log X
.

In addition, note that dTV(Zi , Yi ) 
 1/ i2 for all i , something that can be
easily proven using (2.5). Combining this estimate with (2.4), we find that

dTV(Z,Y) �
i2∑

i=i1
dTV(Zi , Yi )


i2∑

i=i1

1

i2

 1

log log X
.

The triangle inequality then implies that dTV(ω,Y) 
 1/ log log X , as
desired.

3 We use 1E for the indicator function of a statement E ; that is, 1E = 1 if E is true and 1E = 0
if E is false.
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2.3 The concentration of divisors of integers

In this section we prove Theorems 3 and 6. Recall from (1.2) the definition of
ζ+.

Proof of Theorem 3 Fix ε > 0 and let X be large enough in terms of ε, and
let n � X be a uniformly sampled random integer. Generate a logarithmic
random set A. Set K = 10 log log X , D1 = i1, D = D2 = i2, where i1
and i2 are defined by (2.2). With our choice of parameters, the hypotheses of
Lemma 2.1 hold and hence, with probability 1 − o(1) as X → ∞, there are
distinct sets A1, . . . , AM ⊂ A ∩ [D1, D2] with∑a∈A1

a = · · · = ∑a∈AM
a

and M := �(log log X)ζ+−ε�. By Lemma A.2, with probability 1 − o(1), we
have

|A ∩ [D1, D2]| � 2 log D2 � 2 log log X + 2 log K .

Write F for the event that both of these happen.
Let n be a random integer chosen uniformly in [1, X ], and let I be the

random set associated to n via (2.3). By Lemma 2.2, the corresponding event
F ′ for I also holds with probability 1 − o(1); that is, F ′ is the event that
|I ∩ [D1, D2]| � 2 log D2 and that there are distinct subsets I1, . . . , IM with
equal sums. Assume we are in the event F ′. For each i ∈ I, n is divisible by
some prime pi ∈Pi . In addition, for each r, s ∈ {1, 2, . . . , M}, we have

∣∣
∣
∑

i∈Ir
log pi −

∑

i∈Is
log pi

∣∣
∣ �

|Ir | + |Is |
K

+ 1

K

∣∣
∣
∑

i∈Ir
i −

∑

i∈Is
i
∣∣
∣

� 4 log log X + 4 log K

K
<

1

2
.

Writing dr := ∏i∈Ir pi for each i , we thus see that the dr ’s are all divisors
of n and their logarithms all lie in an interval of length 1. It follows that
P(�(n) � M) = 1 − o(1) when n is a uniformly sampled random integer
from [1, X ], as required for Theorem 3.

Proof of Theorem 6 Fix 0 < c < βk/(1 − βk), let X be large and set
K = (log X)c. Define i1, i2 by (2.2), let D = i2 and define c′ by Dc′ = i1.
Let n be a random integer chosen uniformly in [1, X ]. We have

c′ = c

c + 1
+ o(1) (X →∞),

and therefore c′ � βk − δ for some δ > 0, which depends only on c. By
the definition of βk and Lemma 2.2, it follows that with probability 1− o(1),
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the set I defined in (2.3) has k distinct subsets I1, . . . , Ik with equal sums,
and moreover (cf. the proof of Theorem 3 above), |I| � 2 log i2, so that
|I j | � 2 log i2 for each j . Thus, with probability 1 − o(1), there are primes
pi ∈Pi (i ∈ I) such that for any r, s ∈ {1, . . . , k} we have

∣
∣
∣
∑

i∈Ir
log pi −

∑

i∈Is
log pi

∣
∣
∣ �

|Ir | + |Is |
K

� 4 log log X

(log X)c
.

Thus, setting dr = ∏i∈Ir pi , we see that dr � ds exp
{
O
( log log X

(log X)c

)}
for any

r, s ∈ {1, . . . , k}. Since c is arbitrary subject to c < βk/(1−βk), we conclude
that αk � βk/(1− βk).

2.4 Permutations and polynomials over finite fields

The connection between random logarithmic sets, random permutations and
randompolynomials ismore straightforward, owing to thewell-knownapprox-
imations of these objects by a vector of Poisson random variables.

For each j , let Z j be a Poisson random variable with parameter 1/j , and
such that Z1, Z2, . . . , are independent. The next proposition states that, apart
from the very longest cycles, the cycle lengths of a random permutation have
a joint Poisson distribution.

Lemma 2.3 For a random permutation σ ∈ Sn, let C j (σ ) denote the number
of cycles in σ of length j . Then for r = o(n) as n →∞ we have

dTV
(
(C1(σ ), . . . ,Cr (σ )), (Z1, . . . , Zr )

)
= o(1).

Proof In fact there is a bound
 e−n/r uniformly in n and r ; see [3].

The next proposition states a similar phenomenon for the degrees of the
irreducible factors of a random polynomial over Fq , except that now one must
also exclude the very smallest degrees as well.

Lemma 2.4 Let q be a prime power. Let f be a random, monic polynomial in
Fq [t] of degree n. Let Yd( f ) denote the number of monic, irreducible factors
of f which have degree d. Suppose that 10 log n � r � s � n

10 log n . Then

dTV
(
(Yr ( f ), . . . , Ys( f )), (Zr , . . . , Zs)

)
= o(1)

as n →∞.
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Proof For r � i � s, let Ẑi be a negative binomial random variable4

NB(1i
∑

j |i μ(i/j)q j , q−i ). Corollary 3.3 in [2] implies that

dTV
(
(Yr ( f ), . . . , Ys( f )), (Ẑr , . . . , Ẑs)

)

 1/n (2.6)

uniformly in q, n, r, s as in the statement of the lemma. Note that

1

i

∑

j |i
μ(i/j)q j = 1

i
qi (1+ O(q−i/2)) = 1

i
qi (1+ O(1/n))

for i � r � 10 log n. A routine if slightly lengthy calculation with (2.5) gives

dTV(Zi , Ẑi )
 1/n.

Combining this with (2.4), we arrive at

dTV((Zr , . . . , Zs), (Ẑr , . . . , Ẑs)) 
 s/n = o(1).

The conclusion follows from this, (2.6) and the triangle inequality.

Proof of Theorem 4 Fix ε > 0, letn be large enough in terms of ε, letu = log n
and v = n/ log n. For a random permutation σ ∈ Sn , letC = { j : C j (σ ) � 1},
and define the random set Ã = { j : Z j � 1}. As in the proof of Lemma 2.2,
(2.4) and (2.5) imply that

dTV(A ∩ (u, v], Ã ∩ (u, v])

∑

u<i�v

1

i2

 1

u
.

Lemma 2.3 implies that

dTV(Ã ∩ (u, v],C ∩ (u, v]) = o(1) (n →∞).

Hence,

dTV(A ∩ (u, v],C ∩ (u, v]) � dTV(A ∩ (u, v], Ã ∩ (u, v])
+ dTV(Ã ∩ (u, v],C ∩ (u, v])

= o(1)

4 We say that the random variable X has the distribution NB(r, p) with r ∈ N and p ∈ (0, 1]
if X takes values in Z�0 with the following frequency: P(X = k) = (k+r−1r−1

)
(1 − p)k pr for

each k ∈ Z�0.
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as n →∞. By Lemma 2.1, with probability→ 1 as n →∞, A ∩ (u, v] has
M distinct subsets A1, . . . , AM with equal sums, where M = �(log n)ζ+−ε�.
Hence, C has distinct subsets S1, . . . , SM with equal sums with probability
→ 1 as n → ∞. Each subset S j corresponds to a distinct divisor of σ , the
size of the divisor being the sum of elements of S j .

Proof of Theorem 5 The proof is essentially the same as that of Theorem 4,
except now we take u = 10 log n, v = n

10 log n , C = { j : Y j ( f ) � 1} and use
Lemma 2.4 in place of Lemma 2.3.

3 Overview of the paper

The purpose of this section is to explain the main ideas that go into the proof
of Theorem 2 in broad strokes, as well as to outline the structure of the rest of
the paper. The remainder of the paper splits into three parts, and we devote a
subsection to each of these. Finally, in Sect. 3.4, wemake some brief comments
about the relationship of our work to previous work of Maier and Tenenbaum
[20,22]. Further comments on this connection are made in Appendix C.

3.1 Part II: equal sums and the optimization problem

Part II provides a very close link between the key quantity βk (which is defined
in Problem 1 and appears in all four of Theorems 2, 3, 4 and 5) and a quantity
γk , which on the face of it appears to be of a completely different nature, being
the solution to a certain optimization problem (Problem 3.7 below) involving
the manner in which linear subspaces of Q

k intersect the cube {0, 1}k .
At the heart of this connection is a fairly simple way of associating a flag

to k distinct sets A1, . . . , Ak ⊂ A, where A is a given set of integers (that we
typically generate logarithmically).

Definition 3.1 (Flags) Let k ∈ N. By an r -step flag we mean a nested
sequence

V : 〈1〉 = V0 � V1 � V2 � · · · � Vr � Q
k

of vector spaces.5 Here 1 = (1, 1, . . . , 1) ∈ Q
k . A flag is complete if

dim Vi+1 = dim Vi + 1 for i = 0, 1, . . . , r − 1.

To each choice of distinct sets A1, . . . , Ak ⊂ A, we associate a flag as
follows. The Venn diagram of the subsets A1, . . . , Ak produces a natural

5 In the literature, the term “flag”means that the inclusions are proper, i.e., dim(Vi+1) > dim Vi
for all i . In this paper, we will use the term more broadly to refer to an arbitrary nested sequence
of subspaces.
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partition of A into 2k subsets, which we denote by Bω for ω ∈ {0, 1}k .
Here Ai = �ω:ωi=1Bω. We iteratively select vectors ω1, . . . , ωr to maxi-
mize

∏r
j=1(max Bω j ) subject to the constraint that 1, ω1, . . . , ωr are linearly

independent over Q. We then define6 Vj = Span(1, ω1, . . . , ω j ) for j =
0, 1, . . . , r .

The purpose of making this construction is difficult to describe precisely in
a short paragraph. However, the basic idea is that the vectors ω1, . . . , ωr and
the flag V provide a natural frame of reference for studying the equal sums
equation

∑

a∈A1

a = · · · =
∑

a∈Ak

a. (3.1)

Suppose now that A1, . . . , Ak ⊂ [Dc, D]. Then the construction just
described naturally leads, in addition to the flag V , to the following further
data: thresholds c j defined by max Bω j ≈ Dcj , and measures μ j on {0, 1}k ,
which capture the relative sizes of the sets Bω ∩ (Dcj+1, Dcj ], ω ∈ {0, 1}k .
Full details of these constructions are given in Sect. 4.

The above discussion motivates the following definition, which will be an
important one in our paper.

Definition 3.2 (Systems) Let (V , c, μ) be a triple such that:

(a) V is an r -step flagwhosemembersVj are distinct and spanned by elements
of {0, 1}k ;

(b) V is nondegenerate, which means that Vr is not contained in any of the
subspaces {x ∈ Q

k : xi = x j }, i �= j ;
(c) c = (c1, . . . , cr , cr+1) with 1 � c1 � · · · � cr+1 � 0;
(d) μ = (μ1, . . . , μr ) is an r -tuple of probability measures;
(e) Supp(μi ) ⊂ Vi ∩ {0, 1}k for all i .
Then we say that (V , c, μ) is a system. We say that a system is complete if its
underlying flag is, in the sense of Definition 3.1.

Remark The nondegeneracy condition (b) arises naturally from the construc-
tion described previously, provided one assumes the sets A1, . . . , Ak are
distinct.

We have sketched how a system (V , c, μ) may be associated to any k
distinct sets A1, . . . , Ak ⊂ [Dc, D]. Full details are given in Sect. 4.1. There
is certainly no canonical way to reverse this and associate sets Ai to a system
(V , c, μ), even if the numbers μ j (ω) are all rational. However, given a set

6 Here and throughout the paper, Span(v1, . . .) denotes the Q-span of vectors v1, . . ..
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A ⊂ [Dc, D] (which, in our paper, will be a logarithmic random set) and
a system (V , c, μ), there is a natural probabilistic way to construct subsets
A1, . . . , Ak ⊂ A via their Venn diagram (Bω)ω∈{0,1}k : if a ∈ A∩(Dcj+1, Dcj ]
then we put a in Bω with probability μ j (ω), these choices being independent
for different as.

This will be indeed be roughly our strategy for constructing, given a loga-
rithmic random set A ⊂ [Dc, D], distinct subsets A1, . . . , Ak ⊂ A∩ [Dc, D]
satisfying the equal sums condition (3.1). Very broadly speaking, wewill enact
this plan in two stages, described in Sects. 5 and 6 respectively. In Sect. 5,which
is by far the deeper part of the argument, we will show that (almost surely in
A) the distribution of tuples (

∑
a∈Ai

a)ki=1 is dense in a certain box adapted to
the flag V , as the Ai range over the random choices just described. Then, in
Sect. 6, wewill show that (almost surely) one of these tuples can be “corrected”
to give the equal sums condition (3.1). This general mode of argument has its
genesis in the paper [20] of Maier and Tenenbaum, but the details here will
look very different. In addition to the fact that linear algebra and entropy play
no role in Maier and Tenenbaum’s work, they use a second moment argument
which does not work in our setting. Instead we use an �p estimate with p ≈ 1,
building on ideas in [17,18].

In analysing the distribution of tuples (
∑

a∈Ai
a)ki=1, the notion of entropy

comes to the fore.

Definition 3.3 (Entropy of a subspace) Suppose that ν is a finitely supported
probability measure on Q

k and that W � Q
k is a vector subspace. Then we

define

Hν(W ) := −
∑

x

ν(x) log ν(W + x).

Remark This the (Shannon) entropyof the distributionon cosetsW+x induced
by ν. Entropy will play a key role in our paper, and basic definitions and
properties of it are collected in Appendix B.

More important than the entropy itself will be a certain quantity e(V ′, c, μ),
assigned to subflags of V . We give the relevant definitions now.

Definition 3.4 (Subflags) Suppose that

V : 〈1〉 = V0 � V1 � V2 � · · · � Vr � Q
k

is a flag. Then another flag

V ′ : 〈1〉 = V ′0 � V ′1 � V ′2 � · · · � V ′r � Q
k
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is said to be a subflag of V if V ′i � Vi for all i . In this case we write V ′ � V .
It is a proper subflag if it is not equal to V .

Definition 3.5 (e-value) Let (V , c, μ) be a system, and let V ′ � V be a
subflag. Then we define the e-value

e(V ′, c, μ) :=
r∑

j=1
(c j − c j+1)Hμ j (V

′
j )+

r∑

j=1
c j dim(V ′j/V ′j−1). (3.2)

Remark Note that

e(V , c, μ) =
r∑

j=1
c j dim(Vj/Vj−1), (3.3)

since condition (e) of Definition 3.2 implies that Hμ j (Vj ) = 0 for 1 � j � r .

Definition 3.6 (Entropy condition) Let (V , c, μ) be a system.We say that this
system satisfies the entropy condition if

e(V ′, c, μ) � e(V , c, μ) for all subflags V ′ of V , (3.4)

and the strict entropy condition if

e(V ′, c, μ) > e(V , c, μ) for all proper subflags V ′ of V . (3.5)

We cannot give a meaningful discussion of exactly why these definitions
are the right ones to make in this overview. Indeed, it took the authors over a
year of working on the problem to arrive at them. Let us merely say that

• If a random logarithmic set A ∩ [Dc, D] almost surely admits distinct
subsets A1, . . . , Ak satisfying the equal sums condition (3.1), then some
associated system (V , c, μ) satisfies the entropy condition (3.4). For
detailed statements and proofs, see Sect. 4.

• If a system (V , c, μ) satisfies the strict entropy condition (3.5) then the
details of the construction of sets A1, . . . , Ak satisfying the equal sums
condition, outlined above, can be made to work. For detailed statements
and proofs, see Sects. 5 and 6.

With the above definitions and discussion in place, we are finally ready to
introduce the key optimization problem, the study of which will occupy a large
part of our paper.

Problem 3.7 (The optimisation problem) Determine the value of γk , defined
to be the supremum of all constants c for which there is a system (V , c, μ)

such that cr+1 = c and the entropy condition (3.4) holds.
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Similarly, determine γ̃k , defined to be the supremum of all constants c for
which there is a system (V , c, μ) such that cr+1 = c and the strict entropy
condition (3.5) holds.

The precise content of the two bullet points above, and the main result of
Part II of the paper, is then the following theorem.

Theorem 7 For every k � 2, we have

γ̃k � βk � γk .

Remark 3.1 (a) Presumably γk = βk = γ̃k . Indeed, it is natural to think that
any system satisfying (3.4) can be perturbed an arbitrarily small amount to
satisfy (3.5). However, we have not been able to show that this is possible in
general.

(b) It is not a priori clear that γk and γ̃k exist and are positive. Thiswill follow,
e.g., from our work on “binary systems” in part IV of the paper, although there
is an easier way to see this using the original Maier–Tenenbaum argument,
adapted to our setting; see Appendix C for a sketch of the details.

3.2 Part III: the optimization problem

Part III of the paper is devoted to the study of Problem 3.7 in as much general-
ity as we can manage. Unfortunately we have not yet been able to completely
resolve this problem, and indeed numerical experiments suggest that a com-
plete solution, for all k, could be very complicated.

The main achievement of Part III is to provide a solution of sorts when the
flag V is fixed, but one is free to choose c and μ. Write γk(V ) (or γ̃k(V )) for
the solution to this problem, that is, the supremum of values c = cr+1 � 0 for
which a system (V , c, μ) exists satisfying (3.4) (or (3.5)).

Our solution applies only to rather special flags V , but this is unsurprising:
for “generic” flags V , one would not expect there to be any choice of c, μ,
for which cr+1 > 0, and so γk(V ) = 0 in these cases. Such flags are of no
interest in this paper.

We begin, in Sect. 7, by solving an even more specific problem in which
the entropy condition (3.4) is only required to hold for certain very special
subflags V ′ of V , which we call basic flags. These are flags of the form

V ′
basic(m) : 〈1〉 = V0 � V1 � · · · � Vm−1 � Vm = Vm = · · · = Vm .

We call this the restricted entropy condition; to spell it out, this is the condition
that
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e(V ′
basic(m), c, μ) � e(V , c, μ) (3.6)

for m = 0, 1, . . . , r − 1 (the case m = r being vacuous).
We write γ res

k (V ) for the maximum value of cr+1 (over all choices of c and
μ such that (V , c, μ) is a system) subject to this condition. Clearly

γ res
k (V ) � γk(V ). (3.7)

The main result of Sect. 7 is Proposition 7.7, which states that under certain
conditions we have

γ res
k (V ) = log 3− 1

log 3+∑r−1
i=1

dim(Vi+1/Vi )
ρ1···ρr−1

, (3.8)

for certain parameters ρ1, . . . , ρr−1 depending on the flag V .
To define these, one considers the “tree structure” on {0, 1}k ∩ Vr induced

by the flag V : the “cells at level j” are simply intersections with cosets of Vj ,
and we join a cell C at level j to a “child” cell C ′ at level j − 1 iff C ′ ⊂ C .
The ρi are then defined by setting up a certain recursively-defined function
on this tree and then solving what we term the ρ-equations. The details may
be found in Sect. 7.2. Proposition 7.7 also describes the measures μ and the
parameters c for which this optimal value is attained.

In Sect. 8, we relate the restricted optimisation problem to the real one,
giving fairly general conditions under which we in fact have equality in (3.7),
that is to say γ res

k (V ) = γk(V ). The basic strategy of this section is to show that
for the c and μ which are optimal for the restricted optimisation problem, the
full entropy condition (3.4) is in fact a consequence of the restricted condition
(3.6).

The arguments of this sectionmake heavy use of the submodularity inequal-
ity for entropy, using this to drive a kind of “symmetrisation” argument. In this
way one can show that an arbitrary e(V ′, c, μ) is greater than or equal to one
in which V ′ is almost a basic flag; these “semi-basic” flags are then dealt with
by hand.

To add an additional layer of complexity, we build a perturbative device into
this argument so that our results also apply to γ̃k(V ).

3.3 Part IV: binary systems

The final part of the paper is devoted to a discussion of a particular type of flag
V , the binary flags, and the associated optimal systems (V , c, μ), which we
call binary systems.
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Definition 3.8 (Binary flag of order r) Let k = 2r be a power of two. Identify
Q

k with Q
P[r ] (where P[r ] means the power set of [r ] = {1, . . . , r}) and

define an r -step flag V , 〈1〉 = V0 � V1 � · · · � Vr = Q
P[r ], as follows: Vi

is the subspace of all (xS)S⊂[r ] for which xS = xS∩[i] for all S ⊂ [r ].
Whilst the definition is, in hindsight, rather simple and symmetric, it was

motivated by extensive numerical experiment. We believe these flags to be
asymptotically optimal for Problem 3.7, though we currently lack a proof.

There are two main tasks in Part IV. First, we must verify that the various
conditions necessary for the results of Part III hold for the binary flags. This is
accomplished in Sect. 10, the main statements being given in Sect. 9. At the
end of Sect. 9 we give the proof (and complete statement) of Theorem 2(a),
conditional upon the results of Sect. 10. This is the deepest result in the paper.

Following this we turn to Theorem 2(b). There are two tasks here. First,
we prove that the parameters ρi for the binary flags (which do not depend on
r ) tend to a limit ρ. This is not at all straightforward, and is accomplished in
Sect. 11.

After that, in Sect. 12, we describe this limit in terms of certain recurrence
relations, which also provide a useful means of calculating it numerically.
Theorem 2(b) is established at the very end of the paper.

Most of Part IV could, if desired, be read independently of the rest of the
paper.

3.4 Relation to previous work

Previous lower bounds for the a.s. behaviour of � are contained in two papers
of Maier and Tenenbaum [20,22]. Both of these bounds can be understood
within the framework of our paper.

The main result of [20] follows from the fact that

γ̃2 � 1− 1

log 3
. (3.9)

Indeed byTheorem7 it then follows thatβ2 � 1− 1
log 3 , and then fromTheorem

3 it follows that for almost every n we have

�(n)� (log log n)
− log 2/ log(1− 1

log 3 )+o(1)
. (3.10)

The exponent appearing here is 0.28754048957 . . . and is exactly the one in
[20, Theorem 2].

The bound (3.9) is very easy to establish, and a useful exercise in clarify-
ing the notation we have set up. Take k = 2, r = 1 and let V be the flag
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〈1〉 = V0 � V1 = Q
2. Let c = (c1, c2) with c1 = 1 and

c2 < 1− 1

log 3
. (3.11)

Let μ1 be the measure which assigns weight 1
3 to the points 0 = (0, 0),

(0, 1) and (1, 0) in {0, 1}2 (this being a pullback of the uniform measure on
{0, 1}2/V0).

There are only two subflags V ′ of V , namely V itself and the basic flag
V ′
basic(0) : 〈1〉 = V ′0 � V ′1 with V ′0 = V ′1 = V0 = 〈1〉. The entire content of the

strict entropy condition (3.5) is therefore that

e(V ′
basic(0), c, μ) > e(V , c, μ),

which translates to

(c1 − c2)Hμ1(V0) > c1.

We have Hμ1(V0) = log 3 and c1 = 1, and so this translates to precisely
condition (3.11).

Remark (a) With very little more effort (appealing to Lemma B.2) one can
show that γ2 = β2 = γ̃2 = 1− 1

log 3 .
(b) This certainly does not provide a shorter proof of Theorem 3.10 than

the one Maier and Tenenbaum gave, since our deductions are reliant on the
material in Sects. 5 and 6, which constitute a significant elaboration of the
ideas from [20].

The main result of [22] (Theorem 1.4 there) follows from the lower bound

γ̃2r �
(
1− 1

log 3

)( 1− 1/ log 3

1− 1/ log 27

)r−1
, (3.12)

which of course includes (3.9) as the special case r = 1. Applying Theorem
7 and Theorem 3, then letting r →∞, we recover [22, Theorem 1.4] (quoted
as Theorem MT in Sect. 1), namely the bound

�(n) � (log log n)

log 2

log
(
1−1/ log 27
1−1/ log 3

)−o(1)

for almost all n. The exponent here is 0.33827824168 . . ..
To explain how (3.12) may be seen within our framework requires a little

more setting up. Since it is not directly relevant to our main arguments, we
defer this to Appendix C.
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Part II. Equal sums and the optimisation problem

4 The upper bound βk � γk

In this section we establish the bound in the title. We recall the definitions of
βk (Problem 1) and γk (Problem 3.7). We will in fact show a bit more, that if
c > γk then

P
(
there are distinct A1, . . . , Ak ∈ [Dc, D] with equal sums

)→ 0

(4.1)

as D→∞.

4.1 Venn diagrams and linear algebra

Let 0 < c < 1 be some fixed quantity, and let D be a real number, large
in terms of c. Suppose that A1, . . . , Ak ⊂ [Dc, D] are distinct sets. In this
section we show that there is a rather natural way to associate a complete
system (V , c, μ) (in the sense of Definition 3.2) to these sets. This system
encodes the “linear algebra of the Venn diagram of the Ai” in a way that turns
out to be extremely useful.

The Venn diagram of the Ai has 2k cells, indexed by {0, 1}k in a natural
way. Thus for each ω = (ω1, . . . , ωk) ∈ {0, 1}k , we define

Bω :=
⋂

i :ωi=1
Ai

⋂

i :ωi=0
(Ai )

c, (4.2)

The flag V . Set � := {ω : Bω �= ∅}. We may put a total order ≺
on � by writing ω′ ≺ ω if and only if max Bω′ < max Bω. We now
select r special vectors ω1, . . . , ωr ∈ �, with r � k − 1, in the fol-
lowing manner. Let ω1 = max≺(�\{0, 1}). Assuming we have chosen
ω1, . . . , ω j such that 1, ω1, . . . , ω j are linearly independent over Q, let
ω j+1 = max(�\ Span(1, ω1, . . . , ω j )), as long as such a vector exists.

Let 1, ω1, . . . , ωr be the set of vectors produced when this algorithm termi-
nates. By construction, � ⊂ Span(1, ω1, . . . , ωr ), or in other words Bω = ∅
whenever ω ∈ {0, 1}k\Span(1, ω1, . . . , ωr ).

Now define an r -step flag V : 〈1〉 = V0 < V1 < · · · < Vr by setting
Vj := Span(1, ω1, . . . , ω j ) for 1 � j � r .

The parameters c. Now we construct the parameters c : 1 � c1 � c2 �
· · · � cr+1. For j = 1, . . . , r , we define

c j = 1+ �logmax Bω j − log D�
log D

. (4.3)
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Thus

max Bω j ∈ (
1

e
Dc j , Dcj ] (4.4)

for j = 1, . . . , r . Also set cr+1 = c. (The ceiling function �·� produces a
“coarse” or discretised set of possible thresholds ci , suitable for use in a union
bound later on; see Lemma 4.2 below. The offset of − log D is to ensure that
c1 � 1.)

The measures μ. Set

B ′ω :=
{
Bω\{max Bω j } if ω = ω j for some j,
Bω otherwise.

(4.5)

Define

μ j (ω) := #
(
B ′ω ∩ (Dcj+1, Dcj ])

∑
ω #
(
B ′ω ∩ (Dcj+1, Dcj ]) , (4.6)

with the convention that if the denominator vanishes, then μ j (ω) = 1ω=0.

Remark It is important thatwe use the B ′ω here, rather than the Bω, for technical
reasons that will become apparent in the proof of Proposition 4.4 below.

Lemma 4.1 (V , c, μ) is a complete system (in the sense of Definition 3.2).

Proof We need to check that Supp(μ j ) ⊂ Vj for j = 1, . . . , r . By def-
inition, if μ j (ω) > 0 then Bω ∩ (Dcj+1, D] �= ∅. This implies that
max Bω > Dcj+1 . On the other hand, (4.4) implies that Dcj+1 � max Bω j+1 ,
and thus max Bω > max Bω j+1 . By the construction of the vectorsωi , we must
have ω ∈ Span(1, ω1, . . . , ω j ) = Vj .

We also need to check thatV is nondegenerate, also in the sense ofDefinition
3.2, that is to say Vr is not contained in any hyperplane {ω ∈ Q

k : ωi = ω j }.
This follows immediately from the fact that the Ai are distinct. Since

Ai�A j =
⋃

ω∈{0,1}k
ωi �=ω j

Bω,

and so there is certainly some ω with ωi �= ω j and Bω �= ∅.
Note that, in addition to the system (V , c, μ), the procedure described above

outputs a sequence ω1, . . . , ωr of elements of {0, 1}k . We call the ensemble
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consisting of the system and the ωi the linear data associated to A1, . . . , Ak .
We will only consider the event A ∈ E , where

E :=
{
A ⊆ [Dc, D] : ∣∣#(A ∩ (Dα, Dβ])− (β − α) log D

∣
∣

� log3/4 D (c � α � β � 1)
}
. (4.7)

By Lemma A.5, P(A ∈ E) = 1− o(1) as D→∞. In particular, if A ∈ E , we
have |A ∩ [Dc, D]| � 2 log D for large enough D.

Lemma 4.2 Fix k ∈ Z�2 and suppose that A ∈ E . The number of differ-
ent ensembles of linear data arising from distinct sets A1, . . . , Ak ⊂ A is

 (log D)O(1).

Proof The number of choices forω1, . . . , ωr is O(1), and hence the number of
V is also Ok(1). The thresholds c j are drawn from a fixed set of size log D, and
the numerators and denominators of theμ j (ω) are all integers� 2 log D.

Remark 4.1 The O(1) and the
 here both depend on k. However we regard
k as fixed here and do not indicate this dependence explicitly. If one is more
careful then one can obtain results that are effective up to about k ∼ log log D.

4.2 A local-to-global estimate

Ournext step towards establishing the boundβk � γk is to pass from the “local”
event that a random logarithmic set A possesses a k-tuple of equal subsums
(
∑

a∈A1
a, . . . ,

∑
a∈Ak

a) to the “global” distribution of such subsums (with
the subtlety that we must mod out by 1). The latter is controlled by the set
LV ,c,μ(A) defined below.

Definition 4.3 Given a set of integers A and a system (V , c, μ), we write
LV ,c,μ(A) for the set of vectors

∑

ω∈{0,1}k
ω
∑

a∈Bω

a (mod 1),

where (Bω)ω∈{0,1}k runs over all partitions of A such that

μ j (ω) = #
(
Bω ∩ (Dcj+1, Dcj ])

#
(
A ∩ (Dcj+1, Dcj ]) (1 � j � r, ω ∈ {0, 1}k). (4.8)

123



1052 K. Ford et al.

Proposition 4.4 Fix an integer k � 2 and a parameter 0 < c < 1. Let D be
large in terms of c and k, and let A ⊂ [Dc, D] be a logarithmic random set.
Let

Ẽ =
{
A ⊆ [Dc, D] : ∣∣#(A ∩ (Dα, Dβ])− (β − α) log D

∣∣

� 2 log3/4 D (c � α � β � 1)
}
. (4.9)

Then we have

P

(
∃ distinct A1, . . . , Ak ⊆ A such that

∑

a∈A1

a = · · · =
∑

a∈Ak

a

)

� (log D)O(1) sup
(V ,c,μ)

D−(c1+···+cr )E1A∈Ẽ |LV ,c,μ(A)| + P(Ec).

(4.10)

Here, the supremum is over all complete systems (V , c, μ) with cr+1 = c.

Proof Recall the definition of the set E , given in Eq. (4.7). We have

P

(
∃ distinct A1, . . . , Ak ⊆ A such that

∑

a∈A1

a = · · · =
∑

a∈Ak

a

)

� P(Ec)+
∑

V ,c,μ,(ωi )

∑

A∈S (V ,c,μ,(ωi ))

P(A = A),

where, given linear data {(V , c, μ), ω1, . . . , ωr }, we write S (V , c, μ, (ωi ))

to denote the set of all A ∈ E that have k distinct subsets (A1, . . . , Ak) with
equal sums-of-elements and associated linear data {(V , c, μ), ω1, . . . , ωr }.
(The set A appearing in (4.10) will be constructed below by removing certain
elements from the logarithmic set A we started with; this new set belongs to
Ẽ , but not necessarily to E .)

Let us fix a choice of linear data {(V , c, μ), ω1, . . . , ωr } and let us abbre-
viate S for the set S (V , c, μ, (ωi )). An elementary probability calculation
gives

E(S ) :=
∑

A∈S
P(A = A) =

∑

A∈S

∏

Dc<a�D

(
1− 1

a

)∏

a∈A

1

a − 1
. (4.11)

For each A ∈ S , fix a choice of (A1, . . . , Ak)with equal sums and such that
the linear data associated to (A1, . . . , Ak) is {(V , c, μ), ω1, . . . , ωr }. Let Bω

be the cells of the Venn diagram corresponding to the Ai , as in (4.2), and then
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define the B ′ω as in (4.5). Recall that (4.6) holds, and define K j = max Bω j for
1 � j � r . In particular, K1 > · · · > Kr . Let A′ = A\{K1, . . . , Kr }. Note
that A′ ∈ Ẽ if D is large enough in terms of k. Moreover, we have

∑

a∈Ai

a =
∑

ω∈{0,1}k
ωi

∑

a∈Bω

a.

Therefore, the equal sums condition is equivalent to

∑

ω∈{0,1}k
ω
∑

a∈Bω

a = 0 (mod 1),

and hence

r∑

j=1
K jω

j = −
∑

ω

ω
∑

a′∈B′ω
a′ (mod 1). (4.12)

Since 1, ω1, . . . , ωr are linearly independent, the value of the right-hand side
of (4.12) uniquely determines the numbers K j , which themselves uniquely
determine A in terms of the sets B ′ω. Therefore, given A′ ∈ Ẽ , the number of
possible sets A is, by Definition 4.3, at most |LV ,c,μ(A′)|. Moreover by (4.4)
we have K j > 1

e D
c j for every j , and therefore

∏

a∈A

1

a − 1

 D−(c1+···+cr ) ∏

a∈A′
1

a − 1
. (4.13)

We sum over A′, and reinterpret the product on the right-hand side of (4.13)
in terms of P(A = A′). This gives

E(S )
 D−(c1+···+cr ) ∑

A′∈Ẽ
|LV ,c,μ(A′)|

∏

Dc<a�D

(
1− 1

a

) ∏

a∈A′
1

a − 1

= D−(c1+···+cr ) ∑

A′∈Ẽ
|LV ,c,μ(A′)| · P(A = A′)

= D−(c1+···+cr )E1A∈Ẽ · |LV ,c,μ(A)|.

By Lemma 4.2 there are (log D)O(1) possible choices for the linear data
{(V , c, μ), ω1, . . . , ωr }, and the proof is complete.
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4.3 Upper bounds in terms of entropies

Having established Proposition 4.4, we turn to the study of the setsLV ,c,μ(A).
We will bound their cardinality in terms of the quantities e(V ′, c, μ) from
Definition 3.2 with V ′ a subflag of V .

Lemma 4.5 Let (V , c, μ) be a system and let A ∈ Ẽ , where Ẽ is defined in
(4.9). Then, for any subflag V ′ of V ,

|LV ,c,μ(A)| 
V ′ e
O(log3/4 D)De(V ′,c,μ). (4.14)

Remark The implied constant in the 
V ′ could be made explicit if desired
(in terms of the quantitative rationality of a basis for the spaces in V ′) but we
have no need to do this.

Proof of Lemma 4.5 Given a set X ⊂ [Dc, D],write X ( j) := X∩(Dcj+1, Dcj ]
for j = 1, . . . , r . Throughout the proof, we will assume that A is a set of
integers and that (Bω)ω∈{0,1}k runs over all partitions of A such that (4.8) is
satisfied. In our new notation, this may be rewritten as

|B( j)
ω | = μ j (ω)|A( j)|, j = 1, . . . , r, ω ∈ {0, 1}k . (4.15)

For each j , 1 � j � r , fix a linear projection Pj : Vj → V ′j , and set
Q j := idVj −Pj , so that Q j maps Vj to itself. Set

L P(A) :=
{ r∑

j=1

∑

ω∈{0,1}k
ω∈Vj

Pj (ω)
∑

a∈B( j)
ω

a (mod 1) : (4.15) is satisfied
}

and

L Q(A) :=
{ r∑

j=1

∑

ω∈{0,1}k
ω∈Vj

Q j (ω)
∑

a∈B( j)
ω

a (mod 1) : (4.15) is satisfied
}
.

Since

∑

ω∈{0,1}k
ω
∑

a∈Bω

a =
r∑

j=1

∑

ω∈{0,1}k
ω∈Vj

Pj (ω)
∑

a∈B( j)
ω

a +
r∑

j=1

∑

ω∈{0,1}k
ω∈Vj

Q j (ω)
∑

a∈B( j)
ω

a,

it follows immediately from the definition ofLV ,c,μ(A) (Definition 4.3) that

|LV ,c,μ(A)| � |L P(A)| · |L Q(A)|. (4.16)
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We claim that

|L P(A)| 
V ′ (log D)r D
∑r

j=1 c j dim(V ′j/V ′j−1) (4.17)

and that

|L Q(A)| � eO(log3/4 D)D
∑r

j=1(c j−c j+1)Hμ j (V
′
j ). (4.18)

These bounds, substituted into (4.16), immediately imply Lemma 4.5.
It remains to establish (4.17) and (4.18), which are proven in quite different

ways. We begin with (4.18), which is a “combinatorial” bound, in that there
cannot be too many choices for the data making up the sums in L Q(A). For
this, observe that Q j vanishes on V ′j and hence is constant on cosets of V ′j .
Therefore the elements ofL Q(A) are determined by the sets

⋃
ω∈v j+V ′j B

( j)
ω ,

over all v j ∈ Vj/V ′j and 1 � j � r . By (4.15),

∣
∣∣
⋃

ω∈v j+V ′j
B( j)

ω

∣
∣∣ = μ j (v j + V ′j )|A( j)|,

and by Lemma B.1 the number of ways of partitioning A( j) into sets of these
sizes is bounded above by eH(p( j))|A( j)|, where p( j) = (μ j (v j + V ′j ))v j∈Vj/V ′j .

By Definition 3.3, H(p( j)) = Hμ j (V
′
j ). Taking the product over j = 1, . . . , r

gives

|L Q(A)| � e
∑r

j=1 Hμ j (V
′
j )|A( j)|

.

From the assumption that A ∈ Ẽ , where Ẽ is defined in (4.9), we have

|A( j)| = (c j − c j+1) log D + O(log3/4 D).

Using this, and the trivial boundHμ j (V
′
j ) � log |Supp(μ j )| � log(2k), (4.18)

follows.
Nowwe prove (4.17), which is a “metric” bound, the point being that none of

the sums inL P(A) can be too large in an appropriate sense. Pick a basis forQ
k

adapted to V ′: that is, a basis e1, . . . , ek such that V ′j = Span(e1, . . . , edim V ′j )

for each j , and e1 = 1. There are positive integersM, N = OV ′,V (1) such that,
in this basis, the ei -coordinates of Pj (ω) are all rationals with denominator M
and absolute value at most N .
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Now for fixed j and ω, if D is large then
∑

a∈B( j)
ω

a � Dcj log D, since

B( j)
ω ⊂ (Dcj+1, Dcj ] and by the assumption that A ∈ Ẽ . Thus

∑

ω∈{0,1}k
ω∈Vj

Pj (ω)
∑

a∈B( j)
ω

a ∈
{ ∑

1�i�dim(V ′j )
xi ei ∈ Q

k : Mxi ∈ Z,

|xi | � r N Dc j log D (for all i)
}
,

and so the expression
r∑

i=1
∑

ω∈{0,1}k∩Vj

Pj (ω)
∑

a∈B( j)
ω

a belongs to the set

{ ∑

1�i�k

xi ei ∈ Q
k : Mxi ∈ Z and |xi | � r2NDcj log D

for dim V ′j−1 < i � dim V ′j and 1 � j � r

}
.

Wemust bound the number of different values that the expression
∑k

i=1 xi ei
can take mod 1 when the coefficients x1, . . . , xk are as above. Since e1 = 1
and x1M ∈ Z, given x2, . . . , xk there are at most M possibilities for x1 mod
1. In addition, there are


 (r2MN )k−1(log D)r D
∑r

j=1 c j dim(V ′j/V ′j−1)

possibilities for x2, . . . , xk , thereby concluding the proof of (4.17) and hence
of Lemma 4.5.

A potential problemwith applying Lemma 4.5 is that there may be infinitely
many subflags V ′ to consider, and the constant implied by the 
-symbol
depends on V ′. As we shall see in the next Lemma, however, we may reduce
the problem to consideration of a finite number of subflags, a tool which will
be used in several parts of this paper.

Lemma 4.6 For a given k, the set of all flags

V ′ : 〈1〉 = V ′0 � V ′1 � V ′2 � · · · � V ′r � Q
k

may be partitioned into Ok(1) equivalence classes such that any two flags
V ′,V ′′ in the same equivalence class satisfy dim V ′j = dim V ′′j for all j ,
and for any thresholds c satisfying c1 � c2 � · · · � cr+1 and probability
measures μ supported on {0, 1}k , we have Hμ j (V

′
j ) = Hμ j (V

′′
j ) for all j and

e(V ′, c, μ) = e(V ′′, c, μ).
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Proof We say that two subflagsV ′,V ′′ are equivalent if V ′j , V ′′j have the same

intersection with {0, 1}k and dim V ′j = dim V ′′j , for all j = 1, . . . , r . There
are clearly only Ok(1) equivalence classes, and the desired properties hold
for members of the same equivalence class by the definition of Hμ j (V

′
j ) and

e(V ′, c, μ).

Armed with Lemma 4.6, we immediately obtain from Lemma 4.5, applied
to one representative from each class, the following corollary.

Corollary 4.7 Let (V , c, μ) be a system and suppose that A ∈ Ẽ . Then

|LV ,c,μ(A)| 
 eO(log3/4 D) min
V ′�V

De(V ′,c,μ).

4.4 The upper bound in Theorem 7

Wecannowestablish the upper bound inTheorem7, that is to say the inequality
βk � γk .

We start by applying Proposition 4.4. Together with Lemma A.5, it implies
that

P
(∃ distinct A1, . . . , Ak ⊆ A ∩ (Dc, D] with equal sums

)

� (log D)O(1) sup
(V ,c,μ)

D−e(V ,c,μ)
E1A∈Ẽ |LV ,c,μ(A)| + O(e−

1
4 log

1/2 D).

Here, the supremum is over complete systems (V , c, μ) with cr+1 = c, and
we made the observation that for such systems we have

e(V , c, μ) = c1 + · · · + cr ,

an immediate consequence of the definition of e(V , c, μ) and the fact that
Hμ j (Vj ) = 0 for all j and that dim Vj = j +1. Thus we may apply Corollary
4.7, concluding that

P
(∃ distinct A1, . . . , Ak ⊆ A ∩ (Dc, D] with equal sums

)

� Dθ+o(1) + O(e−
1
4 log

1/2 D),

where

θ := sup
(V ,c,μ) : cr+1=c

min
V ′�V

(
e(V ′, c, μ)− e(V , c, μ)) ; (4.19)

the supremum is over all complete systems (V , c, μ) with cr+1 = c, and
the minimum is over all subflags V ′ � V . Note that the minimum exists
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by Lemma 4.6, since we may restrict attention to a finite set of subflags V ′.
Moreover, the supremum is realised, meaning there is a system (V , c, μ) for
which the right side of (4.19) equals θ . Indeed, there are O(1) choices for V ,
and with V fixed the quantities c, μ range over compact subsets of Euclidean
space, with the right side of (4.19) continuous in these variables.

Now, if we assume that c > γk , then the definition of γk in Prob-
lem 3.7 implies that there is no system (V , c, μ) with cr+1 = c and
that satisfies the entropy condition (3.4). Equivalently, if cr+1 = c, then
minV ′�V

(
e(V ′, c, μ) − e(V , c, μ))

)
< 0. In particular, we have θ < 0.

We have thus established (4.1), as required.

Remark In the above proof, (V , c, μ) is a complete system.However, for other
aspects of our problem it is not natural to focus on the completeness condition,
for which reason we omit it from the definition of γk .

5 The lower bound βk � γ̃k

5.1 Introduction and simple reductions

The aim of this section and the next is to establish the lower bound βk � γ̃k .
We begin, in Lemma 5.3 below, by showing that we may restrict our attention
to certain systems satisfying some additional regularity conditions.

We isolate a “folklore” lemma from the proof forwhich it is not easy to find a
good reference. The authors thank Carla Groenland for a helpful conversation
on this topic.

Lemma 5.1 Let V be a subspace of Q
k . Then #(V ∩ {0, 1}k) � 2dim V .

Proof We outline two quite different short proofs. Let d := dim V .
Proof 1. We claim that there is a projection from Q

k onto some set of d
coordinates which is injective on V . From this, the result is obvious, since the
image of {0, 1}k under any such projection has size 2d . To prove the claim, let
e1, . . . , en denote the standard basis on Q

n . Note that if W � Q
n and if none

of the quotient maps Q
n �→ Q

n/〈ei 〉 is injective on W , then W must contain
a multiple of each ei , and therefore W = Q

n . Thus if W is a proper subspace
of Q

n then there is a projection onto some set of (n − 1) coordinates which is
injective on W . Repeated use of this fact establishes the claim.

Proof 2. Suppose that #(V ∩ {0, 1}k) contains 2d + 1 points. These are
all distinct under the natural ring homomorphism π : Z

k → F
k
2, and so

their images cannot lie in a subspace (over F2) of dimension d. Hence there
are v1, . . . , vd+1 ∈ V such that π(v1), . . . , π(vd+1), are linearly indepen-
dent over F2. The (d + 1) × k matrix formed by these π(vi ) therefore has a
(d+1)×(d+1)-subminorwhich is nonzero inF2. The corresponding subminor
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of the matrix formed by the vi is therefore an odd integer, and in particular not
zero. This means that v1, . . . , vd+1 are linearly independent over Q, contrary
to the assumption that dim(V ) = d.

We now record an immediate corollary of Lemma 4.6, which provides a
“gap condition” on the e-quantities.

Lemma 5.2 If the system (V , c, μ) satisfies (3.5) then there is an ε > 0 such
that for all proper subflags V ′,

e(V ′, c, μ) � e(V , c, μ)+ ε. (5.1)

For future reference, the next two lemmas record more information about
optimal systems for γ̃k and for γk , respectively.

Lemma 5.3 Let k ∈ Z�2. We have that γ̃k is the supremum of all c > 0 for
which there is a system (V , c, μ) such that cr+1 = c, (3.5) holds and we
further have:

(a) 1 = c1 > c2 > · · · > cr+1 = c;
(b) Hμ j (Vj−1) > dim(Vj/Vj−1) for 1 � j � r − 1 and

Hμr (Vr−1) >
cr

cr − cr+1
dim(Vr/Vr−1);

(c) dim(V1/V0) = 1;
(d) Supp(μ j ) = Vj ∩ {0, 1}k for j = 1, 2, . . . , r;
(e) for all j and ω, μ j (ω) = μ j (1− ω).

Proof First of all, we show that we may assume that c > 0 and that statement
(d) holds. Indeed, if a system (V , μ, c) satisfies (3.5), then Lemma 5.2 implies
that (5.1) holds for some ε > 0. As the difference between the left and right
sides of (5.1) is continuous in the quantities c j and μ j (ω), we may increase
cr+1 (and possibly some of the other c j ’s) a tiny bit and we may also adjust
the measuresμ j by a small amount, so that cr+1 > 0, statement (d) holds, and
we also have that

e(V ′, c, μ) � e(V , c, μ)+ ε/2

for every proper subflag V ′.
Next, we show that we may take c1 = 1. Indeed, condition (3.5) implies

that e(V ′, c, μ) � e(V , c, μ) � 0 for all V ′ � V by (3.3). Now if c1 < 1
and c̃ j = c j/c1 for each j , then the perturbed system (V , c̃, μ) has a larger
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value of cr+1, and moreover also satisfies (3.5), since for any subflag V ′ we
have

e(V ′, c̃, μ) = (1/c1)e(V
′, c, μ).

Next, consider a system (V , c, μ) satisfying c1 = 1 and cr+1 = c > 0,
and consider the subflag V ′ : 〈1〉 = V ′0 � V ′1 � · · · � V ′r , where V ′i = Vi
for i �= j , and V ′j = Vj−1; that is, V ′ has two consecutive copies of Vj−1.
By assumption (Definition 3.2), we have Vj−1 �= Vj , and thus V ′ is a proper
subflag of V . Thus

e(V ′, c, μ)− e(V , c, μ)

=
{

(c j − c j+1)
(
Hμ j (Vj−1)− dim(Vj/Vj−1)

)
if j � r − 1,

(cr − cr+1)Hμr (Vr−1)− cr dim(Vr/Vr−1) if j = r.

Since the left-hand side is positive, we conclude that (a) and (b) hold.
(c) Let d = dim(V1/V0). By Lemma 5.1, |V1∩{0, 1}k |� 2dim V1 = 2d+1

and hence μ1 is supported on at most 2d+1 − 1 cosets of V0 (since
1 ∈ V0, the points 0 and 1 lie in the same coset). In particular, by Lemma B.2,
Hμ1(V0) � log(2d+1− 1). On the other hand, Hμ1(V0) > d by statement (b).
We must thus have d = 1, which is exactly statement (c).

(e) Assume the system (V , c, μ) satisfies (3.5) and (a). For every j and
ω ∈ Vj , we define

μ̃ j (ω) = μ j (ω)+ μ j (1− ω)

2
.

We then consider the system (V , c, μ̃), and must show that it also satisfies
(3.5). For this, it is enough to show that

Hμ̃ j (V
′
j ) � Hμ j (V

′
j ) (5.2)

for all j . Indeed, we then have, for every proper subflag V ′,

e(V ′, c, μ̃) � e(V ′, c, μ) > e(V , c, μ) = e(V , c, μ̃).

To prove (5.2), write

Hμ j (V
′
j ) =

∑

C

L(μ j (C)), Hμ̃ j (V
′
j ) =

∑

C

L(μ̃ j (C)),
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where the sum is over all cosets C of V ′j and L(t) = −t log t . Thus, since−C
runs over all cosets as C does, we have

Hμ j (V
′
j ) =

∑

C

L(μ j (C))+ L(μ j (−C))

2
.

By the concavity of L , we have

L(μ j (C))+ L(μ j (−C))

2
� L

(μ j (C)+ μ j (−C)

2

)
= L(μ̃ j (C)).

Claim (5.2) then readily follows.

Lemma 5.4 Let k ∈ Z�2 be such that γk > 0. Then we have that γk is the
supremumof all c > 0 for which there is a system (V , c, μ) such that cr+1 = c,
(3.4) holds and we further have:

(a) 1 = c1 > c2 > · · · > cr+1 = c;
(b) Hμ j (Vj−1) � dim(Vj/Vj−1) for 1 � j � r − 1 and

Hμr (Vr−1) � cr
cr − cr+1

dim(Vr/Vr−1);

(c) dim(V1/V0) = 1;
(d)

⋃ j
i=1 Suppμi spans Vj for j = 1, 2, . . . , r;

(e) for all j and ω, μ j (ω) = μ j (1− ω).

Remark As we will see in Part IV, we always have γk > 0.

Proof The proof that we may take c1 = 1 is the same as in Lemma 5.3.
Next, consider a system (V , c, μ) satisfying c1 = 1 and cr+1 = c > 0, and

consider the subflag V ′ : 〈1〉 = V ′0 � V ′1 � · · · � V ′r , where V ′i = Vi for
i � r − 1, and V ′r = Vr−1. Thus

e(V ′, c, μ)− e(V , c, μ) = (cr − cr+1)Hμr (Vr−1)− cr dim(Vr/Vr−1).

Since the left-hand side is � 0 and we have assumed that cr+1 = c > 0 and
that Vr−1 �= Vr , the latter being true from Definition 3.2, we conclude that

cr > cr+1 and Hμr (Vr−1) � cr
cr − cr+1

dim(Vr/Vr−1). (5.3)

This proves part of statements (a) and (b). We shall now prove them fully.
(a) There are always indices 1 = i1 < i2 < · · · < is < is+1 = r + 1 such

that

ci j = · · · = ci j+1−1 > ci j+1 for j = 1, . . . , s.
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Crucially, note that is+1 = r + 1 because cr > cr+1 by (5.3). Next, we define
the system (W , ν,d), where W is an s-step flag and, for all j ∈ {1, . . . , s},
we have

Wj = Vi j+1−1, ν j = μi j+1−1, and d j = ci j+1−1.

In particular, Ws = Vis+1−1 = Vr because is+1 = r , and thus W is a non-
degenerate flag system as per Definition 3.2 (b). Clearly, 1 = d1 > d2 >

· · · > ds > ds+1 = c, so in order to prove part (a), all that remains to show
is that the system (W , ν,d) satisfies the entropy condition (3.4). This follows
by a simple computation. Indeed, let W ′ be a subflag of W . We then define
V ′ � V by letting V ′m = Wj whenever i j � m < i j+1. Hence,

e(V ′, μ, c) =
r∑

m=1
(cm − cm+1)Hμm (V ′m)+

r∑

m=1
cm dim(V ′m/V ′m−1)

=
s∑

j=1
(ci j+1−1 − ci j+1)Hμm (V ′m)+

s∑

j=1
ci j dim(V ′i j /V

′
i j−1)

= e(W ′, ν,d).

Consequently, since the system (V , μ, c) satisfies condition (3.4), so does
(W , ν,d). This proves that we may always assume condition (a).

(b) Consider a system (V , c, μ) satisfying (a). We then argue as in Lemma
5.3, by considering the subflag V ′ with V ′i = Vi for i �= j , and V ′j = Vj−1.
We then have

e(V ′, c, μ)− e(V , c, μ)

=
{

(c j − c j+1)
(
Hμ j (Vj−1)− dim(Vj/Vj−1)

)
if j � r − 1,

(cr − cr+1)Hμr (Vr−1)− cr dim(Vr/Vr−1) if j = r.

Since the left-hand side is � 0 and c j − c j+1 > 0 for all j = 1, . . . , r ,
statement (b) follows.

(c) Assuming statement (b), we may prove statement (c) by arguing as in
Lemma 5.3.

(d) Suppose that (a) holds. Consider the flag V ′ : 〈1〉 � V ′1 � · · · � V ′r ,
where

V ′j = Span

( j⋃

i=1
Supp(μ j )

)
(1 � j � r).
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It is easy to see from the definition of a system (Definition 3.2) that V ′ is a
subflag of V . We have Hμ j (V

′
j ) = 0 for all j , and hence

e(V ′, c, μ) =
r∑

i=1
ci dim(V ′i /V ′i−1)

= −c1 + cr dim(V ′r )+
r−1∑

i=1
(ci − ci+1) dim(V ′i )

� −c1 + cr dim(Vr )+
r−1∑

i=1
(ci − ci+1) dim(Vi ) = e(V , c, μ),

by (3.5). Since ci − c j+1 > 0 for all i � r − 1, and cr > cr+1 � 0, we must
have that V ′i = Vi for all i , which is precisely statement (d).

(e) This statement is proven as in Lemma 5.3.

The bound βk � γ̃k will now follow from the following proposition, as long
as we can show that the quantity γ̃k is well-defined and positive. The latter will
be accomplished in Sect. 9, where we construct a system satisfying the strict
entropy condition 3.5. An alternative construction is given in Appendix C.

As usual, A is a logarithmic random set.

Proposition 5.5 Let c > 0 and suppose that there is a system (V , c, μ) such
that:

(i) 1 = c1 > c2 > · · · > cr+1 = c;
(ii) There is some ε > 0 such that e(V ′, c, μ) � e(V , c, μ)+ ε for all proper

subflags V ′ of V .
(iii) Supp(μ j ) = Vj ∩ {0, 1}k for j = 1, 2, . . . , r .

Let δ > 0, and assume that D is large enough in terms of δ, ε and (V , c, μ).
Then the probability that A ∩ [Dc, D] has k distinct subsets with equal sums
is � 1− δ.

The proof of Proposition 5.5 is perhaps the most difficult part of this paper,
and will occupy this and the next section. Throughout the remainder of this
section and throughout the next section, we will fix a system (V , c, μ) with
cr+1 = c satisfying conditions (i)–(iii) of Proposition 5.5. Constants implied
by O− and
 −symbols may depend on this system.

The main result, which we will prove in this section and the next, is Propo-
sition 5.7 below.

Definition 5.6 (Nondegenerate maps) A map ψ : X → {0, 1}k is said to be
nondegenerate if the image of ψ is not contained in any of the subspaces
{x ∈ Q

k : xi = x j }.
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Themapψ is a “Venn diagram selection function”, that is, the value ofψ(b)
specifies which piece of the Venn diagram of k subsets X1, . . . , Xk of X that b
belongs to. In the notation (4.6) of the previous section, ψ(a) = ω means that
a ∈ Bω. The condition that ψ is nondegenerate is equivalent to X1, . . . , Xk
being distinct, and is similar to the property of a flag V being nondegenerate.

Proposition 5.7 With probability tending to 1 as D → ∞, there exists a
nondegenerate mapψ : A∩(Dc, D] → {0, 1}k such that∑a∈A aψ(a) ∈ 〈1〉.

The map ψ will be constructed using the data from the system (V , c, μ).
Before we embark on the proof of this result, we show how to deduce Propo-
sition 5.5 from it.

Proof of Proposition 5.5, assuming Proposition 5.7 By Proposition 5.7, we
know that with probability 1 − oD→∞(1) there is a nondegenerate map
ψ : A ∩ (Dc, D] → {0, 1}k such that

∑
a∈A aψ(a) lies in 〈1〉, that is to

say, it is a constant vector. We will show that this map induces k distinct
subsets of A with equal sums.

Let ψi : A ∩ (Dc, D] → Q, i = 1, . . . , k, denote the projection of ψ onto
the i-th coordinate of Q

k , so that ψ = (ψ1, . . . , ψk). Define

Ai := {a ∈ A : ψi (a) = 1}.
These sets are distinct because if Ai = A j , then the image of ψ would take
values in the hyperplane {x ∈ Q

k : xi = x j }, contrary to the fact that ψ is
nondegenerate. Moreover, for all i, j we have

∑

a∈Ai

a −
∑

a∈A j

a =
∑

a∈A
aψi (a)−

∑

a∈A
aψ j (a) = 0,

and so A1, . . . , Ak do indeed have equal sums.

5.2 Many values of
∑

a∈A aψ(a), and a moment bound

We turn now to the task of proving Proposition 5.7. We will divide the proof
of Proposition 5.7 into two parts. The first and more difficult part, which we
prove in this section, states that (with high probability)

∑
a∈A aψ(a) takes

many different values modulo 〈1〉 as ψ ranges over all nondegenerate maps
ψ : A ∩ (Dc, D] → {0, 1}k . The precise statement is Proposition 5.9 below.
The deduction of Proposition 5.7 from Proposition 5.9 will occupy Sect. 6.

Let 0 < κ � min1� j�r (c j − c j+1) − 2/ log D be a small quantity, which
may depend on D. Let
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A j = {a ∈ A : Dcj+1+κ < a � Dcj /e} (1 � j � r),

A′ :=
r⋃

j=1
A j . (5.4)

The purpose ofworkingwithA′ rather thanA is to ensure that somegaps are left
for the subsequent argument in the next section (based on ideas of Maier and
Tenenbaum [20]), in which we show that one of the many sums

∑
a∈A′ aψ(a)

guaranteed by Proposition 5.9 may be modified, using the elements of
A ∩ (Dc, D]\A′, to be in 〈1〉.
Definition 5.8 (Compatible functions) We say that a map ψ : A′ → {0, 1}k
is compatible if, for all j , a ∈ A j implies ψ(a) ∈ Vj .

Remark Recall that Supp(μ j ) = Vj ∩ {0, 1}k for all j by condition (iii) of

Proposition 5.5. Setting B( j)
ω = {a ∈ A j : ψ(a) = ω}, we see that ψ being

compatible is equivalent to B( j)
ω �= ∅ only ifμ j (ω) > 0, and is consistent with

earlier notation (4.6).

Proposition 5.9 There exist real numbers κ∗ > 0, p > 1 and t > 0 (which
depend on the system (V , c, μ)) so that the following is true. Let δ > 0
and suppose that D is sufficiently large as a function of δ. Uniformly for
0 � κ � κ∗, we have with probability at least 1− δ, that

∑
a∈A′ aψ(a) takes

at least

(tδ)
1

p−1 D
∑

j c j dim(Vj/Vj−1)

different values modulo 〈1〉, as ψ ranges over all nondegenerate, compatible
maps ψ .

Remark By (5.4), it clearly suffices to prove Proposition 5.9 for κ = κ∗.

We will deduce Proposition 5.9 from a moment bound. Firstly, define the
representation function rA′ : Qk/〈1〉 → R by

rA′(x) :=
∑

ψ :A′→{0,1}k∑
a∈A′ aψ(a)−x∈〈1〉

wA′(ψ),

where the summation is over all maps ψ : A′ → {0, 1}k , and where

wA′(ψ) :=
r∏

j=1

∏

a∈A j

μ j (ψ(a)).

This weight functionwA′ is chosen so that it is large only whenψ is balanced,
that is, when for all j and ω, the set A j has about μ j (ω)|A j | elements a with
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ψ(a) = ω. Observe that if ψ(a) /∈ Supp(μ j ) for some j and some a ∈ A j ,
then wA′(ψ) = 0, and thus only compatible ψ contribute to the sum rA(x).
However, wA(ψ) might be non-zero for some degenerate maps ψ , and these
will be removed by a separate argument below.

The crucial moment bound for the deduction of Proposition 5.9 is given
below.

Proposition 5.10 Let

E∗ =
{
A ⊆ [Dc, D] : #(A ∩ (y/e, y]) � √y/100 (Dc � y � D)

}
.

There is a p > 1 and κ∗ > 0 so that uniformly for 0 � κ � κ∗ and for all
D � e100/c we have the moment bound

E

[
1A′∈E∗

∑

x

rA′(x)
p
]

 D−(p−1)∑ j c j dim(Vj/Vj−1).

Proof of Proposition 5.9, assuming Proposition 5.10 Define also

r̃A′(x) :=
∑

ψ :A′→{0,1}k
ψ is compatible and nondegenerate∑

a∈A′ aψ(a)−x∈〈1〉

wA′(ψ).

We have

∑

x

rA′(x) =
r∏

j=1

(∑

ω

μ j (ω)

)|A j |
=

r∏

j=1
1 = 1

for any A′. On the other hand, when ψ is non-compatible, then wA′(ψ) = 0
because we know that Supp(μ j ) = Vj ∩ {0, 1}k for all j by our assumption
of condition (iii) of Proposition 5.5. In addition, if ψ is degenerate, then its
image is contained in {x ∈ Q

k : xi = x j } ∩ {0, 1}k for some i �= j . Since
Vr �⊂ {x ∈ Q

k : xi = x j }, there must exist someω ∈ Vr ∩{0, 1}k = Supp(μr )

that is not in the support of ψ . Therefore,

∑

x

(rA′(x)− r̃A′(x)) �
∑

ω∈Supp(μr )

(1− μr (ω))|Ar |.

Since cr > cr+1 by our assumption of condition (i) of Proposition
5.5, Lemma A.5 implies |Ar | � 1

2 (cr − cr+1) log D with probability

> 1 − O(e−(1/4) log1/2 D), and thus the right side above is o(1) with this
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same probability. The same lemma also implies that A′ ∈ E∗ with probability
> 1− O(e−(1/4) log1/2 D).

Now fix a small δ > 0. The above discussion implies that, with probability
at least 1− δ/2 (for D sufficiently large), we have

∑

x

r̃A′(x) � 1

2
and A′ ∈ E∗. (5.5)

On the other hand, Markov’s inequality and Proposition 5.10 imply that, with
probability at least 1− δ/2, we have

1A′∈E∗
∑

x

r̃A′(x)
p � 1A′∈E∗

∑

x

rA′(x)
p


 δ−1D−(p−1)∑ j c j dim(Vj/Vj−1). (5.6)

By Hölder’s inequality,

1A∈E∗
∑

x

r̃A′(x) � |Supp(r̃A′)|1−1/p
(
1A′∈E∗

∑

x

r̃A′(x)
p)1/p. (5.7)

With probability at least 1− δ, both (5.5) and (5.6) hold, and in this case (5.7)
gives

|Supp(r̃A′)| �p δ
1

p−1 D
∑

j c j dim(Vj/Vj−1).

This completes the proof of Proposition 5.9.

The rest of the section is devoted to the proof of Proposition 5.10.

5.3 An entropy condition for adapted systems

For reasons that will become apparent, in the proof of Proposition 5.10 we
will need to apply the entropy gap condition not only with subflags V ′ of V ,
but with a more general type of system.

Definition 5.11 (Adapted system) Given a system (V , c, μ), the pair (W ,b)

is adapted to (V , c, μ) ifW : 〈1〉 = W0 � W1 � · · · � Ws is a complete flag
with Ws � Vr , and b = (b1, . . . , bs) satisfies 1 � b1 � · · · � bs � 0 and the
condition

Wi � Vj whenever bi > c j+1.
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We say that (W ,b) is saturated if s = dim(Vr )− 1 and if for all j � r , there
are exactly dim Vj − 1 values of i with bi > c j+1. Otherwise, we call (W ,b)

unsaturated.

Remark For the definition of complete flag, see Definition 3.1. Wemake a few
comments to motivate the term saturated. Let

m j = #{i : bi > c j+1} (0 � j � r), (5.8)

so that the bi ’s belonging to the interval (c j+1, c j ] are precisely bm j−1+1, . . . ,
bm j . Since Wi � Vj whenever bi > c j+1, we infer that

Wm j � Vj (1 � j � r). (5.9)

SinceW is complete, we have dim(Wi ) = i +1, and thusm j � dim(Vj )−1.
In particular, (W ,b) is saturated if, and only if, we have equality in (5.9) for
all j .

We need some further notation, which reflects that A′ is supported on inter-
vals with gaps. For 1 � j � r , let

I j = (c j+1 + κ, c j ]. (5.10)

Recall that we take κ small enough so that each I j has length � 2/ log D, that
is, κ � min j (c j − c j+1)− 2/ log D.

There is a natural analogue of the e-value (cf. Definition 3.5) for adapted
systems.

Definition 5.12 Given an adapted system (W ,b), we define

e(W ,b) = e(W ,b;V , c, μ) :=
∑

i, j

λ([bi+1, bi ] ∩ I j )Hμ j (Wi )+
∑

i

bi ,

where λ denotes the Lebesgue measure on R.
Finally, we define

δ(b) = max
i, j
{c j − bi : bi ∈ I j }, (5.11)

that is to say δ(b) is the smallest non-negative real number with the property
that

c j − δ(b) � bi � c j (1 � j � r, i ∈ I j ).
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Adapted systems (W ,b) can, in a certain sense, be interpreted in terms of
convex superpositions of pairs (V ′, c), V ′ � V a subflag. The next lemma
gives us a strict inequality analogous to condition (ii) of Proposition 5.5, unless
W is saturated and has a small value of δ(b), which corresponds to the convex
superposition which gives rise to (W ,b) having weight ≈ 1 on the trivial
subflag (V , c).

Lemma 5.13 Let (V , μ, c) be a system satisfying conditions (i)–(ii) of Propo-
sition 5.5. Let ε be as in condition (ii). Suppose that (W ,b) is an adapted
system to (V , μ, c) such that bi lies in some set I j for each i . Suppose, further,
that κ is small enough in terms of ε, and that κ � 1

2 min j (c j − c j+1).

(a) If (W ,b) is unsaturated, then e(W ,b) � e(V , c, μ)+ ε/2.
(b) If (W ,b) is a saturated, then e(W ,b) � e(V , c, μ)+ εδ(b)/2.

Proof We treat both parts together for most of the proof. Letm j be defined by
(5.8). In particular, m0 = 0 because c1 = 1. Note that

max
i∈I j

(c j − bi ) = c j − bm j ,

and let h be such that

δ(b) = ch − bmh .

Without loss of generality, we may assume that bmh < ch ; the case bmh = ch
will then follow by continuity.

Set b = bmh and note that

e(W , b)

� min

⎧
⎨

⎩
e(W , b′) :

b′i ∈ [c j+1 + κ, c j ] when i ∈ (m j−1,m j ] and j �= h,

b′i ∈ [b, ch] when i ∈ (mh−1,mh), b′mh
= b,

b′1 � b′2 � · · · � b′s

⎫
⎬

⎭
.

The quantity e(W ,b′) is linear in each variable b′i and the region overwhichwe
consider the above minimum is a polytope. As a consequence, the minimum
of e(W ,b′) must occur at one of the vertices of the polytope. In particular,
there are indices � j ∈ (m j−1,m j ] for j = 1, . . . , r such that

e(W ,b) � e(W ,b∗), where

b∗i =

⎧
⎪⎨

⎪⎩

c j if m j−1 < i � � j ,

c j+1 + κ if � j < i � m j , j �= h,

b if �h < i � mh .

(5.12)
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In fact, note that we must have �h < mh because b∗mh
= b and we have

assumed that b < ch .
Using the linearity of e(W , ·) once again, we find that

e(W , b∗) = ch − b

ch − ch+1 − κ
e(W ,b(1))+ b − ch+1 − κ

ch − ch+1 − κ
e(W ,b(2)), (5.13)

where b(1)
i = b(2)

i = b∗i for i ∈ {1, . . . , s}\(�h,mh], b(1)
i = ch+1 + κ for

i ∈ (�h,mh] and b(2)
i = ch for i ∈ (�h,mh].

Fix b′ ∈ {b(1),b(2)}. In addition, define the indices i1, . . . , ir by letting
i j = � j when j �= h or b′ = b(1), while letting ih = mh when b′ = b(2). We
then have

b′i =
{
c j if m j−1 < i � i j ,

c j+1 + κ if i j < i � m j .

A straightforward calculation implies that

e(W ,b′) = e(V ′, c, μ)+ Sκ + (mr − ir )cr+1, (5.14)

where V ′ is the subflag of V with V ′j = Wi j and

S =
r∑

j=1

(
m j − i j −Hμ j (Wi j )

)
.

(Note that V ′ is indeed a subflag since Wi j � Wm j � Vj by (5.9).)
If V ′ = V , we must have that Wi j = Vj for all j . Since Wi j � Wm j � Vj ,

we infer that Wm j = Vj , as well as that i j = m j for all j . In particular, the
flag (W ,b) we started with must be saturated and S = 0 (since i j = m j and
Hμ j (Wi j ) = Hμ j (Vj ) = 0 for all j).

We are now ready to complete the proof of both parts of the lemma.
(a) By the above discussion, if (W ,b) is unsaturated, then V ′ �= V . There-

fore, by assumption of condition (ii) of Proposition 5.5, we have

e(W ,b′) � e(V , c, μ)+ ε

for b′ ∈ {b(1),b(2)}. Inserting this inequality into (5.13) implies that

e(W ,b∗) � e(V , c, μ)+ ε + O(κ).
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Since e(W ,b) � e(W ,b∗), the proof of part (a) is complete by assuming that
κ is small enough in terms of ε.

(b) Assume that (W ,b) is saturated. We can only have V ′ = V if ih = mh .
Since �h < mh , this can only happen when b′ = b(2). As a consequence,
assuming again that κ is small enough in terms of ε, we have that

e(W ,b′) � e(V , c, μ)+ 1b′=b(1) · ε/2.

Inserting this into (5.13) yields the inequality

e(W ,b∗) � e(V , c, μ)+ ch − b

ch − ch+1 − κ
· ε

2
.

Since b = ch − δ(b), 0 < ch − ch+1 − κ � 1, and e(W ,b) � e(W ,b∗), we
find that e(W ,b) � e(V , c, μ) + εδ(b)/2. This completes the proof of part
(b) of the lemma.

5.4 Proof of the moment bound

In this subsection we prove Proposition 5.10. For a vector

n = (n0, n1, n2, . . . , nr )wi th

0 = n0 � n1 � · · · � nr ,

define the event

S(n) = {A′ : #A j = n j − n j−1 (1 � j � r)}.

When A′ lies in S(n), we write

A′ = {a1, a2, . . . , anr }, a1 > a2 > . . . > anr ,

so that

at ∈ A j if and only if n j−1 < t � n j . (5.15)

We may define, for any compatible ψ , the auxilliary function

θ : [nr ] → Vr ∩ {0, 1}k such that θ(t) = ψ(at ). (5.16)
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The salient property of θ is that it is determined by the ordering of the ele-
ments in A j and not by the elements themselves. We denote by �n the set of
compatible functions θ , that is, those functions satisfying

θ(t) ∈ Supp(μ j ) whenever t � n j , 1 � j � r . (5.17)

In the event S(n), if ψ is an compatible function and θ is defined by (5.16),
we have

wA′(ψ) = wn(θ) :=
r∏

j=1

∏

n j−1<t�n j

μ j (θ(t)), (5.18)

where the notation wn (in place of wA) reflects the fact that w only depends
on θ , and not otherwise on A. In this notation,

rA′(x) =
∑

θ∈�n∑
t θ(t)at−x∈〈1〉

wn(θ).

Writing r pA′ = r p−1A′ rA′ and interchanging the order of summation, it follows
that if A′ lies in S(n), then

∑

x

rA′(x)
p =

∑

θ∈�n

(
rA′
(∑

t

atθ(t)
))p−1

wn(θ)

=
∑

θ∈�n

( ∑

θ ′∈�n
(5.20)

wn(θ
′)
)p−1

wn(θ), (5.19)

where the inner summation is over all compatible functions θ ′ satisfying
∑

t

at (θ
′(t)− θ(t)) ∈ 〈1〉. (5.20)

Similar to the argument in Sect. 4.2, we find a flagW and special values of
i which have the effect of isolating terms in the relation (5.20). With θ, θ ′,n
fixed, let

� = �(θ, θ ′) = {θ ′(t)− θ(t) : 1 � t � nr }
and

s = dim
(
Span(1, �)

)− 1.
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We now choose a special basis of Span(1, �). For each ω ∈ �, let

Kω = min{t : θ ′(t)− θ(t) = ω},

and place a total ordering on � by saying that ω ≺ ω′ if Kω < Kω′ . Let ω1 be
the minimum element in �\〈1〉,

ω2 = min(�\ Span(1, ω1)), . . . , ωs = min(�\ Span(1, ω1, . . . , ωs−1)),

where s is such that � ⊂ Span(1, ω1, . . . , ωs). Finally, let

Wj = Span(1, ω1, . . . , ω j ), τ j = Kω j (1 � j � s),

τ (θ, θ ′,n) = (τ1, . . . , τs),

and form the flag

W = W (θ, θ ′,n) : W0 � W1 � · · · � Ws .

We note that in the special case θ = θ ′, we have s = 0 and W is a trivial flag
with only one space W0.

Now we divide up the sample space of A′ into events describing the rough
size of the critical elements aτ j . By construction,

aτ j = max{at ∈ A′ : θ ′(t)− θ(t) = ω j }.

Similarly to Sect. 4, for 1 � i � s let

bi = 1+
⌈
log aτi − log D

⌉

log D
so that aτi ∈ (Dbi /e, Dbi ]. (5.21)

The definition of A′ implies that for each i , there is some j with
bi ∈ I j = (c j+1 + κ, c j ]. Moreover, we have the implications

bi > c j+1 �⇒ τi � n j �⇒ ωi = θ(τi )− θ ′(τi ) ∈ Vj ,

where we used (5.17) to obtain the second implication. Since b1 � b2 � · · · �
bi , we infer the stronger relation

bi > c j+1 �⇒ Wi � Vj . (5.22)

Therefore, the pair (W ,b) is adapted to (V , c, μ).
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Using the inequality (x + y)p−1 � x p−1 + y p−1 repeatedly, we may par-
tition (5.19) according to the values of W (θ, θ ′) and τ (θ, θ ′), obtaining (still
assuming S(n))

∑

x

rA′(x)
p �

∑

W ,τ ,θ

( ∑

θ ′∈�n, (5.20)
W (θ,θ ′,n)=W , τ (θ,θ ′,n)=τ

wn(θ
′)
)p−1

wn(θ).

We need to separately consider other elements of A′ that lie in the intervals
(Dbi /e, Dbi ], and so we define

B = {bi : 1 � i � s} and 	 = (�b)b∈B,

where �b = #
(
A′ ∩ (Db/e, Db]).

By assumption,
∑

b �b � s. It may happen that bi = bi+1 for some i , in which
case |B| < s. With n, τ ,b, 	 all fixed, consider the event

E(b, τ ,n, 	)

defined as the intersection of

• S(n);
• aτi ∈ (Dbi /e, Dbi ] for all i ;
• |A′ ∩ (Db/e, Db]| = �b for all b ∈ B.
Taking expectations over A′, we get

E

[
1A′∈S(n)∩E∗

∑

x

rA′(x)
p
]

� E

[ ∑

W ,τ ,b,θ,	

�b�Db/2/100 ∀b∈B

wn(θ)

( ∑

θ ′∈�n, (5.20)
W (θ,θ ′,n)=W ,

τ (θ,θ ′,n)=τ

wn(θ
′)
)p−1

1E(b,τ ,n,	)

]
,

where the condition that �b � Db/2/100 comes from the fact that we taking
expectations over A′ ∈ E∗. By Hölder’s inequality with exponents 1

p−1 ,
1

2−p ,
this implies that
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E

[
1A′∈S(n)∩E∗

∑

x

rA′(x)
p
]

�
∑

W ,τ ,b,θ,	

�b�Db/2/100 ∀b∈B

wn(θ)P(E(b, τ ,n, 	))2−p×

×
{ ∑

θ ′∈�n
W (θ,θ ′,n)=W
τ (θ,θ ′,n)=τ

wn(θ
′)P
[
E(b, τ ,n, 	) ∧ (5.20)

]}p−1
. (5.23)

Claim. Let �b � Db/2/100 for all b ∈ B. Then we have

P
(
(5.20)

∣
∣ E(b, τ ,n, 	)

)
 D−(b1+···+bs)e
∑

b �b . (5.24)

Proof of Claim Let us begin by analyzing the event E(b, τ ,n, 	) we are con-
ditioning on. Consider the set

⋃
j (D

cj+1+κ , Dcj ]\⋃b∈B(Db/e, Db]. There is
a unique way to write it as

⋃M
m=1 Im , where the sets Im are intervals of the form

(A, B] with their closures Īm mutually disjoint. Now, the event E(b, τ ,n, 	)

is equivalent to there being mutually disjoint sets of consecutive integers Im
(1 � m � M) and Jb (b ∈ B) such that:
• The sets Im (1 � m � M) and Jb (b ∈ B) together form a partition of the
set [nr ];

• For all m ∈ {1, . . . , M}, we have an ∈ Im if and only if n ∈ Im ;
• For all b ∈ B, we have an ∈ (Db/e, Db] if and only if n ∈ Jb;
• τi ∈ Jbi for all i ;• |Jb| = �b for all b ∈ B.
The above discussion allows us to describe the distribution law ofA′ under the
event E(b, τ ,n, 	): given a choice of the intervals Im and Jb, we construct
independent logarithmic random sets A∗m on Im and Ãb on (Db/e, Db] such
that #A′ ∩ Im = #Im for all m and # Ãb = �b for all b. Then A′ is the union
of all A∗m’s and all Ãb’s.

Having explained how the distribution of A′ looks like under the event
E(b, τ ,n, 	), let us now prove our claim. We argue as in the proof of Propo-
sition (4.4). Relation (5.20) implies

s∑

i=1
ωi aτi +

∑

t /∈{τ1,...,τs}
at (θ

′(t)− θ(t)) = a01
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for some a0 ∈ Z. Since 1, ω1, . . . , ωs are linearly independent, this uniquely
determines their coefficients a0, aτ1, . . . , aτs in terms of the other ai ’s. For
each b ∈ B, let
mb = #{i : bi = b} and Nb = #

(
Z ∩ (Db/e, Db]) = (1− 1/e)Db + O(1).

Then, given A∗m for all m and b ∈ B, there are at most

(
Nb

�b − mb

)
�

N �b−mb
b

(�b − mb)!
< �

mb
b · ((1− 1/e)D)b(�b−mb)

�b! 
 Db(�b−mb)

�b!
choices for Ãb (since mb of each elements are determined by the remaining
�b − mb elements and by the elements of the A∗m that we have fixed), where
we used that �mb

b � �kb 
 (1− 1/e)−�b . In addition, Lemma A.4 implies that
the probability of occurrence of a given set Xb ⊂ Z ∩ (Db/e, Db] as the set
Ãb, conditionally to the event that #Ãb = �b, is


 �b!
(
∑

Db/e<m�Db 1/(m − 1))�b

∏

x∈Xb

1

x

∏

Db/e<m�Db

(
1− 1

m

)


 �b!
(Db/e)�b

.

Putting the above estimates together, we conclude that

P
(
(5.20)

∣∣ E(b, τ ,n, 	)
)


∏

b∈B

e�b

Dbmb
= D−(b1+···+bs)e

∑
b �b ,

upon noticing that
∑

b∈B mbb = ∑
i bi . This proves our claim that (5.24)

holds.

In the light of (5.24), relation (5.23) becomes

E

[
1A′∈S(n)∩E∗

∑

x

rA′(x)
p
]



∑

W ,τ ,b,	

D−(p−1)∑ j b j e
∑

b �b

× E

[ ∑

θ∈�n

wn(θ)

( ∑

θ ′∈�n
W (θ,θ ′,n)=W
τ (θ,θ ′,n)=τ

wn(θ
′)
)p−1

1E(b,τ ,n,	)

]
. (5.25)
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To evaluate the bracketed expression, first recall the definition (5.18) of
wn(θ

′), and note that the conditions W (θ, θ ′,n) = W , τ (θ, θ ′,n) = τ

together imply that

θ ′(t)− θ(t) ∈ Wi (1 � t < τi+1, 0 � i � s),

where we have defined τ0 := 0 and τs+1 := nr + 1. For brevity, write

Ti, j = (n j−1, n j ] ∩ [τi , τi+1) ∩ N, (0 � i � s, 1 � j � r).

Some of these sets are empty. In any case, we have

∑

θ ′∈�n
W (θ,θ ′,n)=W
τ (θ,θ ′,n)=τ

wn(θ
′) �

∏

0�i�s
1� j�r

∏

t∈Ti, j
μ j (θ(t)+Wi ). (5.26)

From (5.18), and the fact that the discrete intervals Ti, j are disjoint and cover
[nr ], we have

wn(θ) =
∏

i, j

∏

t∈Ti, j
μ j (θ(t)).

With these observations, we conclude that

∑

θ∈�n

wn(θ)

( ∑

θ ′∈�n
W (θ,θ ′,n)=W
τ (θ,θ ′,n)=τ

wn(θ
′)
)p−1

�
∑

θ∈�n

∏

i, j

∏

t∈Ti, j
μ j (θ(t))μ j (Wi + θ(t))p−1

=
∏

i, j

η(i, j, p,W )|Ti, j |, (5.27)

where

η(i, j, p,W ) :=
∑

ω∈Supp(μ j )

μ j (ω)μ j (Wi + ω)p−1. (5.28)
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Substituting into (5.25), and summing over n, we get

E

[
1A′∈E∗

∑

x

rA′(x)
p
]



∑

W ,b

D−(p−1)∑ j b j
∑

τ ,n,	

e
∑

b �bE

[
1E(b,τ ,n,	)

∏

i, j

η(i, j, p,W )|Ti, j |
]
.

(5.29)

If Vj � Wi , then μ j (Wi + ω) = 1 for all ω and thus η(i, j, p,W ) = 1.
For all i, j, p,W we have η(i, j, p,W ) � 1. Thus, we require lower bounds
on |Ti, j | in the case Vj �� Wi .
Claim. Assume that E(b, τ ,n, 	) holds. Given i such that bi+1 < bi and
j ∈ {1, . . . , r}, define

Mi, j := (Dcj+1+κ, Dcj /e] ∩ (Dbi+1, Dbi /e]
Then

{t : at ∈ Mi, j } ⊂ Ti, j . (5.30)

Proof of Claim Let t be such that at ∈ Mi, j . In particular,

Dbi+1 < at � Dbi /e.

This relation and the definition of bi in (5.21) imply that aτi+1 < at < aτi and
hence τi < t < τi+1, where we used that a1 > a2 > · · · > anr . In addition,
since Dcj+1+κ < at � Dcj , we have that at ∈ A j . Thus, n j−1 < t � n j by
(5.15). This completes the proof of the claim.

A direct consequence of (5.30) is that

|Ti, j | �
∣∣A′ ∩ Mi, j

∣∣.

Combining this inequality with (5.29), we get

E

[
1A′∈E∗

∑

x

rA′(x)
p
]


∑

W ,b

D−(p−1)∑ j b j

×
∑

n,τ ,	

e
∑

b �bE

[
1E(b,τ ,n,	)

∏

i, j

η(i, j, p,W )|A∩Mi, j |
]
.

Fix b andW , and let E ′(b, 	) be the event that |A′ ∩ (Db/e, Db]| = �b for
all b ∈ B. Given A′ ∈ E ′(b, 	), we have at most

∏
b �b � e

∑
b �b choices for
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τ1, . . . , τs . Hence,

∑

n,τ ,	

e
∑

b �bE

[
1E(b,τ ,n,	)η(i, j, p,W )|A′∩Mi, j |

]

�
∑

n,	

e2
∑

b �bE

[
1S(n)1E ′(b,	)

∏

i, j

η(i, j, p,W )|A′∩Mi, j |
]
.

Since the events S(n) are mutually disjoint, we arrive at the inequality

E

[
1A′∈E∗

∑

x

rA′(x)
p
]

�
∑

W ,b

D−(p−1)∑ j b j E

[∏

b∈B
e2|Ãb|∏

i, j

η(i, j, p,W )|A′∩Mi, j |
]
. (5.31)

Next, we estimate the right hand side of (5.31). The intervals Mi, j and
(Db/e, Db] are mutually disjoint by (5.30), hence the quantities |A′ ∩ Mi, j |
and |Ãb| are independent. Using Lemma A.3, we obtain

E

[∏

b∈B
e2|Ãb|∏

i, j

η(i, j, p,W )|A′∩Mi, j |
]

� exp
{∑

b∈B

∑

Db/e<m�Db

2e − 1

m
+
∑

i, j

(
η(i, j, p,W )− 1

) ∑

m∈Mi, j

1

m

}


 exp
{∑

i, j

(
η(i, j, p,W )− 1

) ∑

m∈Mi, j

1

m

}
.

Recall that I j = (c j+1 + κ, c j ], define
Gi = Gi (b) = (bi+1, bi ],

and recall that λ denotes the Lebesgue measure on R. Then, by the definition
of Mi, j , we have

∑

m∈Mi, j

1

m
= λ(I j ∩ Gi ) log D + O(1).

Substituting into the definition of e() (Definition 5.12), this gives

E

[
1A′∈E∗

∑

x

rA′(x)
p
]


∑

W ,b

D−E(p,W ,b), (5.32)

123



1080 K. Ford et al.

where

E(p,W ,b)

:= (p − 1)
∑

j

b j −
∑

i, j

(
η(i, j, p,W )− 1

)
λ(I j ∩ Gi )

= (p − 1)e(W ,b)−
∑

i, j

[
η(i, j, p,W )− 1+ (p − 1)Hμ j (Wi )

]
λ(I j ∩ Gi ).

Recall the definition (5.28) of η(i, j, p,W ). If Wi � Vj ,
then μ j (Wi + x) = 1 whenever x ∈ Supp(μ j ), and so in this case
η(i, j, p,W ) = 1. Since Hμ j (Wi ) = 0 in this case, we have

η(i, j, p,W )− 1+ (p − 1)Hμ j (Wi ) = 0 (Vj � Wi ). (5.33)

For any fixed i, j,W , we have

d

dp
η(i, j, p,W )

∣
∣∣
p=1 = −Hμ j (Wi ),

and so

η(i, j, p,W )− 1+ (p − 1)Hμ j (Wl)
 (p − 1)2 (Vj �� Wi ). (5.34)

We deduce from (5.32), (5.33) and (5.34) that

E(p,W ,b) = (p − 1)e(W ,b)−
∑∑

i, j : Vj ��Wi

λ(I j ∩ Gi )O((p − 1)2).

(5.35)

To continue, we separate two cases.
Case 1. (W ,b) is unsaturated.

In the above case, Lemma 5.13(a) implies that e(W ,b) � e(V , c, μ)+ε/2.
Consequently,

E(p,W ,b) � (p − 1)e(V , c, μ)+ (p − 1)ε

2
+ O((p − 1)2)

� (p − 1)e(V , c, μ)+ (p − 1)ε

4
,

provided that p − 1 is small enough in terms of ε (and k).
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Since there are O(1) choices for W and logO(1) D choices for b, the con-
tribution of such flags to the right hand side of (5.32) is

∑

(W ,b) unsaturated

D−E(p,W ,b) 
 D−(p−1)e(V ,c,μ). (5.36)

Case 2. (W ,b) is saturated. (Recall from Definition 5.11 that (W ,b) is called
saturated when s = dim(Vr )−1 and for all j � r , there are exactly dim Vj−1
values of i with bi > c j+1.)

Fix for the moment a pair (i, j) such that

Vj �� Wi and λ(I j ∩ Gi ) > 0. (5.37)

The second condition is equivalent to knowing that

bi > c j+1 and bi+1 < c j .

In particular, we have Wi � Vj by (5.22). Note though that we have assumed
Vj �� Wi . Therefore, Wi < Vj . Since dim(Wi ) = i + 1, we infer that

i � dim(Vj )− 2.

Since we have assumed that (W ,b) is saturated, the above inequality implies
that bi+1 > c j+1. Recalling the definition (5.11) of δ(b), we conclude that

bi+1 � c j − δ(b).

This implies thatGi ∩ I j ⊂ [c j−δ(b), c j ] for any pair (i, j) satisfying (5.37).
As a consequence,

∑

i : Vj ��Wi

λ(I j ∩ Gi ) � δ(b) (1 � j � r).

Since we also have that e(W ,b) � e(V , c, μ)+εδ(b)/2 by Lemma (5.13)(b),
it follows that

E(p,W ,b) � (p − 1)e(V , c, μ)+ εδ(b)/2+ O((p − 1)2δ(b))

� (p − 1)e(V , c, μ)+ εδ(b)/4, (5.38)

provided that p − 1 is small enough compared to ε.
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Using (5.38), we see that the contribution of saturated flags to the right hand
side of (5.32) is

∑

(W ,b) saturated

D−E(p,W ,b) 
 D−(p−1)e(V ,c,μ)

r∑

s=0

∑

b1,...,bs

D−(p−1)εδ(b)/4,

where we used that there are O(1) choices forW . Recall (5.21), which implies
that the numbers bi are restricted to the set {m/ log D : m ∈ N}. Thus the
number of b with δ(b) = m/ log D is at most (m + 1)s and

r∑

s=0

∑

b1,...,bs

D−(p−1)εδ(b)/4 �
r∑

s=0

∑

m�0

(m + 1)se−(p−1)(ε/4)m 
ε,p 1.

We thus conclude that
∑

(W ,b) saturated

D−E(p,W ,b) 
 D−(p−1)e(V ,c,μ).

If we combine the above inequality with (5.36) and (5.32), we establish Propo-
sition 5.10.

6 An argument of Maier and Tenenbaum

The aim of this section is to prove Proposition 5.7. The reader may care to
recall the statement of that proposition now, as well as the definition of a com-
patible map (Definition 5.8). As in the previous section, the system (V , c, μ)

is fixed, and satisfies conditions (i)–(iii) of Proposition 5.5. We also fix a basis
{1, ω1, . . . , ωd} of Vr such that Vj = Span(1, ω1, . . . , ωdim(Vj )−1) for each j
and such that ωi ∈ {0, 1}k for each i . Denote � = Supp(μr ) = Vr ∩ {0, 1}k .

We begin with an observation related to the solvability of (4.12), which we
recall here for the convenience of the reader:

r∑

j=1
K jω

j = −
∑

ω

ω
∑

a′∈B′ω
a′ (mod 1). (6.1)

Let � denote the Z-span of 1, ω1, . . . , ωd (that is, the lattice generated by
1, ω1, . . . , ωd ). Every vector ω ∈ � is a rational combination of the basis
elements 1, ω1, . . . , ωd . Hence, there is some M ∈ N such that Mω ∈ � for
each ω ∈ �. In particular, note that the right-hand side of (6.1) lies generically
in the lattice �/M = {x/M : x ∈ �}. However, we must ensure that (6.1) is
solvable with K1, . . . , Kr ∈ Z. Equivalently, the right-hand side of (6.1) must
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lie in �, which can be guaranteed when the coefficients of all vectors ω in it
lie in MZ.

In this section, implied constants in O() and
 notations may depend on
the system (V , c, μ) and basis ω1, . . . , ωd ; in particular, on k, d and M .

6.1 The sets Li (A) and lower bounds for their size

The main statement of this subsection, Proposition 6.2, is a variant of Propo-
sition 5.9, where we stipulate that all elements lie in �. This will later ensure
that (6.1) is solvable with K1, . . . , Kr ∈ Z.

Fix κ > 0 satisfying κ � κ∗
2 , where κ∗ is the constant from Proposition 5.9.

In particular, κ � 1/2. We introduce the sets

Ii (D) :=
r⋃

j=1
(Dcj+1, Dcj (1−κ/ i)], i = 1, 2, . . . . (6.2)

Thus each Ii (D) is simply a union of r intervals in�, and we have the nesting

I1(D) ⊂ I2(D) ⊂ · · · ⊂ (Dc, D].

For any ω ∈ Vr we denote by ω the projection of ω onto

V r := Vr/〈1〉 = Span{ω1, . . . , ωd}.

In addition let ψ(a) = ψ(a) for a ∈ A.
The reader may wish to recall the definition of nondegenerate (Definition

5.6) and compatible (Definition 5.8) maps.

Definition 6.1 WriteLi (A) for the set of all
∑

a∈A aψ(a) that lie in�, where
ψ ranges over all nondegenerate, compatible maps supported on Ii (D).

Proposition 6.2 Let δ > 0 and i ∈ N, and let D be sufficiently large in terms
of δ. Then with probability at least 1− δ in the choice of A ∩ Ii (D),

|Li (A)| � δαD(1−κ/ i)
∑

j c j dim(Vj/Vj−1), (6.3)

where α is a positive constant depending at most on (V , c, μ).
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Proof Let

I ′i (D) =
r⋃

j=1
(D(c j+1+κ∗)(1−κ/ i), Dcj (1−κ/ i)]

⊂
r⋃

j=1
(Dcj+1(1+κ/2), Dcj (1−κ/ i)] ⊂ Ii (D),

where the first inclusion follows by noticing that

(c j+1 + κ∗)(1− κ/ i) � c j+1(1+ κ/2)

for c j+1 ∈ [0, 1], 0 � κ � κ∗/2 � 1/2 and i � 1. Write L ′
i (A) for the set

of all
∑

a∈A aψ(a), where ψ ranges over all nondegenerate, compatible maps
supported on I ′i (D), but without the stipulation that the sum is in �. We now
apply Proposition 5.9 with D replaced by D1−κ/ i and δ replaced by δ/2 to
conclude that

|L ′
i (A)| � δαD(1−κ/ i)

∑
j c j dim(Vj/Vj−1)

with probability at least 1−δ/2, where α = 1/(p−1)with p as in Proposition
5.9.

We now use the elements of A ∩ (Ii (D)\I ′i (D)) to create many sums∑
a∈A ψ(a) which do lie in �. Let G := (Dcr+1(1−κ/ i), δ−1Dcr+1(1−κ/ i)],

which is a subset of Ii (D)\I ′i (D). Let E be the event that A ∩ G contains at
least 2k elements that are ≡ m (mod M) for each m ∈ {1, . . . , M}. Lemma
A.2 (applied with B = {b ∈ Z∩G : b ≡ m (mod M)} and ε = 1/3) implies
that if δ is sufficiently small then P(E) � 1− δ/2.

Assume now that we are in the event E . Let us fix a set K ⊂ A ∩ G that
contains exactly 2k elements that are≡ m (mod M) for eachm ∈ {1, . . . , M}.
Take any nondegenerate, compatible function ψ : A→ {0, 1}k supported on
I ′i (D), and write

∑

a∈I ′i (D)

aψ(a) =
∑

ω∈�

ωNω.

Recall that Supp(μr ) = Vr ∩ {0, 1}k by condition (iii) of Proposition 5.5.
Hence, for each ω ∈ �, we may find an element aω ∈ K satisfying
aω ≡ −Nω (mod M). Setting ψ0(aω) = ω for each ω, and ψ0(a) = ψ(a)

for a ∈ I ′i (D), and ψ0(a) = 0 for all other a ∈ Ii (D). We have

∑

a∈Ii (D)

aψ0(a) =
∑

ω∈�

(aω + Nω)ω ∈ �,
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since M |(aω + Nω) for all ω. Moreover, ψ0 is nondegenerate and compatible
by construction. Consequently,

∑
a aψ0(a) ∈ � (by removing the coefficient

of 1). Since there are at most 2|K| � 2M2k choices for {aω : ω ∈ �}, the map
from

∑
a∈I ′i (D) aψ(a) to

∑
a∈Ii (D) aψ0(a) is at most 2M2k -to-1.We conclude

that with probability � 1− δ,

|Li (A)| � 2−M2k |L ′
i (A)| � δαD(1−κ/ i)

∑
j c j dim(Vj/Vj−1),

the implied constant only depending on k, M and α, which are all fixed.

6.2 Putting Li (A) in a box

In the last section, we showed that (with high probability) Li (A) is large.
In this section we show that with high probability it is contained in a box
(in coordinates ω1, . . . , ωd ); putting these results together one then sees that
Li (A) occupies a positive proportion of lattice points in the box, the bound
being independent of D.

For t ∈ {1, . . . , d}, write j (t) for the unique j such that

dim Vj−1 < t � dim Vj .

In addition, let C be the largest coordinate in absolute value of any element in
Vr ∩ {0, 1}k when written with respect to the base 1, ω1, . . . , ωd . We then set

N (i)
j := δ−1 · C · D(1−κ/ i)c j and N (i) :=

d∏

t=1
N (i)

j (t). (6.4)

Lemma 6.3 Assume δ > 0 is small enough so that re−2/δ � δ. Then, we have

Li (A) ⊂
d⊕

t=1

[− N (i)
j (t), N

(i)
j (t)

]
ωt (6.5)

with probability at least 1− δ in the choice of A ∩ Ii (D).

Proof This follows quickly from the fact that ψ is compatible and by Lemma
A.6, the latter implying that

∑

a∈A∩[2,D(1−κ/ i)c j ]
a � δ−1D(1−κ/ i)c j (1 � j � r)

with probability � 1− re−2/δ � 1− δ.

123



1086 K. Ford et al.

Proposition 6.4 Let δ and α be as in Proposition 6.2 and in Lemma 6.3. With
probability at least 1− 2δ in the choice of A∩ Ii (D),Li (A) is a subset of the
box

⊕d
t=1[−N (i)

j (t), N
(i)
j (t)]ωt of size� δd+αN (i).

Proof This follows immediately upon combining Proposition 6.2 and Lemma
6.3 .

6.3 Zero sums with positive probability

Lemma 6.5 Let δ and α be as in Proposition 6.2 and Lemma 6.3, and let
D be large enough in terms of δ and (V , c, μ). Let i ∈ Z ∩ [1, (log D)1/3].
In addition, let S ⊂ ⊕d

t=1[−N (i)
j (t), N

(i)
j (t)]ωt with |S| � δd+αN (i) and with

S ⊂ �. Then

P
(
0 ∈ Li+1(A)

∣∣Li (A) = S
)� δ2d(d+α).

Proof We condition on a fixed choice of A ∩ Ii (D) for which Li (A) = S.
Note that

Ii+1(D)\Ii (D) =
r⋃

j=1
(D(1−κ/ i)c j , D(1−κ/(i+1))c j ] ⊃

r⋃

j=1
[N (i)

j , 100dN (i)
j ].

(6.6)

Then it is enough to show that with probability� δ2d(d+α) , the setA contains
2d distinct elements at and a′t , 1 � t � d, such that

∑

t

(a′t − at )ω
t ∈ S and at , a

′
t ∈ [N (i)

j , 100dN (i)
j ] for t = 1, . . . , d.

(6.7)

To see why this is sufficient, let s =∑t (a
′
t − at )ωt , which we know belongs

to S = Li (A). In particular, there is an compatible mapψ supported on Ii (D)

such that
∑

a∈A aψ(a) = s. Now, consider the function

ψ ′ : A ∩ Ii+1(D)→ {0, 1}k

with ψ ′(a) = ψ(a) for a ∈ A ∩ Ii (D), ψ ′(a′t ) = 1− ωt and ψ ′(at ) = ωt for
1 � t � d, and ψ ′(a) = 0 for all other values of a ∈ A∩ Ii+1(D). Notice that
ψ ′ is compatible according to Definition 5.8 by the second part of (6.7). It is
now clear that 0 ∈ Li+1(A). Hence, if the conditional probability that (6.7)
holds is� δ2βd , so is the probability that 0 ∈ Li+1(A).
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To find at and a′t satisfying (6.7), let

n :=
⌈
d3d+1N (i)/|S|

⌉

 δ−(d+α).

The number of elements
∑

t stω
t ∈ S with n|st for some t is

�
d∑

t=1

(
2N (i)

j (t)/n + 1
)∏

t ′ �=t

(
2N (i)

j (t ′)+ 1
)

� d3d−1
(2N (i)

n
+ N (i)

min j N
(i)
j

)

� |S|/2

as long as D is large enough in terms of δ and (V , c, μ). Thus, there is a
subset S′ ⊂ S of size at least |S|/2 and with n � st for all t . We will choose
the sets {at : 1 � t � d} and {a′t : 1 � t � d} independently, by selecting
at ≡ 0 (mod n) and a′t �≡ 0 (mod n).

Note that

Ii+1(D)\Ii (D) =
r⋃

j=1
(D(1−κ/ i)c j , D(1−κ/(i+1))c j ] ⊃

r⋃

j=1
[N (i)

j , 100dN (i)
j ]

provided that i � (log D)1/3. For each given t , i and j , the probability that
the interval [4t N (i)

j , (4t + 2)N (i)
j ] contains no element at ≡ 0 (mod n) of A

equals

∏

4t N (i)
j �a�(4t+2)N (i)

j
a≡0 (mod n)

(1− 1/a) � 1− γ /n

for some small positive constant γ = γ (d). Thus, the probability that, for
each t = 1, 2, . . . , d, the set A contains some at ≡ 0 (mod n) in the interval
[4t N (i)

j (t), (4t + 2)N (i)
j (t)] is� 1/nd � δd(d+α).

Fix a choice of a1, . . . , ad as described above, and set

X := {(a1 + s1, . . . , ad + sd) : s1ω1 + · · · + sdω
d ∈ S′}. (6.8)

By construction, every coordinate of x ∈ X is �≡ 0 (mod n). Also,

X ⊂
d∏

t=1

[
(4t − 1)N (i)

j (t), (4t + 3)N (i)
j (t)

]
. (6.9)
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Now the intervals on the right-hand side above are disjoint, and

|X | � |S|
2
� δβ

d∏

t=1
N (i)

j (t).

Thus, by Lemma A.7, with probability� (δd+α)d , there are a′1, . . . , a′d ∈ A
such that (a′1, . . . , a′t ) ∈ X . The relation (6.7) follows for such at , a′t , which
exist with probability� δd(d+α) · δd(d+α).

6.4 An iterative argument

To complete the proof of Proposition 5.7, we apply Lemma 6.5 iteratively. Let
S be the set of sets S satisfying the assumptions of Lemma 6.5. We say that
Li (A) is large if it satisfies the conclusions of Proposition 6.4, or equivalently
if Li (A) = S with S ∈ S . Thus Lemma 6.5 implies that

P
(
0 ∈ Li+1(A)\Li (A), Li (A) large

)

=
∑

S large
0/∈S

P(Li (A) = S) · P(0 ∈ Li+1(A)
∣
∣Li (A) = S

)

� δ2dα
P
(
Li (A) large, 0 /∈ Li (A)

)
.

We conclude there is some ε = δO(1) such that

P
(
0 ∈ Li+1(A)

∣
∣Li (A) large, 0 /∈ Li (A)

)
� ε. (6.10)

For brevity, write Ei for the event that 0 /∈ Li (A), and Fi for the event that
Li (A) is large. In this notation, (6.10) becomes

P
(
Ec
i+1|Ei ∩ Fi ) � ε. (6.11)

Moreover, Proposition 6.4 implies that

P(Fi ) � 1− 2δ. (6.12)

Lastly, note that E1 ⊃ E2 ⊃ · · · becauseL1(A) ⊂ L2(A) ⊂ · · ·
We claim that P(Ei ) < 4δ for some i � I := #(log D)1/3$. Indeed, for

each i � I , we have
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P(Ei+1) = P(Ei+1|Ei ∩ Fi )P(Ei ∩ Fi )+ P(Ei+1|Ei ∩ Fc
i )P(Ei ∩ Fc

i )

� (1− ε)P(Ei ∩ Fi )+ P(Ei ∩ Fc
i ) by (6.11)

= P(Ei )− εP(Ei ∩ Fi )

� P(Ei )− ε(P(Ei )− 2δ) by (6.12).

Thus, ifP(Ei ) � 4δ, thenP(Ei+1) � (1−ε/2)P(Ei ). If this holds for all i � I ,
then P(EI ) � (1 − ε/2)I−1 < 4δ, a contradiction. Therefore, P(Ei∗) < 4δ
for some i∗ � I , as long as D is large enough in terms of δ and the (fixed)
system (V , c, μ). This completes the proof of Proposition 5.7.

Part III. The optimisation problem

7 The optimisation problem—basic features

In this section we consider Problem 3.7, the optimisation problem on the cube,
which is a key feature of our paper. We will give some kind of a solution to this
for a fixed nondegenerate flag V , leaving aside the question of how to choose
V optimally.

Let us refresh ourselves on the main elements of the setup of Problem 3.7.
We have a nondegenerate, r -step flag

V : 〈1〉 = V0 � V1 � V2 � · · · � Vr � Q
k

of distinct vector spaces. In light of Lemma 5.4, we may restrict our attention
to flags such that

dim(V1/V0) = 1,

which we henceforth assume. With the flag V fixed, we wish to find γk(V ),
the supremum of numbers c � 0 such that there are thresholds

1 = c1 � c2 � · · · � cr+1 = c

(we may assume that c1 = 1 by arguing as in Lemmas 5.3 and 5.4) and
probability measures μ1, . . . , μr on {0, 1}k satisfying Supp(μ j ) ⊂ Vj for
each j , and such that the entropy condition (3.4) holds, that is to say

e(V ′, c, μ) � e(V , c, μ) (7.1)
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for all subflags V ′ � V . We recall that

e(V ′, c, μ) :=
r∑

j=1
(c j − c j+1)Hμ j (V

′
j )+

r∑

j=1
c j dim(V ′j/V ′j−1).

Remarks. (a) It is easy to see that γk(V ) always exists by considering the
following example with c = 0. Take c1 = 1 and c2 = · · · = cr+1 = 0 and
recall that dim(V1/V0) = 1. Suppose that V1 = Span(1, ω) with ω ∈ {0, 1}k .
Thus, e(V , c, μ) = 1 for any choice of μ. If V ′1 = V1 then likewise we have
e(V ′, c, μ) = 1, and if V ′1 = V0 then e(V ′, c, μ) = Hμ1(V0). Now V0 + 1,
V0 + ω and V0 + (1− ω) are three different cosets. Taking

μ1(1) = μ1(ω) = μ1(1− ω) = 1/3

we have e(V ′, c, μ) = log 3. Thus, (3.4) holds. As we shall see in this section,
this choice ofμ1 is the optimal choice for a very general class of flags, including
those of interest to us.

(b) A simple compactness argument shows that the supremum is realised,
that is, there is a choice of c and μ satisfying the entropy condition 3.4 and
with cr+1 = γk(V ).

(c) As long as we can show that γk > 0 (which will be taken care of in Part
IV), we can always find an optimal system (V , c, μ) that also has c j > c j+1
for each j (cf. Lemma 5.4(a)).

7.1 A restricted optimisation problem

It turns out to be very useful to consider a restricted variant of the problem in
which the entropy condition (7.1) is only required to be satisfied for certain
“basic” subflags V ′, rather than all of them.

Definition 7.1 (Basic subflag) Given a flag V : 〈1〉 = V0 � V1 � · · · � Vr ,
the basic subflags V ′

basic(m) are the ones in which V ′i = Vmin(m,i), for m =
0, 1, . . . , r − 1 (note that when m = r we recover V itself).

Here is the restricted version of Problem 3.7. Recall that a flag is non-
degenerate if the top space Vr is not contained in any of the subspaces
{x ∈ R

k : xi = x j }. The restriction to nondegenerate flags ensures that
the subsets A1, . . . , Ak in our main problem are distinct.

Problem 7.2 Let V be a nondegenerate flag of distinct spaces in Q
k . Define

γ res
k (V ) to be the supremumof all constants c � 0 forwhich there aremeasures

μ1, . . . , μr such that Supp(μi ) ⊂ Vi , and parameters

1 = c1 � · · · � cr+1 = c
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such that the restricted entropy condition

e(V ′
basic(m); c, μ) � e(V ; c, μ) (7.2)

holds for all m = 0, 1, . . . , r − 1.

It is clear that

γ res
k (V ) � γk(V ). (7.3)

In general there is absolutely no reason to suppose that the two quantities
are equal, since after all the restricted entropy condition (7.2) apparently only
captures a small portion of the full condition (7.1).

Our reason for studying the restricted problem is that we do strongly believe
that

sup
V nondegenerate

γ res
k (V ) = sup

V nondegenerate
γk(V ) = γk .

One might think of this unproven assertion, on an intuitive level, in two
(roughly equivalent) ways:

• for those flags optimal for Problem 3.7, the critical cases of (7.1) are those
for which V ′ is basic;

• for those flags optimal for Problem 3.7, and for the critical choice of the
ci , μi , the restricted condition (7.2) in fact implies the more general con-
dition (7.1).

7.2 The ρ-equations, optimal measures and optimal parameters

The definitions and constructions of this section will appear unmotivated at
first sight. They are forced upon us by the analysis of Sect. 7.5 below.

Let the flag V be fixed.
It is convenient to call the intersection of a coset x+Vi with the cube {0, 1}k

a cell at level i , and to denote the cells at various levels by the letter C . (The
terminology comes from the fact it can be useful to think of Vi defining a σ -
algebra (partition) on {0, 1}k , the equivalence relation being given by ω ∼ ω′
iff ω−ω′ ∈ Vi : however, we will not generally use the language of σ -algebras
in what follows.)

If C is a cell at level i , then it will be a union of cells C ′ at level i −1. These
cells we call the children of C , and we write C → C ′.

Let ρ = (ρ1, . . . , ρr−1) be real parameters in (0, 1), and for each cell C
define functions f C (ρ) by the following recursive recipe:
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• If C has level 0, then f C (ρ) = 1;
• If C has level i , then

f C(ρ) =
∑

C→C ′
f C

′
(ρ)ρi−1, (7.4)

with the convention that ρ0 = 0.
Write

�i = Vi ∩ {0, 1}k

for the cell at level i which contains 0. Note that

{0, 1} = �0 ⊂ �1 ⊂ · · · ⊂ �r .

Definition 7.3 (ρ-equations) The ρ-equations are the system of equations

f � j+1(ρ) = ( f � j (ρ))ρ j edim(Vj+1/Vj ), j = 1, 2, . . . , r − 1. (7.5)

We say that they have a solution if they are satisfiedwithρ1, . . . , ρr−1 ∈ (0, 1).

Example Figure 1 illustrates these definitions for the so-called binary flag in
Q

4, which will be a key object of study from Sect. 9 onwards. Here

V1 = {(x1, x2, x3, x4) ∈ Q
4 : x1 = x2, x3 = x4}

and V2 = Q
4. The ρ-equations consist of the single equation

f �2(ρ) = ( f �1(ρ))ρ1e2, that is to say 3ρ1 + 4 · 2ρ1 + 4 = 3ρ1e2. This has the
unique solution ρ1 ≈ 0.306481.

In general the ρ-equations may or may not have a solution, but for flags V
of interest to us, it turns out that they have a unique such solution. In this case,
we make the following definition.

Definition 7.4 (Optimal measures) Suppose that V is a flag for which the ρ-
equations have a solution. Then the corresponding optimal measure on μ∗ on
{0, 1}k with respect to V is defined as follows: we set μ∗(�r ) = 1, and

μ∗(C ′)
μ∗(C)

= f C
′
(ρ)ρi−1

f C (ρ)
(7.6)

for any cell C at level i � 1 and any child C → C ′. We also
set μ∗(0) = μ∗(1) = μ∗(�0)/2. Lastly, we define the restrictions
μ∗j (ω) := μ∗(� j )

−1μ∗(ω)1ω∈� j for j = 1, 2, . . . , r (thus μ∗r = μ∗). We
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call these7 optimal measures (on {0, 1}k , with respect to V ). Finally, we write
μ∗ = (μ∗1, μ∗2, . . . , μ∗r ).

Remark 7.1 (a) By taking telescoping products of (7.6) for i = r, r−1, . . . , 0,
we see that μ∗ is uniquely defined on all cells at level 0, and these are the cell
{0, 1} and singletons {ω} for all ω ∈ {0, 1}k\{0, 1}. Since we also specified
μ∗(0) = μ∗(1) = μ∗(�0)/2, we see that μ∗(ω) is completely and uniquely
determined by these rules, for all ω. In particular, the ρ-equations (7.5) are
equivalent to

μ∗(� j )

μ∗(� j+1)
= e− dim(Vj+1/Vj ) for j = 1, . . . , r − 1,

and thus

μ∗j (�m) = e− dim(Vj/Vm) ( j � m � 1). (7.7)

In addition, we have

μ∗(�0) = μ∗(�1) · 1

f �1(ρ)
= e− dim(V1/Vr )

|�1| − 1
. (7.8)

(b)Byconstruction, themeasuresμ∗j satisfy statements (d) and (e) ofLemma
5.3 for all j :

Supp(μ j ) = � j and μ j (ω) = μ j (1− ω) ∀ω. (7.9)

(c) At the moment, the term “optimal measure” is just a name. We will
establish the sense in which (in situations of interest) the measures μ∗j are
optimal in Proposition 7.7 below.

(d) Note that μ∗ and μ∗ are two different (but closely related) objects. The
former is an r -tuple of measures μ∗j , all of which are induced from the single
measure μ∗.

Definition 7.5 (Optimal parameters) Suppose that V is a flag for which the
ρ-equations have a solution. Let μ∗ be the corresponding optimal measure on
{0, 1}k with respect to V . Suppose additionally that

Hμ∗m+1(Vm) �= dim(Vm+1/Vm) (7.10)

7 Note that we have not said that the ρi are unique. However, in cases of interest to us this will
turn out to be the case.
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for m = 0, 1, . . . , r − 1. Then the corresponding optimal parameters with
respect to V and the solution ρ are the unique choice of

c∗ : 1 = c∗1 > c∗2 > · · · > c∗r+1 > 0,

if it exists, such that

e(V ′
basic(m), μ

∗, c∗) = e(V , μ∗, c∗) for m = 0, 1, . . . , r − 1. (7.11)

The Eq. (7.11), written out in full, are

r∑

j=m+1
(c∗j − c∗j+1)Hμ∗j (Vm) =

r∑

j=m+1
c∗j dim(Vj/Vj−1) (7.12)

m = 0, 1, . . . , r − 1.
By (7.10), this uniquely determines c∗m+1 ∈ R in terms of c∗m+2, . . . , c∗r+1.

Hence, we recursively determine c1, . . . , cr in terms of cr+1. Since we must
further have c1 = 1, this implicitly determines cr+1 as well, and thus the entire
vector c∗.

Remark. By Lemma 5.3 (ii), a stronger form of the condition (7.10) is
required in order for the entropy gap condition to hold, and so in practice this
assumption is not at all restrictive.

We conclude this subsection with a characterization of the optimal measure
μ∗ and parameters c∗. Given an r -step flagV , there is an associated rooted tree
T (V ), which captures the structure of the cells at different levels 0, . . . , r−1.
In particular, this tree always has exactly 2k−1 leaves at level 0, corresponding
to the cell �0 = {0, 1} and the singletons {ω} for each ω ∈ {0, 1}k\{0, 1}.
Lemma 7.6 The optimal constant γ res

k (V ), associated measures μ∗i (C) and
optimal parameters c∗i depend only on the tree T (V ) and the sequence of
dimensions dim(Vj ), 0 � j � r .

Proof Let V and Ṽ be different flags with the same tree structure, that is,
T (V ) is isomorphic to T (Ṽ ), and with the same sequence of dimensions
dim(Vj ) and dim(V ′j ). By an easy induction on the level and the defini-

tion of f C(ρ), if C ∈ T (V ) and C̃ ∈ T (Ṽ ) correspond, we find that
f C (ρ) = f C̃ (ρ). The statements now follow from Definitions 7.4 and 7.5.

7.3 Solution of the optimisation problem: statement

Here is the main result of this section, which explains the introduction of the
various concepts above, as well as their names.
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Proposition 7.7 Suppose that V : 1 = V0 � V1 � · · · � Vr � Q
k is a

nondegenerate flag such that dim(V1/V0) = 1 and the ρ-equations have a
solution. Let μ∗ be the corresponding optimal measures, and suppose that the
corresponding optimal parameters c∗ exist. Then

γ res
k (V ) = (log 3− 1)

/(
log 3+

r−1∑

i=1

dim(Vi+1/Vi )
ρ1 · · · ρi

)
. (7.13)

Moreover, the optimal measures μ∗ and optimal parameters c∗ provide the
solution to Problem 7.2; in particular, c∗r+1 is precisely the right-hand side of
(7.13).

For this result to be of any use, we need methods for establishing, for flags
V of interest, that the ρ-equations have a solution, and also that the optimal
parameters exist. The former is a very delicate matter, highly dependent on
the specific structure of the flags of interest. Once this is sorted out, the latter
problem is less serious, at least in situations relevant to us.

7.4 Linear forms in entropies

In the next section we will prove Proposition 7.7. In this section we isolate
some lemmas from the proof.

Let V : 〈1〉 = V0 � · · · � Vr � Q
k be a flag. We use the terminology of

cells C at level i , introduced at the beginning of Sect. 7.2.

Lemma 7.8 Let y = (y0, . . . , yr−1) be real numbers with the property that
all the partial sums y<i := y0+ · · ·+ yi−1 are positive. If C is a cell (at some
level i), then we write

hC (y) := sup
Supp(μC )⊂C

( ∑

0�m<r

ymHμC (Vm)
)
, (7.14)

where the supremum is over all probability measures μC supported on C.

(a) The quantities hC (y) are completely determined by the following rules:
• If C has level 0, then hC(y) = 0;
• If C has level i , then

hC (y) = y<i log
( ∑

C ′:C→C ′
eh

C ′ (y)/y<i
)
. (7.15)

(b) For any C, the maximum in (7.14) occurs for a unique measure μ∗C,y.
Furthermore, all of the μ∗C,y are restrictions of the “top” measure
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μ∗y := μ∗�r ,y, that is to say μ∗C,y(x) = μ∗y(x)/μ∗y(C) for all x ∈ C,
and

μ∗y(C ′)
μ∗y(C)

= eh
C ′ (y/y<i )

ehC (y/y<i )
. (7.16)

Remark As will be apparent from the proof, we do not use the linear structure
of the cells C (that is, the fact that they come from cosets). We leave it to the
reader to formulate a completely general version of this lemma in which the
cells at level i are the atoms in a σ -algebraFi , withFi being a refinement of
Fi+1 for all i .

Proof We prove both parts simultaneously. Let us temporarily write h̃C (y) for
the function defined by (7.15), thus the aim is to prove that hC(y) = h̃C(y),
where hC (y) is defined in (7.14). We do this by induction on i , the i = 0 case
being trivial since, in this case, all the entropies HμC (Vm) are zero because
each cell of level 0 lies in some coset mod V0, and thus in the same coset mod
Vm for m = 0, 1, . . . , r − 1.

Suppose now that we know the result for cells of level i − 1. Note that both
hC and h̃C satisfy a homogeneity property

h̃C (ty) = t h̃C (y), hC (ty) = thC(y).

This is obvious for hC , and can be proven very easily for h̃C by induction.
Therefore we may assume that y<i = 1. This does not affect the measure μ∗y,
which does not depend on the scaling of the parameters ym .

Suppose that C is a cell at level i . A probability measure μC on C is
completely determined by probability measures μC ′ on the children C ′ of C
(at level i − 1) together with the probabilities μC(C ′), which must sum to 1,
with the relation being that μC ′(x) = μC(x)/μC (C ′) for x ∈ C ′.

Suppose that 0 � m < i . Let the random variables X, Y be random cosets
of Vm, Vi−1 respectively, sampled according to themeasureμC . Then X deter-
mines Y and so, by Lemma B.5,H(X, Y ) = H(X). The chain rule for entropy,
Lemma B.4, then yields

H(X) = H(Y )+
∑

y

P(Y = y)H(X |Y = y).

Translated back to the language we are using, this implies that

HμC (Vm) = HμC (Vi−1)+
∑

C ′
μC(C ′)HμC ′ (Vm).
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Therefore

∑

0�m<i

ymHμC (Vm) = HμC (Vi−1)+
∑

C ′
μC (C ′)

∑

0�m<i

ymHμC ′ (Vm).

(Here we used our assumption that y<i = 1.) Since HμC (Vm) = 0 for m �
i , and HμC ′ (Vm) = 0 for m � i − 1, we may extend the sums over all
m ∈ {0, 1, . . . , r − 1} thereby obtaining

∑

0�m<r

ymHμC (Vm) = HμC (Vi−1)+
∑

C ′
μC (C ′)

∑

0�m<r

ymHμC ′ (Vm).

Since the μC ′ can be arbitrary probability measures, and HμC (Vi−1) depends
only on the value of μC (C ′), it follows from the inductive hypothesis that

hC(y) = sup
μC

( ∑

0�m<r

ymHμC (Vm)
)

(7.17)

= sup
μC (C ′),μC ′

(
HμC (Vi−1)+

∑

C ′
μC (C ′)

∑

0�m<r

ymHμC ′ (Vm)
)

(7.18)

= sup
μC (C ′)

(
HμC (Vi−1)+

∑

C ′
μC (C ′)h̃C ′(y)

)
, (7.19)

with equality when going from (7.18) to (7.19) when μC ′ = μ∗C ′,y for all
C ′. Applying Lemma B.3 with the p j being the μC (C ′) and the a j being
the h̃C

′
(y), and noting that HμC (Vi−1) = H(p) (where p = (p1, p2, . . .)), it

follows that

sup
μC (C ′)

(
HμC (Vi−1)+

∑

C ′
μC (C ′)h̃C ′(y)

)
= log

( ∑

C ′:C→C ′
eh̃

C ′ (y)
)
= h̃C (y).

(7.20)

In addition, Lemma B.3 implies that equality occurs in (7.20) precisely when
p j = ea j /

∑
i e

ai , that is to say when

μC (C ′) = eh
C (y)

∑
C ′:C→C ′ e

hC (y)
= μ∗y(C ′)

μ∗y(C)
.

(Here we used again that y<i = 1.) Recalling that μC ′ = μ∗C ′,y for all C
′, we

see that the measure μC for which equality occurs in (7.17) is the restriction
of μ∗y = μ∗�r ,y to C . This completes the inductive step.
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7.5 Solution of the optimisation problem: proof

This section is devoted to the proof of Proposition 7.7. Strictly speaking, for
our main theorems we only need a lower bound on γ res

k (V ), and for this it
suffices to show that c∗r+1 is given by the right-hand side of (7.13). This could,
in principle, be phrased as a calculation, but it would look complicated and
unmotivated. Instead, we present it in the way we discovered it, by showing
that the RHS of (7.13) is an upper bound on γ res

k (V ), and then observing that
equality does occur when μ = μ∗ is the optimal measure (Definition 7.4) and
c = c∗ the optimal parameters (Definition 7.5). We establish this upper bound
using the duality argument from linear programming and Lemma 7.8.

To ease the notation, we use the shorthand di := dim(Vi ) throughout this
subsection. Let us, then, consider the restricted optimisation problem, namely
Problem 7.2. The condition (7.2) may be rewritten as

r∑

j=m+1
(c j − c j+1)(Hμ j (Vm)+ dm − d j ) � cr+1(dr − dm) (7.21)

for m = 0, 1, . . . , r − 1. Therefore for any choice of “dual variables”
y = (y0, y1, . . . , yr−1), y0, . . . , yr−1 � 0, we have

r−1∑

m=0
ym

r∑

j=m+1
(c j − c j+1)(Hμ j (Vm)+ dm − d j ) � cr+1

r−1∑

m=0
ym(dr − dm),

(7.22)

which, upon rearranging, gives

r∑

j=1
(c j − c j+1)E j (y)+ cr+1Er+1(y) � cr+1. (7.23)

where

E j (y) :=
j−1∑

m=0
ym(Hμ j (Vm)+ dm − d j )

for j = 1, . . . , r , and

Er+1(y) := 1−
r−1∑

m=0
ym(dr − dm).
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Since the c j − c j+1, j = 1, . . . , r , and cr+1 are nonnegative and sum to 1,
this implies that

cr+1 � min
yi�0 ∀i max{E1(y), . . . , Er (y), Er+1(y)}. (7.24)

By Lemma 7.8, this implies that

cr+1 � min
yi�0 ∀i max{E ′1(y), . . . E ′r (y), Er+1(y)}, (7.25)

where

E ′j (y) := h� j (y)+
j−1∑

m=0
ym(dm − d j )

=
j−1∑

m=0
ym(Hμ∗� j ,y

(Vm)+ dm − d j ),

(7.26)

for j = 1, . . . , r , and μ∗� j ,y
is the measure ν supported on � j = Vj ∩ {0, 1}k

for which the sum
∑

m ymHν(Vm) is maximal, as defined in Lemma 7.8.
Now we specify a choice of y. To do this, we make a change of vari-

ables, defining ρi = y<i/y<i+1. Note that for fixed y0 > 0, choices
of y1, . . . , yr−1 > 0 are in one-to-one correspondence with choices of
ρ1, . . . , ρr−1 with 0 < ρi < 1. We must then have that

log f C (ρ) = hC (y/y<i ) = 1

y<i
hC (y) = ρ1 . . . ρi−1

y0
hC (y) (7.27)

for the cellsC at level i , whichmay easily be proven by induction on the level i ,
using the defining equations for the hC and f C (see (7.15), (7.4) respectively).

Now choose the ρi to satisfy the ρ-equations (7.5). In virtue of (7.27), the
j-th ρ-equation

f � j+1(ρ) = ( f � j (ρ))ρ j ed j+1−d j

with j ∈ {1, 2, . . . , r − 1} is equivalent to

E ′j (y) = E ′j+1(y), (7.28)

with E ′j (y) defined as in (7.26) above.
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Recall that d1 − d0 = dim(V1/V0) = 1. Thus, if we choose

y0 := 1
/(

log 3+
r−1∑

i=1

di+1 − di
ρ1 . . . ρi

)
,

a short calculation confirms that

Er+1(y) = E ′1(y) = y0(log 3− 1). (7.29)

With this choice of y we therefore have, from (7.28) with j = 1, . . . , r − 1,
(7.29) and (7.25),

cr+1 � E ′1(y) = (log 3− 1)
/(

log 3+
r−1∑

i=1

di+1 − di
ρ1 . . . ρi

)
. (7.30)

In the above analysis, the μi and the ci were arbitrary subject to the con-
ditions of Problem 7.2, thus Supp(μi ) ⊂ Vi and 1 = c1 > c2 > · · · > cr+1.
Therefore, recalling the definition of γ res

k (V ) (see Problem 7.2), we have
proven that

γk(V ) � γ res
k (V ) � (log 3− 1)

/(
log 3+

r−1∑

i=1

di+1 − di
ρ1 . . . ρi

)
.

Proposition 7.7 asserts that equality occurs in this bound when c j = c∗j and
μ j = μ∗j , where c∗ = (c∗1, . . . , c∗r+1) are the optimal parameters defined in
Definition 7.5, and μ∗ and its restrictions μ∗j are the optimal measures defined
in Definition 7.4. To establish this, we must go back through the argument
showing that equality occurs at every stage with these choices.

First note that (7.21) is equivalent (as we stated at the time) to
e(V ′

basic(m), c, μ) � e(V , c, μ). The fact that equality occurs herewhen c = c∗
and μ = μ∗ is essentially the definition of the optimal parameters c∗ (Defini-
tion 7.5). That equality occurs in (7.22) and (7.23) is then automatic.

Working from the other end of the proof, the choice of y was made so that
E ′1(y) = · · · = E ′r (y) = Er+1(y). We claim that, with this choice of y,

μ∗ = μ∗y. (7.31)

By (7.16), it suffices to check that

μ∗(C ′)
μ∗(C)

= eh
C ′ (y/y<i )

ehC (y/y<i )
.
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This follows immediately from (7.6) and (7.27).
Since μ∗j is defined to be the restriction of μ∗ to � j , it follows from (7.31)

that μ∗j = μ∗� j ,y
, and hence that E j (y) = E ′j (y) for j = 1, . . . , r .

Thus all 2r + 1 of the quantities E ′j (y) ( j = 1, . . . , r ) and E j (y) ( j =
1, . . . , r +1) are equal. It follows from this and the fact that equality occurs in
(7.23) that equality occurs in (7.24), (7.25) and (7.30) as well. This concludes
the proof of Proposition 7.7.

8 The strict entropy condition

8.1 Introduction

Fix an r -step, nondegenerate flag V . In the previous section, we studied a
restricted optimization problem (Problem 7.2) asking for the supremum of
cr+1 when ranging over all systems (V , c, μ) satisfying the “restricted entropy
condition”

e(V ′
basic(m), c, μ) � e(V , c, μ) (m = 0, 1, . . . , r − 1). (8.1)

The aim of the present section is two-fold: we wish to establish, under general
conditions, that an “optimal system” with respect to (8.1) satisfies the more
general entropy condition

e(V ′, c, μ) � e(V , c, μ) (all V ′ � V ). (8.2)

In addition, we want to show that if we slightly perturb such a system, we may
guarantee the strict entropy condition (3.5), which is a version of (8.2) with
strict inequalities for all proper subflags V ′ of V .

Before stating our result, we need to define the notion of the automorphism
group of a flag.

Definition 8.1 (Automorphism group) For a permutation σ ∈ Sk and
ω = (ω1, . . . , ωk) ∈ Q

k , denote by σω the usual coordinate permutation
action σω = (ωσ(1), . . . , ωσ(k)). The automorphism group Aut(V ) is the
group of all σ that satisfy σVi = Vi for all i .

Proposition 8.2 Let V be an r-step, nondegenerate flag of distinct spaces.
Assume that the ρ-equations (7.5) have a solution, and define the optimal
measures μ∗ on {0, 1}k as in Definition 7.4. Furthermore, assume that:
(a) no intermediate subspace is fixed by Aut(V ), that is to say there is no

space W that is invariant under the action of Aut(V ) and such that
Vi−1 < W < Vi (the inclusions being strict);
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(b) the optimal parameters c∗ exist and they are distinct and positive, that
is to say the system of Eq. (7.12) has a unique solution c∗ satisfying
1 = c∗1 > c∗2 > · · · > c∗r+1 > 0;

(c) the following “positivity inequalities” hold:
(i) Hμ∗m+1(Vm) > dim(Vm+1/Vm) for 0 � m � r − 1;
(ii) Hμ∗i (Vm−1)−Hμ∗i (Vm) < dim(Vm/Vm−1) for 1 � m < i � r .

Then, for every ε > 0, there exists a perturbation c̃ of c∗ such that
1 = c̃1 > c̃2 > · · · > c̃r+1 � cr+1 − ε and such that we have the strict
entropy condition

e(V ′, c̃, μ∗) > e(V , c̃, μ∗) for all proper subflags V ′ � V . (8.3)

We assume throughout the rest of the section that (a), (b) and (c) of Propo-
sition 8.2 are satisfied, and we now fix the system (V , c∗, μ∗). For notational
brevity in what follows, we write

e(V ′) := e(V ′, c∗, μ∗).

Our strategy is as follows. First, we show the weaker “unperturbed” state-
ment that

e(V ′) � e(V ) for all subflags V ′ � V , (8.4)

noting that we have strict inequality for certain subflags V ′ along the way.
Then, in Sect. 8.8, we show how to perturb c∗ to c̃ so that the strict inequality
(8.3) is satisfied. We also sketch a second way of effecting the perturbation
which is in a sense more robust, but which in essence requires a perturbation
of the whole proof of (8.4).

8.2 Analysis of non-basic flags

We turn now to the task of proving (8.4). We will prove it for progressively
wider sets of subflags V ′, each time using the previous statement. In order, we
will prove it for subflags V ′ which we call:

(a) semi-basic: flags

V ′ : V0 � V1 � V2 � · · · � Vm−1 � · · · � Vm−1 � Vm � · · · � Vm

with m � 1 (that is, V ′ is like a basic flag, but there can be more than one
copy of Vm−1);

(b) standard: each V ′i is one of the spaces Vj ;
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(c) invariant: this means that σV ′i = V ′i for all automorphisms σ ∈ Aut(V )

and all i ;
(d) general subflags, i.e. we assume no restriction on the V ′i other than that

V ′i � Vi .

Note that a semi-basic flag is standard, a standard flag is invariant, and of
course an invariant flag is general.

We introduce some notation for standard flags. Let J ⊂ N
r
0 be the set of all

r -tuples j = ( j1, . . . , jr ) such that j1 � · · · � jr and ji � i for all i . Then we
define the flag V ′

j = V ′
( j1,..., jr )

to be the one with V ′i = Vji . This is a standard
flag, and conversely every standard flag is of this form. If we define

basic(m) := (1, 2, . . . ,m − 1,m, . . . ,m)

then basic(m) ∈ J , and V ′
basic(m) agrees with our previous notation.

8.3 Semi-basic subflags

In this subsection we prove the following result, establishing that (8.4) holds
for semi-basic subflags, andwith strict inequality for thosewhich are not basic.

Lemma 8.3 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V ′) > e(V ) for all non-basic, semi-basic flags V ′.

We begin by setting a small amount of notation for semi-basic flags. We
note that the idea of a semi-basic flag, which looks rather ad hoc, will only be
used here and in Sect. 8.5.

Definition 8.4 (Semi-basic flags that are not basic) Suppose that 1 � m �
r − 1 and that m � s � r − 1. Then we define the element semi(m, s) ∈ J to
be j = (1, 2, . . . ,m−1,m−1, . . . ,m, . . . ,m) such that ji = i for i � m−1,
ji = m − 1 for m � i � s and ji = m for i > s.

It is convenient and natural to extend the notation to s = m − 1 and s = r ,
by defining

semi(m, r) = basic(m − 1), semi(m,m − 1) = basic(m). (8.5)

One can think of the semi-basic flags as interpolating between the basic flags.

Example When r = 3 there are three semi-basic flags V j that are not basic,
corresponding to

j = semi(1, 1) = (0, 1, 1),

j = semi(1, 2) = (0, 0, 1),

j = semi(2, 2) = (1, 1, 2).

123



Equal sums in random sets 1105

Proof of Lemma 8.3 Assume thatV ′ is semi-basic but not basic.Wewill show
that

e(V ′
semi(m,s)) > e(V ′

semi(m,s+1)) (8.6)

for m � s � r − 1. Since V ′
semi(m,r) = V ′

basic(m−1) is basic, this establishes
Lemma 8.3.

To prove (8.6), we simply compute that

e(V ′
semi(m,s))− e(V ′

semi(m,s+1))
= (c∗s+1 − c∗s+2)

[
Hμs+1(Vm)−Hμs+1(Vm−1)+ dim(Vm/Vm−1)

]

when m � s � r − 2, and

e(V ′
semi(m,r−1))− e(V ′

semi(m,r))

= (c∗r − c∗r+1)
[
Hμr (Vm)−Hμr (Vm−1)+ dim(Vm/Vm−1)

]

+ dim(Vm/Vm−1)c∗r+1.

In both cases, the result follows from part (ii) of condition(c) of Proposition
8.2; in the second case, we also need to use our assumption that c∗r+1 � 0.

8.4 Submodularity inequalities

To proceed further, we make heavy use of a submodularity property of the
expressions e().

Suppose that V ′, Ṽ ′ are two subflags of V . We can define the sum V ′ + Ṽ ′
and intersection V ′ ∩ Ṽ ′ by

(V ′ + Ṽ ′)i := V ′i + Ṽ ′i

and

(V ′ ∩ Ṽ ′)i := V ′i ∩ Ṽ ′i .

Both of these are indeed subflags of V .

Lemma 8.5 We have

e(V ′)+ e(Ṽ ′) � e(V ′ + Ṽ ′)+ e(V ′ ∩ Ṽ ′).

123



1106 K. Ford et al.

Proof We first note that the entropiesHμ(W ) satisfy a submodularity inequal-
ity. Namely, if W1,W2 are subspaces of Q

k and μ is a probability measure
then

Hμ(W1)+Hμ(W2) � Hμ(W1 ∩W2)+Hμ(W1 +W2). (8.7)

To prove this, consider the following three random variables:

• X is a random coset of W1 +W2, sampled according to the measure μ;
• Y is a random coset of W1, sampled according to the measure μ;
• Z is a random coset of W2, sampled according to the measure μ.

Then, more-or-less by definition,

H(X) = Hμ(W1 +W2), H(Y ) = Hμ(W1), H(Z) = Hμ(W2).

Note also that Y determines X and so H(Y ) = H(X, Y ), and similarly
H(Z) = H(X, Z). Finally, (Y, Z) uniquely defines a random coset ofW1∩W2,
and so

Hμ(W1 ∩W2) = H(Y, Z) = H(X, Y, Z).

The inequality to be proven, (8.7) is therefore equivalent to

H(X, Y )+H(X, Z) � H(X, Y, Z)+H(X),

which is a standard entropy inequality (Lemma B.6; usually known as “sub-
modularity of entropy” or “Shannon’s inequality” in the literature).

Lemma8.5 is essentially an immediate consequenceof (8.7) and the formula

dim(W1)+ dim(W2) = dim(W1 ∩W2)+ dim(W1 +W2).

(It is very important that this formula holds with equality, as compared to (8.7),
which holds only with an inequality.)

This has the following immediate corollary when applied to standard sub-
flags. Here, the max and min are taken coordinatewise.

Corollary 8.6 Suppose that j1, j2 ∈ J . Then

e(V ′
j1

)+ e(V ′
j2

) � e(V ′
max( j1, j2)

)+ e(V ′
min( j1, j2)

)
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8.5 Standard subflags

Now we extend the result of the Sect. 8.3 to all standard subflags.

Lemma 8.7 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V ′) > e(V ) for all standard, non-basic subflags V ′ � V .

Proof Let j ∈ J with j non-basic, and let V ′ = V ′
j . Then r � 3, since when

r � 2 all standard flags are basic. We proceed by induction on ‖ j‖∞, the
case ‖ j‖∞ = 1 being trivial, since then V is semibasic and we may invoke
Lemma 8.3. Now suppose we have proved e(V ′) > e(V ) for all non-basic
standard flags V ′ = V ′

j with ‖ j‖∞ < m, and let j ∈ J with ‖ j‖∞ = m.
We apply Corollary 8.6 with j1 = j and j2 = basic( jr − 1). Noting that
max( j , basic( jr − 1)) = semi( jr , s), where s is the largest index in j such
that js < jr , we see that

e(V ′
j )+ e(V ′

basic( jr−1)) � e(V ′
j∗)+ e(V ′

semi( jr ,s)), (8.8)

where

j∗ := min( j , basic( jr − 1)).

Suppose that both of the flags on the right of (8.8) are basic. If semi( jr , s)
is basic then it must be basic( jr ), which means that s = jr − 1. But then
j∗ = ( j1, . . . , js, jr−1, . . . jr−1)which, if it is basic, must be basic( jr−1);
this then implies that ji = i for 1 � i � s, and hence that j = basic( jr ), a
contradiction. Thus, at least one of the two flags j∗, semi( jr , s) on the right
of (8.8) is not basic. Since ‖ j∗‖∞ < ‖ j‖∞ = m, the induction hypothesis
together with Lemma 8.3 implies that e(V ′) > e(V ), as desired.

8.6 Invariant subflags

Now we extend our results to all invariant flags, but now without the strict
inequality.

Lemma 8.8 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V ′) � e(V ) for all invariant subflags V ′ � V .

Proof We associate a pair (i, �), i � �, of positive integers to V ′, which
we call the signature, in the following manner. If V ′ is standard, then set
(i, �) = (−1,−1). Otherwise, let i be maximal so that V ′i is not a standard
space Vt , and then let � be minimal such that V ′i � V�. The fact that � � i
is immediate from the definition of a subflag. We put a partial ordering on
signatures as follows: (i ′, �′) & (i, �) iff i ′ < i , or if i ′ = i and �′ � �. We
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proceed by induction on the pair (i, �) with respect to this ordering, the case
(i, �) = (−1,−1) handled by Lemma 8.7.

For the inductive step, suppose V ′ is nonstandard with signature (i, �). By
submodularity,

e(V ′)+ e(V ′
basic(�−1)) � e(V1)+ e(V2), (8.9)

where

V1 = V ′ ∩ V ′
basic(�−1), V2 = V ′ + V ′

basic(�−1).

Suppose that V1,V2 have signatures (i1, �1), (i2, �2), respectively. We show
that

(i1, �1) � (i, �) and (i2, �2) � (i, �). (8.10)

Both V1 and V2 are invariant flags. Thus, if (8.10) holds, then both flags on the
right-hand side of (8.9) have strictly smaller signature than V ′, and the lemma
follows by induction.

Finally, we prove (8.10). Note that if j > i , then V ′j is a standard space Vm
and thus so are (V1) j and (V2) j . In particular, i1 � i and i2 � i . We have that
(V2)i contains V�−1, is not equal to V�−1, and is contained in V�. But (V2)i
is invariant, and hence by our assumption that (a) of Proposition 8.2 holds,
(V2)i = V�. Consequently, i2 < i if V2 is nonstandard. In the case that V1 is
nonstandard, we also have that �1 < � because every space in the flag V1 is
contained in V�−1. This proves (8.10).

8.7 General subflags

In this section we establish (8.4), that is to say the inequality e(V ′) � e(V )

for all subflags V ′, of course subject to our standing assumption that (a), (b)
and (c) of Proposition 8.2 hold. We need a simple lemma about the action of
the automorphism group Aut(V ) on subflags.

Lemma 8.9 Letσ ∈ Aut(V )and letV ′ bea subflagofV . Thenonemaydefine
a new subflag σ(V ′), setting σ(V ′)i := σ(V ′i ). Moreover, e(σ (V ′)) = e(V ′).

Proof Since V ′ is a subflag, V ′i � Vi . Applying σ , and recalling that Vi is
invariant under σ , we see that σ(V ′i ) � Vi . Therefore σ(V ′) is also a subflag.
To see that e(σ (V ′)) = e(V ′), recall Lemma 7.6, which implies that μi is
invariant under σ , since the trees T (V ′) and T (σ (V ′)) are isomorphic and
we have dim(V ′j ) = dim(σ (V ′j )) for all j . It follows that, for any subspace

W � Q
k ,

123



Equal sums in random sets 1109

Hμi (σ (W )) = −
∑

x

μi (x) logμi (σ (W )+ x)

= −
∑

y

μi (σ (y)) logμi (σ (W + y))

= −
∑

y

μi (y) logμi (W + y)

= Hμi (W ).

This completes the proof of the lemma.

Proof of (8.4) Let m be the minimum of e(V ′) over all subflags V ′ � V ,
and among the flags with e(V ′) = m, take the one with

∑
i dim V ′i min-

imal. Let σ ∈ Aut(V ) be an arbitrary automorphism. By Lemma 8.9,
e(V ′) = e(σ (V ′)), and hence submodularity implies that

2e(V ′) � e(V ′ + σ(V ′))+ e(V ′ ∩ σ(V ′)). (8.11)

In particular, we have e(V ∩ σ(V ′)) = m (and also e(V ′ + σ(V ′)) = e(V ),
but we will not need this). Moreover, by the minimality of

∑
i dim V ′i ,

∑

i

dim(V ′i ∩ σ(V ′i )) =
∑

i

dim V ′i ,

which means that V ′ is invariant. Invoking Lemma 8.8, we conclude that
m = e(V ′) � e(V ).

8.8 The strict entropy condition

In this section we complete the proof of Proposition 8.2 by showing how to
perturb (8.4) to the desired strict inequality (8.3).
First argument.Consider first the collection U of all subflags V ′ which satisfy,
for some 1 � j � r − 1, the relations

V ′i = Vi (i �= j), Vj−1 � Vj ′ < Vj .

These are flags which differ from V in exactly one space. Our first task will
be to establish the strict inequality

e(V ′) > e(V ) (8.12)

for all V ′ ∈ U , by elaborating upon the argument of the previous subsection.
We already know that e(V ′) � e(V ), so suppose as a hypothesis for contra-
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diction that e(V ′) = e(V ) for some V ′ ∈ U . Amongst all such flags, take
one with minimal

∑
dim(V ′i ). By submodularity, we have (8.11) and hence

e(V ′ ∩ σ(V ′)) = e(V ) for any automorphism σ ∈ Aut(V ). But

V ′ ∩ σ(V ′) = (V1, . . . , Vj−1, V ′j ∩ σ(V ′j ), Vj+1, . . . , Vr )

is evidently in U as well, and by our minimality assumption it follows that
dim(V ′j ∩ σ(V ′j )) = dim(V ′j ). Thus, V ′ is invariant, and by assumption (a)
of Proposition 8.2, it follows that V ′j = Vj−1. Thus, V ′ is a standard flag,
which is not basic since j � r−1. Hence, e(V ′) > e(V ) by Lemma 8.7. This
contradition establishes (8.12).

Let 1 � j � r − 1 and let V be a space satisfying Vj−1 � V < Vj . Let
V ′ be the subflag 〈1〉 = V0 � . . . Vj−1 � V � Vj+1 � · · · � Vr . Then one
easily computes that

e(V ′)− e(V ) = (c j − c j+1)
(
Hμ j (V )− dim(Vj/V )

)
,

and so (8.12) implies that

Hμ j (V ) > dim(Vj/V ). (8.13)

Now let ε > 0 be sufficiently small and consider the pertubation c̃ given by

c̃1 = 1, c̃ j = c∗j −
1

2

j−1∑

�=1
ε� (2 � j � r + 1).

Evidently, 1 = c̃1 > c̃2 > · · · > c̃r+1 � c∗r+1 − ε, as needed. For any proper
subflag V ′ � V ,

e(V ′, c̃, μ∗)− e(V , c̃, μ∗)

= e(V ′)− e(V )+ 1

2

r∑

j=1
ε j(

Hμ j (V
′
j )− dim(Vj/V

′
j )
)

+1

2
(ε + ε2 + · · · + εr ) dim(Vr/V

′
r ).

Let J = min{ j : V ′j �= Vj }. If J = r , then dim(Vr/V ′r ) � 1 and the right
side above is at least ε/2 + O(εr ), which is positive for small enough ε. If
J � r − 1, then VJ−1 � V ′J < VJ and we see that the right side above is at
least

e(V ′)− e(V )+ ε J
(
HμJ (V

′
J )− dim(VJ/V

′
J )
)+ O(ε J+1),
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which is also positive for sufficiently small ε by (8.4) and (8.12).
Second argument.Wenowsketch a second approach to the proof of Proposition
8.2. The idea is to introduce a small perturbation of our fundamental quantity
e(), namely

eλ(V
′, c, μ) := λ

r∑

j=1
(c j+1 − c j )Hμ j (V

′
j )+

r∑

j=1
c j dim(V ′j/V ′j−1),

where λ ≈ 1. Note that e1(V ′, c, μ) = e(V ′, c, μ), and also that eλ(V , c, μ)

does not depend on λ, since all the entropies Hμ j (Vj ) vanish. Define the λ-
perturbed optimal parameters c∗(λ) to be the unique solution to theλ-perturbed
version of (7.11), that is to say the equations

eλ(V
′
basic(m), c

∗(λ), μ) = eλ(V , c∗(λ), μ),m = 0, 1, . . . , r − 1.

By a continuity argument, these exist for λ sufficiently close to 1 and they
satisfy limλ→1 c∗(λ) = c∗(1) = c∗.

Now, assume that λ is close enough to 1 so that

1 = c∗1(λ) > c∗2(λ) > · · · > c∗r+1(λ) > 0

and we have the following “positivity inequalities”:

(i) λHμ∗m+1(Vm) > dim(Vm+1/Vm) for 0 � m � r − 1;

(ii) λ · (Hμ∗i (Vm−1)−Hμ∗i (Vm)
)

< dim(Vm/Vm−1) for 1 � m < i � r .

These conditions can be clearly guaranteed by a continuity argument and our
assumption that they hold when λ = 1. For a parameter λ satisfying (i) and
(ii) above, the proof of (8.4) holds verbatim for the λ-perturbed quantities eλ,
allowing one to conclude that

eλ(V
′, c∗(λ), μ) � eλ(V , c∗(λ), μ)

for all subflags V ′ of V .
Now suppose that λ < 1. Then we have

e(V ′, c, μ∗) � eλ(V
′, c, μ∗),

with equality if and only if V ′ = V because Supp(μ∗j ) = Vj ∩ {0, 1}k for all
j . Therefore if V ′ is a proper subflag of V we have

e(V ′, c∗(λ), μ∗) > eλ(V
′, c∗(λ), μ∗)

� eλ(V , c∗(λ), μ∗) = e(V , c∗(λ), μ∗).
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Taking c̃ = c∗(λ) for λ sufficiently close to 1, Proposition 8.2 follows.

Part IV. Binary systems

9 Binary systems and a lower bound for βk

In this section we define certain special flags V on Q
k , k = 2r , which we call

the binary systems of order r . It is these systems which lead to the lower bound
on βk given in Theorem 2, which is one of the main results of the paper.

In this section we will define these flags (which is easy) and state their basic
properties. The proofs of these properties, some of which are quite lengthy,
are deferred to Sect. 10.

We are then in a position to prove part of one of ourmain theorems, Theorem
2 (a), which we do in Sect. 9.2.

For the convenience of the reader, recall us here the three parts of Theorem
2, as stated at the end of Sect. 1.3:

(a) Showing that for every r � 1, β2r � θr for a certain explicitly defined
constant θr ;

(b) Showing that limr→∞ θ
1/r
r exists;

(c) Showing that (1.1) has a unique solution ρ ∈ [0, 1/3] and that ρ =
2 limr→∞ θ

1/r
r .

9.1 Binary flags and systems: definitions and properties

Definition 9.1 (Binary flag of order r) Let k = 2r be a power of two. Identify
Q

k with Q
P[r ] (where P[r ] means the power set of [r ] = {1, . . . , r}) and

define a flag V , 〈1〉 = V0 � V1 � · · · � Vr = Q
P[r ], as follows: Vi is the

subspace of all (xS)S⊂[r ] for which xS = xS∩[i] for all S ⊂ [r ].
Remark We have dim(Vi ) = 2i , and Vr = Q

P[r ], so the system is trivially
nondegenerate. Note that we have been using the letter r to denote the number
of Vi in the flagV , throughout the paper. It just so happens that, in this example,
this is the same r as in the definition of k = 2r .

One major task is to show that optimal measures and optimal parameters,
as described in Sect. 7, may be defined on the binary flags. Since we will be
seeing them so often, let us write down the ρ-equations (7.5) for the binary
flags explicitly:

f � j+1(ρ) = f � j (ρ)ρ j e2
j
, j = 1, 2, . . . . (9.1)
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Proposition 9.2 Let V be the binary flag of order r . Then

(a) the ρ-equations (9.1) have a solution with 0 < ρi < 1 for i � 1, and
consequently we may define the optimal measures μ∗ on {0, 1}k as in
Definition 7.4;

(b) the optimal parameters c∗ (in the sense of Definition 7.5) exist.

We call the binary flagV (of order r ) together with the additional data of the
optimal measures μ = μ∗ and optimal parameters c = c∗, the binary system
(of order r ). We caution that for fixed i (such as i = 2) the parameters ci do
depend on r , although not very much.

The second major task is to show that the binary systems satisfy the entropy
condition (3.4), or more accurately that arbitrarily small perturbations of them
satisfy the strict entropy condition (3.5). In the last section we provided a
tool for doing this in somewhat general conditions, namely Proposition 8.2.
That proposition has four conditions, (a), (b), (c)(i) and (c)(ii) which must be
satisfied. Of these, (b) (the existence of the optimal parameters c∗) has already
been established, assuming the validity of Proposition 9.2. We state the other
three conditions separately as lemmas.

Lemma 9.3 Suppose that Vi−1 � W � Vi and that W is invariant under
Aut(V ). Then W is either Vi−1 or Vi . Thus, the binary flags satisfy Proposition
8.2 (a).

Lemma 9.4 We have Hμ∗m+1(Vm) > 2m for 0 � m � r − 1. Thus, the binary
flags satisfy Proposition 8.2 (c)(i).

Lemma 9.5 We have Hμ∗i (Vm−1) − Hμ∗i (Vm) < 2m−1 for 1 � m < i � r .
Thus, the binary flags satisfy Proposition 8.2 (c)(ii).

The proofs of these various facts are given in Sect. 10.

9.2 Proof of Theorems 2 (a) and 7

We are now in a position to complete the proof of Theorem 2 (a), modulo the
results stated above. First, we define the constants θr .

Definition 9.6 Let ρ1, ρ2, . . . be the solution to the ρ-equations (9.1) for the
binary flag. Then we define

θr := (log 3− 1)
/(

log 3+
r−1∑

i=1

2i

ρ1 . . . ρi

)
.
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Proof of Theorem 2 (a) By Proposition 7.7, θr is equal to c∗r+1, where c∗ are
the optimal parameters on the binary flag V of order r , the existence of which
is Proposition 9.2 (b) above.

Fix δ ∈ (0, θr/2]. By Proposition 8.2 (the hypotheses of which are satisfied
by Lemma 9.3, Proposition 9.2 (b) and Lemmas 9.4 and 9.5), there exists a
perturbation c̃ of c∗ such that

1 = c̃1 > c̃2 > · · · > c̃r+1 � c∗r+1 − δ = θr − δ > 0

and (V , c̃, μ∗) satisfies the strict entropy condition (3.5). By Lemma 5.2, there
exists some ε > 0 such that the “entropy gap” condition (5.1) holds. Finally,
by Remark 7.1 (b), we have that Supp(μ∗j ) = � j for all j . Hence, Proposition
5.5 implies that β2r � c̃r+1 = θr −δ. Since δ is arbitrary, this proves Theorem
2 (a).

Proof of Theorem 7 The upper bound βk � γk is established in Sect. 4. The
lower bound βk � γ̃k follows by Lemma 5.3, Proposition 5.5 and the fact that
there exists at least one system satisfying the strict entropy condition (3.5), as
per the proof of Theorem 2 (a) above.

9.3 Remarks on Theorem 2 (b)

Theorem 2 (b) is a problem of a combinatorial and analytic nature which can
be considered more-or-less completely independently of the first three parts
of the paper.

To get a feel for it, and a sense of why it is difficult, let us write down the
first two ρ-equations (9.1) for the binary flags. The equation with j = 1 is

f �2(ρ) = f �1(ρ)ρ1e2. (9.2)

This has the numerical solution ρ1 ≈ 0.306481.
To write down the ρ-equation for j = 2, one must compute f �3(ρ), and

without any additional theory the only means we have to do this is to draw the
full tree structure for the binary flag V of order 3 (on Q

8). This is a tractable
exercise and one may confirm that

f �3(ρ) = (3ρ1 + 4 · 2ρ1 + 4)ρ2 + 8(2 · 2ρ1 + 4)ρ2

+16 · 4ρ2 + 8 · (2ρ1 + 2)ρ2 + 32 · 2ρ2 + 16.

The ρ-equation with j = 2 is then

f �3(ρ) = f �2(ρ)ρ2e4,
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where (recall from Fig. 1) f �2(ρ) = 3ρ1 + 4 · 2ρ1 + 4. This may be solved
numerically, with the value ρ2 ≈ 0.2796104 . . ., using Mathematica.

Such a numerical procedure, however, is already quite an unappetising
prospect if one wishes to compute ρ3.

Consequently, we must develop more theory to understand the ρi and to
prove Theorem 2 (b). This is the task of the last two sections of the paper.

10 Binary systems: proofs of the basic properties

In this section, we prove the various statements in Sect. 9.1.
We begin, in Sect. 10.2, by proving Lemma 9.3. This is a relatively simple

and self-contained piece of combinatorics.
In Sect. 10.3 we introduce the concept of genotype, which allows us to

describe the tree structure induced on {0, 1}k by the binary flagV . In Sect. 10.4
we show how to compute the quantities f C(ρ) in terms of the genotype.

We are then, in Sect. 10.5, in a position to prove Proposition 9.2 (a), guar-
anteeing that the ρi exist and allowing us to define the optimal measures μ∗.

In Sect. 10.6 we establish the two entropy inequalities, Lemmas 9.4 and 9.5.
Finally, in Sect. 10.7 we prove Proposition 9.2 (b), which confirms the

existence of the optimal parameters c∗.

10.1 Basic terminology

Throughout the section, V will denote the binary flag or order r , as defined in
Definition 9.1. That is, we take k = 2r , identify Q

k with Q
P[r ], and take Vi to

be the subspace of all (xS)S⊂P[r ] for which xS = xS∩[i] for all S ⊂ [r ].
In addition, we will write 0 j , 1 j for the vectors in {0, 1}P[ j] consisting of

all 0s (respectively all 1s). We call these (or any multiples of them) constant
vectors.

Finally, we introduce the notion of a block of a vector

x = (xS)S⊂[r ] ∈ Q
P[r ].

For each A ⊂ [i] we consider the 2r−i -tuple
x(A, i) := (xA∪A′)A′⊂{i+1,...,r}.

We call these the i-blocks of x .

Remark 10.1 (a) One should note carefully that the i-blocks are strings of
length 2r−i . In this language, Vi is the space of vectors x , all of whose i-
blocks are constant.

(b) If we put together the coordinates of the i-blocks x(A, i) and
x(A�{i}, i), then we obtain the (i − 1)-block x(A ∩ [i − 1], i − 1).
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In order to visualize the structure of the flag V and of the partition of
{0, 1}P[r ] by the cosets of Vj , it will be often useful to write elements of
{0, 1}P[r ] as strings of 0s and 1s of length 2r . When we do this we use
the reverse binary order, which is the one induced from N via the map
f (S) =∑s∈S 2r−s .

Example 10.2 For concreteness, let us consider the case r = 3. In this case,
the ordering of the coordinates of x is

(x∅, x{3}, x{2}, x{2,3}, x{1}, x{1,3}, x{1,2}, x[3]). (10.1)

If x = 01001110 then its 2-blocks are 01, 00, 11, 10, and its 1-blocks are
0100, 1110.

10.2 Automorphisms of the binary system

Proof of Lemma 9.3 We begin by defining some permutations of P[r ] for
which, we claim, the corresponding coordinate permutations give elements
of Aut(V ). Suppose that 1 � j � r and that A ⊂ [ j − 1]. Then we may
consider the permutation π(A, j) defined by

π(A, j)(S) =
{
S�{ j} if S ∩ [ j − 1] = A,

S otherwise.
.

To visualize the action of this permutation on the coordinates of a vector x , it
is useful to order its coordinates as we explained above. The action of π(A, j)
is then to permute the two adjacent j-blocks x(A, j) and x(A�{ j}, j), which
together form the ( j − 1)-block x(A, j − 1), as per Remark 10.1(b). More
concretely, below are some examples of the action of the permutationsπ(A, j)
in the setting of Example 10.2:

x∅ x{3} x{2} x{2,3} x{1} x{1,3} x{1,2} x[3]

π({2}, 3)

x∅ x{3} x{2} x{2,3} x{1} x{1,3} x{1,2} x[3]

π(∅, 2)

x∅ x{3} x{2} x{2,3} x{1} x{1,3} x{1,2} x[3]

π({1}, 2)

x∅ x{3} x{2} x{2,3} x{1} x{1,3} x{1,2} x[3]

π(∅, 1)
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If the readers wish, they may translate the arguments below in the above
more visual language.
Claim. π(A, j) preserves Vi for all i , and therefore π(A, j) ∈ Aut(V ).

Proof Suppose that x = (xS)S⊂[r ] ∈ Vi and let us write for simplicity π

instead of π(A, j).
Suppose first that j > i . Then π(S) ∩ [i] = S ∩ [i] for all S, and so

xπ(S) = xπ(S)∩[i] = xS∩[i] = xS.

where the first and last steps used the fact that x ∈ Vi . Thus the claim follows
in this case.

Suppose that j � i . Let t > i . Then the conditions (S�{t}) ∩ [ j − 1] = A
and S ∩ [ j − 1] = A are equivalent. Hence, if S ∩ [ j − 1] = A, then we find
that

xπ(S�{t}) = xS�{t}�{ j} = xS�{ j} = xπ(S),

where we used that x ∈ Vi and that t > i at the second step. Similarly, if
S ∩ [ j − 1] �= A, then

xπ(S�{t}) = xS�{t} = xS = xπ(S).

In all cases, we have found that xπ(S�{t}) = xπ(S). Since this is true for all
t > i , π(x) indeed lies in Vi . This completes the proof of the claim.

Suppose now thatW is an invariant subspace of V satisfying the inclusions
Vi−1 < W � Vi . We want to conclude that W = Vi . To accomplish this, we
introduce some auxiliary notation.

For each A ⊂ [i − 1], we consider the vector yA = (yAS )S⊂[r ] ∈ Vi that is
uniquely determined by the relations yAA = 1, yAA∪{i} = −1 and yAS = 0 for all

other S ⊂ [i]. There are 2i−1 such vectors yA. They are mutually orthogonal,
hence linearly independent. In addition, together with Vi−1, they generate all
of Vi . Since Vi−1 < W � Vi , there must exist A ⊂ [i − 1] such that yA ∈ W .

Now, it is easy to check that for any j < i and any A ⊂ [i − 1], we have

π(A ∩ [ j − 1], j)yA = yA�{ j}.

From the above relation and the invariance ofW under Aut(V ), it is clear that
ifW contains at least one vector yA with A ⊂ [i − 1], then it contains all such
vectors. Since we also know that Vi−1 � W � Vi , we must have thatW = Vi ,
which completes the proof of Lemma 9.3.

123



1118 K. Ford et al.

Remark Aminor elaboration of the above argument in fact allows one to show
that the subspaces of Q

P[r ] invariant under Aut(V ) are the Vi , the orthogonal
complements of Vi−1 in Vi , and all direct sums of these spaces. However, we
will not need the classification in this explicit form.

10.3 Cell structure and genotype

The cosets of Vi partition {0, 1}P[r ] into sets which we call the cells at level i .
Our first task is to describe these explicitly.

Consider ω, ω′ ∈ {0, 1}P[r ]. It is easy to see that ω−ω′ ∈ Vi (and so ω, ω′
lie in the same cell at level i) if and only if for every A ⊂ [i] one of the
following is true:

(a) Both ω(A, i) and ω′(A, i) are constant blocks (that is, they both lie in
{0r−i , 1r−i }).

(b) ω(A, i) = ω′(A, i), and neither of these blocks is constant (that is, neither
is 0r−i nor 1r−i ).

Thus a cell at level i is completely specified by the positions A of its constant
i-blocks, and the values ω(A, i) (for an arbitrary ω ∈ C) of its non-constant
i-blocks.

Example With r = 3 and ω = 01001110, the level 2 cell that contains ω is
the set

{ω, 01111110, 01000010, 01000010}.
Its constant 2-blocks are at A = {2} and A = {1}. Its non-constant 2-blocks
are at A = ∅ (taking the value ω(A, 2) = 01) and at A = {1, 2} (taking the
value ω(A, 2) = 10). The level 1 cell containing ω is just {ω}.

The positions of the constant i-blocks play an important role, and we intro-
duce the name genotype to describe these.8

Definition 10.1 (Genotype) If C is a cell at level i , its genotype g(C) ⊂ P[i]
is defined to be the collection of A ⊂ [i] for which ω(A, i) ∈ {0r−i , 1r−i } for
all ω ∈ C . We refer to any subset of P[i] as an i-genotype. If g, g′ are two
i-genotypes, then we write g � g′ to mean the same as g ⊆ g′. We write |g|
for the cardinality of g.

Example If C is the cell at level 2 containing ω = 01001110, the genotype
g(C) is equal to

{{2}, {1}}. (We have listed these sets in the reverse binary
ordering once again.)

8 The term genotype is appropriate, as each component in g acts like recessive genewith respect
to child cells.
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Definition 10.2 (Consolidations) If g is an i-genotype, then its consolidation
is the (i−1)-genotype g∗ defined by g∗ := {A′ ⊂ [i−1] : A′ ∈ g, A′∪{i} ∈ g}
(cf. Remark 10.1 (b)).

Let us pause to note the easy inequality

1

2
|g| � |g∗| � |g| − 2i−1, (10.2)

valid for all i-genotypes.
The genotype is intimately connected to the cell structure on {0, 1}k induced

by V , as the following lemma shows.

Lemma 10.3 We have the following statements.

(a) If C is a cell, we have |C | = 2|g(C)|.
(b) Suppose that g is an i-genotype. There are (22

r−i − 2)2
i−|g| cells (at level

i ) with g(C) = g.
(c) If g(C) = g, and if C ′ is a child of C, then g(C ′) � g∗. In particular,

|g(C ′)| � 1
2 |g(C)|.

(d) Suppose that g(C) = g. Suppose that g′ is an (i − 1)-genotype and that
g′ � g∗. Then number of children C ′ of C with g(C ′) = g′ is 2|g|−|g∗|−|g′|.

(e) Suppose that C is a cell at level i with g(C) = g. Then the number of
children of C (at level i − 1) is 2|g|−2|g∗|3|g∗|.

Proof (a) This is almost immediate: for each of the A ⊂ g(C) of constant
blocks, the are two choices (0r−i or 1r−i ) for ω(A, i).

(b) To determine C completely (given g), one must specify the value of
each of 2i −|g| non-constant i-blocks. For each such block, there are 22r−i −2
possible non-constant values.

(c) A set A′ ⊂ [i − 1] can only possibly be the position of a constant block
in some child cell of C if both A′ and A′ ∪ {i} are the positions of constant
blocks in C , or in other words A′, A′ ∪ {i} ∈ g, which is precisely what it
means for A′ to lie in g∗.

Note that the child cell C ′ containing ω only does have a constant (i − 1)-
block at position A′ if ω(A′, i) = ω(A′ ∪ {i}, i), which may or may not
happen.

The second statement is an immediate consequence of the first and (10.2).
(d) Let A ∈ g. We say that A is productive if A′ := A ∩ [i − 1] ∈ g∗, or

equivalently if A′ and A′ ∪ {i} both lie in g (or, more succinctly, A�{i} ∈ g).
These are the positionswhich can give rise to constant (i−1)-blocks in children
of C . There are 2|g∗| such positions, coming in |g∗| pairs. To create a child C ′
with genotype g′, we have a binary choice at |g∗| − |g′| of these pairs: at each
of them either ω(A′, i) = 0r−i and ω(A′ ∪ {i}, i) = 1r−i , or the other way
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around. There are |g| − 2|g∗| non-productive positions A ∈ g, and for each of
these there is also a binary choice, either ω(A, i) = 0r−i or ω(A, i) = 1r−i .
The total number of choices is therefore 2|g∗|−|g′| ×2|g|−2|g∗|, which is exactly
as claimed.

(e) This is immediate from part (d), upon summing over g′ ⊆ g∗.

10.4 The f C(ρ) and genotype

We begin by recalling from (7.4) the definition of the functions f C(ρ). Here
ρ = (ρ1, . . . , ρr−1) is a sequence of parameters, and we define ρ0 = 0. If
C has level 0, we set f C (ρ) = 1, whilst for C at level i � 1 we apply the
recursion

f C(ρ) =
∑

C→C ′
f C

′
(ρ)ρi−1 .

Proposition 10.4 The quantities f C depend only on the genotype of C, and
thus for any i-genotype g we may define F(g) := f C (ρ), where C is any cell
with g(C) = g. We have the recursion

F(g) =
∑

g′�g∗
2|g|−|g∗|−|g′|F(g′)ρi−1 . (10.3)

Remark The F(g) depend on ρ, as well as on i (where g is an i-genotype)
but we suppress explicit mention of this. For example, it should be clear from
context that g on the left is an i-genotype, but the sum on the right is over
(i − 1)-genotypes, since g∗ is an (i − 1)-genotype by definition.

Proof This is a simple induction on the level i using the definition of the
f C (ρ), and parts (c) and (d) of Lemma 10.3.

Let us pause to record two corollaries which we will need later.

Corollary 10.5 Suppose that g1, g2 are two i-genotypes with g1 � g2. Then
F(g1) � F(g2).

Proof. Note that g∗1 � g∗2 , and also that |g1| − |g∗1 | � |g2| − |g∗2 |, since
|g| − |g∗| = |g∗| + #{A ⊂ P[i − 1] : #({A, A ∪ {i}} ∩ g) = 1}.
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Hence, by two applications of Proposition 10.4,

F(g1) = 2|g1|−|g∗1 |
∑

g′�g∗1

2−|g′|F(g′)ρi−1

� 2|g2|−|g∗2 |
∑

g′�g∗2

2−|g′|F(g′)ρi−1 = F(g2).

Recall that �i is the cell at level i containing 0. Note that g(�i ) = P[i].
Corollary 10.6 If C �= �i is a cell of level i , then f C(ρ) < f �i (ρ).

Proof This is simply the special case g2 = P[i] of the preceding corollary.
The inequality is strict because if g < P[i], then g∗ < P[i − 1].

10.5 Existence of the ρi

In this section we prove Proposition 9.2 (a), which asserts that for the binary
flags there is a unique solution ρ = (ρ1, ρ2, . . .) to the ρ-equations (9.1).
In fact, we will prove the following more general fact which treats the j th
ρ-equation in isolation, irrespective of whether the earlier ones have already
been solved.

Proposition 10.7 Let j ∈ N and let ρ1, . . . , ρ j−1 ∈ (0, 1). Then there
is a unique ρ j ∈ (0, 1) such that the j th ρ-equation for the binary flag,

f � j+1(ρ) = e2
j
f � j (ρ)ρ j , is satisfied.

Remark We will prove in the next section (Lemma 11.2) that for the solution
ρ1, ρ2, . . . to the full set of ρ-equations we have ρ j � ρ1 = 0.30648 . . . for
all j . For a table of numerical values of the ρ j , see Table 1 in Sect. 12.

Before beginning the proof of Proposition 10.7, we isolate a lemma.

Lemma 10.8 Fix a ( j − 1)-genotype g′. Then
∑

g: g∗�g′
2−|g∗| = 2−2 j−1

72
j−1−|g′|,

where the sum is over all j -genotypes g.

Proof In order to determine g, we must determine for each A ⊂ [ j − 1]
whether A and/or A ∪ { j} lie in g. Since we are only summing over g whose
consolidation g∗ contains g′, we must have that A and A∪ { j} belong to g for
all A ∈ g′, so the membership of A and A∪{ j} to g is fully determined for all
A ∈ g′. For any A ⊂ [ j − 1] with A /∈ g′, we have four choices, according to
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whether A ∈ g and whether A∪ { j}. If both of these conditions hold, then we
further have A ∈ g∗; in the other three cases, we have A /∈ g∗. We conclude
that

∑

g: g∗�g′
2−|g∗| =

∏

A∈g′
2−1

∏

A/∈g′
(1 · 2−1 + 3 · 2−0) = 2−2 j−1

72
j−1−|g′|.

This completes the proof.

Proof of Proposition 10.7 For j = 1, the equation to be satisfied is 3ρ1 + 4 ·
2ρ1 + 4 = e23ρ1 . It may easily be checked numerically that this has a unique
solution ρ1 ≈ 0.306481 . . . in (0, 1). One may also proceed analytically as
follows. Define

G(x) = G1(x) := e23x − (3x + 4 · 2x + 4)

= 3x
(
e2 − (1+ 4 · (2/3)x + 4/3x )

)
,

In particular, the roots of G are in correspondence with the roots of
H(x) = e2− (1+ 4 · (2/3)x + 4/3x ). This is clearly a continuous and strictly
increasing function. In addition, H(0) = e2− 9 < 0 and H(1) = e2− 5 > 0.
Thus, H has a unique root ρ1 ∈ (0, 1), and so does G.

Now assume j � 2. It turns out that much the same argument works,
although the details aremore elaborate.Assume that 0 < ρi < 1 for 1 � i < j .
Define

G(x) := G j (x) = e2
j
( f � j (ρ))x − f � j+1(ρ1, . . . , ρ j−1, x).

Proposition 10.4 implies that

G(x) = e2
j
(F(P[ j]))x −

∑

g

22
j−|g|F(g)x

= F(P[ j])x · H(x), (10.4)

where

H(x) = e2
j − 22

j ∑

g

2−|g|
(
F(g)/F(P[ j]))x

and the sums over g run over all genotypes g ⊂ P[ j] at level j . Since (by an
easy induction) F(P[ j]) > 0, it follows that G and H have the same roots.
The latter is a continuous and strictly increasing function because Corollary
10.6 implies that F(g)/F(P[ j]) � 1, with equality only when g = P[ j].
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Moreover, H(0) = e2
j − 32

j
< 0. Therefore to complete the proof it suffices

to show that H(1) > 0.
To show this, we use (10.4). First note that

F(P[ j]) = (
√
2)2

j ∑

g′
2−|g′|F(g′)ρ j−1, (10.5)

where the sum is over all genotypes g′ of level ( j − 1).
Next, by Proposition 10.4 and Lemma 10.8 we have

∑

g⊂P[ j]
2−|g|F(g) =

∑

g

2−|g∗|
∑

g′�g∗
2−|g′|F(g′)ρ j−1

=
∑

g′⊂P[ j−1]
2−|g′|F(g′)ρ j−1

∑

g: g∗�g′
2−|g∗|

= (7/2)2
j−1∑

g′
14−|g′|F(g′)ρ j−1 . (10.6)

Putting (10.4), (10.5) and (10.6) together we obtain

H(1) · F(P[ j]) = (e
√
2)2

j ∑

g′
2−|g′|F(g′)ρ j−1

−(
√
14)2

j ∑

g′
14−|g′|F(g′)ρ j−1 .

Since e2 > 7, we have
√
14 < e

√
2, and thus H(1) > 0. This completes the

proof.

10.6 Entropy inequalities for the binary systems

We begin with a lemma which will be used a few times in what follows.

Lemma 10.9 Let C ′ be one of the children of �i , thus C ′ is a cell at level
(i − 1). Then

μi (C
′) � μi (�i−1) = e−2i−1,

and equality occurs only when C ′ = �i−1.

Proof We showed in Corollary 10.6 that f C
′
(ρ) < f �i−1(ρ), for any choice

of ρ = (ρ1, . . . , ρr−1), and for any child C ′ of �i with C ′ �= �i−1. Now that
we know that the ρ-equations have a solution, it follows immediately from
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the definition of the optimal measures μ∗ in (7.6), applied with C = �i , that
μi (C ′) < μi (�i−1), again for any child C ′ of �i with C ′ �= �i−1. Finally,
observe that μi (�i−1) = e−2i−1 by (7.7).

Proof of Lemma 9.4 This follows almost immediately from Lemma 10.9 with
i = m + 1. Indeed since μm+1(C) � e−2m for all cells C at level m, with
equality only for C = �m , we have

Hμm+1(Vm) =
∑

C

μm+1(C) log
1

μm+1(C)
> 2m

∑

C

μm+1(C) = 2m .

This concludes the proof.

Proof of Lemma 9.5 Let μ = μi with m < i � r . We must show that

Hμ(Vm−1)−Hμ(Vm) < 2m−1. (10.7)

Let C denote a cell at level m and C ′ a child of C at level (m − 1). In
addition, let the notations g(C) and g(C)∗ refer to the genotype of C and its
consolidation, as defined in Definitions 10.1 and 10.2. By the definition of
entropy, Lemma 10.3 (e), and the concavity of L(x) = −x log x we find that

Hμ(Vm−1)−Hμ(Vm) =
∑

C

μ(C)
∑

C ′
L

(
μ(C ′)
μ(C)

)

�
∑

C

μ(C) log(#C ′)

=
∑

C

μ(C) log
[
2|g(C)|(3/4)|g(C)∗|]. (10.8)

Now by (10.2) we have |g(C)∗| � |g(C)| − 2m−1, whence

2|g(C)|(3/4)|g(C)∗| � 2|g(C)|(3/4)|g(C)|−2m−1 = (3/2)|g(C)|(4/3)2m−1 .
(10.9)

Since we also have that |g(C)| � 2m , we infer that

2|g(C)|(3/4)|g(C)∗| � 32
m−1

. (10.10)

This and (10.8) already imply the bound

Hμ(Vm−1)−Hμ(Vm) � 2m−1 log 3,

which is only very slightly weaker than Lemma 9.5.
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To make the crucial extra saving, write S for the union of all cells C at level
m with |g(C)| > 3

42
m . We claim that

μ(S) <
1

2
. (10.11)

We postpone the proof of this inequality momentarily and show how to use it
to complete the proof of Lemma 9.5.

Observe that if C is not one of the cells making up S, that is to say if
|g(C)| � 3

42
m , then

log
[
2|g(C)|(3/4)|g(C)∗|] � log

[
(3/2)|g(C)|(4/3)2m−1

]

�
(
3

2
log(3/2)+ log(4/3)

)
2m−1

� 0.9 · 2m−1,
wherewe used (10.9) to obtain the first inequality. Assuming the claim (10.11),
it follows from this, (10.8) and (10.10) that

Hμ(Vm−1)−Hμ(Vm) � 2m−1(log 3)μ(S)+ 0.9 · 2m−1(1− μ(S))

< 2m−1,

which is the statement of Lemma 9.5.
It remains to prove (10.11). Recall that 1 � m < i � r .
When 1 � m � 2, the only integer in (342

m, 2m] is 2m . Hence, if a cell C
at level m satisfies the inequality |g(C)| > 3

42
m , we must have |g(C)| = 2m .

The only cell with this property is �m . Since we have μ(�m) = e2
m−2i � e−1

by (7.7), our claim (10.11) follows in this case.
Assume now that m � 3. Let S̃ be the union of all children C̃ of �i (thus

these are cells at level i − 1 � m) which contain a cell C in S. By repeated
applications of Lemma 10.3 (c) we have |g(C̃)| > 2i−1−m(342

m) = 3
42

i−1 for
any such C̃ . Lemma 10.3 (d), applied with C = �i , implies that the number
of such cells C̃ is at most

∑

h>(3/4)2i−1

(
2i−1

h

)
22

i−1−h � 2
1
4 2

i−1
22

i−1 = 2(5/4)2i−1 .

By Lemma 10.9 and our assumption that i − 1 � m � 3, it follows that

μ(S) � μ(S̃) � (25/4/e)2
i−1

< 0.35.

This completes the proof of the claim (10.11) and hence of Lemma 9.5.
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10.7 Existence of the optimal parameters c∗

Proof of Proposition 9.2 (b) We have Supp(μ∗j ) = � j by Remark 7.1 (b), and

hence |Supp(μ∗j )| = 22
j
by Lemma 5.1. By Lemma B.2, when j � m + 2

we deduce the inequality

Hμ∗j (Vm) � log |Supp(μ∗j )| � 2 j log 2 < 2 j − 2m . (10.12)

Now recall (Definition 7.5) that the optimal parameters should satisfy the
conditions (7.12) (which are the fully written out version of (7.11)). We wish
to show that there is a solution with 1 = c∗1 > c∗2 > · · · > c∗r+1 > 0.
Rearranging (7.12) and recalling dim(Vj ) = 2 j , we find that

(c∗m+1 − c∗m+2)
(
Hμ∗m+1(Vm)− 2m

)

=
r∑

j=m+2

(
2 j − 2m −Hμ∗j (Vm)

)
(c∗j − c∗j+1)+ (2r − 2m)c∗r+1

for 0 � m � r − 1. By Lemma 9.4 and (10.12), we may apply a down-
wards induction on m = r − 1, r − 2, . . . to solve these equations with
0 < c∗r+1 < c∗r < · · · < c∗1. Rescaling, we may additionally ensure that
c∗1 = 1.

11 The limit of the ρi

In the last section we showed that there is a unique solution ρ = (ρ1, ρ2, . . .)

to the ρ-equations (9.1) for the binary system with 0 < ρ j < 1 for all j . In
this section, we show that the limit lim j→∞ ρ j exists.

Proposition 11.1 ρ = lim j→∞ ρ j exists.

11.1 ρ1 is the largest ρ j

The estimates required in the proof of Proposition 11.1 are rather delicate, and
to make them usable for our purposes we need the following a priori bound
on the ρ j .

Lemma 11.2 For all j � 1, we have ρ j � ρ1 = 0.30648 . . .

The reader should recall the notion of genotype g (Definition 10.1) and of
the function F(g) (Proposition 10.4).

The next lemma is a stronger version of Corollary 10.5, whose proof uses
that result as an ingredient.
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Lemma 11.3 For any j � 1 and g1 � g2 at level j , we have

F(g1)

F(g2)
�
(
1

2

)|g2|−|g1| (4
3

)|g∗2 |−|g∗1 |
.

Proof We have

F(g2) = 2|g2|−|g∗2 |
∑

g�g∗1

2−|g|
∑

g′�g∗2\g∗1
2−|g′|F(g ∪ g′)ρ j−1

(by Proposition 10.4)

� 2|g2|−|g∗2 |
∑

g�g∗1

2−|g|
∑

g′�g∗2\g∗1
2−|g′|F(g)ρ j−1

(by Corollary 10.5)

= 2|g2|−|g∗2 |
∑

g�g∗1

2−|g|F(g)ρ j−1(3/2)|g∗2 |−|g∗1 |

(by the binomial theorem)

= F(g1)2
|g2|−|g1|(3/4)|g∗2 |−|g∗1 |

(by Proposition 10.4).

This concludes the proof.

Proof of Lemma 11.2 We begin by observing that

∑

g�P[ j]
c|g|1 c|g

∗|
2 =

∏

A⊂[ j−1]

( ∑

a,b∈{0,1}
ca+b1 cab2

)
= (1+ 2c1 + c21c2)

2 j−1
.

(11.1)

The ρ-equations (9.1), translated into the language of genotypes, are
F(P[ j + 1]) = e2

j
F(P[ j])ρ j . Therefore, by Proposition 10.4 (with

g = P[ j + 1]) followed by Lemma 11.3 (with g2 = P[ j]), we have

e2
j
F(P[ j])ρ j = F(P[ j + 1]) = 22

j ∑

g�P[ j]
2−|g|F(g)ρ j

� 22
j ∑

g�P[ j]
2−|g|F(P[ j])ρ j

[
(1/2)2

j−|g|(4/3)2 j−1−|g∗|]ρ j

= 22
j
(1/3)2

j−1ρ j F(P[ j])ρ j
∑

g�P[ j]
2(ρ j−1)|g|(3/4)ρ j |g∗|.

123



1128 K. Ford et al.

Dividing through by F(P[ j])ρ j , and applying (11.1) with c1 = 2ρ j−1 and
c2 = (3/4)ρ j , we find that

e2
j � (4/3ρ j )2

j−1(
1+ 2ρ j + 22ρ j−2(3/4)ρ j

)2 j−1

= (4/3ρ j + 4(2/3)ρ j + 1
)2 j−1

.

Therefore

3ρ j e2 � 4+ 4 · 2ρ j + 3ρ j .

However, the first ρ-equation (9.2) is precisely that

3ρ1e2 = 4+ 4 · 2ρ1 + 3ρ1 .

The result follows immediately (using the monotonicity of the function
1+ 4(2/3)t + 4(1/3)t - see the proof of Proposition 10.7).

11.2 Preamble to the proof

In this section, we set up some notation and structure necessary for the proof
of Proposition 11.1. Since we wish to let r → ∞, it is convenient to embed
all binary r -step systems into a universal infinite binary system. To this end,
and with a slight abuse of notation, we let

Vj =
{
(xA)A⊂P(N) : xA ∈ Q and xA = xA∩[ j] for all A ⊂ P(N)

}

for j = 0, 1, . . . . Clearly, Vj ( Q
2 j

for all j , and the flag

V r : V0 � V1 � · · · � Vr

is isomorphic to the flag of the r -step binary system.
In this notation, we have

� j =
{
ω ∈ � : ω ≡ 0 (mod Vj )

}
for j = 0, 1, . . . ,

where

� = {ω = (ωA)A⊂P(N) : ωA ∈ {0, 1} for all A ⊂ P(N)
}
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is the discrete unit cube. We further set

�∞ =
∞⋃

j=0
� j .

Lastly, for each j � 0, we say thatC is a cell at level j ifC ⊂ �∞ and there
exists some x = (xA)A⊂P(N) such that xA ∈ Q for all A andC = �∩(x+Vj ).
We may easily check that the collection of cells lying in �r forms the tree
corresponding to the r -step binary system.

Wemay now define the functions f C for our infinite binary flag. It is conve-
nient to reverse the indices in f C . Specifically, let x = (x1, x2, . . .) ∈ [0, 1]N.
If C is a cell at level j � 0, then we define

ψC(x) := log f C (x j−1, . . . , x1).

In particular, ψC(x) = 0 when j = 0, and ψC (x) = log |C\{0}| when j = 1.
In the special case C = � j we define also

φ j (x) = 2− jψ� j (x) = 2− j log f � j (x j−1, . . . , x1).

Thus φ1(x) = 1
2 log 3 and φ2(x) = 1

4 log(3
x1 + 4 · 2x1 + 4).

Note that ψC , φ j are increasing in each variable. Moreover we have the
following simple bounds.

Lemma 11.4 (Simple bounds)We have 1
2 log 3 � φ j (x) < log 2.

Proof For the upper bound, note that f � j (x) � f � j (1). By the definition of
f C (see (7.4)), we have that f � j (1) is equal to the number of children of � j

at level 0, which, in turn, is equal to 22
j − 1. This proves the claimed upper

bound on φ j (x).
For the lower bound, observe that f � j (x) � f � j (0). Using again the defi-

nition of f C , we find that f � j (0) equals the number of children of � j at level

j − 1. Thus f � j (0) = 32
j−1

by Lemma 10.3. This proves the claimed lower
bound of φ j (x), thus completing the proof of the lemma.

The ρ-equations (9.1) may be expressed in terms of the φ j in the following
simple form:

φ j+1(ρ j , ρ j−1, . . .) = 1

2

(
ρ jφ j (ρ j−1, ρ j−2, . . .)+ 1

)
. (11.2)
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11.3 Product structure of cells and self-similarity of the functions φ j

There is a natural bijection π : Q
P(N) × Q

P(N) → Q
P(N) defined by

π((x, x ′)) = y, where yA = xA−1 and y{1}∪A = x ′A−1, for all A ⊂ {2, 3, . . .}.
Here, we write A − 1 for the set {a − 1 : a ∈ A}. There is a finite ver-
sion of this map that can be visualized as a concatenation map. For each
r , let πr : Q

P[r−1] × Q
P[r−1] → Q

P[r ] defined by π((x, x ′)) = y,
where yA = xA−1 and y{1}∪A = x ′A−1, for all A ⊂ {2, 3, . . . , r}. If we
place the coordinates of x and x ′ in reverse binary order, as per the map
{2, . . . , r} ⊃ A → ∑

a∈A 2r−a ∈ {0, 1, . . . , 2r−1 − 1}, then πr is the con-
catenation map that generates y by placing first all coordinates of x , followed
by all coordinates of x ′.

Now one may easily check that π(Vj−1 × Vj−1) = Vj for all j = 1, 2, . . .
Therefore if C1,C2 are two cells at level ( j − 1) in the infinite binary system,
then π(C1 × C2) is a cell at level j , and conversely every cell of level j is of
this form. The children C ′ of C are precisely π(C ′1 × C ′2) where C1 → C ′1,
C2 → C ′2.

The product structure established above manifests itself in a self-similarity
property φ j ≈ φ j−1. In this section, we will establish the following precise
version of this.

Proposition 11.5 Let α ∈ (0, 1] and consider a vector x = (x1, x2, . . .) ∈
[0, α]N. In addition, let C = π(C1 × C2) be a cell of level j � 2. Then we
have

ψC1(x)+ ψC2(x) � ψC (x) � ψC1(x)+ ψC2(x)+ α j−1 log 2. (11.3)

In particular, taking C = � j = π(� j−1 × � j−1), we have

φ j−1(x) � φ j (x) � φ j−1(x)+ (α/2) j
log 2

α
. (11.4)

Proof We proceed by induction on j . When j = 2, we proceed by hand.
Notice that at level 1, there are three different types of cells, having 4, 2 and
1 elements, respectively. There is only one cell with 4 elements, the cell �1;
it splits into three cells at level 0: one with two elements, and two unicells
(singletons). All other cells at level 1 split into unicells at level 0. Hence, at
level 2, there are six different types of cells C = π(C1 × C2) corresponding
to the six possibilities for the unordered pair {|C1|, |C2|}. Their subcells are
in 1-1 correspondence with the cells π(C ′1×C ′2), where C ′1 is a subcell of C1
(at level 0) and C ′2 is a subcell of C2 (also at level 0).

The three cases with max(|C1|, |C2|} � 2 are trivial, because we then
have that all the cells at level 1 are unicells, and thus we readily find that
f C = f C1 f C2 = |C1| · |C2|.
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The two other cases with |C1| � 2 and |C2| = 4 (so that C2 = �1) are only
slightly harder: if |C1| = 2, then f C(x) = 2 · 2x1 + 4, f C1 = 2, f C2 = 3
and so the desired inequalities are log 6 � log(2 · 2x1 + 4) � log 6+ x1 log 2,
which are immediately seen to be true for all x1 � 0. Similarly, if |C1| = 1,
then f C(x) = 2x1 + 2, f C1 = 1, f C2 = 3, and so the desired inequalities are
log 3 � log(2x1 + 2) � log 3+ x1 log 2, which are again true for all x1 � 0.

A little trickier is the case |C1| = |C2| = 3, corresponding to C = �2 =
π(�1 × �1). In this case f C (x) = 3x1 + 4 · 2x1 + 4, f C1 = f C2 = 3, so the
desired inequalities are 2 log 3 � log(3x + 4 · 2x + 4) � 2 log 3 + x log 2.
The lower bound is evident. For the upper bound, we must equivalently show
that g(x) := 5 · 2x − 3x − 4 � 0 for x ∈ [0, 1]. Since g(0) = 0 and
g′(x) = 5 log 2 · 2x − log 3 · 3x > 0 for x � 1, the desired inequality follows.

Now suppose that j � 3, and assume the result is true for cells at level
( j − 1). By the recursive definition of f C , if C is a cell at level j , we have the
recurrence

eψC (x) =
∑

C→C ′
ex1ψ

C ′ (T x), (11.5)

where T x denotes the shift operator

T x = (x2, x3, . . .).

For the upper bound, note that

eψC (x) =
∑

C→C ′
ex1ψ

C ′ (T x) �
∑

C1→C ′1
C2→C ′2

ex1(ψ
C ′1 (T x)+ψ

C ′2 (T x)+α j−2 log 2).

Recalling that x1 � α, we conclude that

eψC (x) � 2α j−1( ∑

C1→C ′1

ex1ψ
C ′1 (T x)

)( ∑

C2→C ′2

ex1ψ
C ′2 (T x)

)

= 2α j−1
eψC1 (x)eψC2 (x).

The lower bound is proven similarly. The result thus follows.

11.4 Derivatives and the limit of the ρi

Because of the implicit definition of the parameters ρi , the self-similarity
property (11.4) is not enough for us by itself.Wewill also require the following
(rather ad hoc) derivative bounds.
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Here, and in what follows, ∂mF(y1, . . .) := ∂F
∂ym

(y1, . . .), that is to say the
derivative of the function F with respect to itsmth variable. Thus, for instance,

∂mψC(T x) = ∂

∂xm+1
[
ψC(T x)

]
. (11.6)

Proposition 11.6 Set �m := sup j�2 supx∈[0,0.31]N |∂mφ j (x)|. Then
�1 < 0.17, �2 < 0.05,

∑
m�3 �m < 0.01 and �m 
 0.155m.

The proof of this proposition is given in Sect. 11.5. Let us now show how
this proposition, together with (11.4), implies Proposition 11.1.

Proof of Proposition 11.1 Write εi := ρi+1 − ρi , i = 1, 2, 3, . . . The ρ-
equation at level ( j + 1) is

φ j+2(ρ j+1, ρ j , . . .) = 1

2

(
ρ j+1φ j+1(ρ j , ρ j−1, . . .)+ 1

)

by (11.2). Recall that that ρ j � ρ1 � 0.31 for all j , by Lemma 11.2. Hence,
two applications of (11.4) (with α = 0.31) yield the asymptotic formula

φ j+1(ρ j+1, ρ j , . . .) = 1

2

(
ρ j+1φ j (ρ j , ρ j−1, . . .)+ 1

)+ O(0.155 j ).

Subtracting (11.2), the ρ-equation at level j , from this gives

φ j+1(ρ j+1, ρ j , . . .)− φ j+1(ρ j , ρ j−1, . . .)

= ρ j+1
2

(
φ j (ρ j , ρ j−1, . . .)− φ j (ρ j−1, ρ j−2, . . .)

)

+ ε j

2
φ j (ρ j , ρ j−1, . . .)+ O(0.155 j ). (11.7)

Now by the mean value theorem,

|φ j+1(ρ j+1, ρ j , . . .)− φ j+1(ρ j , ρ j−1, . . .)| � �1|ε j | + · · · +� j |ε1|
(11.8)

and

|φ j (ρ j , ρ j−1, . . .)− φ j (ρ j−1, ρ j−2, . . .)| � �1|ε j−1| + · · · +� j−1|ε1|.
(11.9)

Therefore, from (11.7), the triangle inequality and the fact that

ρ j+1
2

� ρ1

2
� 0.155,
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we have

|ε j |
(1
2
φ j (ρ j , ρ j−1, . . .)−�1

)

� (�2 + 0.155�1)|ε j−1| + (�3 + 0.155�2)|ε j−2|
+ · · · + O(0.155 j ). (11.10)

Now by Lemma 11.4 and Proposition 11.6,

1

2
φ j (ρ j , ρ j−1, . . .)−�1 >

1

4
log 3− 0.17 > 0.104.

Also, by Proposition 11.6 we have

(�2 + 0.155�1)+ (�3 + 0.155�2)+ · · · < 0.096.

Assuming that j � j0 with j0 large enough, (11.10) implies a bound

|ε j | � c1|ε j−1| + c2|ε j−2| + · · · + c j−1|ε1| + 2− j , (11.11)

where c1, c2, . . . are fixed nonnegative constants with
∑

i ci < 0.096
0.104 < 0.93

and, by Proposition 11.6, ci � 2−i for all i � i0 for some i0. It is convenient
to assume that i0, j0 � 10, which we clearly may.

We claim that (11.11) implies exponential decay of the ε j , which of course
immediately implies Theorem 11.1. To see this, take δ ∈ (0, 1

4) so small that
0.94(1 − δ)−i0 < 0.99, and then take A � 100 large enough that |ε j | �
A(1− δ) j for all j � j0. We claim that the same bound holds for all j , which
follows immediately by induction using (11.11) provided one can show that

∑

i�1

ci (1− δ)−i + 1

A

( 1

2(1− δ)

) j
< 1 (11.12)

for j � j0. Since δ < 1
2 and A � 100, it is enough to show that

∑

i�1

ci (1− δ)−i < 0.99.

The contribution to this sum from i � i0 is at most 0.93(1 − δ)−i0 , whereas
the contribution from i > i0 is (by summing the geometric series) at most

∑

i>i0

2−i (1− δ)−i < 2 · 2−i0(1− δ)−i0 < 0.01(1− δ)−i0 .

Therefore the desired bound follows from our choice of δ.
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11.5 Self-similarity for derivatives

Our remaining task is to prove Proposition 11.6. Once again we use self-
similarity of the φ j , but now for their derivatives, the key point being that
∂mφ j ≈ ∂mφ j−1. Here is a precise statement.

Proposition 11.7 Suppose that C = π(C1 × C2) is cell at level j � 1. Let
α ∈ [0, 1) and m � 1, and suppose that x ∈ [0, α]N. Then we have

0 � ∂mψC(x) � 2
∑m

i=1 α j−i (
∂mψC1(x)+ ∂mψC2(x)+ α j−2 log 2

)
.

In particular, taking C = � j = π(� j−1 × � j−1), we have

0 � ∂mφ j (x) � 2
∑m

i=1 α j−i(
∂mφ j−1(x)+

(α

2

) j log 2
α2

)
. (11.13)

Proof The lower bound follows by noticing that ψC is increasing in each
variable. For the upper bound, we may assume that m � j − 1, for when
m � j , ∂mφ j (x) is identically zero. We proceed by induction on m, first
establishing the case m = 1. Differentiating (11.5) gives

eψC (x)∂1ψ
C(x) =

∑

C→C ′
ψC ′(T x)ex1ψ

C ′ (T x).

By two applications of the upper bound in Proposition 11.5 (applied to
C ′ = π(C ′1 × C ′2)), we obtain

eψC (x)∂1ψ
C(x) � 2α j−1 ∑

C1→C ′1
C2→C ′2

(
ψC ′1(T x)+ ψC ′2(T x)+ α j−2 log 2

)

×ex1(ψC ′1 (T x)+ψ
C ′2 (T x)). (11.14)

On the other hand, for i = 1, 2 we get by differentiating the recurrence

eψCi (x) =
∑

Ci→C ′i

ex1ψ
C ′i (T x) (11.15)

with respect to x1 that

eψCi (x)∂1ψ
Ci (x) =

∑

Ci→C ′i

ψC ′i (T x)ex1ψ
C ′i (T x). (11.16)
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Substituting (11.15) and (11.16) into (11.14) gives

eψC (x)∂1ψ
C(x) � 2α j−1(

∂1ψ
C1(x)+ ∂1ψ

C2(x)+ α j−2 log 2
)
eψC1 (x)+ψC2 (x).

Finally, Proposition 11.5 implies that eψC1 (x)+ψC2 (x) � eψC (x). Dividing both
sides by eψC (x) gives the result when m = 1.

Now suppose that m � 2. Differentiating (11.5) with respect to xm and
applying (11.6) gives

eψC (x)∂mψC (x) =
∑

C→C ′
x1e

x1ψC ′ (T x)∂m−1ψC ′(T x). (11.17)

By the inductive hypothesis, if C ′ = π(C ′1 × C ′2) we have

∂m−1ψC ′(T x) � 2
∑m

i=2 α j−i(
∂m−1ψC ′1(T x)+ ∂m−1ψC ′2(T x)+ α j−3 log 2

)
.

(11.18)

Also, by the upper bound in Proposition 11.5, we have

ψC ′(T x) � ψC ′1(T x)+ ψC ′2(T x)+ α j−2 log 2. (11.19)

Substituting (11.18) and (11.19) into (11.17) and using the assumption that
0 � x1 � α gives

eψC (x)∂mψC(x) � 2
∑m

i=1 α j−i

×
∑

C1→C ′1
C2→C ′2

x1
[
∂m−1ψC ′1(T x)+ ∂m−1ψC ′2(T x)+ α j−3 log 2

]

× ex1(ψ
C ′1 (T x)+ψ

C ′2 (T x)). (11.20)

Now, differentiating the recurrence (11.15) with respect to xm (using (11.6))
gives, for i = 1, 2,

eψCi (x)∂mψCi (x) =
∑

Ci→C ′i

x1e
x1ψ

C ′i (T x)∂m−1ψC ′i (T x). (11.21)

Substituting (11.15) and (11.21) into (11.20), and using once again that x1 � α,
gives

eψC (x)∂mψC(x)eψC (x) � 2
∑m

i=1 α j−i(
∂mψC1(x)+ ∂mψC2(x)+ α j−2 log 2

)

×eψC1 (x)+ψC2 (x).
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Again, Proposition 11.5 implies that eψC1 (x)+ψC2 (x) � eψC (x), and so by divid-
ing both sides by eψC (x), we obtain the stated result.

Before proving Proposition 11.6, we isolate a lemma.

Lemma 11.8 For 0 � x1 � 0.31 we have 0 � 4∂1φ2(x) � 0.481.

Proof We have e4φ(x) = 3x1 + 4 · 2x1 + 4, and thus

4∂1φ2(x) = log 3 · 3x1 + log 2 · 4 · 2x1
3x1 + 4 · 2x1 + 4

.

The lemma is therefore equivalent to

1

4
(log 3− 0.481)3x1 + (log 2− 0.481)2x1 � 0.481.

The left-hand side here is increasing in x1 and, when x1 = 0.31, it is equal to
0.480052 . . ..

Proof of Proposition 11.6 Henceforth, set α := 0.31 and fix two integers
m � 1 and j � 2. Our goal is to bound ∂mφ(x) uniformly for x ∈ [0, α]N.
We may assume that j � m + 1, as ∂mφ j (x) = 0 when j � m.

Now, let us define

Am := 21+α+···+αm−1
and Bm := 2

1+α+···+αm−1
1−α .

Then, if we apply (11.13) � times, we obtain

0 � ∂mφ j (x) � Aα j−m+···+α j−m−(�−1)
m ∂mφ j−�(x)

+ log 2

α2

�−1∑

k=0
Aα j−m+···+α j−m−k
m

(α

2

) j−k

� Bα j−m−(�−1)
m ∂mφ j−�(x)+ log 2

α2

�−1∑

k=0
Bα j−m−k
m

(α

2

) j−k

� Bα j−m−�+1
m

(
∂mφ j−�(x)+ log 2

α2

(α

2

) j−�+1 1

1− α/2

)
.

(11.22)
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Here, we observed that all the Bαt

m terms in (11.22) have t � s + 1 − m;

bounding them all above by Bαs+1−m
m then allowed us to sum a geometric

series.
Let us fix some s ∈ {1, 2, . . . ,m + 1} independent of j . Then the number

j − s lies in {0, 1, . . . , j − 1}. Hence, applying (11.22) with � = j − s, and
then taking the supremum over all j � m+1 and all x ∈ [0, α]N, we find that

�m � Bαs+1−m
m

(
sup

x∈[0,α]N
|∂mφs(x)| + log 2

α2

(α

2

)s+1 1

1− α/2

)
. (11.23)

When m = 1, we take s = 2. Then Lemma 11.8 and relation (11.23) give

�1 � 2α2/(1−α)

(
0.481

4
+ α log 2

8(1− α/2)

)
< 0.17,

as required. When m � 2, we take s = m. Then ∂mφs ≡ 0 and so (11.23)
degenerates to

�m � Bα
m
log 2

α2

(α

2

)m+1 1

1− α/2
. (11.24)

This gives �2 < 0.05, and also confirms that �m 
 0.155m . To bound∑
m�3 �m we use (11.24) and the uniform bound Bm � 21/(1−α)2 , obtaining

∑

m�3

�m � α2 log 2

16(1− α/2)2
2α/(1−α)2 < 0.01.

This completes the proof of Proposition 11.6.

12 Calculating the ρi and ρ

In this section we conclude our analysis of the parameters ρ1, ρ2, . . . for the
binary flags. The situation so far is that we have shown that these parameters
exist, are unique and lie in (0, 0.31). Moreover, their limit ρ = limi→∞ ρi
exists (Proposition 11.1).

None of this helps with actually computing the limit numerically or giving
any kind of closed form for it, and the objective of this section is to provide
tools for doing that. We prove two main results, Propositions 12.1 and 12.2
below. Recall the convention that ρ0 = 0.
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Table 1 Table of ρ j

j ρ j j ρ j

1 0.3064810093305 7 0.2812113502101

2 0.2796104150767 8 0.2812113496729

3 0.2813005404710 9 0.2812113496974

4 0.2812067224539 10 0.2812113496963

5 0.2812115789381 11 0.2812113496964

6 0.2812113387071 12 0.2812113496964

Proposition 12.1 Recall the convention that ρ0 = 0. Define a sequence
(ai, j )i�1, 1� j�i+1 by the relations ai,1 = 2, ai,2 = 2+ 2ρi−1 and

ai, j = a2i, j−1 + aρi−1
i−1, j−1 − a2ρi−1i−1, j−2 (3 � j � i + 1). (12.1)

Then

ai,i+1 = aρi−1
i−1,i e

2i−1 for i = 2, 3, . . . (12.2)

In practice, these relations are enough to calculate the ρ j to high precision.
Indeed, a short computer program produced the data in Table 1. (We suppress
any discussion of the numerical precision of our routines.)

Using Proposition 12.1 wemay obtain the following reasonably satisfactory
description of ρ, which is equivalent to the statement of Theorem 2 (c).

Proposition 12.2 For each t ∈ (0, 1), define a sequence a j (t) by

a1(t)= 2, a2(t)= 2+ 2t ,

a j (t)= a j−1(t)2 + a j−1(t)t − a j−2(t)2t ( j � 3).

(12.3)

Then the limit ρ = limi→∞ ρi is a solution (in the variable t) to the equation

1

1− t/2
= lim

j→∞
log a j (t)

2 j−2 . (12.4)

Furthermore, ρ is the unique solution to (12.4) in the interval 0 � t � 1/3.

Remark. This is easily seen to be equivalent to Theorem 2 (c), but we
have introduced t as a dummy variable since ρ now has the specific meaning
ρ = limi→∞ ρi , and this will avoid confusion in the proof.

Before starting the proofs of Propositions 12.1 and 12.2, let us pause to
observe a simple link between the sequences ai, j and a j (t) defined in (12.1)
and (12.3) respectively.
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Lemma 12.3 For each fixed j � 1, the limit limi→∞ ai, j exists and equals
a j (ρ).

Proof The existence of the limit follows by induction on j , using Proposition
11.1, noting that the result is trivial for j = 1 and immediate from Proposition
11.1when j = 2. The fact that the limit equals a j (ρ) then follows immediately
by letting i →∞ in (12.1) and comparing with (12.3).

12.1 Product formula for f C(ρ) and a double recursion for the ρi

Proposition 12.1 is a short deduction from a product formula for F(g), or
equivalently for f C(ρ), given in Proposition 12.5 below. Whilst is would be
a stretch to say that this formula is of independent interest, it is certainly a
natural result to prove in the context of our work.

Before we state the formula, the reader should recall the notion of genotype
g (Definition 10.1) and of the function F(g) (Proposition 10.4). We require
the following further small definition.

Definition 12.4 (Defects) Let i,m ∈ Z�0 and let g be an i-genotype.
(a) If m � i , then we define the mth consolidation

g(m) := {A′ ⊂ [i − m] : A′ ∪ X ∈ g for all X ⊂ {i − m + 1, . . . , i}}.
Otherwise, if m � i + 1, then by convention we define g(m) to be empty.

(b) For m � 1, we set

�m(g) := |g(m−1)| − 2|g(m)|.
Remark Note that g(0) = g, g(1) = g∗ and g(m) = (g(m−1))∗. It is easy to
see that �m(g) is always a nonnegative integer. Observe that �i+1(g) = 0
unless g = P[i], in which case �i+1(g) = 1, and that �m(g) = 0 whenever
m > i + 1.

Proposition 12.5 Let i ∈ N and suppose that g is an i-genotype. Then

F(g) =
i+1∏

m=1
a�m(g)
i,m ,

with the ai,m defined as in Proposition 12.1 above.

Proof of Proposition 12.1, given Proposition 12.5 Note that we have
�m(P[i]) = 1m=i+1 for 1 � m � i + 1. Together with Proposition 12.5,
this implies that F(P[i]) = ai,i+1. Thus f �i (ρ) = F(P[i]) = ai,i+1. The
Eq. (12.2) is then an immediate consequence of the ρ-equations (9.1).
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Before turning to the proof of Proposition 12.5, we isolate a couple of
lemmas from the proof.

Lemma 12.6 Let α ∈ R and i ∈ N. Let g be an i-genotype, and suppose that
k is an (i − 1)-genotype with k � g∗. Then

∑

g′�g
(g′)∗=k

α|g′| = (1+ α)�
1(g)(1+ 2α)|g∗|−|k|α2|k|.

Proof We have g = {A ⊂ [i − 1] : A ∈ g} ∪ {A ⊂ [i − 1] : A ∪ {i} ∈ g}.
Hence, if we let

X = {A ⊂ [i − 1] : A ∈ g, A ∪ {i} /∈ g}
and

Y = {A ⊂ [i − 1] : A /∈ g, A ∪ {i} ∈ g},
then we have |g| = 2|g∗| + |X | + |Y |, and thus �1(g) = |X | + |Y |.

Now, in order to choose g′ � g with (g′)∗ = k, we must decide indepen-
dently for each A ⊂ [i−1]whether A ∈ g′ and/or A∪{i} ∈ g′. The condition
that g′ � g means that if A /∈ g (resp. if A ∪ {i} /∈ g), then we are forced to
have A /∈ g′ (resp. A ∪ {i} /∈ g′). Let us now examine all admissible options
for the conditions “A ∈ g′” and “A ∪ {i} ∈ g′”:
• A ∈ k: since (g′)∗ = k, we are forced to have A, A ∪ {i} ∈ g′.
• A ∈ g∗\k: we know in this case that A, A∪{i} ∈ g, so the condition g′ � g
imposes no further restrictions on the membership of A and of A ∪ {i} in
g′. On the other hand, we know that A /∈ k = (g′)∗, and thus at most one
out of A and of A ∪ {i} may belong to g′.

• A ∈ X : the condition g′ � g implies the restriction that A ∪ {i} /∈ g′, and
we may then choose freely among the two options of having A ∈ g′ or
A /∈ g′.

• A ∈ Y : the condition g′ � g implies the restriction that A /∈ g′, and we
may then choose freely among the two options of having A ∪ {i} ∈ g′ or
A ∪ {i} /∈ g′.

By the above discussion, we have

∑

g′�g
(g′)∗=k

α|g′| = α2|k| ∏

A∈g∗\k
(1+ α + α)

∏

A∈X
(1+ α)

∏

A∈Y
(1+ α).

Since |X | + |Y | = �1(g), the proof is complete.
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For a = (a1, a2, . . .), and for some (i-)genotype g, write

Pa(g) :=
i+1∏

m=1
a�m(g)
m . (12.5)

(Note that the am here are just parameters, not related to the recursion (12.3),
which does not feature in this subsection.) If θ ∈ R>0, define

�θ,a(g) :=
∑

g′�g

θ |g|−|g′|Pa(g′). (12.6)

Lemma 12.7 We have the functional equation

�θ,a(g) = (θ + a1)
�1(g)�θ2+2a1θ,T a(g

∗).

As before, T a denotes the shift operator T a = (a2, a3, . . .).

Proof Using the relation Pa(g′) = a�1(g′)
1 PT a((g′)∗), we have

�θ,a(g) = θ |g|
∑

g′�g

(a1
θ

)|g′|( 1

a21

)|(g′)∗|
PT a((g

′)∗)

= θ |g|
∑

k�g∗

( 1

a21

)|k|
PT a(k)

∑

g′�g
(g′)∗=k

(a1
θ

)|g′|
.

The result now follows from Lemma 12.6 and a routine short calculation.

We are now in a position to prove Proposition 12.5.

Proof of Proposition 12.5 Let ai,m be as in the statement of Proposition 12.5,
and write ai = (ai,1, ai,2, . . .). In the notation introduced above (cf. (12.5))
the claim of Proposition 12.5 is then that

F(g) = Pai (g). (12.7)

We proceed by induction on i . Let us first consider the base case when i = 1.

• If g = P[1], we have F(g) = f �1(ρ) = 3. On the other hand,
Pa1(P[1]) = a1,2 = 3 in this case by the convention that ρ0 = 0.

• If g � P[1], then g∗ = ∅ and thus �1(g) = |g| and �2(g) = 0. So we
conclude that Pa1(g) = 2|g|. On the other hand, for all such genotypes, the
corresponding cell contains 2|g| elements that all split into unicells at level
0. Consequently, F(g) = 2|g| = Pa1(g) in this case too.
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1142 K. Ford et al.

Next, suppose that we have the result for (i − 1)-genotypes for some i � 2,
and let g be an i-genotype. We know from (10.3) that

F(g) =
∑

g′�g∗
2|g|−|g∗|−|g′|F(g′)ρi−1 .

By the induction hypothesis, we have F(g′)ρi−1 = Paρi−1
i−1

(g′) for all g′ � g∗,
where aρi−1

i−1 is shorthand for (aρi−1
i−1,1, a

ρi−1
i−1,2, . . .). Hence, it follows immedi-

ately that

F(g) = 2�1(g)�2,a
ρi−1
i−1

(g∗). (12.8)

with� defined in (12.6). The fact that the right-hand side of (12.8) is a product
P∗(g) is now clear by an iterated application of Lemma 12.7. To get a handle
on exactly which product, suppose that the result of applying Lemma 12.7
j − 1 times is that

F(g) =
( j∏

m=1
b�m(g)
i,m

)
�

θi, j ,T j−1(aρi−1
i−1 )

(g( j)). (12.9)

Thus bi,1 = θi,1 = 2, and we have the relations

bi, j+1 = θi, j + aρi−1
i−1, j (12.10)

and

θi, j+1 = θ2i, j + 2aρi−1
i−1, jθi, j (12.11)

for j ∈ {1, . . . , i}. We claim that bi, j = ai, j for all j � i + 1. This will
complete the proof of Proposition 12.5, because we may then apply (12.9)
with j = i + 1 to show that

F(g) =
( i+1∏

m=1
a�m(g)
i,m

)
�

θi,i+1,T i+1(aρi−1
i−1 )

(g(i+1)) =
i+1∏

m=1
a�m(g)
i,m

because g(i+1) = ∅ for all i-genotypes g.
Let us now prove our claim that bi, j = ai, j for all j � i + 1. We shall use

induction on j . We have bi,1 = 2 = ai,1. In addition, bi,2 = 2+ 2ρi−1 = ai,2
by (12.10) with j = 1 and by the fact that θi,1 = 2. Now, assume that we have
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proven that bi, j = ai, j for some j ∈ {2, . . . , i}. Relation (12.11) applied with
j − 1 in place of j implies that

θi, j + a2ρi−1i−1, j−1 =
(
θi, j−1 + aρi−1

i−1, j−1
)2

.

The right-hand side equals b2i, j = a2i, j by applying (12.10) followed by the

induction hypothesis. Thus, θi, j = a2i, j − a2ρi−1i−1, j−1. Inserting this relation into
(12.10) and using the recursive formula (12.1) shows that bi, j+1 = ai, j+1.
This completes the inductive step and thus the proof of Proposition 12.5.

12.2 A single recurrence for ρ

In this section we deduce Proposition 12.2 from Proposition 12.1 by a limiting
argument.

To carry this out, we will need the following fairly crude estimates for the
ai, j and the a j (t), defined in (12.1) and (12.3) respectively.

Lemma 12.8 We have

ai, j+1 � a2i, j for 1 � j � i (12.12)

and

32
j−2 � ai, j � a2

j−2
i,2 � 42

j−2
for 2 � j � i + 1. (12.13)

Proof Since ρi−1 < 1 for all i � 1 (cf. Lemma 11.2), we have ai,2 < 4 = a2i,1.
Hence, the inequality (12.12) follows from a simple induction using (12.1).

Using another simple induction, we readily confirm the inequality
ai, j � a2

j−2
i,2 in (12.13).

For the lower bound in (12.13), we know from (12.10) and (12.11) and from
the fact that bi, j = ai, j for all j � i + 1 that

ai, j+1 = θi, j + aρi−1
i−1, j (12.14)

and that

θi, j+1 = θ2i, j + 2aρi−1
i−1, jθi, j (12.15)

for j ∈ {1, . . . , i}. By a simple induction, these formulas imply that ai, j > 1
and θi, j > 0 for all j � i + 1, and thus θi, j+1 + 1 � (θi, j + 1)2 for j =
1, 2, . . . , i . By yet another induction, we find θi, j � 32

j−1 − 1. Finally, the
lower bound on the ai, j in (12.13) follows from this and (12.14).
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Lemma 12.9 Let t ∈ (0, 1). We have

a j+1(t) � a j (t)
2 for j � 1 (12.16)

and

32
j−2 � a j (t) � a2(t)

2 j−2 � 42
j−2

for j � 2. (12.17)

Proof The inequality (12.16) follows from a simple induction using (12.3),
and the upper bound in (12.17) follows with a further induction.

For the lower bound, we first set up relations analogous to (12.14) and
(12.15), defining θ j (t) for j � 1 via the relation

a j+1(t) = θ j (t)+ a j (t)
t . (12.18)

We then note that we also have

θ j+1(t) = θ j (t)
2 + 2a j (t)

tθ j (t). (12.19)

Indeed, on the one hand, we have

θ j+1(t) = a j+2(t)− a j+1(t)t = a j+1(t)2 − a j (t)
2t

by (12.3). On the other hand,

θ j (t)
2 + 2a j (t)

tθ j (t) =
(
θ j (t)+ a j (t)

)2 − a j (t)
2t = a j+1(t)2 − a j (t)

2t

by (12.18).
Having proven (12.19), we now proceed analogously to the proof of Lemma

12.8. We have a j (t) > 1 and θ j (t) > 0 for all j � 1, by a simple induction
using (12.18) and (12.19). Therefore, from (12.19), we have that

θ j+1(t)+ 1 � (θ j (t)+ 1)2.

By induction, this implies that θ j (t) � 32
j−1 − 1. Finally, the lower bound on

the a j (t) in (12.17) follows from this and (12.18).
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We are now in a position to prove that the relation

1

1− t/2
= lim

j→∞
log a j (t)

2 j−2 (12.20)

holds with t = ρ, which is one of the main statements of Proposition 12.2.
Iterating (12.2) gives

ai,i+1 = exp(2i−1)aρi−1
i−1,i = exp(2i−1 + ρi−12i−2)aρi−2ρi−1

i−2,i−1 = · · ·

= exp
(
2i−1 +

i−2∑

j=1
(ρi− j · · · ρi−1)2i− j−1)aρ1···ρi−1

1,2 .

By Proposition 11.1 , we have ρi → ρ. In addition, by Lemma 11.2, we have
0 � ρi � ρ1 < 0.31 for all i . Thus, taking limits as i →∞ gives

lim
i→∞

log ai,i+1
2i−1

= 1+ ρ

2
+
(ρ

2

)2 + . . . = 1

1− ρ/2
. (12.21)

We now derive another expression for the left-hand side of (12.21). A tele-
scoping argument gives

log ai,i+1
2i−1

= log 4+
i∑

j=1

1

2 j−1 log
(
ai, j+1
a2i, j

)

. (12.22)

The terms on the right-hand side of (12.22) are rapidly decreasing. Indeed, by
(12.12) we have 1 � ai, j+1/a2i, j for all j � 1. On the other hand, by (12.1)
(with j replaced by j + 1 there) and by (12.13), we have

ai, j+1
a2i, j

� 1− a2ρ1i−1, j−1
a2i, j

= 1+ O
((2ρi−1

3

)2 j−1)
.

for all j ∈ {2, . . . , i}. Since ρi−1 � ρ1 � 0.31, we have 2ρi−1/3 < 1/2. In
conclusion,

log

(
ai, j+1
a2i, j

)

= O(2−2 j−1
) (12.23)

for all j ∈ {1, . . . , i}. By a simple limiting argument using relation (12.22)
and Lemma 12.3, we thus find that

lim
i→∞

log ai,i+1
2i−1

= log 4+
∞∑

j=1

1

2 j−1 log
(
a j+1(ρ)

a j (ρ)2

)
= lim

j→∞
log a j (ρ)

2 j−2 .
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Here, we used (12.23) to bound the terms with j large. Comparing this with
(12.21) confirms that indeed (12.20) is satisfied with t = ρ.

We turn now to the final statement in Proposition 12.2, the statement that
(12.20) has a unique solution in t ∈ [0, 1

3 ] (which must, by the above discus-
sion, be ρ). This is a purely analytic problem. Write

Wj (t) := 1

1− t/2
− log a j (t)

2 j−2 , W (t) := lim
j→∞Wj (t).

We must show that there is only one solution to W (t) = 0. We already know
W (ρ) = 0, so it would suffice to show thatW is strictly increasing in [0, 1/3].
This would certainly follow if we could show that

Wj (t
′)−Wj (t) � 1

6
(t ′ − t)

for all j � 2 and all 0 � t � t ′ � 1/3. Since the derivative of 1
1−t/2 is

bounded below by 1
2 on [0, 1

3 ], it is enough to establish the derivative bound
d

dt

(
log a j (t)

2 j−2

)
� 1

3

for all j � 2 and all t ∈ (0, 1
3). The remainder of the section is devoted to

proving this bound, which it is convenient to write in the form

� j (t) � 1

3
· 2 j−2, (12.24)

where � j (t) := a′j (t)/a j (t).

We begin by observing that, since t ∈ (0, 1
3), we have a2(t) � 2+ 21/3 and

so we may upgrade the upper bound in (12.17) to

a j (t) � (2+ 21/3)2
j−2

(12.25)

for j � 2. Note also that, by induction using (12.18) and (12.19), both a j (t)
and θ j (t) are increasing functions of t . In particular, a j (t) is an increasing
function of t so the derivative a′j (t) is positive.

Differentiating (12.3) gives

a′j+1 = 2a ja
′
j +
(
atj log a j − 2a2tj−1 log a j−1

)+ tatj
a′j
a j
− 2ta2tj−1

a′j−1
a j−1

,

(12.26)

where here and in the next few lines we have omitted the argument (t) from the
functions for brevity. The term in parentheses is non-positive by (12.16), and
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the final term −2ta2tj−1
a′j−1
a j−1 is negative since the derivative a

′
j−1 is positive. It

follows from (12.26) that

a′j+1 < 2a ja
′
j + tatj

a′j
a j

.

A little computation using (12.3) shows that this may equivalently be written
as

� j+1 < 2� j

(
1

1+ at−2j − a2tj−1a
−2
j

+ tatj
2a j+1

)
, (12.27)

where we used our notation � j = a′j/a j .
Denote

ξ j := sup
t∈[0, 13 ]

(
1

1+ a j (t)t−2 − a j−1(t)2t a j (t)−2
+ ta j (t)t

2a j+1(t)

)
. (12.28)

Then (12.27) implies that � j+1(t) < 2� j (t)ξ j for all t ∈ [0, 1/3] and all j � 2.
Telescoping this inequality gives

� j (t) � (�2(t)ξ2ξ3 · · · ξ j−1) · 2 j−2.

We have

�2(t) = 2t log 2

2+ 2t
� log 2

1+ 22/3
< 0.268

for all t ∈ [0, 1/3]. Hence, in order to obtain the desired bound (12.24), it is
enough to show

ξ2ξ3 · · · ξ j−1 < 1.2. (12.29)

The ξi tend to 1 exceptionally rapidly, and crude bounds (together with a little
computation) turn out to suffice, as follows.

First, by (12.17) and the fact that a2(t)2−t = (2+ 2t )2−t � 9 for t ∈ [0, 1]
(a calculus exercise), we have

a j (t)
t−2 � (a2(t)

t−2)2 j−2 � 9−2 j−2
for j � 2. (12.30)

Second, by the lower bound in (12.17) and by (12.25) we have

a j−1(t)2t a j (t)
−2 �

(
(2+ 21/3)2

j−3)2/3
(32

j−2
)−2 < 6−2 j−2

for j � 3.
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We may also check by hand that a1(t)2t/a2(t)2 = (21−t + 1)−2 < 1/6 for all
t ∈ [0, 1/3]. Hence,

a j−1(t)2t a j (t)
−2 < 6−2 j−2

for j � 2. (12.31)

Third, again by the lower bound in (12.17) and by (12.25), we have

a j (t)t

a j+1(t)
�
(
(2+ 21/3)2

j−2)1/3

32 j−1 �
(
1

6

)2 j−2

for j � 2. (12.32)

Substituting (12.30), (12.31) and (12.32) into the definition (12.28) gives

ξ j � 1

1+ (19)
2 j−2 − (16)

2 j−2 +
(
1

6

)1+2 j−2

for j � 2.

Using this bound, onemay check the bound
∏∞

j=2 ξ j � 10/9,which is stronger
than the desired bound (12.29), on a pocket calculator or even by hand. For
example, we have ξ2ξ3 � 46751495

42169248 and can use a very crude bounds for the

higher terms. Since 1
1−x + x

6 � e2x for 0 � x � 0.1, taking x = 6−2 j−2
gives

ξ j � exp
(
2 · 6−2 j−2)

for j � 4. Therefore

∞∏

j=4
ξ j < exp

(
2
∞∑

i=4

1

6i

)
= e2/(5·63) < 1.002.

This concludes the proof of the final statement in Proposition 12.2.

12.3 Proof of parts (b) and (c) of Theorem 2

To conclude this paper, we complete the proof of parts (b) and (c) of Theorem
2, as defined in the end of Sect. 1.3. In fact, all of the ingredients have already
been assembled and we must simply remark on how they fit together.

First, recall from Definition 9.6 that

θr = (log 3− 1)
/(

log 3+
r−1∑

i=1

2i

ρ1 · · · ρi
)
.
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Now, it is an easy exercise to see that if x1, x2, . . . is a sequence of positive
real numbers for which x = limi→∞ xi exists and is positive, then

lim
r→∞

( r∑

i=1
x1 · · · xi

)1/r = max(x, 1).

Applying this with xi = 2/ρi gives, by Proposition 11.1, that

lim
r→∞ θ

1/r
r = ρ

2
.

This, together with Proposition 12.2, completes the proof of Theorem 2.
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Appendices

Appendix A. Some probabilistic lemmas

Throughout this section, A ⊂ N will be a random set, with P(i ∈ A) = 1/ i
and these choices being independent for different values of i .

Lemma A.1 For any finite subset B ⊂ Z�4 and any k ∈ Z�0, we have

(
1− 2k2(

∑
m∈B 1/(m − 1))−2

min B

)
M � P(#(A ∩ B) = k) � M,
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where

M = 1

k!
(∑

m∈B

1

m − 1

)k ∏

m∈B

(
1− 1

m

)
.

Proof The result follows by a standard inclusion-exclusion argument.Wehave

P(#(A ∩ B) = k) =
∑

a1,...,ak∈B
a1<···<ak

1

a1 · · · ak
∏

m∈B
m /∈{a1,...,ak}

(
1− 1

m

)

=
∏

m∈B

(
1− 1

m

) ∑

a1,...,ak∈B
a1<···<ak

1

(a1 − 1) · · · (ak − 1)
� M.

For the lower bound, we note that

1

k!
(∑

m∈B

1

m − 1

)k

−
∑

a1,...,ak∈B
a1<···<ak

1

(a1 − 1) · · · (ak − 1)

= 1

k!
∑

a1,...,ak∈B∃i< j with ai=a j

1

(a1 − 1) · · · (ak − 1)

� 1

k!
(
k

2

)(∑

a∈B

1

(a − 1)2

)(∑

a∈B

1

(a − 1)

)k−2
.

Since
∑

a∈B 1/(a − 1)2 < 1/(min B − 2)2 � 4/(min B)2, the proof is com-
plete.

Lemma A.2 Uniformly for B ⊂ Nwithλ :=∑m∈B 1/m � 1 and 0 � ε � 1,
we have

P

(∣
∣#(A ∩ B)− λ

∣
∣ > ελ

)

 exp(−ε2λ/3).

Proof This follows by the upper bound in Lemma A.1 with standard bounds
on the tails of the Poisson distribution, e.g. Norton’s bounds [15, Theorem 09].

Lemma A.3 For any x > 0 and finite set B ⊂ N,

Ex#(A∩B) � exp
(
(x − 1)

∑

j∈B

1

j

)
.
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Proof The random variable #(A ∩ B) is the sum of independent Bernouilli
random variables and thus

Ex#(A∩B) =
∏

j∈B

(
1+ x − 1

j

)
.

Note that all factors are positive because x > 0. The lemma now follows from
the inequality 1+ y � ey , valid for all real y.

Lemma A.4 Let k ∈ N, and let B and G be finite sets such that B ⊂ G ⊂ Z�4
and

|B| = k �
√
min(G)

2

∑

m∈G

1

m
.

Then

P
(
A ∩ G = B

∣
∣ #(A ∩ G) = k

)

= k!(1+ O(
k2(
∑

m∈G 1/m)−2
min(G)

))

(
∑

m∈G 1/(m − 1))k
∏

b∈B

1

b

∏

m∈G

(
1− 1

m

)
.

Proof Since |B| = k, we have

P
(
A ∩ G = B

∣∣ #(A ∩ G) = k
) = P(A ∩ G = B)

P(#(A ∩ G) = k)
.

The denominator is estimated using Lemma A.1, whereas for the numerator
we simply note that

P(A ∩ G = B) =
∏

b∈B

1

b

∏

m∈G\B

(
1− 1

m

)
=
∏

b∈B

1

b − 1

∏

m∈G

(
1− 1

m

)
.

This completes the proof of the lemma.

Lemma A.5 Given 0 < c < 1 and D � e100/c, the probability that
A ⊂ (Dc, D] satisfies
∣
∣∣#
(
A ∩ (Dα, Dβ])− (β − α) log D

∣
∣∣ � (log D)3/4 (c � α � β � 1)

(A.1)

is � 1− O(e−(1/4)(log D)1/2).
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Proof It suffices to bound the probability that

∣
∣
∣#A ∩ (Dα, Dβ] − (β − α) log D

∣
∣
∣ � (log D)3/4 − 2 (A.2)

whenever α log D, β log D ∈ N. The random variable N = N (α, β) := #(A∩
(Dα, Dβ]) is the sumofBernoulli randomvariables and has expectationEN =
M + O(1), where

M = (β − α) log D.

By Lemma A.3, EλN � e(λ−1)EN . Thus, for y = (log D)3/4 and
λ j = 1+ (−1) j y

log D we have

P(N � M + y) � Eλ
N−M−y
2 
 λ

−M−y
2 e(λ2−1)M 
 e−(1/3)(log D)1/2,

P(N � M − y) � Eλ
N−M+y
1 
 λ

−M+y
1 e(λ1−1)M 
 e−(1/3)(log D)1/2 .

Summing over all possible α, β completes the proof.

Lemma A.6 Uniformly for X � 2 and K � 2 we have

∑

a∈A∩[2,X ]
a � K X

with probability � 1− e2−K .

Proof WeuseChernoff’s inequality, often called Rankin’s trick in this context:

P

( ∑

a∈A∩[2,X ]
a > K X

)
� e−K

∑

A′⊂[2,X ]
P
(
A ∩ [2, X ] = A′

)
e

1
X

∑
a∈A′ a

= e−K
∑

A′⊂[2,X ]

∏

2�a�X
a /∈A′

(
1− 1

a

) ∏

a∈A′
ea/X

a

= e−K
∏

2�a�X

(
1− 1

a

)(
1+ ea/X

a − 1

)

= e−K
∏

2�a�X

(
1+ ea/X − 1

a

)

� e−K (1+ 2/X)X � e2−K

because et � 1+ 2t for all t ∈ [0, 1]. This concludes the proof.
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Lemma A.7 Let η ∈ [0, 1] and let J1, . . . , Jd ⊂ N be mutually disjoint
intervals. Suppose that X ⊂ J1×· · ·×Jd is a set of sizeη

∏
i max Ji . Ifmini |Ji |

is sufficiently large in terms of η and d, then with probability � (η/4)d , there
are distinct elements ai ∈ A with (a1, . . . , ad) ∈ X.

Proof Let Mi = max Ji for each i . We will prove the lemma by induction on
d.

The case d = 1 follows by direct calculation: Suppose that X ⊂ J1 has size
� ηM1. Then

P(A ∩ X = ∅) =
∏

n∈X
(1− 1/n) � (1− 1/M1)

ηM1 � e−η � 1− η/2.

Let us now assume we have proven the lemma for d − 1 intervals, and let us
prove it for d intervals J1, . . . , Jd . For each j1 ∈ J1, we set

X j1 := {( j2, . . . , jd) ∈ J2 × · · · × Jd : ( j1, j2, . . . , jd) ∈ X}.
Let Y = { j1 ∈ J1 : |X j1 | � (η/2)M1}. Then |Y | � (η/2)M1, because
otherwise we would have |X | < η

∏
i Mi , a contradiction to our hypotheses.

By the case d = 1 (just described),A∩Y is nonempty with probability� η/4.
Fix some a1 ∈ A ∩ Y . Then, by the inductive hypothesis and the fact that the
Ji are disjoint, with probability � (η/4)d−1, independent of the choice of a1,
there are elements ai ∈ A ∩ Ji , i = 2, . . . , d with (a2, . . . , ad) ∈ Xa1 , and
therefore (a1, . . . , ad) ∈ X . The disjointness of the Ji of course guarantees
that the ai are all distinct. This completes the proof.

Lemma A.8 If X j , Y j live on the same discrete probability space for
1 � j � k, and furthermore X1, . . . , Xk are independent, and Y1, . . . , Yk
are also independent, then

dTV((X1, . . . , Xk), (Y1, . . . , Yk)) �
k∑

j=1
dTV(X j , Y j ),

Proof We begin with the following identity

a1 . . . am − b1 . . . bm =
m∑

j=1
(a j − b j )

∏

i< j

ai
∏

i> j

bi .
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Denoting � the domain of (X1, . . . , Xm), and writing ai = P(Xi = ωi ),
bi = P(Yi = ωi ), we then have

dTV ((X1, . . . , Xm), (Y1, . . . , Ym))

= 1

2

∑

(ω1,...,ωm)∈�

∣∣P(X j = ω j , 1 � j � m)− P(Y j = ω j , 1 � j � m)
∣∣

= 1

2

∑

(ω1,...,ωm)∈�

|a1 . . . am − b1 . . . bm |

� 1

2

m∑

j=1

∑

ω j

|a j − b j |
∑

ωi (i �= j)

∏

i< j

ai
∏

i> j

bi

= 1

2

m∑

j=1

∑

ω j

|a j − b j |

=
m∑

j=1
dTV (X j , Y j ).

Appendix B. Basic properties of entropy

The notion of entropy plays a key role in our paper. In this appendix we record
the key facts about it that we need. Proofs may be found in many places. One
convenient resource is [1].

If X is a random variable taking values in a finite set then we define

H(X) := −
∑

x

P(X = x) log(P(X = x)),

where the log is to base e and the summation runs over the range of X .
If p = (p1, . . . , pn) is a vector of probabilities (that is, if p1, . . . , pn � 0

and p1 + · · · + pn = 1), then we write

H(p) := −
n∑

i=1
pi log pi .

There should be no danger of confusing the two slightly different usages.
Our first lemma gives a simple upper bound for multinomial coefficients in

terms of entropies.

Lemma B.1 Let n, n1, . . . , nk be non-negative integers with
∑

ni = n. Then

n!
n1! . . . nk ! � eH(p)n,

where p = (p1, . . . , pk) with pi := ni/n.
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Proof. The right-hand side is (n/n1)n1 . . . (n/nk)nk . Now simply observe that

n!
(n1)! . . . (nk)!(n1/n)n1 . . . (nk/n)nk

�
∑

k1+···+km=n

n!
k1! . . . km !(n1/n)k1 . . . (nk/n)km = 1.

Our next lemma is a simple and well-known upper bound for the entropy.

Lemma B.2 Let X be a random variable taking values in a set of size N. Then
H(X) � log N.

Proof This follows immediately from the convexity of the function
L(x) = −x log x and Jensen’s inequality. See [1, Lemma 14.6.1 (i)].

The next lemma is simple and has no doubt appeared elsewhere, but we
do not know an explicit reference. In its statement, we use the notation
〈a,p〉 =∑n

i=1 ai pi .

Lemma B.3 Let p = (p1, . . . , pn) be a vector of probabilities, and let
a = (a1, . . . , an) be a vector of real numbers. Then

H(p)+ 〈a,p〉 � log
( n∑

j=1
ea j
)
,

and equality occurs if and only if p j = ea j /
∑n

i=1 eai for all j .

Proof Let us begin by recalling that if t1, . . . , tn > 0 are such that

t1 + · · · + tn = 1,

then the concavity of the logarithm implies that

t1 log x1 + · · · + tn log xn � log(t1x1 + · · · + tnxn) (B.1)

for all x1, . . . , xn > 0. In addition, equality occurs in (B.1) if and only if
x1 = · · · = xn . One may also prove this fact by induction on n, and by
noticing that the case n = 2 is equivalent to having ut � tu + 1 − t for all
u > 0 and all t ∈ (0, 1), with equality occurring if and only if u = 1.

Let us nowproved the lemma. If p j = 1 for some j , thenH(p)+〈a,p〉 = a j .
If n = 1, then this is equal to log(

∑n
i=1 eai ), whereas if n � 2, then we have
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a j < log(
∑n

i=1 eai ), so that the lemma holds in both cases. Assume now that
p j ∈ (0, 1) for all j . We then have

H(p)+ 〈a,p〉 =
n∑

j=1
p j log(e

a j /p j ).

We may then use (B.1) with t j = p j and x j = ea j /p j to complete the proof
of the lemma.

The next lemma, known as the chain rule for entropy, is nothing more than
a short computation.

Lemma B.4 Let X, Y be random variables taking values in finite sets. Then

H(X, Y ) = H(Y )+
∑

y

P(Y = y)H(X |Y = y).

Remark The sum over y is usually written H(X |Y ) and called the conditional
entropy.

We will apply the preceding result together with the following observation.

Lemma B.5 Suppose that X, Y are random variables with finite ranges and
that Y is a deterministic function of X. Then H(X, Y ) = H(X).

Proof This follows from Lemma B.4 with the role of X and Y reversed, since
all the entropies H(Y |X = x) are zero.

The next result, known as the submodularity property of entropy, is a crucial
ingredient in our paper.

Lemma B.6 . Let X, Y, Z be any random variables taking values in finite sets.
Then

H(X, Y )+H(X, Z) � H(X, Y, Z)+H(X).

Proof This is [1, Lemma 14.6.1 (iv)].

Appendix C. Maier–Tenenbaum flags

The purpose of this appendix is to say a little more about the bound (3.12),
which corresponds in the language of this paper to [22, Theorem 1.4]. Numer-
ically, this bound is γ̃2r � (0.12885796477 . . .)r , which is a little weaker than
the bound leading toTheorem2,which is γ̃2r � (0.140605674848 . . .)r .What
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is interesting, however, is that the flags V which lead to (3.12) are completely
different to the binary flags which have been the main focus of our paper. The
fact that these very different flags – the “Maier–Tenenbaum flags” – lead to a
result which appears to be within 10 % of optimal suggests that they will have
a key role to play in any future upper bound arguments for these questions.

Definition C.1 (Maier–Tenenbaum flag of order r) Let k = 2r be a power of
two. IdentifyQ

k withQ
P[r ] and define a flagV , 〈1〉 = V0 � V1 � · · · � Vr �

Q
P[r ], as follows: Vi = Span(1, ω1, . . . , ωi ), where ωi

S = 1i∈S for S ⊂ [r ].
Remark We have dim(Vi ) = i + 1 and in particular Vr is much smaller than
Q

k , in contrast to the situation for binary systems. We leave it to the reader to
check that V is nondegenerate.

Recall that V gives rise to a tree structure, with the cells at level i being
the intersections of cosets x + Vi with the cube {0, 1}k (cf. Sect. 7.2). It is
easy to check that this tree structure has a very simple form, with the cell
�i = Vi ∩ {0, 1}k being {0, 1, ω1, 1− ω1, . . . , ωi , 1− ωi }, this dividing into
three children at level i − 1; the cell �i−1 together with two singletons, {ωi }
and {1− ωi }.

The recursive definition of the quantities f C(ρ) (see (7.4)) therefore
becomes f �1(ρ) = 3,

f � j+1(ρ) = f � j (ρ)ρ j + 2. (C.1)

In addition, the ρ-equations (7.5) become

f � j+1(ρ) = e( f � j (ρ))ρ j . (C.2)

On the one hand, iterating (C.2) yields that

log f � j (ρ) = ρ1 . . . ρ j−1 log 3+
j−2∑

i=0
ρ j−1 . . . ρ j−i

for all j � 1. On the other hand, combining (C.1) and (C.2), we find that

ρ j log f � j (ρ) = log 2− log(e − 1),

and thus

ρ1 . . . ρ j log 3+
j−2∑

i=0
ρ jρ j−1 . . . ρ j−i = log 2− log(e − 1)
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for all j � 1. Hence, we obtain the formulas

ρ1 = log 2− log(e − 1)

log 3
, ρ2 = ρ3 = · · · = log 2− log(e − 1)

log 2+ 1− log(e − 1)
=: κ.

Let us also note that the above discussion implies that

log f � j (ρ) = log 2− log(e − 1)

ρ j
=
{
log 3 if j = 1,

log 2− log(e − 1)+ 1 if j � 2.

(C.3)

Now, assuming that the conditions of Proposition 7.7 hold, we therefore
have

γ res
k (V ) = (log 3− 1)

/(
log 3+ 1

ρ1

(
1+ 1

κ
+ · · · + 1

κr−2
))

=
(
1− 1

log 3

)
κr−1.

Now it can be shown by explicit calculation that the conditions of Proposition
7.7 do hold. The optimal measures μ∗i are all induced from the measure μ∗ in
which

μ∗(ω j ) = μ∗(1− ω j ) = μ∗(� j ) · 1

f � j (ρ)
=
{

1
3e

1−r if j = 1,
e−1
2e e j−r if j � 2.

In addition, we have

μ∗(0) = μ∗(1) = μ∗(�0)

2
= 1

6
e1−r .

We may then prove by a slightly lengthy computation whose details we leave
to the reader that the optimal parameters c∗ are given by

c∗1 = 1, c∗j =
1

κ2

(e − κ

e − 1

)(
1− 1

log 3

)
κ j , c∗r+1 =

(
1− 1

log 3

)
κr−1.

It can also be shown that γ res
k (V ) = γk(V ), by showing that the full entropy

condition (3.6) follows from the restricted conditions (7.11). This is a little
involved, but a fairly direct inductive argument can be made to work and this
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is certainly less subtle than the arguments of Sect. 8. In this way one may
establish the bound

γ2r �
(
1− 1

log 3

)(
log 2− log(e − 1)

log 2+ 1− log(e − 1)

)r−1
� (0.131810543 . . .)r .

(C.4)

Finally, a relatively routine perturbative argument yields the same bound
for γ̃2r .

It will be noted that (C.4) is strictly stronger than (3.12), the bound obtained
in [22]. This is because, in essence, Maier and Tenenbaum chose slightly
suboptimal measures and parameters on the system V , roughly corresponding
to μ(ω j ) ∼ 3 j−r−1, which then leads to c j ∼

( 1−1/ log 3
1−1/ log 27

) j .
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