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Abstract We study the extent to which divisors of a typical integer n are
concentrated. In particular, defining A (n) := max; #{d|n, logd € [t, t + 1]},
we show that A(n) > (loglog n)0-33332277- for almost all n, a bound we
believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We
also prove analogs for the concentration of divisors of a random permutation
and of a random polynomial over a finite field. Most of the paper is devoted
to a study of the following much more combinatorial problem of independent
interest. Pick a random set A C N by selecting i to lie in A with probability
1/i. What is the supremum of all exponents S such that, almost surely as
D — oo, some integer is the sum of elements of A N [DPx, D] in k different
ways? We characterise S as the solution to a certain optimisation problem
over measures on the discrete cube {0, 1}¥, and obtain lower bounds for S
which we believe to be asymptotically sharp.
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Part I. Main results and overview of the paper

1 Introduction
1.1 The concentration of divisors
Given an integer n, we define the Delta function

A(n) = mtax#{a’|n, logd € [t,t + 1]},

that is to say the maximum number of divisors n has in any interval of log-
arithmic length 1. Its normal order (almost sure behaviour) has proven quite
mysterious, and indeed it was a celebrated achievement of Maier and Tenen-
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Equal sums in random sets 1029

baum [20], answering a question of Erdés from 1948 [9], to show that A(n) > 1
for almost all! n.

Work on the distribution of A began in the 1970s with Erd6s and Nicolas
[7,8]. However, it was not until the work of Hooley [16] that the Delta function
received proper attention. Among other things, Hooley showed how bounds on
the average size of A can be used to count points on certain algebraic varieties.
Further work on the normal and average behavior of A can be found in the
papers of Tenenbaum [23,24], Hall and Tenenbaum [12-14], and of Maier and
Tenenbaum [20-22]. See also [15, Ch. 5,6,7]. Finally, Tenenbaum’s survey
paper [26, p. 652—-658] includes a history of the Delta function and description
of many applications in number theory.

The best bounds for A(n) for “normal” n currently known were obtained
in a more recent paper of Maier and Tenenbaum [22].

Theorem MT (Maier-Tenenbaum [22]) Let ¢ > 0 be fixed. Then
(loglogn)'~ < A(n) < (loglogn)loe2+e,
for almost all n, where
log2

1—1/log27
lo (_1—1/10g3

c] = ~ (0.33827.

It is conjectured in [22] that the lower bound is optimal.
One of the main results of this paper is a disproof of this conjecture.

Theorem 1 Let ¢ > 0 be fixed. Then
A(n) > (loglogn)™*
for almost all n, where n = 0.35332277270132346711 .. ..

The constant 1, which we believe to be sharp, is described in relation (1.3)
below, just after the statement of Theorem 2.

1.2 Packing divisors

Let us briefly attempt to explain, without details, why it was natural for Maier
and Tenenbaum to make their conjecture, and what it is that allows us to find
even more tightly packed divisors.

1" A property of natural numbers is said to occur for almost all n if the number of exceptions
below x is o(x) as x — o0.
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1030 K. Ford et al.

We start with a simple observation. Let n be an integer, and suppose we can
find pairs of divisors d;, dl.’ ofn,i =1, ...,k,such that

o 1 <d;/d <2V
e The sets of primes dividing d;d; are disjoint, as i varies in {1, ..., k}.

Then we can find 2¥ different divisors of n in a dyadic interval, namely all
products ay . .. a; where g; is either d; or dl.’ .

In [22], Maier and Tenenbaum showed how to find many such pairs of
divisors d;, d.. To begin with, they look only at the large prime factors of
n. They first find one pair dy, d| using the technique of [20]. Then, using a
modification of the argument, they locate a further pair d, and d5, but with
these divisors not having any primes in common with di, d{. They continue
in this fashion to find d3, dé, dy, djt, etc., until essentially all the large prime
divisors of n have been used. After this, they move on to a smaller range of
prime factors of n, and so on.

By contrast, we eschew an iterative approach and select 2¥ close divisors
from amongst the large prime divisors of n in one go, in a manner that is
combinatorially quite different to that of Maier and Tenenbaum. We then apply
a similar technique to a smaller range of prime factors of n, and so on. This
turns out to be a more efficient way of locating proximal divisors.

In fact, we provide a general framework that encapsulates all possible com-
binatorial constructions one might use to pack many divisors close to each
other. To work in this generality it is necessary to use a probabilistic formal-
ism. One effect of this is that, even though our work contains that of Maier and
Tenenbaum as a special case, the arguments here will look totally different.

1.3 Random sets and equal sums

For most of the paper we do not talk about integers and divisors, but rather
about the following model setting. Throughout the paper, A will denote a ran-
dom set of positive integers in which i is included in A with probability 1/1i,
these choices being independent for different is. We refer to A as a logarithmic
random set.

A large proportion of our paper will be devoted to understanding conditions
under which there is an integer which can be represented as a sum of elements
of A in (at least) k different ways. In particular, we wish to obtain bounds on
the quantities S defined in the following problem.

Problem 1 Let k > 2 be an integer. Determine S, the supremum of all expo-
nents ¢ < 1 for which the following is true: with probability tending to 1 as
D — o0, there are distinct sets Ay, ..., Ay C AN [D¢, D] with equal sums,

i.e., ZaeAla — = ZaeAka.
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Equal sums in random sets 1031

The motivation for the random set A comes from our knowledge of the
anatomy of integers, permutations and polynomials. For a random integer
m < x, with x large, let Uy be the event that m has a prime factor in the
interval (ek, e**171. For a random permutation o € Sy, let Vi be the event that
o has a cycle of size k, and for a random monic polynomial f of degree n
over [F,, with n large, let Wy be the event that f has an irreducible factor of
degree k. Then it is known (see e.g., [2,3,15]) that Uy, Vi and Wy each occur
with probability close to 1/k, and also that the Uy are close to independent
for k = o(log x), the V; are close to independent for k = o(n), and the Wy
are close to independent for k large and k = o(n). Thus, the model set A
captures the factorization structure of random integers, random permutations
and random polynomials over a finite field. It is then relatively straightforward
to transfer results about subset sums of A to divisors of integers, permutations
and polynomials. Section 2 below contains details of the transference principle.

The main result of this paper is an asymptotic lower bound on S.

Theorem 2 We have lim inf,_, oo (B2r) /"

= p/2, where
o = 0.28121134969637466015 . ..

is a specific constant defined as the unique solution in [0, 1/3] of

1 . loga;
= lim ——, (L.1)
1—p/2 j—ooo 2072
where the sequence a;j is defined by

a1 =2, ap=2+2°, aj=a12~_1+a5.)_1—a12.’32 (G =3).

The proof of Theorem 2 will occupy the bulk of this paper, and has three
basic parts:

(a) Showing that for every r > 1, Bor > 6, for a certain explicitly defined
constant 6, ;
(b) Showing that lim,_, 0,1 /r exists;
(c) Showing that (1.1) has a unique solution p € [0, 1/3] and that
o =2 lim 6"
r—00

In the sequel we shall refer to “Theorem 2 (a)”, “Theorem 2 (b)” and “The-
orem 2 (c)”. Parts (a), (b) and (c) are quite independent of one another, with
the proof of (a) (given in Sect. 9.2) being by far the longest of the three. The
definition of ,, while somewhat complicated, is fairly self-contained: see Def-
inition 9.6. Parts (b) and (c) are then problems of an analytic and combinatorial
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1032 K. Ford et al.

flavour which can be addressed largely independently of the main arguments
of the paper. The formula (1.1) allows for a quick computation of p to many
decimal places, as the limit on the right side converges extremely rapidly. See
Sect. 12 for details.

Let us now state an important corollary of Theorem 2.

Corollary 1 Define

log k log k
£y = limsup —2° _ gnd ¢_ = liminf —2° (1.2)
k—oo 10g(1/Bk) k—oo log(1/Bx)
Then
s> g2 _ 3533027 (1.3)
> >n=—7—=0. .
i log(2/p)

Proof Evidently, £, > ¢_. In addition, observe the trivial bound 8; < Bg+1-
Hence,

. rlog?2 .. rlog?2
{4 =limsup—— and ¢_ =liminf ————. (1.4)
r—~oco log(1/B2r) r—oco log(1/p2)
We then use Theorem 2 to find that £_ > 7. O

We conjecture that our lower bounds on S are asymptotically sharp, so that
the following holds:

Conjecture 1 We have {4 = ¢{_ =n.

We will address the exact values of S in a future paper; in particular, we
will show that

log3—1
By = —=0 = 0.02616218797316965133 ...
log3 + E
and
log3 —1
By = ————— = 0.01295186091360511918 . ..
log3+ ¢+
where
£ = log2 —log(e — 1) _ log2 —log(e — 1)
N log(3/2) "~ 1+1log2 —log(e — 1) — log(1 4+ 21-%)"
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Equal sums in random sets 1033

1.4 Application to divisors of integers, permutations and polynomials

The link between Problem 1 and the concentration of divisors is given by the
following Theorems. The proofs are relatively straightforward and given in
the next section. Recall from (1.2) the definition of ¢ .

Theorem 3 For any ¢ > 0, we have
A(n) > (loglogn)*+—¢
for almost every n.

Remark In principle, the proof of Theorem 3 yields an explicit bound on the
size of the set of integers n with A(n) < (loglogn)%+~¢. However, incorporat-
ing such an improvement is a very complicated task. In addition, the obtained
bound will presumably be rather weak without a better understanding of the
theoretical tools we develop (cf. Sect. 3).

The same probabilistic setup allows us to quickly make similar conclusions
about the distribution of divisors (product of cycles) of permutations and of
polynomials over finite fields.

Theorem 4 For a permutation o on S, denote by

A(o) := max #{d|o : length(d) = r},
r

where d denotes a generic divisor of o; that is, d is the product of a subset of
the cycles of o.

Let ¢ > 0 be fixed. If n is sufficiently large in terms of ¢, then for at least
(1 — &)(n!) of the permutations o € §,, we have

A(o) > (logn)*+~*.
Theorem S Let g be any prime power. For a polynomial f € F4[t], let

A(f) = max#{glf : deg(g) = r}.

Let ¢ > 0 be fixed. If n is sufficiently large in terms of €, then at least
(1 — &)g" monic polynomials of degree n satisfy

A(f) > (logn)s+*.

Conjecture 2 The lower bounds given in Theorems 3, 4 and 5 are sharp. That
is, corresponding upper bounds with exponent {4 + € hold.
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1034 K. Ford et al.

If both Conjectures 1 and 2 hold, then we deduce that the optimal exponent
in the above theorems is equal to .

Remark The exponent {4 — ¢ in Theorems 3,4 and 5 depends only on accurate
asymptotics for B; as k — oo or, even more weakly, for 8or as r — oo
(cf. (1.4)). In this work, however, we develop a framework for determining B
exactly for each k.

The quantity By is also closely related to the densest packing of k divisors of a
typical integer. To be specific, we define oy be the supremum of all real numbers
« such that for almost every n € N, n has k divisors d; < --- < dj with
dr < di(14 (logn)™). In 1964, Erd6s [10] conjectured that o = log3 — 1,
and this was confirmed by Erd6s and Hall [6] (upper bound) and Maier and
Tenenbaum [20] (lower bound). The best bounds on o for k£ > 3 are given by
Maier and Tenenbaum [22], who showed that

< og2 oy
(64 ~X =
Sk
and (this is not stated explicitly in [22])
log3 — 1ym3m—!
(log3 — 1) @' <k<2"meN). (15

Y Z "3log3 — 1ym-1

See also [26, p. 655-656].2 In particular, it is not known if o3 > o4, although
Tenenbaum [26] conjectures that the sequence (ot )k >2 is strictly decreasing.
We can quickly deduce a lower bound for « in terms of .

Theorem 6 Forall k > 2 we have ax = Br/(1 — Br).

In particular,

> B3

1 — B3
which is substantially larger than the bound from (1.5), which is a3 >
0.0127069. . ..

Combining Theorem 6 with the bounds on S given in Theorem 2, we have
improved the lower bounds (1.5) for large k.

The upper bound on ¢ is more delicate, and a subject which we will return
to in a future paper. For now, we record our belief that the lower bound in
Theorem 6 is sharp.

Conjecture 3 Forall k > 2 we have ay = B /(1 — By).

= 0.0268650. ..,

2 The factor 3" is missing in the stated lower bounds for ¢, in [26].
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Equal sums in random sets 1035

2 Application to random integers, random permutations and random
polynomials

In this section we assume the validity of Theorem 2 and use it to prove The-
orems 3, 4, 5 and 6. The two main ingredients in this deduction are a simple
combinatorial device (Lemma 2.1), of a type often known as a “tensor power
trick”, used for building a large collection of equal subset sums, and transfer-
ence results (Lemmas 2.2, 2.3 and 2.4) giving a correspondence between the
random set A and prime factors of a random integer, the cycle structure of a
random permutation and the factorization of a random polynomial over a finite
field. In the integer setting, this is a well-known principle following, e.g. from
the Kubilius model of the integers (Kubilius, Elliott [4,5], Tenenbaum [25]).
We give a self-contained (modulo using the sieve) proof below.

Throughout this section, A denotes a logarithmic random set.

2.1 A “‘tensor power’”’ argument

In this section we give a simple combinatorial argument, first used in a related
context in the work of Maier—Tenenbaum [20], which shows how to use equal
subsums in multiple intervals ((D")¢, D] to create many more common Sub-
sums in A.

Lemma 2.1 Let k € Z>> and ¢ > 0 be fixed. Let Dy, Dy be parameters
depending on D with 3 < D1 < Dy < D, loglog D1 = o(loglog D) and
loglog Dy = (1 — o(1))loglog D as D — oo. Then, with probability — 1
as D — oo, there are distinct Ay, ..., Ay C AN[Dy, Dy] with ) a=
- ZMGAM a and M > (log D){ogk)/log(1/Br)—¢

acA

Remark In particular, the result applies when D; = 3 and D, = D, in which
case it has independent combinatorial interest, giving a (probably tight) lower
bound on the growth of the representation function for a random set.

Proof Since increasing the value of D1 only makes the proposition stronger, we
may assume that D] — ocoas D — oo. Let0 < § < B, and set o := By — 6.
Set

Llog log D — loglog D J
m =

—log(Bx — 6)
and consider the intervals [Dg‘iH, Dg‘i),i =0,1,...,m—1.Duetothe choice
of m, these all lie in [ D, D3]. . _
Let E;,i =0, 1,2, ... be the event that there are distinct Agl), e, A,((’) C
0t o ) o 4 ..
[DY , DY) with Zae A @ = = Zae AD 4- Then, by the definition of
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1036 K. Ford et al.

Br and the fact that Dy — oo, we have P(E;) = 1 — o(1), uniformly in
i =0,1,...,m — 1. Here and throughout the proof, o(1) means a function
tending to zero as D — oo, at a rate which may depend on k, §. These events
E; are all independent. The Law of Large Numbers then implies that, with
probability 1 — o(1), at least (1 — o(1))m of them occur, let us say fori € I,
Il = (1 —o(1))m.

From the above d1scuss1on we have found M := k! = k(1=e()m distinct
sets Bj = (UJ;¢; A ) j € [k]’, such that all of the sums 2 _qep; @ are the
same. Note that

M = k(1+0k@®+o(1) loglog D/ log(1/8¢)

Taking & small enough and D large enough, the result follows. O

2.2 Modeling prime factors with a logarithmic random set

Let X be a large parameter, suppose that
1 <K < (logX)'/?, (2.1)

and let I = [iy, ip] NN, where

(2.2)

Klog X
i1 = |_K(loglogX)3J, iy = L % J

2logloglog X |

For a uniformly random positive integer n < X, letn = [] » P'7 be the the
prime factorization of n, where the product is over all primes. Let #; be the
set of primes in (e'/K | ¢+D/K] and define the random set

I=1{i eI:3p e & suchthat p|n}. (2.3)

that is, the set of i for which n has a prime factor in &;. By the sieve, it is
known that the random variables v,, are nearly independent for p = X o),
and thus the probability that b; > 1 is roughly

1 1
Z‘:
eP;

The next lemma makes this precise.
Recall the notion of total variation distance dtv (X, Y) between two discrete
real random vectors X, Y defined on the same probability space (2, F, P):

’E

drv(X.Y) = max [B(X € A) ~P(Y € A)].
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Equal sums in random sets 1037

We have
k
dry((X1, ..., Xp), (V1,..., Y)) < D _drv(X,, Y)), (2.4)
j=1

provided that the random variables X ;, Y; live on the same probability space
for each j, that X1, ..., Xy are independent, and Y7, ..., Y} are also inde-
pendent. Although we believe this is a standard inequality, we could not find
a good reference for it and give a proof of (2.4) in Lemma A.8. In addition,
recall the identity

1
drv(X,Y) = 3 Z IP(X =1) —P(Y =1)| (2.5)
teQ2

when X and Y take values in a probability space (€2, F, P) with € countable
and F being the power set of Q2. See, e.g. [19, Proposition 4.2].

Lemma 2.2 Uniformly for any collection & of subsets of 1, we have
PAANIe ?)=Pde )+ O(1/loglog X).

Proof For i) < i < i2, let w; be the indicator function of the event that n has
a prime factor from &, let Q; be a Poisson random variable with parameter
R;, with the different Q; independent, and let Z; = 19 i>1.3 Also, let Y; be a
Bernoulli random variable with P(Y; = 1) = 1/i, again with the ¥; indepen-
dent. Let w, Z, Y denote the vectors of the variables w;, Z;, Y;, respectively.
By assumption, each &2; C [log X, X !/3logloglog X1 Hence, Theorem 1 of
[11] implies that

d 7 _
v, Z) K Toglog X

In addition, note that drv(Z;, Y;) < 1/i 2 for all i, something that can be
easily proven using (2.5). Combining this estimate with (2.4), we find that

drv(Z,Y) < ZdTv(zl,Y)«Z 5 <

i=i] i=i]

log log X'

The triangle inequality then implies that dtv(w,Y) < 1/loglog X, as
desired. O

3 We use 1 g for the indicator function of a statement E; thatis, | = 1 if Eistrueand 1z =0
if E is false.
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1038 K. Ford et al.

2.3 The concentration of divisors of integers

In this section we prove Theorems 3 and 6. Recall from (1.2) the definition of

Ct-

Proof of Theorem 3 Fix ¢ > 0 and let X be large enough in terms of ¢, and
let n < X be a uniformly sampled random integer. Generate a logarithmic
random set A. Set K = 10loglog X, D1 = i;, D = D, = ij, where i
and i, are defined by (2.2). With our choice of parameters, the hypotheses of
Lemma 2.1 hold and hence, with probability 1 — o(1) as X — oo, there are
distinct sets Ay, ..., Ay C AN[D;, D] with ZaeAl a=--.= ZaeAMa
and M := [(loglog X)*+~¢]. By Lemma A.2, with probability 1 — o(1), we
have

|AN[D1, D7]| <2log Dy < 2loglogX +2logK.

Write F for the event that both of these happen.

Let n be a random integer chosen uniformly in [1, X], and let I be the
random set associated to n via (2.3). By Lemma 2.2, the corresponding event
F’ for T also holds with probability 1 — o(1); that is, F’ is the event that
[IN[Dy1, D>2]| < 2log D> and that there are distinct subsets Iy, ..., I3y with
equal sums. Assume we are in the event F’. For each i € I, n is divisible by
some prime p; € &;. In addition, for each r, s € {1,2, ..., M}, we have

‘Zlogpi — Y logpi| < %ﬂ+%‘21 —Zi)

iel, iel iel,

4loglog X +4log K
< % <

iel
1
5

Writing d, = ]_[i cl, Pi for each i, we thus see that the d,.’s are all divisors
of n and their logarithms all lie in an interval of length 1. It follows that
P(A(m) > M) = 1 — o(1) when n is a uniformly sampled random integer
from [1, X1, as required for Theorem 3. O

Proof of Theorem 6 Fix 0 < ¢ < Pr/(1 — Br), let X be large and set
K = (log X)°. Define i1, ip by (2.2), let D = i and define ¢’ by D¢ = ij.
Let n be a random integer chosen uniformly in [1, X]. We have

¢ = HLl To(l) (X — o0),

and therefore ¢ < By — § for some § > 0, which depends only on c. By
the definition of f; and Lemma 2.2, it follows that with probability 1 — o(1),
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Equal sums in random sets 1039

the set I defined in (2.3) has k distinct subsets I1, ..., Iy with equal sums,
and moreover (cf. the proof of Theorem 3 above), |I|] < 2logi,, so that
|1;| < 2logiy for each j. Thus, with probability 1 — o(1), there are primes
pi € &; (i € I)suchthat foranyr,s € {1,..., k} we have

‘Zlogp, > log pi

iel, el

|I | 4 || < 4loglog X
K = (logX)c

Thus, setting d» = [[;c; pi, we see that d, < ds exp {o( 18%;}%;5 )} for any
r,s € {1, ..., k}. Since c is arbitrary subject to ¢ < Bx/(1 — Bx), we conclude

that o = Bi/(1 — ). O

2.4 Permutations and polynomials over finite fields

The connection between random logarithmic sets, random permutations and
random polynomials is more straightforward, owing to the well-known approx-
imations of these objects by a vector of Poisson random variables.

For each j, let Z; be a Poisson random variable with parameter 1/j, and
such that Z1, Z», ..., are independent. The next proposition states that, apart
from the very longest cycles, the cycle lengths of a random permutation have
a joint Poisson distribution.

Lemma 2.3 For a random permutation o € S, let C (o) denote the number
of cycles in o of length j. Then for r = o(n) as n — 0o we have

dTV<(C1(a), L Cr o). (Z1. Z,)) = o(1).

Proof In fact there is a bound « e’ uniformly in »n and r; see [3]. O

The next proposition states a similar phenomenon for the degrees of the
irreducible factors of a random polynomial over I, except that now one must
also exclude the very smallest degrees as well.

Lemma 2.4 Let g be a prime power. Let [ be a random, monic polynomial in

¥y (7] of degree n. Let Y, ( f) denote the number of monic, irreducible factors

of f which have degree d. Suppose that 10logn <r < s < 1010gn Then

dry (W (oo (. (Zr . Z0)) = 0()

asn — Q.
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1040 K. Ford et al.

Proof For r < i < s, let 2,- be a negative binomial random variable?
NB(ll. Zjli w(i/j)g’, q™"). Corollary 3.3 in [2] implies that

ary (W (e XD Lo 2) < U 2.6)
uniformly in ¢, n, r, s as in the statement of the lemma. Note that
1 T _ 1 .
S /g =—q' 1+ 0™ = —q'(+ 0(1/m)
Jli
fori > r > 10logn. A routine if slightly lengthy calculation with (2.5) gives
drv(Zi, Z;) < 1/n.
Combining this with (2.4), we arrive at
dv(Zr .. Zs)s (Zyr .., Zg)) K s/n = o(1).
The conclusion follows from this, (2.6) and the triangle inequality. O

Proof of Theorem 4 Fix e > 0, letn be large enoughinterms of ¢, letu = logn
and v = n/logn. For arandom permutationo € S,,letC = {j : Cj(o) > 1},
and define the random set A = {j : Z; > 1}. As in the proof of Lemma 2.2,
(2.4) and (2.5) imply that

- 1 1
drv(AN (u, v, AN (u, v]) € Z 2 < "

u<i<v
Lemma 2.3 implies that
drv(A N (u,v],CN (u,v])) = o(1)  (n — 00).
Hence,

drv(A N (u, v], CN (u, v]) <drv(AN (u,v], AN (u, v])
+ dpv(A N (u, v], CN (u, v])
=o(1)

4 We say that the random variable X has the distribution NB(r, p) with r € N and p € (0, 1]
if X takes values in Zx( with the following frequency: P(X = k) = (kjijl)(l — p)kp’ for
eachk € Z 3.
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as n — oo. By Lemma 2.1, with probability — 1 as n — 00, A N (u, v] has
M distinct subsets Ay, ..., Ay with equal sums, where M = [(logn)*+~¢].
Hence, C has distinct subsets Sy, ..., Sy with equal sums with probability
— 1l as n — oo. Each subset S; corresponds to a distinct divisor of o, the
size of the divisor being the sum of elements of §;. 0

Proof of Theorem 5 The proof is essentially the same as that of Theorem 4,
except now we take u = 10logn, v = IOInW’ C={j:Y;(f) > 1} and use
Lemma 2.4 in place of Lemma 2.3. O

3 Overview of the paper

The purpose of this section is to explain the main ideas that go into the proof
of Theorem 2 in broad strokes, as well as to outline the structure of the rest of
the paper. The remainder of the paper splits into three parts, and we devote a
subsection to each of these. Finally, in Sect. 3.4, we make some brief comments
about the relationship of our work to previous work of Maier and Tenenbaum
[20,22]. Further comments on this connection are made in Appendix C.

3.1 Part II: equal sums and the optimization problem

Part II provides a very close link between the key quantity S (which is defined
in Problem 1 and appears in all four of Theorems 2, 3, 4 and 5) and a quantity
¥k, which on the face of it appears to be of a completely different nature, being
the solution to a certain optimization problem (Problem 3.7 below) involving
the manner in which linear subspaces of QF intersect the cube {0, 1}¥.

At the heart of this connection is a fairly simple way of associating a flag
to k distinct sets Ay, ..., Ay C A, where A is a given set of integers (that we
typically generate logarithmically).

Definition 3.1 (Flags) Let k € N. By an r-step flag we mean a nested
sequence

Vi) =Vo<Vi<Va< - <V, <QF

of vector spaces.5 Here 1 = (1,1,...,1) € Qk. A flag is complete if
dimV;y i =dimV; +1fori =0,1,...,r — 1.

To each choice of distinct sets A, ..., Ay C A, we associate a flag as
follows. The Venn diagram of the subsets Ay, ..., Ay produces a natural

5 Inthe literature, the term “flag” means that the inclusions are proper, i.e., dim(V; 1) > dim V;
for all i. In this paper, we will use the term more broadly to refer to an arbitrary nested sequence
of subspaces.
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partition of A into 2 subsets, which we denote by B, for w € {0, 1}¥.

Here A; = Ugy.0,=1B,. We iteratively select vectors !, ..., o to maxi-
mize ]_[;-:1 (max B,,;) subject to the constraint that 1, o', ..., o are linearly
independent over Q. We then define® V; = Span(l, o', ..., ) for j =
0,1,...,r.

The purpose of making this construction is difficult to describe precisely in
a short paragraph. However, the basic idea is that the vectors ', ..., " and
the flag ¥ provide a natural frame of reference for studying the equal sums
equation

Za:---:Za. (3.1)

acA acAy

Suppose now that Ay, ..., Ay C [D€, D]. Then the construction just
described naturally leads, in addition to the flag ¥, to the following further
data: thresholds c; defined by max B,; ~ D/, and measures (; on {0, 1},
which capture the relative sizes of the sets B, N (Di+1, D], w € {0, 1}X.
Full details of these constructions are given in Sect. 4.

The above discussion motivates the following definition, which will be an
important one in our paper.

Definition 3.2 (Systems) Let (¥, ¢, u) be a triple such that:

(a) 7 isanr-step flag whose members V; are distinct and spanned by elements
of {0, 1}%;

(b) 7 is nondegenerate, which means that V, is not contained in any of the
subspaces {x € QF : x; = xjihi # J;

©c=(cry...,crcp)Withl 2 ¢y 2 -+ 2 ¢y 205

(d) w = (w1, ..., M) is an r-tuple of probability measures;

(e) Supp(i;) C V; N {0, 1}¥ for all ;.

Then we say that (7, ¢, p) is a system. We say that a system is complete if its
underlying flag is, in the sense of Definition 3.1.

Remark The nondegeneracy condition (b) arises naturally from the construc-
tion described previously, provided one assumes the sets Ap, ..., Ay are
distinct.

We have sketched how a system (¥, ¢, ) may be associated to any k
distinct sets Ay, ..., Ay C [D€, D]. Full details are given in Sect. 4.1. There
is certainly no canonical way to reverse this and associate sets A; to a system
(7, ¢, m), even if the numbers p;(w) are all rational. However, given a set

6 Here and throughout the paper, Span(vy, .. .) denotes the Q-span of vectors vy, .. ..
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A C [D¢, D] (which, in our paper, will be a logarithmic random set) and
a system (7, ¢, u), there is a natural probabilistic way to construct subsets
A1, ..., Ar C Aviatheir Venn diagram (Bw)we{o’l}k: ifa e AN(DC+, D]
then we put a in B, with probability u ; (), these choices being independent
for different as.

This will be indeed be roughly our strategy for constructing, given a loga-
rithmic random set A C [ D€, D], distinct subsets Ay, ..., Ay C AN[D¢, D]
satisfying the equal sums condition (3.1). Very broadly speaking, we will enact
this plan in two stages, described in Sects. 5 and 6 respectively. In Sect. 5, which
is by far the deeper part of the argument, we will show that (almost surely in
A) the distribution of tuples (3 _,. A a)f.‘: | 1s dense in a certain box adapted to
the flag 7, as the A; range over the random choices just described. Then, in
Sect. 6, we will show that (almost surely) one of these tuples can be “corrected”
to give the equal sums condition (3.1). This general mode of argument has its
genesis in the paper [20] of Maier and Tenenbaum, but the details here will
look very different. In addition to the fact that linear algebra and entropy play
no role in Maier and Tenenbaum’s work, they use a second moment argument
which does not work in our setting. Instead we use an £7 estimate with p ~ 1,
building on ideas in [17,18].

In analysing the distribution of tuples (3. A a)f.‘zl, the notion of entropy
comes to the fore.

Definition 3.3 (Entropy of a subspace) Suppose that v is a finitely supported
probability measure on QX and that W < QF is a vector subspace. Then we
define

H, (W) := = Y _v(x)logv(W + x).

X

Remark This the (Shannon) entropy of the distribution on cosets W +x induced
by v. Entropy will play a key role in our paper, and basic definitions and
properties of it are collected in Appendix B.

More important than the entropy itself will be a certain quantity e(¥”, ¢, i),
assigned to subflags of 7. We give the relevant definitions now.

Definition 3.4 (Subflags) Suppose that
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is said to be a subflag of 7" if V/ < V; for all i. In this case we write 7" < 7.
It is a proper subflag if it is not equal to 7.

Definition 3.5 (e-value) Let (¥, ¢, u) be a system, and let ¥/ < ¥ be a
subflag. Then we define the e-value

r

e(V e, p) = Z(Cf — cj+1)H,Lj(VJ{) + ch dim(VJ{/VJ{_l). (3.2)
j=1 j=1

Remark Note that

e(V.e.p) =Y c;dim(V;/V;_y), (3.3)
j=1

since condition (e) of Definition 3.2 implies that H,; (V;) = O0for1 < j <r.

Definition 3.6 (Entropy condition) Let (¥, ¢, 1) be a system. We say that this
system satisfies the entropy condition if

e(?',e,m) =e(¥,c,u) forall subflags ¥’ of ¥, (3.4)
and the strict entropy condition if
e(?',e,m) >e(¥,c,u)  forall proper subflags ¥’ of ¥.  (3.5)

We cannot give a meaningful discussion of exactly why these definitions
are the right ones to make in this overview. Indeed, it took the authors over a
year of working on the problem to arrive at them. Let us merely say that

e If a random logarithmic set A N [D¢, D] almost surely admits distinct
subsets Ay, ..., Ay satisfying the equal sums condition (3.1), then some
associated system (7, c, u) satisfies the entropy condition (3.4). For
detailed statements and proofs, see Sect. 4.

e If a system (7, ¢, u) satisfies the strict entropy condition (3.5) then the
details of the construction of sets Aj, ..., Ag satisfying the equal sums
condition, outlined above, can be made to work. For detailed statements
and proofs, see Sects. 5 and 6.

With the above definitions and discussion in place, we are finally ready to
introduce the key optimization problem, the study of which will occupy a large
part of our paper.

Problem 3.7 (The optimisation problem) Determine the value of y, defined
to be the supremum of all constants ¢ for which there is a system (7, ¢, )
such that ¢, 1 = ¢ and the entropy condition (3.4) holds.
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Similarly, determine §%, defined to be the supremum of all constants ¢ for
which there is a system (¥, ¢, u) such that ¢,; = ¢ and the strict entropy
condition (3.5) holds.

The precise content of the two bullet points above, and the main result of
Part II of the paper, is then the following theorem.

Theorem 7 For every k > 2, we have

Remark 3.1 (a) Presumably yx = B¢ = . Indeed, it is natural to think that
any system satisfying (3.4) can be perturbed an arbitrarily small amount to
satisfy (3.5). However, we have not been able to show that this is possible in
general.

(b) Itis not a priori clear that y, and y, exist and are positive. This will follow,
e.g., from our work on “binary systems” in part I'V of the paper, although there
is an easier way to see this using the original Maier—Tenenbaum argument,
adapted to our setting; see Appendix C for a sketch of the details.

3.2 Part III: the optimization problem

Part III of the paper is devoted to the study of Problem 3.7 in as much general-
ity as we can manage. Unfortunately we have not yet been able to completely
resolve this problem, and indeed numerical experiments suggest that a com-
plete solution, for all k, could be very complicated.

The main achievement of Part III is to provide a solution of sorts when the
flag 7 is fixed, but one is free to choose ¢ and p. Write y(?) (or yx(¥)) for
the solution to this problem, that is, the supremum of values ¢ = ¢,41 > 0 for
which a system (7, ¢, ) exists satisfying (3.4) (or (3.5)).

Our solution applies only to rather special flags ¥, but this is unsurprising:
for “generic” flags 7', one would not expect there to be any choice of ¢, u,
for which ¢,+1 > 0, and so 1% (¥) = 0 in these cases. Such flags are of no
interest in this paper.

We begin, in Sect. 7, by solving an even more specific problem in which
the entropy condition (3.4) is only required to hold for certain very special
subflags ¥ of ¥, which we call basic flags. These are flags of the form

e MH=V<VI<  <Vuot KVu=Vy == Vp.

asic(m) :

We call this the restricted entropy condition; to spell it out, this is the condition
that
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e(/7/l)/asic(m)’ c,u)=ze(¥, e, p) (3.6)
form =0,1,...,r — 1 (the case m = r being vacuous).

We write y;**(7") for the maximum value of ¢, 1 (over all choices of ¢ and
i such that (7, ¢, p) is a system) subject to this condition. Clearly

Ve (V) = (). (3.7)

The main result of Sect. 7 is Proposition 7.7, which states that under certain
conditions we have

log3 —1

res

Vk (%) - —1 di V: AN (38)
log 3+ Xoi HH A

for certain parameters p1, ..., pr—1 depending on the flag 7.

To define these, one considers the “tree structure” on {0, l}k NV, induced
by the flag #: the “cells at level j” are simply intersections with cosets of V,
and we join a cell C at level j to a “child” cell C" atlevel j — 1 iff C’ C C.
The p; are then defined by setting up a certain recursively-defined function
on this tree and then solving what we term the p-equations. The details may
be found in Sect. 7.2. Proposition 7.7 also describes the measures g and the
parameters ¢ for which this optimal value is attained.

In Sect. 8, we relate the restricted optimisation problem to the real one,
giving fairly general conditions under which we in fact have equality in (3.7),
thatis tosay y;,**(7") = yx (7). The basic strategy of this section is to show that
for the ¢ and p which are optimal for the restricted optimisation problem, the
full entropy condition (3.4) is in fact a consequence of the restricted condition
(3.6).

The arguments of this section make heavy use of the submodularity inequal-
ity for entropy, using this to drive a kind of “symmetrisation” argument. In this
way one can show that an arbitrary e(¥”, ¢, ) is greater than or equal to one
in which ¥ is almost a basic flag; these “semi-basic” flags are then dealt with
by hand.

To add an additional layer of complexity, we build a perturbative device into
this argument so that our results also apply to px(¥).

3.3 Part IV: binary systems
The final part of the paper is devoted to a discussion of a particular type of flag

¥, the binary flags, and the associated optimal systems (7, ¢, u), which we
call binary systems.
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Definition 3.8 (Binary flag of order r) Let k = 2" be a power of two. Identify
Qk with QPl"1 (where P[r] means the power set of [r] = {1,...,r}) and
define an r-step flag 7', (1) = Vo < Vi < --- <V, = QP71 as follows: V;
is the subspace of all (xs)sc[,] for which xg = xgn;) forall S C [r].

Whilst the definition is, in hindsight, rather simple and symmetric, it was
motivated by extensive numerical experiment. We believe these flags to be
asymptotically optimal for Problem 3.7, though we currently lack a proof.

There are two main tasks in Part I'V. First, we must verify that the various
conditions necessary for the results of Part III hold for the binary flags. This is
accomplished in Sect. 10, the main statements being given in Sect. 9. At the
end of Sect. 9 we give the proof (and complete statement) of Theorem 2(a),
conditional upon the results of Sect. 10. This is the deepest result in the paper.

Following this we turn to Theorem 2(b). There are two tasks here. First,
we prove that the parameters p; for the binary flags (which do not depend on
r) tend to a limit p. This is not at all straightforward, and is accomplished in
Sect. 11.

After that, in Sect. 12, we describe this limit in terms of certain recurrence
relations, which also provide a useful means of calculating it numerically.
Theorem 2(b) is established at the very end of the paper.

Most of Part IV could, if desired, be read independently of the rest of the

paper.

3.4 Relation to previous work

Previous lower bounds for the a.s. behaviour of A are contained in two papers
of Maier and Tenenbaum [20,22]. Both of these bounds can be understood
within the framework of our paper.

The main result of [20] follows from the fact that

1

> 1 — . 3.9
Y2 log3 (3.9)
Indeed by Theorem 7 it then follows that 8, > 1— @, and then from Theorem
3 it follows that for almost every n we have
1
A(n) > (loglogn)~ 1082/ leel=ggz) o), (3.10)

The exponent appearing here is 0.28754048957 . .. and is exactly the one in
[20, Theorem 2].

The bound (3.9) is very easy to establish, and a useful exercise in clarify-
ing the notation we have set up. Take k = 2, r = 1 and let ¥ be the flag

@ Springer



1048 K. Ford et al.

1) = Vo < Vi = Q% Letc = (c1, ¢) withe; = 1 and

1
1 - —. 3.11
2= log 3 ( )

Let w1 be the measure which assigns weight % to the points 0 = (0, 0),
(0, 1) and (1, 0) in {0, 1}? (this being a pullback of the uniform measure on

{0, 1Y/ Vo).
There are only two subflags ¥’ of ¥/, namely ¥ itself and the basic flag
%)/asic(o) (1) =V < V] with Vj = V{ = V = (1). The entire content of the

strict entropy condition (3.5) is therefore that
e(Vpasic0)s © W) > (7, ¢, ),
which translates to
(c1 — c)H,, (Vo) > c1.

We have H,,, (Vo) = log3 and ¢; = 1, and so this translates to precisely
condition (3.11).

Remark (a) With very little more effort (appealing to Lemma B.2) one can
show that y» = B = )72 =1- @.

(b) This certainly does not provide a shorter proof of Theorem 3.10 than
the one Maier and Tenenbaum gave, since our deductions are reliant on the
material in Sects. 5 and 6, which constitute a significant elaboration of the

ideas from [20].

The main result of [22] (Theorem 1.4 there) follows from the lower bound

vz <1 B 1023) ( 11__11//120gg237)r_1’ (3.12)

which of course includes (3.9) as the special case r = 1. Applying Theorem
7 and Theorem 3, then letting r — 00, we recover [22, Theorem 1.4] (quoted
as Theorem MT in Sect. 1), namely the bound

log?2

m_"“)
A(n) > (loglogn) *\ T=17Tog3

for almost all n. The exponent here is 0.33827824168. . ..

To explain how (3.12) may be seen within our framework requires a little
more setting up. Since it is not directly relevant to our main arguments, we
defer this to Appendix C.

@ Springer



Equal sums in random sets 1049

Part I1. Equal sums and the optimisation problem

4 The upper bound B < yx

In this section we establish the bound in the title. We recall the definitions of
Br (Problem 1) and y% (Problem 3.7). We will in fact show a bit more, that if
¢ > Y then

P (there are distinct Ay, ..., A € [D¢, D] with equal sums) — 0
“4.1)

as D — oo.

4.1 Venn diagrams and linear algebra

Let 0 < ¢ < 1 be some fixed quantity, and let D be a real number, large
in terms of ¢. Suppose that Ay, ..., Ay C [D¢, D] are distinct sets. In this
section we show that there is a rather natural way to associate a complete
system (7, ¢, ) (in the sense of Definition 3.2) to these sets. This system
encodes the “linear algebra of the Venn diagram of the A;” in a way that turns
out to be extremely useful.

The Venn diagram of the A; has 2k cells, indexed by {0, 1}¥ in a natural

way. Thus for each v = (wy, ..., o) € {0, 1}, we define
By:= (] 4 [) (4" (4.2)
i:wi=1 i:wi=0

The flag V. Set Q = {w : B, # ©}. We may put a total order <
on by writing @ <  if and only if max B,, < max B,. We now

select r special vectors o', ..., 0" € Q, with r < k — 1, in the fol-
lowing manner. Let ' = max_(Q\{0,1}). Assuming we have chosen
w!, ..., o such that 1,w!, ..., w/ are linearly independent over Q, let
W/t = max (€2\ Span(1, ol ..., ®))),as long as such a vector exists.

Let1, w!, ..., " be the set of vectors produced when this algorithm termi-
nates. By construction, 2 C Span(1, w!, ..., ®"), or in other words B, = ¥
whenever w € {0, l}k\ Span(1, ol . o).

Now define an r-step flag ¥ : (1) = Vp < Vi < --- < V, by setting
Vi = Span(l,a)l, o) forl < j<r.

The parameters ¢. Now we construct the parameters ¢ : 1 > ¢; = ¢x >
-~ 2cpq1.For j =1,...,r, we define
logmax B, ; — log D
C/ — 1 + |— g w/ g -l
‘ log D

4.3)
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Thus
|
max B,; € (=D, D] 4.4)
e

for j = 1,...,r. Also set ¢,+1 = c. (The ceiling function [-] produces a
“coarse” or discretised set of possible thresholds c;, suitable for use in a union
bound later on; see Lemma 4.2 below. The offset of —log D is to ensure that
c1 <L)

The measures p. Set

;.| Bo\lmax B,;} ifw = @’ for some Js
B, = { B, otherwise. 4.5)
Define
#(B,, N (D+1, D))
nj(w) = (4.6)

>, #(By, N (D1, D)’
with the convention that if the denominator vanishes, then u (@) = 14—9.

Remark Itisimportant that we use the B C/U here, rather than the B,,, for technical
reasons that will become apparent in the proof of Proposition 4.4 below.

Lemma 4.1 (7, ¢, p) is a complete system (in the sense of Definition 3.2).

Proof We need to check that Supp(uj) C V; for j = 1,...,r. By def-
inition, if w;(w) > O then B, N (D%+', D] # (. This implies that
max B, > D¢+!. On the other hand, (4.4) implies that D/+! > max B ;+1,
and thus max B,, > max B,,;+1. By the construction of the vectors ', we must
have w € Span(1, !, .. L)) = V;.

We also need to check that # is nondegenerate, also in the sense of Definition
3.2, that is to say V, is not contained in any hyperplane {w € Qf : w; = w i}
This follows immediately from the fact that the A; are distinct. Since

AinAj= | B
wef{0,1}*
Wi Fwj

and so there is certainly some w with w; # w; and B, # @. |

Note that, in addition to the system (7, ¢, u), the procedure described above

outputs a sequence o', ..., ®" of elements of {0, l}k . We call the ensemble
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consisting of the system and the ' the linear data associated to Ay, ..., Ag.
We will only consider the event A € £, where

&:=]A <D, DI AN D", DP)) - (B — @) log D)

<log*D (c<a<p<. @.7)

By Lemma A.5,P(A € £) =1—0(1) as D — oo. In particular, if A € £, we
have |A N [D¢, D]| < 2log D for large enough D.

Lemma 4.2 Fix k € Z>) and suppose that A € E. The number of differ-
ent ensembles of linear data arising from distinct sets Ay, ..., Ay C Ais
< (log D)o,

Proof The number of choices for o', ..., ®" is O(1), and hence the number of
¥ is also O (1). The thresholds c; are drawn from a fixed set of size log D, and
the numerators and denominators of the 1 ; (w) are all integers < 2 log D. O

Remark 4.1 The O(1) and the < here both depend on k. However we regard
k as fixed here and do not indicate this dependence explicitly. If one is more
careful then one can obtain results that are effective up to about k ~ loglog D.

4.2 A local-to-global estimate

Our next step towards establishing the bound B < y% is to pass from the “local”
event that a random logarithmic set A possesses a k-tuple of equal subsums
(Zae Ay Zae Ay a) to the “global” distribution of such subsums (with
the subtlety that we must mod out by 1). The latter is controlled by the set
Ly ¢,u(A) defined below.

Definition 4.3 Given a set of integers A and a system (7, ¢, ), we write
Ly ¢,u(A) for the set of vectors

> ) a (modl),

wel{0,1}k  a€By,

where (By,) ,c {0,1)k Tuns over all partitions of A such that

#(B, N (D1, DY)

1 k
#(A N (DCi+1, ch]) 1<j<r, we{0,1}%). 4.8

wj(w) =
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Proposition 4.4 Fix an integer k > 2 and a parameter 0 < ¢ < 1. Let D be
large in terms of ¢ and k, and let A C [ D€, D] be a logarithmic random set.
Let

E={a D, D [#AN D, D) — (B - ) log D|

<2108 D (c<a<B< 1)}. 4.9)

Then we have

]P’(EldistinctAl,...,Ak C A such that Z a=---= Z a)
acA acAg
< (log D)?V sup DT HFIEL, F.Ly ¢ w(A)] 4+ PEC).
(7,e,p)
(4.10)

Here, the supremum is over all complete systems (¥, ¢, p) with ¢, 4+1 = c.

Proof Recall the definition of the set £, given in Eq. (4.7). We have

P(EldistinctAl,...,AkgAsuchthat Za:--.: Za)

acA; acAg

<PEY+ ) Y. PA=4,

Ve (@) Aes (Y e, (@)

where, given linear data {(¥, ¢, u), ®', ..., @'}, we write (¥, ¢, u, (»'))
to denote the set of all A € £ that have k distinct subsets (A, ..., Ay) with
equal sums-of-elements and associated linear data {(*, c, w), wl, . o).
(The set A appearing in (4.10) will be constructed below by removing certain
elements from the logarithmic set A we started with; this new set belongs to
&, but not necessarily to £.)

Let us fix a choice of linear data {(7, ¢, u), ol ..., "} and let us abbre-
viate . for the set .7 (¥, ¢, i, (»')). An elementary probability calculation
gives

1 1
E =Y Pa=a=Y ] (1—5)]_[m. 4.11)

Aes Ae¥ D¢<a<D acA
Foreach A € ., fixachoiceof (Aq, ..., Ax) with equal sums and such that
the linear data associated to (Ay, ..., Ag) is {(¥, ¢, n), ol ..., o'"}. Let B,

be the cells of the Venn diagram corresponding to the A;, as in (4.2), and then
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define the B;, as in (4.5). Recall that (4.6) holds, and define K ; = max B,; for
1 < j <r.Inparticular, Ky > --- > K,. Let A’ = A\{K}, ..., K, }. Note
that A’ € £ if D is large enough in terms of k. Moreover, we have

Ya= Y aYa

ach; we{0,1}k  a€B,

Therefore, the equal sums condition is equivalent to

Z Za = 0 (mod 1),

we{0, l aeB,

and hence
-
> K Z > a'(mod 1). (4.12)
Jj=1 a’eB],
Since 1, 0!, ..., @" are linearly independent, the value of the right-hand side

of (4.12) uniquely determines the numbers K ;, which themselves uniquely

determine A in terms of the sets B.,. Therefore, given A’ € £, the number of
possible sets A is, by Definition 4.3, at most |2 ¢ . (A")|. Moreover by (4.4)
we have K; > %DC/ for every j, and therefore

1
pletter) 4.13

acA aeA/

We sum over A’, and reinterpret the product on the right-hand side of (4.13)
in terms of P(A = A’). This gives

—(c1+-+cr / 1 1
E(7) <« D™ F0 N 2y u(A] ] (“;) I1

AeE De<a<D w1
e€ <ax ae

_ D7(61+...+Cr) Z |$“V,C,IL(A/)| -P(A = A/)
Aeé
= DCHFDIRL, o | Ly u(A)].

By Lemma 4.2 there are (log D)?) possible choices for the linear data
{((7,c, n, !, ..., @}, and the proof is complete. O
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4.3 Upper bounds in terms of entropies

Having established Proposition 4.4, we turn to the study of the sets £ ¢ , (A).
We will bound their cardinality in terms of the quantities e(¥”, ¢, u) from
Definition 3.2 with ¥ a subflag of ¥".

Lemma 4.5 Let (¥, ¢, i) be a system and let A € E, where & is defined in
(4.9). Then, for any subflag V' of ¥/,

1Ly e u(A)] Ky 0008 D) petV e, (4.14)

Remark The implied constant in the <y~ could be made explicit if desired
(in terms of the quantitative rationality of a basis for the spaces in ¥”) but we
have no need to do this.

Proof of Lemma 4.5 Givenaset X C [D¢, D], write X) := XN(D¢i+!, D]
for j = 1,...,r. Throughout the proof, we will assume that A is a set of
integers and that (By)c(o,1j+ runs over all partitions of A such that (4.8) is
satisfied. In our new notation, this may be rewritten as

1B | = pj(@)AYV], j=1,....r, wel0, 1} (4.15)

For each j, 1 < j < r, fix a linear projection P; : V; — ij, and set
Q; :=idy;, —Pj, so that Q; maps V; to itself. Set

2P (4) ::{Xr: > Pi@ Y a(mod 1) : (4.15)is satisfied

J=lwefo, 1}k aeBY’
wEVj

and

r

22N :={3 3 0@ Y a(mod1):@.15)is satisfied .

J=lwefo, 1} aecBY’
wer
Since
r r
Do wD a=) >, P Y at) > Qi@ ), a
wel0 1}k a€Bo  j=lwe(o,1}k acBY  I=locfo, 1}t aeBY’
a)GVj wer

it follows immediately from the definition of .Z% ¢ , (A) (Definition 4.3) that

1Ly e (A < 1L (A)] - 122(A)). (4.16)
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We claim that

and that

|$Q(A)| < 60(10{;3/4 D)DZ;:l(C.i*CjH)Huj(Vf)_ (4.18)

These bounds, substituted into (4.16), immediately imply Lemma 4.5.

It remains to establish (4.17) and (4.18), which are proven in quite different
ways. We begin with (4.18), which is a “combinatorial” bound, in that there
cannot be too many choices for the data making up the sums in .Z<(A). For
this, observe that Q; vanishes on VJf and hence is constant on cosets of VJf .

Therefore the elements of .Z<(A) are determined by the sets | J B(E)j ),
overallv; € V;/Viand 1 < j <r.By(4.15),

. !
a)evj-i-Vj

U BY| =+ vplad,

. i
a)ev]—l—Vj

and by Lemma B.1 the number of ways of partitioning AU into sets of these
sizes is bounded above by eH(pm)‘Aml, where p(j) = (uj(v; + VJ{))v_,-eV_,-/VJf-
IyDﬁmmm&lem)=Hwﬂwlﬁmympmmawaj:L””r
gives

|$Q(A)| < 62321 H“j(vj)lA(j)|'

From the assumption that A € g , where £ is defined in (4.9), we have
IAY)| = (¢; — ¢j41) log D 4+ O(log** D).

Using this, and the trivial bound ]I-]IM (VJf) < log | Supp(u;)| < 10g(2k), (4.18)
follows.

Now we prove (4.17), which is a “metric” bound, the point being that none of
the sums in .Z¥ (A) can be too large in an appropriate sense. Pick a basis for Q¥
adapted to #”: that is, a basis eq, . . ., ¢; such that ij = Span(ey, .. ., €4im V})
foreach j,and e; = 1. There are positive integers M, N = O (1) such that,
in this basis, the e;-coordinates of P;(w) are all rationals with denominator M
and absolute value at most N.
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Now for fixed j and w, if D is large then ZaeB(j) a < D¢ log D, since
B(E)j) C (D¢+1, D] and by the assumption that A € £. Thus

Z Pj(w) Z ae{ Z xieiEQk:MxieZ,

wel0, 1} acBY 1<i<dim(V))
weV;

Ixi| < rND log D (for all i)},

-
and so the expression , 3. Pj(®) ). _p() a belongs to the set

i=1 we{0,1}¥NV;
v Mxi € Zand |x;| < r?N D¢ log D
Xié; € Q . . / . . 12 . }
Z P fordlmVj_l<l<d1mVjand1§]<r

1<i<k

We must bound the number of different values that the expression Zle Xie;
can take mod 1 when the coefficients x1, ..., x; are as above. Since e; = 1
and x{M € Z, given x», ..., x; there are at most M possibilities for x; mod
1. In addition, there are

< (PPMNY(log Dy D=1 4 MV Vi

possibilities for x3, . .., xk, thereby concluding the proof of (4.17) and hence
of Lemma 4.5. O

A potential problem with applying Lemma 4.5 is that there may be infinitely
many subflags ¥ to consider, and the constant implied by the <-symbol
depends on ¥”. As we shall see in the next Lemma, however, we may reduce
the problem to consideration of a finite number of subflags, a tool which will
be used in several parts of this paper.

Lemma 4.6 For a given k, the set of all flags

may be partitioned into Oy (1) equivalence classes such that any two flags
V', V" in the same equivalence class satisfy dim VJ{ = dim VJ’./ for all j,
and for any thresholds ¢ satisfying c1 = ¢» = -+ = c¢r+1 and probability
measures p supported on {0, 1}¥, we have H,.; (VJf) = Hy;, (VJf’) for all j and
e(V',e,mu) =e(?V", ¢, pn).

@ Springer



Equal sums in random sets 1057

Proof We say that two subflags ¥/, ¥ are equivalent if V', VJ{’ have the same

intersection with {0, 1}* and dim V/ = dim V/, forall j = 1,..., r. There
are clearly only Oy (1) equivalence classes, and the desired properties hold
for members of the same equivalence class by the definition of H,; (VJf ) and

e(?’, ¢, ). O

Armed with Lemma 4.6, we immediately obtain from Lemma 4.5, applied
to one representative from each class, the following corollary.

Corollary 4.7 Let (¥, ¢, ) be a system and suppose that A € E. Then

1Ly en(A)] < 00 D) min pe0em,
in

4.4 The upper bound in Theorem 7

We can now establish the upper bound in Theorem 7, that is to say the inequality

B < V-
We start by applying Proposition 4.4. Together with Lemma A.S5, it implies
that

P(3 distinct Ay, ..., Ax € AN (D, D] with equal sums)

< (og D)0V sup D CWEL, Ly ¢ u(A)] + O 80 D),
.e,n)

Here, the supremum is over complete systems (¥, ¢, ) with ¢,41 = ¢, and
we made the observation that for such systems we have

e(,ec,p)=c1+---+c¢r,

an immediate consequence of the definition of e(#’, ¢, u) and the fact that
H,;(V;) = 0forall j and thatdim V; = j + 1. Thus we may apply Corollary
4.7, concluding that

]P’(EI distinct Ay, ..., Ay € AN (D, D] with equal sums)

1 1/2
< po+o) + O(e—zlog/ D)’

where
0= sup min (e(?, ¢, p) —e(¥, ¢, p)); (4.19)
e,m)icpp=c V'SV
the supremum is over all complete systems (7, ¢, p) with ¢,4; = ¢, and

the minimum is over all subflags ¥’ < ¥. Note that the minimum exists
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by Lemma 4.6, since we may restrict attention to a finite set of subflags 7.
Moreover, the supremum is realised, meaning there is a system (7, ¢, ) for
which the right side of (4.19) equals 6. Indeed, there are O (1) choices for ¥,
and with ¥ fixed the quantities ¢, g range over compact subsets of Euclidean
space, with the right side of (4.19) continuous in these variables.

Now, if we assume that ¢ > y%, then the definition of 4 in Prob-
lem 3.7 implies that there is no system (¥, c, p) with ¢,4;1 = c¢ and
that satisfies the entropy condition (3.4). Equivalently, if ¢,4+1 = c¢, then
miny <y (e(”f/’, c, i) —e(”,c, [L))) < 0. In particular, we have 8 < 0.
We have thus established (4.1), as required.

Remark Inthe above proof, (¥, ¢, p) is a complete system. However, for other
aspects of our problem it is not natural to focus on the completeness condition,
for which reason we omit it from the definition of y.

5 The lower bound B > yi
5.1 Introduction and simple reductions

The aim of this section and the next is to establish the lower bound 8; > .
We begin, in Lemma 5.3 below, by showing that we may restrict our attention
to certain systems satisfying some additional regularity conditions.

We isolate a “folklore” lemma from the proof for which it is not easy to find a
good reference. The authors thank Carla Groenland for a helpful conversation
on this topic.

Lemma 5.1 Let V be a subspace of Q. Then #(V N {0, 1}¢) < 2dimV,

Proof We outline two quite different short proofs. Let d := dim V.

Proof 1. We claim that there is a projection from Q onto some set of d
coordinates which is injective on V. From this, the result is obvious, since the
image of {0, 1} under any such projection has size 2¢. To prove the claim, let
e, ..., ey denote the standard basis on Q. Note that if W < Q" and if none
of the quotient maps Q" — Q" /{e;) is injective on W, then W must contain
a multiple of each ¢;, and therefore W = Q". Thus if W is a proper subspace
of Q" then there is a projection onto some set of (n — 1) coordinates which is
injective on W. Repeated use of this fact establishes the claim.

Proof 2. Suppose that #(V N {0, 1}¥) contains 2¢ + 1 points. These are
all distinct under the natural ring homomorphism 7 : ZF — Fg, and so
their images cannot lie in a subspace (over [F») of dimension d. Hence there
are vy, ...,Vg4+1 € V such that w(vy), ..., w(vg+1), are linearly indepen-
dent over [F5. The (d + 1) x k matrix formed by these 7 (v;) therefore has a
(d+1) x (d+1)-subminor which is nonzero in [F». The corresponding subminor
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of the matrix formed by the v; is therefore an odd integer, and in particular not
zero. This means that v1, ..., vg4+ are linearly independent over QQ, contrary
to the assumption that dim(V) = d. O

We now record an immediate corollary of Lemma 4.6, which provides a
“gap condition” on the e-quantities.

Lemma 5.2 [f the system (¥, ¢, i) satisfies (3.5) then there is an ¢ > 0 such
that for all proper subflags V",

e(V e, p) =e(¥, e, p)+ e (5.1)

For future reference, the next two lemmas record more information about
optimal systems for y; and for yy, respectively.

Lemma 5.3 Let k € Z>,. We have that yy is the supremum of all ¢ > 0 for
which there is a system (¥, ¢, i) such that c,+1 = ¢, (3.5) holds and we
further have:

(a) l=c1>c2> - >cCrp1=¢;
(b) H,Lj(Vj_l) >dim(V;/Vj_1) for1 < j <r—1land

C .
Hy, (Vro1) > ———dim(V,/V,_1);
Cr — Cr41

(c) dim(Vi/Vp) = 1;
(d) Supp(i;) = V; N{0, Y for j =1,2,....,r;
(e) forall j and w, (@) = pn;j(1— ).

Proof First of all, we show that we may assume that ¢ > 0 and that statement
(d) holds. Indeed, if a system (7, u, ¢) satisfies (3.5), then Lemma 5.2 implies
that (5.1) holds for some ¢ > 0. As the difference between the left and right
sides of (5.1) is continuous in the quantities ¢; and uj(w), we may increase
¢r+1 (and possibly some of the other c;’s) a tiny bit and we may also adjust
the measures p ; by a small amount, so that ¢, 1 > 0, statement (d) holds, and
we also have that

e(¥,e,p) =e(¥,c,p)+¢/2
for every proper subflag 7.
Next, we show that we may take ¢y = 1. Indeed, condition (3.5) implies

that e(¥’, ¢, u) = e(¥,c,m) > 0 forall ¥/ < ¥ by (3.3). Now if¢; < 1
and ¢; = cj/cy for each j, then the perturbed system (7, ¢, ) has a larger
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value of ¢, 1, and moreover also satisfies (3.5), since for any subflag ¥ we
have

e(V, & ) = (/e ¢, p).

Next, consider a system (¥, ¢, u) satisfying ¢y = 1 and ¢,41 = ¢ > 0,
and consider the subflag #” : (1) = Vy < V| < --- < V/, where V/ =V}
fori # j, and VJf = V,_1; that is, 7" has two consecutive copies of V;_j.
By assumption (Definition 3.2), we have V;_; # V;, and thus #” is a proper
subflag of #". Thus

e(ﬂi//’ C, I'L) - e(ﬂi/a C, IL)

_ e = e (B (Vo) = dim(v;/Vi_p) i <r -1,
(cr — Cr-l—l)HMr(Vr—l) — ¢ dim(V,/V,—y) if j=r.

Since the left-hand side is positive, we conclude that (a) and (b) hold.

(c) Let d =dim(V;/Vp). By Lemma 5.1, |V;N{0, 1}¥| < 2dim Vi — pd+1
and hence p; is supported on at most 24+1 _ 1 cosets of Vo (since
1 € Vj, the points 0 and 1 lie in the same coset). In particular, by Lemma B.2,
Hy, (Vo) < log(ZdJrl — 1). On the other hand, H,, (Vo) > d by statement (b).
We must thus have d = 1, which is exactly statement (c).

(e) Assume the system (7, ¢, u) satisfies (3.5) and (a). For every j and
w € V;, we define

pjw +pid—ow

j(w) = 5

We then consider the system (7, ¢, jt), and must show that it also satisfies
(3.5). For this, it is enough to show that

Hﬁj(v;) > Hﬂj(VJf) (5.2)
for all j. Indeed, we then have, for every proper subflag ¥,
e(V e, ) Ze(¥ ,c,p) >e(¥, e, p) =e(¥, ¢ ).

To prove (5.2), write

Hy, (V) =Y L(uj(C), Mz, (V)= L(j;(C)),
C C
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where the sum is over all cosets C of ij and L(t) = —tlogt. Thus, since —C
runs over all cosets as C does, we have

, L(uj(C)) + L(;(—C
Huj(Vj)=Z (i (C)) . (uj( ))‘

C

By the concavity of L, we have

L(p;(C))+ L(u;(=C)) wiC) +pi(=C)\
. <1( . ) = LG O)).
Claim (5.2) then readily follows. O

Lemma 5.4 Let k € Z>> be such that yy > 0. Then we have that yy is the
supremum of all ¢ > O for which there is a system (¥, ¢, p) suchthatc,+1 = c,
(3.4) holds and we further have:

(a) l=c1>cr>-->cCrqy1 =6
(b) ]HIM(VJ-_l) > dim(V;/V;_y) for1 < j<r—1and

c .
H,, (Vi1) 2 —rdlm(V,/V,_l);
Cr — Cr41

(c) dim(Vi/ Vo) = L;
(d) U{:] Supp w; spans Vj for j =1,2,...,r;
(e) forall j and w, pj(w) = u;(1— ).

Remark As we will see in Part IV, we always have y; > 0.

Proof The proof that we may take ¢; = 1 is the same as in Lemma 5.3.

Next, consider a system (7, ¢, p) satisfying ¢y = 1 and ¢,+1 = ¢ > 0, and
consider the subflag 7' : (1) = Vj < V| < --- < V/, where V/ = V; for
i <r—1,and V! = V,_;. Thus

e(¥ e, m) —e(¥V, e, p) = (¢ — cry)H, (Vi—1) — ¢ dim(V,/ V,_1).

Since the left-hand side is > 0 and we have assumed that ¢,+; = ¢ > 0 and
that V,_| # V,, the latter being true from Definition 3.2, we conclude that

¢ > it and Hy, (Vo) > ——dim(V,/Vo—p).  (5.3)
Cr — Cr+1

This proves part of statements (a) and (b). We shall now prove them fully.
(a) There are always indices 1 = i) <ip < -+ < iy < igy; =r + 1such
that

Cij :"':Cin—I >Cij+1 fOI'] =1,...,S.
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Crucially, note that i;; = r 4+ 1 because ¢, > c,+1 by (5.3). Next, we define
the system (#, v, d), where # is an s-step flag and, for all j € {1,..., s},
we have

Wi=Vi,-1, vj=pi -1, and dj =ci; -1

In particular, Wy = V; ;1 = V, because i;41 = r, and thus %  is a non-
degenerate flag system as per Definition 3.2 (b). Clearly, 1 = d; > dr >

- > ds; > dy+1 = ¢, so in order to prove part (a), all that remains to show
is that the system (#, v, d) satisfies the entropy condition (3.4). This follows
by a simple computation. Indeed, let " be a subflag of #". We then define
¥ < ¥ by letting V,, = W; whenever i; < m < ij1. Hence,

r

(V' 1, €)=Y (em — ey DHp, (Vo) + Y cn dim(V,,/ V)

m=1 m=1
s )
= Z(ciw*l = Cij )y, (V) + ZC"J dim(vif//vilf'*l)
j=1 J=1
= C(W/, v, d)

Consequently, since the system (7', u, ¢) satisfies condition (3.4), so does
(#, v, d). This proves that we may always assume condition (a).

(b) Consider a system (¥, ¢, u) satisfying (a). We then argue as in Lemma
5.3, by considering the subflag ¥’ with V/ = V; fori # j, and VJf =V_1.
We then have

e(?V ,e,n) —e(¥,c, p)

_ = cjy1)(Hy, (Vi—) —dim(V;/V;_p) if j <r—1,
(¢r —cryDHy, (Vi) — e dim(V,/V,—y) if j =1

Since the left-hand side is > O and ¢; —cjy; > Oforall j = 1,...,r,
statement (b) follows.

(c) Assuming statement (b), we may prove statement (c) by arguing as in
Lemma 5.3.

(d) Suppose that (a) holds. Consider the flag 7" : (1) < V] < --- < V),
where

J
VJf = Span <USupp(,uj)> (r<j<n).
i=1
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It is easy to see from the definition of a system (Definition 3.2) that ¥ is a
subflag of 7. We have H,; (ij) = 0 for all j, and hence

.
e(V e, ) =Y ¢ dim(V//V/ )
i=1
r—1
= —c1 + e dim(V)) + Y (e = ci1) dim(V))
i=1
r—1
> —c1 + ¢, dim(V) + ) (¢ — cip1) dim(Vy) = e(¥ . ¢, ),

i=l

by (3.5). Since ¢; — cjy1 > Oforalli <r —1,and ¢, > ¢,41 > 0, we must
have that V/ = V; for all i, which is precisely statement (d).
(e) This statement is proven as in Lemma 5.3. O

The bound B > p will now follow from the following proposition, as long
as we can show that the quantity 7 is well-defined and positive. The latter will
be accomplished in Sect. 9, where we construct a system satisfying the strict
entropy condition 3.5. An alternative construction is given in Appendix C.

As usual, A is a logarithmic random set.

Proposition 5.5 Let ¢ > 0 and suppose that there is a system (¥, ¢, i) such
that:

(i) l=c1>cr>--->crqy1=¢;
(ii) There is some ¢ > 0 such thate(V”', ¢, u) > e(¥, ¢, u) + ¢ for all proper
subflags V' of V.
(iii) Supp(u;) = V; N {0, ¥ for j =1,2,...,r.

Let § > 0, and assume that D is large enough in terms of §, € and (¥, ¢, ).
Then the probability that A N [D€, D] has k distinct subsets with equal sums
is>1-—26.

The proof of Proposition 5.5 is perhaps the most difficult part of this paper,
and will occupy this and the next section. Throughout the remainder of this
section and throughout the next section, we will fix a system (¥, ¢, ) with
cr+1 = c satisfying conditions (i)—(iii) of Proposition 5.5. Constants implied
by O— and < —symbols may depend on this system.

The main result, which we will prove in this section and the next, is Propo-
sition 5.7 below.

Definition 5.6 (Nondegenerate maps) A map ¥ : X — {0, 1}* is said to be
nondegenerate if the image of v is not contained in any of the subspaces
{x e QF : x; = xj}.

@ Springer



1064 K. Ford et al.

The map 1 is a “Venn diagram selection function”, that is, the value of ¥ (b)
specifies which piece of the Venn diagram of k subsets X1, ..., Xi of X thatb
belongs to. In the notation (4.6) of the previous section, ¥ (a) = w means that
a € B,. The condition that i is nondegenerate is equivalent to X1, ..., Xi
being distinct, and is similar to the property of a flag #” being nondegenerate.

Proposition 5.7 With probability tending to 1 as D — 00, there exists a
nondegenerate map ¥ : AN (D¢, D] — {0, 1} such that Y aeaa¥(a) € (1).

The map ¢ will be constructed using the data from the system (7, ¢, ).
Before we embark on the proof of this result, we show how to deduce Propo-
sition 5.5 from it.

Proof of Proposition 5.5, assuming Proposition 5.7 By Proposition 5.7, we
know that with probability 1 — op_, (1) there is a nondegenerate map
¥ AN (D¢, D] — {0, 1}* such that Y aca a¥(a) lies in (1), that is to
say, it is a constant vector. We will show that this map induces k distinct
subsets of A with equal sums.

Lety; : AN (D¢, D] - Q,i =1,...,k, denote the projection of { onto
the i-th coordinate of Q, so that ¢ = (1, ..., V). Define

A i={a e A: i) = 1.

These sets are distinct because if A; = A, then the image of v/ would take
values in the hyperplane {x € Q' : x; = x j}, contrary to the fact that v is
nondegenerate. Moreover, for all i, j we have

doa= Y a=) avi@ - ayj@ =0,

ach; acA; aeA aeA

and so Ay, ..., Ar do indeed have equal sums. O

5.2 Many values of ), _, a¥ (a), and a moment bound

We turn now to the task of proving Proposition 5.7. We will divide the proof
of Proposition 5.7 into two parts. The first and more difficult part, which we
prove in this section, states that (with high probability) > . av/(a) takes
many different values modulo (1) as ¥ ranges over all nondegenerate maps
¥ 1 AN (D¢, D] — {0, 1}*. The precise statement is Proposition 5.9 below.
The deduction of Proposition 5.7 from Proposition 5.9 will occupy Sect. 6.

Let 0 < k < minjgj<r(cj — ¢jt+1) — 2/log D be a small quantity, which
may depend on D. Let
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Al ={aeA: DM g <D} (1<j<r),

)
N:UM. (5.4)
j=1

The purpose of working with A’ rather than A is to ensure that some gaps are left
for the subsequent argument in the next section (based on ideas of Maier and
Tenenbaum [20]), in which we show that one of the many sums » acA Vv (a)
guaranteed by Proposition 5.9 may be modified, using the elements of
AN (D¢, D]\A’, to be in (1).

Definition 5.8 (Compatible functions) We say that a map ¢ : A — {0, 1}¥
is compatible if, for all j, a € A/ implies ¥ (a) € V;.

Remark Recall that Supp(u;) = V; N {0, 1}¥ for all j by condition (iii) of
Proposition 5.5. Setting BL(U]) ={aeAl: Y(a) = w}, we see that ¢ being

compatible is equivalent to Bé)j ) # Qonlyif i j(w) > 0, and is consistent with
earlier notation (4.6).

Proposition 5.9 There exist real numbers k* > 0, p > 1 and t > 0 (which
depend on the system (V',c, t)) so that the following is true. Let § > 0
and suppose that D is sufficiently large as a function of §. Uniformly for
0 < k < k¥, we have with probability at least 1 — 8, that ), o ar (a) takes
at least

(té)ﬁDZf cjdim(V;/Vj_1)
different values modulo (1), as W ranges over all nondegenerate, compatible
maps .
Remark By (5.4), it clearly suffices to prove Proposition 5.9 for x = «*.

We will deduce Proposition 5.9 from a moment bound. Firstly, define the
representation function ry/ : Q€/(1) — R by

rar(x) = > wa (%),
¥iA —{0,1}F
D aear a(a)—xe(l)

where the summation is over all maps ¥ : A’ — {0, l}k, and where

wa () =[] [T wiw@.

J=laecAj

This weight function wy is chosen so that it is large only when ¥ is balanced,
that is, when for all j and w, the set A’ has about 1 ;(w)|A ;| elements a with
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Y (a) = w. Observe that if ¥ (a) ¢ Supp(u ;) for some j and some a € A/,
then wa/(y) = 0, and thus only compatible i contribute to the sum ra (x).
However, wa (1) might be non-zero for some degenerate maps v, and these
will be removed by a separate argument below.

The crucial moment bound for the deduction of Proposition 5.9 is given
below.

Proposition 5.10 Let
& =|A S ID°, DI #AN (/e y) < Y3/100 (D° <y < D).

There is a p > 1 and k* > 0 so that uniformly for 0 < k < «™* and for all
D > ¢!'%/¢ ywe have the moment bound

E[lA’eg* ZI’A/(X)”] « D~ P=DXj¢jdimV;/ Vi)
X

Proof of Proposition 5.9, assuming Proposition 5.10 Define also

Far(x) = > war ().

A’ {0, 1}K
Y is compatible and nondegenerate

D aear ar(a)—xe(l)

We have

r r

|AT]
S =[1(Zw@) =ITi=1
w j=1

X j=l1

for any A’. On the other hand, when v/ is non-compatible, then wa/ () = 0
because we know that Supp(u;) = V; N {0, 1}* for all j by our assumption
of condition (iii) of Proposition 5.5. In addition, if i is degenerate, then its
image is contained in {x € QF:x = xj} N {0, 1}* for some i # j. Since
V. & {x e Qk : x; = x,}, there must exist some w € V, N{0, l}k = Supp(ur)
that is not in the support of vr. Therefore,

Da@ =< Y (0= ),
x weSupp(ur)

Since ¢, > c¢r41 by our assumption of condition (i) of Proposition
5.5, Lemma A.5 implies |A"| > %(c, — ¢r41)log D with probability

> 1 — O(e~(/M1e"> Dy and thus the right side above is o(1) with this
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same probability. The same lemma also implies that A’ € £* with probability
> 1 — 0(e~ /92 Dy,

Now fix a small § > 0. The above discussion implies that, with probability
at least 1 — /2 (for D sufficiently large), we have

1
ZfA/(x) > 5 and A € &% (5.5)
X

On the other hand, Markov’s inequality and Proposition 5.10 imply that, with
probability at least 1 — §/2, we have

Lyveer Y i @)P < laeee Y rar(x)?
X X

< B_ID_(p_D Zj Ccj dim(Vj/ijl)‘ (56)
By Holder’s inequality,

Iaeer D Far() < | SuppGad' ™7 (Lyvees D Fa0)?)"P. (5.7)

X X

With probability at least 1 — 4, both (5.5) and (5.6) hold, and in this case (5.7)
gives

1 .
| Supp(Far)| >, 871 D) €5 dmVi/Vien),

This completes the proof of Proposition 5.9. O

The rest of the section is devoted to the proof of Proposition 5.10.

5.3 An entropy condition for adapted systems

For reasons that will become apparent, in the proof of Proposition 5.10 we
will need to apply the entropy gap condition not only with subflags ¥ of ¥,
but with a more general type of system.

Definition 5.11 (Adapted system) Given a system (¥, ¢, u), the pair (#', b)
is adapted to (¥, ¢, p) it # : (1) = Wy < W < --- < Wy is acomplete flag

with Wy < V., andb = (b1, ..., by) satisfies 1 > by > --- > by > 0 and the
condition

W <V; whenever  b; > c¢ji.
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We say that (%, b) is saturated if s = dim(V,) — 1 and if for all j < r, there
are exactly dim V; — 1 values of i with b; > ¢ 1. Otherwise, we call (%, b)
unsaturated.

Remark For the definition of complete flag, see Definition 3.1. We make a few
comments to motivate the term saturated. Let

mj=#{i : b >cjy1} (0<j<r), (5.8)

so that the b;’s belonging to the interval (c; 1, c;] are precisely bmj_1+1 e,
b . Since W; < V; whenever b; > ¢, we infer that

Wn, <Vy  (A<j<n). (5.9)
Since #' is complete, we have dim(W;) =i + 1, and thus m; < dim(V;) — 1.
In particular, (%, b) is saturated if, and only if, we have equality in (5.9) for

all j. O

We need some further notation, which reflects that A’ is supported on inter-
vals with gaps. For 1 < j < r, let

Ij :(Cj+1+K,Cj]. (5.10)

Recall that we take « small enough so that each /; has length > 2/1log D, that
is, Kk <minj(c; —cjy1) —2/log D.

There is a natural analogue of the e-value (cf. Definition 3.5) for adapted

systems.

Definition 5.12 Given an adapted system (%, b), we define

e/, b) =e(#,b; ¥V, ¢, p) i= Y h(lbip1, bil N INH,, (W) + Y by,
i,j i

where A denotes the Lebesgue measure on R.
Finally, we define

3(b) = max{c; — b; : b; € I;}, (5.11)
l’.]

that is to say §(b) is the smallest non-negative real number with the property
that

¢j =8 <bi<c; (<j<ricly.
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Adapted systems (%, b) can, in a certain sense, be interpreted in terms of
convex superpositions of pairs (¥”, ¢), ¥’ < ¥ a subflag. The next lemma
gives us a strict inequality analogous to condition (ii) of Proposition 5.5, unless
W is saturated and has a small value of § (b), which corresponds to the convex
superposition which gives rise to (#', b) having weight &~ 1 on the trivial
subflag (7, c).

Lemma 5.13 Let (7, u, ¢) be a system satisfying conditions (i)—(ii) of Propo-
sition 5.5. Let € be as in condition (ii). Suppose that (W ,b) is an adapted
systemto (V', j, €) such that b; lies in some set I for each i. Suppose, further,
that « is small enough in terms of €, and that k < % min;(c; — cjy1).

(a) If (W', D) is unsaturated, then e(# ,b) > e(¥,c, ) + €/2.
(b) If (W', b) is a saturated, then e(# ,b) = e(V, ¢, p) + &8(b)/2.

Proof We treat both parts together for most of the proof. Let m ; be defined by
(5.8). In particular, mg = 0 because ¢; = 1. Note that

max(c; — b;) =c¢; — by,
ier; " T

and let /& be such that
8(b) =cp — by, .

Without loss of generality, we may assume that b,,, < cy,; the case by, = cp,
will then follow by continuity.
Set b = by, and note that

e(W,b)
b; € [cjy1+«,cjlwheni € (mj_1,m;]and j # h,
>min {e(#,b): bl/- € [b,cp] wheni € (mp—1, mp), br/n/, =b,

T TR

The quantity e(%, b’) is linear in each variable b; and the region over which we
consider the above minimum is a polytope. As a consequence, the minimum
of e(#',b’) must occur at one of the vertices of the polytope. In particular,
there are indices £; € (mj_1,mj]for j =1, ..., r such that

e(#,b) > e(#,b*), where

CJ' ifMj_l <1 <€j,
bf = {cj+1+k iflj <i<mj, j#h, (5.12)
b if by, <i <my.
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In fact, note that we must have £; < my because b;"nh = b and we have
assumed that b < ¢y,.
Using the linearity of e(#, -) once again, we find that

h=b oy b0y PTHTE  p®y (513

e, b")= ———
Ch — Cht1 — K Ch — Cht1 — K

where b = b® = b* fori € {1,..., s\, mpl, b = cp1 + « for
i € (&n, mpland b = ¢, fori € (€, my].

Fix b’ € {bV,b®)}. In addition, define the indices iy, ..., i, by letting
ij =; when j # hor b = b, while letting i), = m, when b’ = b®. We
then have
Cj ifmj_1<l'<ij,

b = !
! Cj+1 +k lfl'j<l'<m]'.

A straightforward calculation implies that
e(W,b) =eV' ¢, W) + Sk + (my —iy)ery1, (5.14)
where ¥ is the subflag of ¥ with VJf = W;; and

r

S = Z (mj —ij = Hy; (Wi)).

j=1

(Note that ¥ is indeed a subflag since W,-j < ij < Vj by (5.9))

If ' =7, we must have that W;; = V; forall j. Since W;, < Wy, < V;
we infer that Wy,; = V;, as well as that ij = m for all j. In particular, the
flag (%, b) we started with must be saturated and S = 0 (since i; = m; and
H,;(Wi;) = H,,(V;) = 0forall j).

We are now ready to complete the proof of both parts of the lemma.

(a) By the above discussion, if (#, b) is unsaturated, then ¥ # ¥'. There-
fore, by assumption of condition (ii) of Proposition 5.5, we have

e, b)y=e(@,c,pn)+¢

for b’ € (b, b®}. Inserting this inequality into (5.13) implies that

e(W,b") >e(?,c,pu) +e+ O().
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Since e(#,b) > e(# , b*), the proof of part (a) is complete by assuming that
k is small enough in terms of .

(b) Assume that (%, b) is saturated. We can only have ¥/ = ¥ if i, = my,.
Since ¢, < my, this can only happen when b’ = b®. As a consequence,
assuming again that « is small enough in terms of &, we have that

C(W, b/) > 3(7/, C, [L) + lb/:b(l) . 8/2
Inserting this into (5.13) yields the inequality

—b
e b ze(V ep)+ —r2 L
Ch—Chtl — K 2

Sinceb =c, —8(b), 0 <cp —cpr1 —k < 1,and e(#,b) = e(#, b*), we

find that e(#,b) > e(?, ¢, u) + £8(b)/2. This completes the proof of part
(b) of the lemma. O

5.4 Proof of the moment bound

In this subsection we prove Proposition 5.10. For a vector

n= (ng,ni,ny,...,Nn)wWith

define the event
Sm)={A :#A =n; —nj_1 (1<j<n)
When A’ lies in S(n), we write
A/={a1,a2,...,anr}, ay>ay>...>a,,
so that
a, € AV ifandonlyif nj_y <t <n;j. (5.15)
We may define, for any compatible v, the auxilliary function

0:(n,]1— V,N{0,1}* suchthat 0(t) = ¥ (a). (5.16)
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The salient property of 6 is that it is determined by the ordering of the ele-
ments in A’/ and not by the elements themselves. We denote by ®,, the set of
compatible functions 6, that is, those functions satisfying

0(t) € Supp(i;)  whenever t<n;, 1<j<r. (5.17)

In the event S(n), if ¢ is an compatible function and 6 is defined by (5.16),
we have

wa@) =wa@ =[] ] w60, (5.18)
j=lnj_1<t<n;

where the notation wy (in place of wy ) reflects the fact that w only depends
on 6, and not otherwise on A. In this notation,

)= ) wa(®).
0€By
> 0(Ma—xe(l)

Writing ry, = ry, 'ras and interchanging the order of summation, it follows
that if A’ lies in S(n), then

p—1
S = 3 (T ao0)) wao)
t

x 0e®p
p—1
=) ( > wn(e’)) wn(6), (5.19)
0e®y " 0'e®y
(5.20)

where the inner summation is over all compatible functions 6’ satisfying

Za,(&’(t) —0(1)) € (1). (5.20)
t

Similar to the argument in Sect. 4.2, we find a flag % and special values of
i which have the effect of isolating terms in the relation (5.20). With 6, 6", n
fixed, let
Q=2Q0,0)={0'(t) - 6(t): 1 <1 <ny}

and

s = dim (Span(1, Q)) — 1.
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We now choose a special basis of Span(1, €2). For each w € 2, let
K, =min{t : 0'(t) — 0(t) = w},

and place a total ordering on Q by saying that w < o’ if K, < K. Let ! be
the minimum element in Q\(1),

o® = min(Q\ Span(1, w")), ..., ®* = min(Q\ Span(1, ', ..., &* 1)),
where s is such that Q@ C Span(1, o', ..., ®*). Finally, let

W; =Span(L,0',...,0)), 1=K, (1<j<s),
7(6,0'.,n) = (11, ..., 1),

and form the flag

W =w@0,0.,n : Wo<W; <---<W,.
We note that in the special case § = 6’, we have s = 0 and # is a trivial flag
with only one space Wj.

Now we divide up the sample space of A’ into events describing the rough
size of the critical elements ar;. By construction,

ar; = max{a; € A’ 0'(t) — 0(1) = '}.
Similarly to Sect. 4, for 1 <i < s let

loga,; —log D
b,-:1+|— gay —log D] sothat a, € (D% /e, Db 1. (5.21)
log D

The definition of A’ implies that for each i, there is some j with
b; € Ij = (cj4+1 + k, cj]. Moreover, we have the implications

bi>ciy1 = Tt <n = o =0(t)—0 () eV,

where we used (5.17) to obtain the second implication. Since by > by > --- >
b;, we infer the stronger relation

bi > cjq1 - Wi < V;. (5.22)

Therefore, the pair (#, b) is adapted to (¥, ¢, ).
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Using the inequality (x + y)?~! < xP~! 4 yP~! repeatedly, we may par-
tition (5.19) according to the values of #/(0, 0’) and (0, 0’), obtaining (still
assuming S(n))

p—1

dora@r< Y ( > wn(e/>> wn(0).
x V,t.0 0'e®n, (5.20)
W(0,0/ n)=¥, 1(0,0/ n)=t1

We need to separately consider other elements of A’ that lie in the intervals
(D” /e, D", and so we define

B=1{b:1<i<s} and €= {p)pes:
where ¢, = #(A' N (D?/e, D).

By assumption, Zb £p = s. It may happen that b; = b; | for some i, in which
case |B| < 5. Withn, 7, b, £ all fixed, consider the event

E(,7,n,¥)

defined as the intersection of

e S(n);
e a; € (D" /e, D" for all i;
e |A'N(DY/e, DP]| = ¢, forall b € B.

Taking expectations over A, we get

E[lA’eS(n)ng* ZrA,(x)P]
X
p—1
< E[ > wn(0)< > wn(e’)) 1E(b,r,n,l):|»
¥ .,t.b,0,¢ 0’'e®y, (5.20)
£,<D"/2/100 VbeB W 6,0’ n)=A,

(6,0’ n)=1

where the condition that ¢, < D?/? /100 comes from the fact that we taking
expectations over A’ € £*. By Holder’s inequality with exponents ﬁ, ﬁ,

this implies that
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E[lA'eS(n)mg* Z A’ (x)p]

< > wn(O)P(E(b, 7,1, £)* P x

W ,t,b,0,4
£,<D"2/100 VbeB

p—1
x{ > wn(e/)P[E(b,r,n,e)A(s.zo)]} . (523)

0'c®p
w00 n)=H
(6,0’ n)=1

Claim. Let £, < DP/2/100 for all b € B. Then we have

P((5.20) | E(b, 7,10, £)) « D~ G +bd g2 b, (5.24)

Proof of Claim Let us begin by analyzing the event E (b, T, n, £) we are con-
ditioning on. Consider the set Uj (DCi+1T% DI\ UbeB(Db/e, DP]. There is

aunique way to write it as U%:l I, where the sets I, are intervals of the form
(A, B] with their closures I, mutually disjoint. Now, the event E (b, 7, n, £)
is equivalent to there being mutually disjoint sets of consecutive integers Z,,
(1 <m < M)and Jp (b € B) such that:

e Thesets Z,, (1 <m < M) and J, (b € B) together form a partition of the
set [n];

Forallm € {1,..., M}, we have a, € I, if and only if n € Z,,;

For all b € B, we have a,, € (D”/e, D?]if and only if n € Jp;

7, € Jp, forall i;

| Tp| = £y for all b € B.

The above discussion allows us to describe the distribution law of A’ under the
event E(b, T, n, £): given a choice of the intervals Z,, and 7}, we construct
independent logarithmic random sets A} on [, and Ab on (Db /e, DP"] such
that #A’ N I, = #7,, for all m and #A;, = £}, for all b. Then A’ is the union
of all A¥’s and all A,’s.

Having explained how the distribution of A’ looks like under the event
E(b, 7,n, £), let us now prove our claim. We argue as in the proof of Propo-
sition (4.4). Relation (5.20) implies

N
doolag+ Y a®(®) —6) =aol
i=1 t¢{r1,..., 75}

@ Springer



1076 K. Ford et al.

for some ag € Z. Since 1, ', ..., @* are linearly independent, this uniquely
determines their coefficients ag, a¢,, ..., a;, in terms of the other a;’s. For
each b € B, let

mp=#i:b;=b) and N,=#(ZN(D’/e, D’1) = (1 —1/e)D" + O(1).
Then, given A%, for all m and b € B, there are at most
ly—
()
Cp —myp (lp — mp)!
(1 — 1/e) D)bEs=ms) DP,—mp)

o
=% ) <

choices for A, (since m;, of each elements are determined by the remaining
£, — my, elements and by the elements of the A that we have fixed), where
we used that ZZ”’ < E’; L(1-1/ e)*zb. In addition, Lemma A.4 implies that
the probability of occurrence of a given set X;, C Z N (Db /e, DP"] as the set
Ab, conditionally to the event that #Ab = {p, 18

! 1
(ZDb/e<m<Db 1/(m — 1))&’ 1_[ 1_[ (1 B Z)

Db/e<m<Db
Lp!

<

Putting the above estimates together, we conclude that

P((5.20) | E(b, 7,m,0)) < ]—[ = Db tbI 2 b

Dbm;,
beB

upon noticing that ) ,_zmpb = ) ; b;. This proves our claim that (5.24)
holds. -

In the light of (5.24), relation (5.23) becomes
E[lA'eS(n)mg* ZFA' (x)p]
X

W .,t,bd
p—1
xE[an(m( > wnw/)) 1E<b,,,n,e)]. (5.25)
0Oy 0'€®y
W (0,0 n)=#
(6,6’ ,n)=t1
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To evaluate the bracketed expression, first recall the definition (5.18) of
wn(0), and note that the conditions # (8,60’,n) = ¥, t(0,6',n) = T
together imply that

O'(t)—0@)eW;, (1<t<ty1, 0<i<ys),
where we have defined 79 := 0 and 7541 := n, + 1. For brevity, write
Tij=mj—1,n;1N[7, tig1) NN, O<i<s, 1 <j<r).

Some of these sets are empty. In any case, we have

Y w@ < [T Jlweo+wy. (526

0'€®p 0<i<s el
70,0’ n)=H 1<j<r
(0,0’ n)=t1

From (5.18), and the fact that the discrete intervals 7; ; are disjoint and cover
[n,], we have

wa®) =[] [] wi@@).

i,j tely

With these observations, we conclude that

p—1

Zw,,(e)( > wn(m)
0€0y 0'e®y
VACKINE /4
(0,0’ n)=t

< Y TTTT wi@@)mjows + 07!

0€®y i,j teT; ;

=[[nG. j, p, w1, (5.27)
ij
where
NG, j.p. W)= Y pi@u(W+ )P (5.28)
weSupp(i )
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Substituting into (5.25), and summing over n, we get

E[lA'eg* ZFA'(X)”]

< Y Db 3 eZb‘bE[lm,r,n,@ [[nG. J. p. W)'Tw'].
# b 7,n,4 i,j

(5.29)
If V; < W;, then u;(W; + ) = 1 for all w and thus n(i, j, p, #') = 1.
For all i, j, p, # we have n(i, j, p, #) < 1. Thus, we require lower bounds
on |T; ;| in the case V; £ W;.
Claim. Assume that E(b, 7, n, £) holds. Given i such that b;,; < b; and
je{l,...,r}, define

M; j := (D17, D% Je] N (DP+1, DY /e]
Then
{t:a, e M;;}CT, ;. (5.30)
Proof of Claim Let t be such that a; € M; ;. In particular,
Db+l < g, < Db"/e.

This relation and the definition of b; in (5.21) imply that a;, , < a; < a,, and

hence 7; < t < 741, where we used that a; > ap > --- > a,,. In addition,
since DS+17% < g, < D¢, we have that a;, € A/. Thus, nj_1 <t<njby
(5.15). This completes the proof of the claim. O

A direct consequence of (5.30) is that
IT;,j| = |A' N M |
Combining this inequality with (5.29), we get
EI:IA’ES* ZVA'(X)”] & Z p~P=DLjb;
x # b

x Y eX “bE[lm,,,n,a [ [nG. i p. W)‘A“Mf-f'}.

n,t,¢ i,J

Fix b and #, and let E’(b, £) be the event that |A’ N (D? /e, D?]| = ¢,, for
all b € B. Given A’ € E'(b, £), we have at most [ [, £ < e2 % choices for
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71, ..., Ty. Hence,

> ek “E[lm,r,n,m(i, Jop A ”M"»-/"]

n,t,4

< ZEZZMbE[lS(n)IE/(b,U l_[ nG, j, p, ¥ ﬂM’*”']-
n,¢

i,j

Since the events S(n) are mutually disjoint, we arrive at the inequality

E[lA’GS* ZI’A'(X)‘U]

<Y phLib E[ [T TTnG. J. p. 7/)'A’”Mf’f']. (5.31)
W .,b beB i,j

Next, we estimate the right hand side of (5.31). The intervals M; ; and
(D" /e, DP] are mutually disjoint by (5.30), hence the quantities |A’ N M; ;|
and |Ap| are independent. Using Lemma A.3, we obtain

B[ [T TTnG. j. p. w)A0M]

beB i,j
2e — 1 1
gexp{z Z ‘ +Z(77(i,]',17,7/)—1) Z —}
beB Db je<m< DY " i,J meM; "
1
< exp{Z(n(i,j,p,W) —1) Z —}-
i,j meM; j n

Recall that I; = (cj1+1 + «, cj], define
Gi = Gi(b) = (biy1, bil,

and recall that A denotes the Lebesgue measure on R. Then, by the definition
of M; ;, we have

1
> —=i;NGi)logD+ O(1).
m

mGM,”j

Substituting into the definition of e() (Definition 5.12), this gives

E[IA’GS* > ’"A’(x)p:l <Y _ DpTEPTD), (5.32)
W ,b

X
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where
E(p, 7 ,b)
=(p—DY b= > (0. j.p. )= 1)AU; NG))
J iJj
= (p—De(#,b) =Y [nG, j, p.#) =1+ (p — DH,, (W) ]a(I; N Gy).
iJj

Recall the definition (5.28) of n(i, j, p, # ). If W; > Vi,
then w;(W; + x) = 1 whenever x € Supp(u;), and so in this case
n@, j, p, #) = 1. Since HM(Wi) = 0 in this case, we have

n@ j,p,#)—14+((p—DH,,W)=0 (V;<W). (533)

For any fixed i, j, #, we have

d .

@n(la J: P W) p=1 = _H,ILJ‘(Wi)’
and so

(. j.p.#) =1+ (p—DH,,(W) < (p— 17 (V; £Wp). (534)

We deduce from (5.32), (5.33) and (5.34) that

E(p,#,b)=(p—De(#,b)— > > raI;NGHO(p —1)).
i,ji ViLW;
(5.35)

To continue, we separate two cases.
Case 1. (# ,b) is unsaturated.

In the above case, Lemma 5.13(a) implies thate(#', b) > e(?, ¢, u)+¢/2.
Consequently,

(p—De
2
(p—1De
—

E(p,7,b) = (p—De(¥, ¢, p) + +0((p—1)?)
> (P - 1)6(7/’ C, M/) +

provided that p — 1 is small enough in terms of ¢ (and k).
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Since there are O (1) choices for # and 1og0(1) D choices for b, the con-
tribution of such flags to the right hand side of (5.32) is

Z D~ EW@7.b) < D~ (P—De.e.p) (5.36)
(#,b) unsaturated

Case 2. (W, b) is saturated. (Recall from Definition 5.11 that (#, b) is called
saturated when s = dim(V,) — 1 and forall j < r, there are exactly dim V; —1
values of i with b; > cjy1.)
Fix for the moment a pair (i, j) such that
Vi £ W; and A(/;NG;) > 0. (5.37)
The second condition is equivalent to knowing that

b,’ > Cj+1 and bi+l <Cj.

In particular, we have W; < V; by (5.22). Note though that we have assumed
V; £ W;. Therefore, W; < V;. Since dim(W;) = i + 1, we infer that

i <dim(V;) —2.

Since we have assumed that (%, b) is saturated, the above inequality implies
that b; 11 > cj41. Recalling the definition (5.11) of §(b), we conclude that

bit1 = cj — 8(b).

This implies that G; N 1; C [c; —&(b), ¢;] for any pair (i, j) satisfying (5.37).
As a consequence,

Y AUING) <) (1< j<n).
i: V;LW;

Since we also have thate(#, b) > e(?, ¢, u) +¢&8(b)/2 by Lemma (5.13)(b),
it follows that

p—De, e, p)+e5b)/2+ O((p — 1)28(b))
p—De(¥, ¢, n)+¢ed(b)/4, (5.38)

E(p,7.,b) = (
(

\VAR\Y

provided that p — 1 is small enough compared to .
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Using (5.38), we see that the contribution of saturated flags to the right hand
side of (5.32) is

’

—E(p, 7 ,b) —(p—De(¥,c,p) —(p—Des(b)/4

2. D <D > 2. D :
(#,b) saturated s=0 by,..., by

where we used that there are O (1) choices for #. Recall (5.21), which implies
that the numbers b; are restricted to the set {m/log D : m € N}. Thus the
number of b with §(b) = m/log D is at most (m + 1)° and

Z Z p—(P=Desb)/4 ZZ(’"JFI) e~ (PDC/m

s=0 byq,..., s=0m=>0

We thus conclude that

Z D E®7.b) < p—P—De.e.n)
(% ,b) saturated

If we combine the above inequality with (5.36) and (5.32), we establish Propo-
sition 5.10. O

6 An argument of Maier and Tenenbaum

The aim of this section is to prove Proposition 5.7. The reader may care to
recall the statement of that proposition now, as well as the definition of a com-
patible map (Definition 5.8). As in the previous section, the system (¥, ¢, i)
is fixed, and satisfies conditions (i)—(iii) of Proposition 5.5. We also fix a basis
(1,0!, ..., @) of V, such that V; = Span(1, ol ..., imV)=1) for each j
and such that o’ € {0, 1}* for each i. Denote € = Supp(u,) = V, N {0, 1}*.

We begin with an observation related to the solvability of (4.12), which we
recall here for the convenience of the reader:

Y Kol = Z > a'(mod 1), (6.1)
j=1

a’'eB],

Let A denote the Z-span of 1, w', ..., ¢ (that is, the lattice generated by
1,0', ..., o). Every vector v €  is a rational combination of the basis
elements 1, !, ..., w?. Hence, there is some M € N such that Mw € A for
each w € Q. In particular, note that the right-hand side of (6.1) lies generically
in the lattice A/M = {x/M : x € A}. However, we must ensure that (6.1) is
solvable with K1, ..., K, € Z. Equivalently, the right-hand side of (6.1) must
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lie in A, which can be guaranteed when the coefficients of all vectors w in it
lie in MZ.

In this section, implied constants in O() and <« notations may depend on
the system (7, ¢, u) and basis o', ..., o%in particular, on k, d and M.

6.1 The sets .Z;(A) and lower bounds for their size

The main statement of this subsection, Proposition 6.2, is a variant of Propo-
sition 5.9, where we stipulate that all elements lie in A. This will later ensure
that (6.1) is solvable with K1, ..., K, € Z.

Fix ¢ > 0 satisfying « < %, where «* is the constant from Proposition 5.9.
In particular, « < 1/2. We introduce the sets

-
(D) =+, D=0 i=1,2,. (6.2)
j=1
Thus each [; (D) is simply a union of r intervals in A, and we have the nesting
I1(D) c (D) C ---C (D¢, D].

For any w € V, we denote by w the projection of @ onto

V, = V,/(1) = Span{o', ..., ).
In addition let ¥ (a) = ¥ (a) fora € A.
The reader may wish to recall the definition of nondegenerate (Definition

5.6) and compatible (Definition 5.8) maps.

Definition 6.1 Write Z;(A) forthe setofall ), _, av (a) thatliein A, where
Y ranges over all nondegenerate, compatible maps supported on ; (D).

Proposition 6.2 Let 6 > 0 andi € N, and let D be sufficiently large in terms
of 8. Then with probability at least 1 — § in the choice of A N [; (D),

[ Zi(A)] > DU/ 2 Em Vi Vi), (63)

where a is a positive constant depending at most on (¥, ¢, Ib).
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Proof Let

-
Ii/(D) _ U(D(Cj+1+K*)(1_K/i), DCj(l—K/i)]
j=1

,
c [Jemt+eD peil=«/d} c (D),
j=1

where the first inclusion follows by noticing that
(cjp1+c5A =k/i) = cjp1(1 +«/2)

forcji 1 €[0,1,0 <k <«*/2 < 1/2andi > 1. Write Z/(A) for the set
ofall ), ar (a), where i ranges over all nondegenerate, compatible maps
supported on I/(D), but without the stipulation that the sum is in A. We now
apply Proposition 5.9 with D replaced by D!~*/! and § replaced by §/2 to
conclude that

with probability at least 1 —§/2, where « = 1/(p — 1) with p as in Proposition
5.9.

We now use the elements of A N (I,-(D)\Il./ (D)) to create many sums
> ,ea ¥(a) which do lie in A. Let G := (Der+1(=¢/D §=1 pers1(d=k/i)],
which is a subset of I; (D)\Il./ (D). Let & be the event that A N G contains at
least 2% elements that are = m (mod M) for each m € {1, ..., M}. Lemma
A.2 (applied with B={b € ZNG :b=m (mod M)} and ¢ = 1/3) implies
that if § is sufficiently small then P(€) > 1 — §/2.

Assume now that we are in the event £. Let us fix a set £ € A N G that
contains exactly 2¥ elements that are = m (mod M) foreachm € {1, ..., M}.
Take any nondegenerate, compatible function ¥ : A — {0, 1}* supported on
1/(D), and write

Y ay@ =) oN,.

ael!(D) weR

Recall that Supp(i,) = V, N {0, 1}*¥ by condition (iii) of Proposition 5.5.
Hence, for each w € 2, we may find an element a, € K satisfying
au = —N, (mod M). Setting 9(a,) = w for each w, and Yo(a) = ¥ (a)
fora € 1/(D), and Yro(a) = 0 for all other a € I;(D). We have

Z ayo(a) = Z(aw + Ny € A,

ael; (D) weN
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since M|(a, + Ny,) for all w. Moreover, v is nondegenerate and compatible
by construction. Consequently, ), ay((a) € A (by removing the coefficient
of 1). Since there are at most 2/ < 2M2" choices for {a, : w € Q}, the map
from 3,1/ (p) ay (@) 10 Y e (py a¥ola) is at most 2 2_to-1.We conclude

that with probability > 1 —§,
LAY = 27M2 /(A > 80 DU/ D E e dimVi/Vimn)

the implied constant only depending on k, M and «, which are all fixed. O

6.2 Putting .Z;(A) in a box

In the last section, we showed that (with high probability) .Z; (A) is large.
In this section we show that with high probability it is contained in a box
(in coordinates o', ..., w%); putting these results together one then sees that
Z;(A) occupies a positive proportion of lattice points in the box, the bound
being independent of D.

Fort € {1, ..., d}, write j(¢) for the unique j such that

dimV;_; <t <dimV;.

In addition, let C be the largest coordinate in absolute value of any element in
V.- N{0, l}k when written with respect to the base 1, o', ..., »%. We then set

d
M) ._ g1 (1=c/i)c; O . TN
NP i=stoc. DU and - NG =TT N (64)
=1

—2/8

Lemma 6.3 Assume § > 0 is small enough so that re < 8. Then, we have

d
GING)
LA <D= N Nl (6.5)

with probability at least 1 — § in the choice of A N I; (D).

Proof This follows quickly from the fact that ¢ is compatible and by Lemma
A.6, the latter implying that

> a<s'DUTFDYG (1< j<r)

acAN2, D/

with probability > 1 — re™2/% > 1 — 6. O
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Proposition 6.4 Let 5§ and o be as in Proposition 6.2 and in Lemma 6.3. With
probability at least 1 — 28 in the choice of AN I;(D), £;(A) is a subset of the

box @i [=Nj), Njlef of size > s+ N .

Proof This follows immediately upon combining Proposition 6.2 and Lemma
6.3. O

6.3 Zero sums with positive probability

Lemma 6.5 Let 6 and o be as in Proposition 6.2 and Lemma 6.3, and let
D be large enough in terms of § and (¥, ¢, p). Leti € ZN[1, (log D)'/3].
In addition, let S C @;j:l[—NJ(-l()t), N;l()t)]wt with |S| > 84TYND and with
S C A. Then

P(0 € Z41(A) | Z(A) = §) » 527+,

Proof We condition on a fixed choice of A N I; (D) for which % (A) = S.
Note that

r r
I 1(D)\I; (D) = U(D(I—K/i)c," pU—K/G+D)ejy 5 U[Nj(‘i)’ IOOdNJ(.i)]_
j=1 j=1
(6.6)

Then it is enough to show that with probability > §2¢(4+®) the set A contains
2d distinct elements a; and a;, 1 <t < d, such that

Y @ —a)o' €S and a.a; €[N, 100dN] for 1=1,....d.
t

(6.7)

To see why this is sufficient, let s = ), (a; — a;)’, which we know belongs
toS =% (A). In particular, there is an compatible map  supported on I; (D)
such that ), _, ayr(a) = s. Now, consider the function

v AN L1 (D) — {0, 1}

with ¢'(a) = Y (a) fora € AN I;(D), ¥'(a;) =1 — o' and ¥’ (a;) = ' for
1 <t <d,and ¢'(a) = 0 for all other values of a € AN I;;1(D). Notice that
¥’ is compatible according to Definition 5.8 by the second part of (6.7). It is
now clear that 0 € .%;+1(A). Hence, if the conditional probability that (6.7)
holds is 3> 824, so is the probability that 0 € %41 (A).

@ Springer



Equal sums in random sets 1087

To find a; and a; satisfying (6.7), let
ni= [dsd“zv(")/mﬂ & -+,

The number of elements ) _, s;w' € § with n|s; for some ¢ is

<
t

d . .
: . IN® N®
() (i) oot d—1
N+ ) [TEN @) +1) <a3'™ (= + — N<">>
=1 t'#t min; ¥ ;

< IS1/2

as long as D is large enough in terms of § and (7, ¢, w). Thus, there is a
subset §' C S of size at least |S|/2 and with n t s, for all . We will choose
the sets {a; : 1 <t < d} and {a; : 1 <t < d} independently, by selecting
a; =0 (mod n) and a; # 0 (mod n).

Note that

r r
L (DN (D) = | J@ =/, pU=/@Dey 5 | JING”, 10048 )
j=1 j=1

provided that i < (log D)!/3. For each given 7, i and j, the probability that
the interval [4tN](-l), (4t + 2)NJ(.’)] contains no element a; = 0 (mod n) of A
equals

11 (1—1/a) <1—vy/n
4zN§”<a<(4t+2)N§”
a=0 (modn)

for some small positive constant y = y(d). Thus, the probability that, for

each t = 1,2,...,d , the set A contains some a¢; = 0 (mod n) in the interval
[N, (4 + 2N ) Tis > 1/nd > s8@+),
Fix a choice of a1, ..., ay as described above, and set
X :={(@ +51,....a0+54) 510" + -+ 5507 € §}. (6.8)

By construction, every coordinate of x € X is # 0 (mod n). Also,
d
() ()
X c []l@t = DN, @+ 3N ] (6.9)
t=1
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Now the intervals on the right-hand side above are disjoint, and

e} B Q)
> 5 0 [T,

Thus, by Lemma A.7, with probability > (841*)¢, there are ap,...,a, €A
such that (aj, ..., a;) € X. The relation (6.7) follows for such a;, a;, which
exist with probability > §4(@+®) . gd(d+a), O

6.4 An iterative argument
To complete the proof of Proposition 5.7, we apply Lemma 6.5 iteratively. Let
.7 be the set of sets S satisfying the assumptions of Lemma 6.5. We say that

% (A) is large if it satisfies the conclusions of Proposition 6.4, or equivalently
if Z(A) = S with § € .. Thus Lemma 6.5 implies that

P(0 € L1 (ANZA), Z(A) large)

= Y PR =9)-P0e Zn@A)] LA =5)

S large
0¢S

> §2°P(Z(A) large, 0 ¢ Z:(A)).
We conclude there is some & = § (1) such that
P(0 € Z41(A) | Z(A) large, 0 ¢ Zi(A)) > &. (6.10)

For brevity, write E; for the event that 0 ¢ .%;(A), and F; for the event that
% (A) is large. In this notation, (6.10) becomes

P(E{ L IEiNF) > (6.11)
Moreover, Proposition 6.4 implies that
P(F;) > 1 —26. (6.12)

Lastly, note that E; D E; D - - - because .2 (A) C £A(A) C -
We claim that P(E;) < 46 for somei < I := [(log D)1/3J Indeed, for
eachi < I, we have
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P(Eit1) = P(Ein1|E: 0 F)P(E; N F) + P(Ei1|[E 0 FOP(E; N FY)
<A =-PE;NF)+PE; N Fic) by (6.11)
=P(E;,) —eP(E; N F;)
< P(E;) — e(P(E;) — 26) by (6.12).

Thus, if P(E;) > 45,thenP(E;11) < (1—¢/2)P(E;).Ifthisholds foralli < I,
then P(E;) < (1 — ¢ /2)] —1 < 46, a contradiction. Therefore, P(E;+) < 48
for some i* < I, as long as D is large enough in terms of § and the (fixed)
system (¥, ¢, ). This completes the proof of Proposition 5.7.

Part I11. The optimisation problem

7 The optimisation problem—basic features

In this section we consider Problem 3.7, the optimisation problem on the cube,
which is a key feature of our paper. We will give some kind of a solution to this
for a fixed nondegenerate flag ¥/, leaving aside the question of how to choose
¥ optimally.

Let us refresh ourselves on the main elements of the setup of Problem 3.7.
We have a nondegenerate, r-step flag

of distinct vector spaces. In light of Lemma 5.4, we may restrict our attention
to flags such that

dim(Vy/ Vo) =1,

which we henceforth assume. With the flag ¥ fixed, we wish to find v (%),
the supremum of numbers ¢ > 0 such that there are thresholds

l=ci12c>2---Z2c¢c41=c

(we may assume that ¢y = 1 by arguing as in Lemmas 5.3 and 5.4) and
probability measures i1, ..., i, on {0, 1}¥ satisfying Supp(u;) C V; for
each j, and such that the entropy condition (3.4) holds, that is to say

e(V e, ) =e(¥ e ) (7.1)
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for all subflags ¥/ < #. We recall that

e(7 e.p) ==Y (c;—cirDHL,; (V) + Y c;jdim(V]/V]_)).
j=1 j=1

Remarks. (a) It is easy to see that yx(7') always exists by considering the
following example with ¢ = 0. Take ¢y = land ¢y = --- = ¢,41 = 0 and
recall that dim(V;/ Vp) = 1. Suppose that V| = Span(1, w) with w € {0, 1}k,
Thus, e(?, ¢, u) = 1 for any choice of p. If Vl/ = V] then likewise we have
e(7',¢e,p) = 1, and if V{ = Vj then e(¥”, ¢, p) = H,, (Vo). Now Vo + 1,
Vo + w and V) + (1 — w) are three different cosets. Taking

uwi1) = pi(@) =l —-w)=1/3

we have (¥, ¢, u) = log 3. Thus, (3.4) holds. As we shall see in this section,
this choice of 11 is the optimal choice for a very general class of flags, including
those of interest to us.

(b) A simple compactness argument shows that the supremum is realised,
that is, there is a choice of ¢ and u satisfying the entropy condition 3.4 and
with ¢, 11 = y (7).

(c) As long as we can show that y; > 0 (which will be taken care of in Part
IV), we can always find an optimal system (7, ¢, ) that also has ¢; > ¢4
for each j (cf. Lemma 5.4(a)).

7.1 A restricted optimisation problem

It turns out to be very useful to consider a restricted variant of the problem in
which the entropy condition (7.1) is only required to be satisfied for certain
“basic” subflags ¥, rather than all of them.

Definition 7.1 (Basic subflag) Givenaflag? : (1) = Vo <V < --- < V,,

the basic subflags %J/asic(m) are the ones in which V! = Viingn,i), for m =
0,1,...,r — 1 (note that when m = r we recover ¥ itself).

Here is the restricted version of Problem 3.7. Recall that a flag is non-
degenerate if the top space V, is not contained in any of the subspaces
(x e R¥ : x; = x j}. The restriction to nondegenerate flags ensures that
the subsets Ay, ..., A; in our main problem are distinct.

Problem 7.2 Let ¥ be a nondegenerate flag of distinct spaces in QX. Define
Yio (7)) to be the supremum of all constants ¢ > 0 for which there are measures
Ui, ..., My such that Supp(u;) C V;, and parameters

l=c1 > Zepi=c
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such that the restricted entropy condition

e(ﬂj/t)/asic(m); c,u)=e(¥ep) (7.2)
holds forallm =0, 1,...,r — 1.

It is clear that

) = m (V). (7.3)

In general there is absolutely no reason to suppose that the two quantities
are equal, since after all the restricted entropy condition (7.2) apparently only
captures a small portion of the full condition (7.1).

Our reason for studying the restricted problem is that we do strongly believe
that

sup Ve (V) = sup () = yr.

¥ nondegenerate ¥ nondegenerate

One might think of this unproven assertion, on an intuitive level, in two
(roughly equivalent) ways:

e for those flags optimal for Problem 3.7, the critical cases of (7.1) are those
for which ¥ is basic;

o for those flags optimal for Problem 3.7, and for the critical choice of the
¢i, i, the restricted condition (7.2) in fact implies the more general con-
dition (7.1).

7.2 The p-equations, optimal measures and optimal parameters

The definitions and constructions of this section will appear unmotivated at
first sight. They are forced upon us by the analysis of Sect. 7.5 below.

Let the flag 7 be fixed.

It is convenient to call the intersection of a coset x + V; with the cube {0, 1}*
a cell at level i, and to denote the cells at various levels by the letter C. (The
terminology comes from the fact it can be useful to think of V; defining a o-
algebra (partition) on {0, 1}¥, the equivalence relation being given by w ~ o’
iff o — @’ € V;: however, we will not generally use the language of o -algebras
in what follows.)

If C is a cell at level i, then it will be a union of cells C” at level i — 1. These
cells we call the children of C, and we write C — C’.

Let p = (p1, ..., pr—1) be real parameters in (0, 1), and for each cell C
define functions f€ (p) by the following recursive recipe:
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e If C has level 0, then € (p) = I;
e If C has level i, then

=Y @, (7.4)
C—C’

with the convention that oy = 0.
Write

I =V;n{o, ¥
for the cell at level i which contains (0. Note that

{0,1} =TgcCcTl'ycC---CT,.

Definition 7.3 (p-equations) The p-equations are the system of equations
FUr o) = (f ()P Vi VD =12, =1 (1.5)
We say that they have a solution if they are satisfied with p1, ..., p,—1 € (0, 1).

Example Figure 1 illustrates these definitions for the so-called binary flag in
Q*, which will be a key object of study from Sect. 9 onwards. Here

4 .
Vi ={(x1,x2,x3,x4) € Q" : x1 = x2, X3 = x4}

and V, = Q% The p-equations consist of the single equation
fT2(p) = (fT1(p))P1e?, that is to say 37! +4 - 2P1 4+ 4 = 3P1¢2_ This has the
unique solution p; ~ 0.306481.

In general the p-equations may or may not have a solution, but for flags ¥
of interest to us, it turns out that they have a unique such solution. In this case,
we make the following definition.

Definition 7.4 (Optimal measures) Suppose that ¥ is a flag for which the p-
equations have a solution. Then the corresponding optimal measure on u* on
{0, 1}* with respect to ¥ is defined as follows: we set u*(I',) = 1, and

wH(C) _ [
(RN AN )

(7.6)

for any cell C at level i > 1 and any child C — C’. We also
set u*(0) = wp*1) = wp*(To)/2. Lastly, we define the restrictions
wi) = p* ()~ @) loer; for j = 1,2,....r (thus u = p*). We
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call these’ optimal measures (on {0, 1}" , with respect to #"). Finally, we write
wE = (U], 155, ().

Remark 7.1 (a) By taking telescoping products of (7.6) fori =r,r—1,...,0,
we see that ,* is uniquely defined on all cells at level 0, and these are the cell
{0, 1} and singletons {w} for all v € {0, 1}¥\{0, 1}. Since we also specified
w*(0) = pu*1) = u*(To)/2, we see that u*(w) is completely and uniquely
determined by these rules, for all w. In particular, the p-equations (7.5) are
equivalent to

* . .
M) dim(Vya/ V) forj=1,...,r—1,
w*(Ij1)
and thus
Wi () = e~ dmVilV) (G > m > 1), (7.7)

In addition, we have
e~ dim(V1/Vy)

M)~ M —1

u*(To) = p*(T') - (7.8)

(b) By construction, the measures Mj‘ satisfy statements (d) and (e) of Lemma
5.3 forall j:

Supp(u;) =T, and pj(@) =pn;1—-w) Vo. (7.9)

(c) At the moment, the term “optimal measure” is just a name. We will
establish the sense in which (in situations of interest) the measures uj are
optimal in Proposition 7.7 below.

(d) Note that u* and p* are two different (but closely related) objects. The
former is an r-tuple of measures ,uj‘., all of which are induced from the single
measure u*.

Definition 7.5 (Optimal parameters) Suppose that ¥ is a flag for which the
p-equations have a solution. Let «* be the corresponding optimal measure on
{0, 1}* with respect to #. Suppose additionally that

Hyer (Vi) # dim(Vip g1/ Vin) (7.10)

7 Note that we have not said that the p; are unique. However, in cases of interest to us this will
turn out to be the case.
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form = 0,1,...,r — 1. Then the corresponding optimal parameters with
respect to ¥ and the solution p are the unique choice of

cil=c>c > >cf >0,
if it exists, such that
e(”l/l;asic(m), e =e,pn*, ¢ form=0,1,...,r —1. (7.11)

The Eq. (7.11), written out in full, are

r r
> = Hs (V) = Y cdim(Vi/ Vi) (712)
j=m+l j=m+1

m=0,1,...,r—1.

By (7.10), this uniquely determines ¢y, | € Rinterms of ¢, 5, ..., ¢} .
Hence, we recursively determine cy, ..., ¢, in terms of ¢,41. Since we must
further have c¢; = 1, this implicitly determines c,41 as well, and thus the entire
vector ¢*.

Remark. By Lemma 5.3 (ii), a stronger form of the condition (7.10) is
required in order for the entropy gap condition to hold, and so in practice this
assumption is not at all restrictive.

We conclude this subsection with a characterization of the optimal measure
w* and parameters ¢*. Given an r-step flag 7/, there is an associated rooted tree
Z (¥), which captures the structure of the cells at different levels 0, ..., r —1.
In particular, this tree always has exactly 2K — 1 leaves at level 0, corresponding
to the cell 'y = {0, 1} and the singletons {w} for each w € {0, 1}¥\{0, 1}.

Lemma 7.6 The optimal constant y;**(V), associated measures |17 (C) and
optimal parameters c; depend only on the tree .7 (V') and the sequence of
dimensions dim(V;), 0 < j <r.

Proof Let ¥ and ¥ be different flags with the same tree structure, that is,
T (V) is isomorphic to .7 (¥), and with the same sequence of dimensions
dim(V;) and dim(ij). By an easy induction on the level and the defini-
tion of f C(e), ifC e (¥)and C € T (‘/7) correspond, we find that
f€(p) = f€(p). The statements now follow from Definitions 7.4 and 7.5.

O

7.3 Solution of the optimisation problem: statement

Here is the main result of this section, which explains the introduction of the
various concepts above, as well as their names.
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Proposition 7.7 Suppose that v : 1 = Vo <V} < --- <V, < Qk is a
nondegenerate flag such that dim(Vy/ Vo) = 1 and the p-equations have a
solution. Let ju* be the corresponding optimal measures, and suppose that the
corresponding optimal parameters ¢* exist. Then

Y (1) = (log3 — 1)/<log3 n Z M). (7.13)

Moreover, the optimal measures u* and optimal parameters ¢* provide the
solution to Problem 7.2; in particular, c;_ , is precisely the right-hand side of
(7.13).

For this result to be of any use, we need methods for establishing, for flags
¥ of interest, that the p-equations have a solution, and also that the optimal
parameters exist. The former is a very delicate matter, highly dependent on
the specific structure of the flags of interest. Once this is sorted out, the latter
problem is less serious, at least in situations relevant to us.

7.4 Linear forms in entropies

In the next section we will prove Proposition 7.7. In this section we isolate
some lemmas from the proof.

Let? : (1) =Vp <--- <V, < Qk be a flag. We use the terminology of
cells C at level i, introduced at the beginning of Sect. 7.2.

Lemma 7.8 Lety = (yo, ..., Yr—1) be real numbers with the property that
all the partial sums y—; := yo+ - - -+ yi—1 are positive. If C is a cell (at some
level i), then we write

KW= s (Y (V). (7.14)

Supp(nc)CC * gcpm<r

where the supremum is over all probability measures ¢ supported on C.

(a) The quantities hC (y) are completely determined by the following rules:
e If C has level O, then hC(y) =0
e IfC has level i, then

c’ )
hC(y) = y.ilog < Z el (y)/y<,>' (7.15)
Cc:C—C’

(b) For any C, the maximum in (7.14) occurs for a unique measure [Ly. v
Furthermore, all of the ,u’ay are restrictions of the “top” measure
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u;dzz ;Li’ihy, that is to say ng(x) = ;L;(x)/u;(C) for all x € C,
an

wi(C) hC /i)
w3 (C) T ehCy/ v

(7.16)

Remark As will be apparent from the proof, we do not use the linear structure
of the cells C (that is, the fact that they come from cosets). We leave it to the
reader to formulate a completely general version of this lemma in which the
cells at level i are the atoms in a o-algebra .%#;, with .#; being a refinement of
Ziy foralli.

Proof We prove both parts simultaneously. Let us temporarily write h€ (y) for
the function defined by (7.15), thus the aim is to prove that hc(y) = ftc(y),
where hc(y) is defined in (7.14). We do this by induction on i, the i = 0 case
being trivial since, in this case, all the entropies H,.(V},) are zero because
each cell of level O lies in some coset mod Vj, and thus in the same coset mod
Vwform=0,1,...,r — 1.

Suppose now that we know the result for cells of level i — 1. Note that both
h€ and k€ satisfy a homogeneity property

hC@y) =thC(y),  hC(ty) = thC(y).

This is obvious for #€, and can be proven very easily for 2€ by induction.
Therefore we may assume that y_; = 1. This does not affect the measure ,u;
which does not depend on the scaling of the parameters y,,.

Suppose that C is a cell at level i. A probability measure puc on C is
completely determined by probability measures i on the children C’ of C
(at level i — 1) together with the probabilities ;¢ (C’), which must sum to 1,
with the relation being that pucr(x) = pe(x)/uc(C’) forx € C'.

Suppose that 0 < m < i. Let the random variables X, Y be random cosets
of V,,, Vi_1 respectively, sampled according to the measure . Then X deter-
mines Y and so, by Lemma B.5, H(X, Y) = H(X). The chain rule for entropy,
Lemma B.4, then yields

H(X) = HY) + ) P(Y = NHX|Y = y).
y

Translated back to the language we are using, this implies that

Hye (Vi) = Hue (Vi) + D e (CYHyuey (Vin).
C/

@ Springer



1098 K. Ford et al.

Therefore

D YmHue (Vin) = Hye (Vi 1)+ZMC(C) > ymHpue (V).

o<m<i o<m<i
(Here we used our assumption that y; = 1.) Since H, (V) = 0 form >
i, and ]HIMC,(Vm) = 0 form > i — 1, we may extend the sums over all

m € {0, 1, ..., r — 1} thereby obtaining

D e (Vi) =Hu e (Vic) + Y p1e(€) Y ymHug, (V).

O<m<r (eld O<m<r

Since the ¢/ can be arbitrary probability measures, and H,, . (V;_1) depends
only on the value of p¢(C”), it follows from the inductive hypothesis that

HE@ =sup (37 e (V) (7.17)
o<m<r
= s (Hu v 1)+ZMC(C) > SnHie (V) (7.18)
we(C),per 0<m<r
= H, . (Vi_ cHi€ (y)), 7.19
uilflc)o( we (Vi 1)+;uc< i) (7.19)

with equality when going from (7.18) to (7.19) when pu¢ = MZ/,y for all
C’. Applying Lemma B.3 with the p; being the uc(C’) and the a; being
the fzc/(y), and noting that H, . (V;—1) = H(p) (where p = (p1, p2,...)), it
follows that

sup (Hye (Vien) + Y ue(@h ) =log (Y &) =i,

e (C) c’ C:C—C'
(7.20)

In addition, Lemma B.3 implies that equality occurs in (7.20) precisely when
pj =e% /Y e“, thatis to say when

e O
Yercmo e W w0
(Here we used again that y_; = 1.) Recalling that y¢cr = ,uc/ for all C’, we

see that the measure pc for which equality occurs in (7.17) is the restriction
of [Ly ”Fr yto C. This completes the inductive step. O

ne(Ch =
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7.5 Solution of the optimisation problem: proof

This section is devoted to the proof of Proposition 7.7. Strictly speaking, for
our main theorems we only need a lower bound on y;**(¥'), and for this it
suffices to show that ¢y is given by the right-hand side of (7.13). This could,
in principle, be phrased as a calculation, but it would look complicated and
unmotivated. Instead, we present it in the way we discovered it, by showing
that the RHS of (7.13) is an upper bound on y;**(¥), and then observing that
equality does occur when . = w* is the optimal measure (Definition 7.4) and
¢ = ¢* the optimal parameters (Definition 7.5). We establish this upper bound
using the duality argument from linear programming and Lemma 7.8.

To ease the notation, we use the shorthand d; := dim(V;) throughout this
subsection. Let us, then, consider the restricted optimisation problem, namely
Problem 7.2. The condition (7.2) may be rewritten as

> (ej = i) y; (Vi) +dm — dj) = cry1(dy —d)  (7.21)
j=m+1

for m = 0,1,...,r — 1. Therefore for any choice of “dual variables”
Y= (y()’ Vs eoes yr—l), Y05 -5 Yr—1 > O, we have

= 4 r—1
Z Ym Z (cj = cj+1)Hy,; (Vin) +dm — dj) = crt1 Z Y (dy — dy),
m=0 j=m+l m=0

(7.22)
which, upon rearranging, gives
r
D (ej = D E) + 1 Erit () > ¢ (7.23)
j=1
where
j—1
Ej(y) =Yy, (V) + dw — d))
m=0

forj=1,...,r,and

r—1

Er1(y) == 1= ) yu(dy — du).

m=0
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Since the ¢; — cjy1, j = 1,...,r, and ¢, 4 are nonnegative and sum to 1,
this implies that

cr41 < min max{E(y), ..., E-(y), Er+1(¥)}. (7.24)

yi=z0 Vi

By Lemma 7.8, this implies that

er1 < min, max(E{ ), - E{), Era1 (), (7.25)
where
j—1
Ej(y) :=h" )+ ) ymldn —dj)
m=0
j—1
= Y vy (Vi) +dw —d)),
m=0 !
(7.26)
forj=1,...,r,and /,L?ij’y is the measure v supported on I"; = V; N {0, l}k

for which the sum ), y,,H, (V},) is maximal, as defined in Lemma 7.8.
Now we specify a choice of y. To do this, we make a change of vari-

ables, defining p; = y<i/y<i+1. Note that for fixed yo > 0, choices
of y1,...,¥—1 > 0 are in one-to-one correspondence with choices of
Pls..., pr—1 With 0 < p; < 1. We must then have that

1 e Pi
tog /€ (o) = K (y/y<i) = =) = %h%y) (7.27)

<1l

for the cells C atlevel i, which may easily be proven by induction on the level i,
using the defining equations for the 2€ and f€ (see (7.15), (7.4) respectively).

Now choose the p; to satisfy the p-equations (7.5). In virtue of (7.27), the
Jj-th p-equation

FIp) = (1T (p))Pi et =
with j € {1, 2,...,r — 1} is equivalent to
E\(y) = Ej (), (7.28)

with E ; (y) defined as in (7.26) above.
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Recall that d| — dg = dim(V/Vp) = 1. Thus, if we choose

0—1/(10g3+z dit1 = )
a short calculation confirms that

Ert1(y) = Ej(y) = yo(log3 — 1). (7.29)

With this choice of y we therefore have, from (7.28) with j = 1,...,r — 1,
(7.29) and (7.25),

it — di
i1 < l(y)—(10g3—1)/<log3+ZLp>. (7.30)

In the above analysis, the wu; and the ¢; were arbitrary subject to the con-
ditions of Problem 7.2, thus Supp(u;) C Viand 1 =c¢; > ¢ > -+ > Cr41.
Therefore, recalling the definition of y,**(7") (see Problem 7.2), we have
proven that

r—1
dip1 — d;
W) < y=(0) < (og3 — 1)/ (log3+ Y pﬂ—p>
i1 1...0§

Proposition 7.7 asserts that equality occurs in this bound when ¢; = c’j'f and
wj = ,uj‘., where ¢* = (¢}, ..., c} 1) are the optimal parameters defined in
Definition 7.5, and n* and its restrictions Mj‘ are the optimal measures defined
in Definition 7.4. To establish this, we must go back through the argument
showing that equality occurs at every stage with these choices.

First note that (7.21) is equivalent (as we stated at the time) to

e(¥, basw(m)’ c, u) > e(?, ¢, u). The fact that equality occurs here when ¢ = ¢*

and u = p* is essentially the definition of the optimal parameters ¢* (Defini-
tion 7.5). That equality occurs in (7.22) and (7.23) is then automatic.

Working from the other end of the proof, the choice of y was made so that
E{(y) =--- = E(y) = Er+1(y). We claim that, with this choice of y,

wr = ,u,; (7.31)
By (7.16), it suffices to check that

w*(C) ehc/()’/ya)
w (C)  hCu/y<i)’
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This follows immediately from (7.6) and (7.27).

Since /,Lj is defined to be the restriction of u* to I';, it follows from (7.31)
that ,ujf = MFi,y’ and hence that E;(y) = E;.(y) forj=1,...,r.

Thus all 2r + 1 of the quantities E;.(y) (G =1....,r)and E;(y) (j =
1,...,r—+1)areequal. It follows from this and the fact that equality occurs in
(7.23) that equality occurs in (7.24), (7.25) and (7.30) as well. This concludes
the proof of Proposition 7.7. O

8 The strict entropy condition
8.1 Introduction

Fix an r-step, nondegenerate flag #". In the previous section, we studied a
restricted optimization problem (Problem 7.2) asking for the supremum of
cr+1 Whenranging over all systems (7, ¢, ) satisfying the “restricted entropy
condition”

e(”f/b’asic(m), c,p)=e(,e,m) m=0,1,...,r—1). (8.1)

The aim of the present section is two-fold: we wish to establish, under general
conditions, that an “optimal system” with respect to (8.1) satisfies the more
general entropy condition

e(e,p) =e(¥,e,p) @1V V), (8.2)

In addition, we want to show that if we slightly perturb such a system, we may
guarantee the strict entropy condition (3.5), which is a version of (8.2) with
strict inequalities for all proper subflags #” of ¥

Before stating our result, we need to define the notion of the automorphism
group of a flag.

Definition 8.1 (Automorphism group) For a permutation ¢ € S; and
o = (w],...,w) € Qk, denote by ow the usual coordinate permutation
action cw = (Wg(1), - - -, Wo (k). The automorphism group Aut(?') is the
group of all o that satisfy o V; = V; for all i.

Proposition 8.2 Let ¥ be an r-step, nondegenerate flag of distinct spaces.
Assume that the p-equations (7.5) have a solution, and define the optimal
measures p* on {0, 1}* as in Definition 7.4. Furthermore, assume that:

(a) no intermediate subspace is fixed by Aut(¥), that is to say there is no
space W that is invariant under the action of Aut(¥) and such that
Vi1 < W < V; (the inclusions being strict);
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(b) the optimal parameters ¢* exist and they are distinct and positive, that
is to say the system of Eq. (7.12) has a unique solution ¢* satisfying
l=ci>c3>>c >0

(c) the following “positivity inequalities” hold:

(i) Hufn+1(vm) > dim(Vyyq1/ Vi) forO <m <r —1;
(ii) HM?(VM_I) — Hu,’-‘(vm) <dim(Vy,/ Vip—1) for1 <m < i <r.
Then, for every ¢ > 0, there exists a perturbation ¢ of ¢* such that

1 =¢ >¢ > -+ > Cry1 = Ccry1 — € and such that we have the strict
entropy condition

e(V',¢, n*) >e(V,¢, u*)  forall proper subflags V' < V. (8.3)

We assume throughout the rest of the section that (a), (b) and (c) of Propo-
sition 8.2 are satisfied, and we now fix the system (¥, ¢*, u*). For notational
brevity in what follows, we write

e(V) :=e(?, c*, n).

Our strategy is as follows. First, we show the weaker “unperturbed” state-
ment that

e(?') > e(¥) forall subflags ¥' < ¥, (8.4)

noting that we have strict inequality for certain subflags ¥’ along the way.
Then, in Sect. 8.8, we show how to perturb ¢* to € so that the strict inequality
(8.3) is satisfied. We also sketch a second way of effecting the perturbation
which is in a sense more robust, but which in essence requires a perturbation
of the whole proof of (8.4).

8.2 Analysis of non-basic flags

We turn now to the task of proving (8.4). We will prove it for progressively
wider sets of subflags ¥, each time using the previous statement. In order, we
will prove it for subflags ¥ which we call:

(a) semi-basic: flags

withm > 1 (that is, #” is like a basic flag, but there can be more than one
copy of Vj,—1);
(b) standard: each Vi’ is one of the spaces V;;
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(¢) invariant: this means that o V/ = V/ for all automorphisms o € Aut(%")
and all i;
(d) general subflags, i.e. we assume no restriction on the V/ other than that
V/ < Vi
Note that a semi-basic flag is standard, a standard flag is invariant, and of
course an invariant flag is general.
We introduce some notation for standard flags. Let J C N, be the set of all
r-tuples j = (ji, ..., jr)suchthat j; < --- < j, and j; < iforalli. Then we
define the flag ¥/ = 7/ to be the one with V/ = V. This is a standard

J UlseensJir)
flag, and conversely evell'y standard flag is of this form. If we define

basicm) :=(1,2,....m—1,m, ..., m)

then basic(m) € J, and 7 o(m) agrees with our previous notation.

8.3 Semi-basic subflags

In this subsection we prove the following result, establishing that (8.4) holds
for semi-basic subflags, and with strict inequality for those which are not basic.

Lemma 8.3 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V") > e(¥) for all non-basic, semi-basic flags V.

We begin by setting a small amount of notation for semi-basic flags. We
note that the idea of a semi-basic flag, which looks rather ad hoc, will only be
used here and in Sect. 8.5.

Definition 8.4 (Semi-basic flags that are not basic) Suppose that 1 < m <
r — 1 and that m < s < r — 1. Then we define the element semi(m, s) € J to
bej=01,2,....m—1,m—1,...,m,...,m)suchthat j; =ifori <m-—1,
ji=m—1form <i <sandj; =mfori > s.

It is convenient and natural to extend the notationtos =m — 1l and s = r,
by defining

semi(m, r) = basic(m — 1), semi(m, m — 1) = basic(m). (8.5)

One can think of the semi-basic flags as interpolating between the basic flags.
Example When r = 3 there are three semi-basic flags 7 that are not basic,
corresponding to

J =semi(l, 1) = (0,1, 1),

J =semi(l,2) = (0,0, 1),

J =semi(2,2) = (1, 1,2).
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Proof of Lemma 8.3 Assume that ¥ is semi-basic but not basic. We will show
that

e(/j/sémi(m,s)) > e(7/s£>mi(m,s-|—l)) (86)

form <'s <r— 1. Since s,emi(m,r) = 4//b/asic(m—1)
Lemma 8.3.
To prove (8.6), we simply compute that

is basic, this establishes

e(dj/s/emi(m,s)) - e(”//s/emi(m,sﬂ))
= (C;ﬁ+1 - Cj+2)[Hus+1(Vm) —Hyy o (Vi—1) + dim(Vm/Vm—l)]

whenm < s <r —2,and

e(%émi(m,r—l)) - e(%émi(m,r))
= (C;k - C;k.;_l)[H/Lr(Vm) - Hur(vm—l) + dim(vm/vm—l)]
+ dim(Vm/Vm_l)cfH.

In both cases, the result follows from part (ii) of condition(c) of Proposition

8.2; in the second case, we also need to use our assumption that ¢y | > 0. O

8.4 Submodularity inequalities
To proceed further, we make heavy use of a submodularity property of the
expressions e().

Suppose that ¥/, ¥ are two subflags of #". We can define the sum 7"’ + Y
and intersection ¥' N Y by

'+ Ni=V + V]
and

AT = v
Both of these are indeed subflags of 7.
Lemma 8.5 We have

eV +e ) =e + 7)) +e(¥' NnY).
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Proof We first note that the entropies H, (W) satisfy a submodularity inequal-
ity. Namely, if Wy, W» are subspaces of QF and u is a probability measure
then

H, (W) + H,, (W2) = H, (W) N Wp) + H, (W) + W2). (8.7)

To prove this, consider the following three random variables:

e X is arandom coset of Wi + W>, sampled according to the measure (;
e Y is arandom coset of Wy, sampled according to the measure w;
e Z is arandom coset of W5, sampled according to the measure .

Then, more-or-less by definition,
H(X) = H, (Wi + W), H(Y) =H, (W), H(Z)=H,(W>).
Note also that Y determines X and so H(Y) = H(X,Y), and similarly

H(Z) = H(X, Z). Finally, (Y, Z) uniquely defines arandom coset of W1 N W5,
and so

H, (Wi N Wy) =H(Y, Z) = H(X, Y, Z).
The inequality to be proven, (8.7) is therefore equivalent to
H(X,Y)+H(X, Z2) > H(X, Y, Z) + H(X),
which is a standard entropy inequality (Lemma B.6; usually known as “sub-

modularity of entropy” or “Shannon’s inequality” in the literature).
Lemma 8.5 is essentially an immediate consequence of (8.7) and the formula

dim(Wp) + dim(W3) = dim(W; N W,) + dim(W; + W»).

(It is very important that this formula holds with equality, as compared to (8.7),
which holds only with an inequality.) O

This has the following immediate corollary when applied to standard sub-
flags. Here, the max and min are taken coordinatewise.

Corollary 8.6 Suppose that j, j, € J. Then

/ / ! /
e(7j) +e(7},) 2 e(Vnuxj,.jn) T €T, i)
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8.5 Standard subflags

Now we extend the result of the Sect. 8.3 to all standard subflags.

Lemma 8.7 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V'") > e(¥) for all standard, non-basic subflags V' < V.

Proof Let j € J with j non-basic, and let " = ¥. Then r > 3, since when
r < 2 all standard flags are basic. We proceed by induction on || j |0, the
case || jlloo = 1 being trivial, since then ¥ is semibasic and we may invoke
Lemma 8.3. Now suppose we have proved e(¥”’) > e(¥) for all non-basic
standard flags ¥/ = “//J/ with || jlleo < m, and let j € J with ||j|lco = m.
We apply Corollary 8.6 with j; = j and j, = basic(j, — 1). Noting that
max(j, basic(j, — 1)) = semi(j,, s), where s is the largest index in j such
that j; < j., we see that

6(7/]'/) + e(/'//b/asic(jr—l)) =z 6(7//’*) + e(ﬂj/s/emi(jhs))» (8.8)
where
J :=min(j, basic(j. — 1)).

Suppose that both of the flags on the right of (8.8) are basic. If semi(j,, s)
is basic then it must be basic(j,), which means that s = j, — 1. But then
J«= U1,y Js» jr—1, ... j- — 1) which, if it is basic, must be basic(j. — 1);
this then implies that j; = i for 1 < i < s, and hence that j = basic(j,), a
contradiction. Thus, at least one of the two flags j ., semi(j,, s) on the right
of (8.8) is not basic. Since || j,|lco < [|Jlloo = m, the induction hypothesis
together with Lemma 8.3 implies that e(¥”) > e(¥), as desired. O

8.6 Invariant subflags

Now we extend our results to all invariant flags, but now without the strict
inequality.

Lemma 8.8 (Assuming that (a), (b) and (c) of Proposition 8.2 hold) we have
e(V") = e(¥) for all invariant subflags V' < V.

Proof We associate a pair (i, £), i > £, of positive integers to ¥, which
we call the signature, in the following manner. If ¥” is standard, then set
(i, £) = (—1, —1). Otherwise, let i be maximal so that Vi/ is not a standard
space V;, and then let £ be minimal such that Vl./ < Vy. The fact that £ < i
is immediate from the definition of a subflag. We put a partial ordering on
signatures as follows: (i’, €') < (i, £) iff i’ < i,orifi’ =i and ¢’ < £. We
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proceed by induction on the pair (i, £) with respect to this ordering, the case
(i, £) = (—1, —1) handled by Lemma 8.7.

For the inductive step, suppose ¥ is nonstandard with signature (i, £). By
submodularity,

e(V) + e(yb/asic(zq)) > e(N) +e(7), (3.9)
where
N=7"0Nwsic—1y: 2= 7"+ Poasice—1y-

Suppose that 7#1, ¥ have signatures (i1, £1), (i2, £2), respectively. We show
that

(i1,€1) 2 (i, 0) and (i2,€2) 2 (i, 0). (8.10)

Both 7] and # are invariant flags. Thus, if (8.10) holds, then both flags on the
right-hand side of (8.9) have strictly smaller signature than ¥, and the lemma
follows by induction.

Finally, we prove (8.10). Note that if j > i, then VJf is a standard space V;,
and thus so are (#1); and (#2) ;. In particular, i1 <7 and i < i. We have that
(#3); contains V,_1, is not equal to V,_1, and is contained in V. But (#3);
is invariant, and hence by our assumption that (a) of Proposition 8.2 holds,
(73); = V. Consequently, i» < i if %5 is nonstandard. In the case that ¥] is
nonstandard, we also have that £; < ¢ because every space in the flag ] is
contained in Vy_1. This proves (8.10). O

8.7 General subflags

In this section we establish (8.4), that is to say the inequality e(¥") > e(¥)
for all subflags ¥, of course subject to our standing assumption that (a), (b)
and (c) of Proposition 8.2 hold. We need a simple lemma about the action of
the automorphism group Aut(#") on subflags.

Lemma 8.9 Leto € Aut(¥) andlet V" be asubflag of V. Then one may define
anew subflag o (V"), setting o (V"); := o (V/). Moreover, e(o (V")) = e(V").

Proof Since ¥ is a subflag, V/ < V;. Applying o, and recalling that V; is
invariant under o, we see that G(Vi’ ) < V;. Therefore o (¥”) is also a subflag.
To see that e(o(¥”")) = e(¥”), recall Lemma 7.6, which implies that y; is
invariant under o, since the trees .7 (¥#”) and .7 (o (¥")) are isomorphic and
we have dim(VJf) = dim(a(VJf)) for all j. It follows that, for any subspace

W < QF,
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Hy, (0(W)) = = > i (x) log i (6 (W) + x)

= — Z wi (o () log i (o (W + y))
y

=— Zui(y) log p; (W 4 y)
y
— H,,, (W).

This completes the proof of the lemma. |

Proof of (8.4) Let m be the minimum of e(¥#”) over all subflags ¥’ < ¥,
and among the flags with e(¥”) = m, take the one with ), dim V/ min-
imal. Let 0 € Aut(?) be an arbitrary automorphism. By Lemma 8.9,
e(?’) = e(o(¥")), and hence submodularity implies that

(V) =z eV +a(V)) +e(V Na (V). (8.11)

In particular, we have e(¥ No (¥’)) = m (and also e(¥' + o (V")) = e(¥),
but we will not need this). Moreover, by the minimality of ) _; dim V/,

> dim(V/ N (V) = dim V;,
i i

which means that ¥” is invariant. Invoking Lemma 8.8, we conclude that
m=e(?¥) =e). O

8.8 The strict entropy condition

In this section we complete the proof of Proposition 8.2 by showing how to
perturb (8.4) to the desired strict inequality (8.3).

First argument. Consider first the collection I/ of all subflags ¥ which satisfy,
for some 1 < j < r — 1, the relations

Vi=Vi (#)). Via<Vy<V;

These are flags which differ from 7 in exactly one space. Our first task will
be to establish the strict inequality

e(?V) > e(?) (8.12)

for all ¥ € U, by elaborating upon the argument of the previous subsection.
We already know that e(?#”) > e(¥), so suppose as a hypothesis for contra-
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diction that e(¥”’) = e(¥) for some ¥’ € U. Amongst all such flags, take
one with minimal ) dim(V/). By submodularity, we have (8.11) and hence
e(V' ' No(¥")) =e(¥) for any automorphism o € Aut(¥'). But

V' No(¥V)=(Vy,..., Vj_],VJ{ﬂU(VJ{), Viet, ..., Vi)

is evidently in U/ as well, and by our minimality assumption it follows that
dim(VJf N a(VJf)) = dim(VJf). Thus, ¥’ is invariant, and by assumption (a)
of Proposition 8.2, it follows that V]f = Vj_1. Thus, ¥ " is a standard flag,

which is not basic since j < r — 1. Hence, e(¥”) > e(¥") by Lemma 8.7. This
contradition establishes (8.12).

Let1 < j <r—1andletV be a space satisfying V; 1 < V < V;. Let
7" be the subflag (1) = Vo < ... V1 <V < Vjy1 < --- < V,. Then one
easily computes that

e(V") —e(¥) = (¢j — cjp1) (Hy,; (V) — dim(V;/V)),
and so (8.12) implies that
Hy,; (V) > dim(V;/V). (8.13)
Now let ¢ > 0 be sufficiently small and consider the pertubation € given by

—1

~.

~ ~ « 1 i .
cr =1, CjZCj—E e 2<j<r+1).
(=1
Evidently, | =¢; > ¢ > --+ > ¢y41 2> ¢;, | — &, as needed. For any proper

subflag ¥’ < 7,

6(7//7 Ev IL*) - 6(7/7 ev M’*)
| QR
=e(V) —e(¥) + 5 > el (Hy, (V) — dim(V;/ V)
j=1

1
+5(e+ g2+ -+ &) dim(V,/ V).
Let J = min{j : ij # V). If J = r, then dim(V,/V/) > 1 and the right
side above is at least £¢/2 + O(e"), which is positive for small enough ¢. If

J<r—1,then V;_| < V} < V; and we see that the right side above is at
least

e(V) —e(¥) + &’ (Hy, (V) —dim(V;/V))) + O’ ),
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which is also positive for sufficiently small ¢ by (8.4) and (8.12).

Second argument. We now sketch a second approach to the proof of Proposition
8.2. The idea is to introduce a small perturbation of our fundamental quantity
e(), namely

r r
en (' e, ) =) (cipr — e)H, (V) + Y ejdim(Vi/Vi_)),
j=1 j=1

where A &~ 1. Note that e1 (¥”, ¢, u) = e(¥’, ¢, p), and also that e, (¥, ¢, )
does not depend on A, since all the entropies H,;(V;) vanish. Define the A-
perturbed optimal parameters ¢*(A) to be the unique solution to the A-perturbed
version of (7.11), that is to say the equations

1 (Ppasic(my € M), w) =ex (¥, ¢* (), p),m =0,1,....r — L.

By a continuity argument, these exist for A sufficiently close to 1 and they
satisfy limy ;1 ¢* (1) = ¢*(1) = ¢*.
Now, assume that A is close enough to 1 so that

l=cf) > ;) > >cr (M) >0

and we have the following “positivity inequalities”:

(i) AHp (Vi) > dim(Vipg1/ Vi) for 0 <m <r — 1
(i) A (Hyx (Vin—1) = Hyr (Vi) < dim (Vi / V1) for 1 <m <i <r.

These conditions can be clearly guaranteed by a continuity argument and our
assumption that they hold when A = 1. For a parameter A satisfying (i) and
(i1) above, the proof of (8.4) holds verbatim for the A-perturbed quantities e;,
allowing one to conclude that

en(V', ¢V, w) = e (¥, e* (1), 1)

for all subflags ¥” of ¥
Now suppose that A < 1. Then we have

e(V e, 1) = en (¥ e, nb),

with equality if and only if ¥’ = ¥ because Supp(;f;) = V; N{0, 1}* for all
J- Therefore if ¥ is a proper subflag of ¥ we have

e(?', ¢*(\), k) > ex (¥, c* (1), u*)
2 e}»(/y/a C*()")’ I"*) = e(,y/’ C*()\')’ IL*)
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Taking ¢ = ¢*()) for A sufficiently close to 1, Proposition 8.2 follows.
Part IV. Binary systems

9 Binary systems and a lower bound for g;

In this section we define certain special flags ¥ on Qk, k = 2", which we call
the binary systems of order r. It is these systems which lead to the lower bound
on B given in Theorem 2, which is one of the main results of the paper.

In this section we will define these flags (which is easy) and state their basic
properties. The proofs of these properties, some of which are quite lengthy,
are deferred to Sect. 10.

We are then in a position to prove part of one of our main theorems, Theorem
2 (a), which we do in Sect. 9.2.

For the convenience of the reader, recall us here the three parts of Theorem
2, as stated at the end of Sect. 1.3:

(a) Showing that for every r > 1, Bor > 6, for a certain explicitly defined
constant 6,;

(b) Showing that lim,_, 0,1 /r exists;

(c) Showing that (1.1) has a unique solution p € [0,1/3] and that p =
21im, 00 6,7

9.1 Binary flags and systems: definitions and properties

Definition 9.1 (Binary flag of order r) Let k = 2" be a power of two. Identify
QF with QP (where P[r] means the power set of [r] = {1,...,r}) and
defineaflag 7, (1) = Vo < Vi < --- < V, = QFI"] as follows: V; is the
subspace of all (xs)sc[r] for which xg = xgn;) forall § C [r].

Remark We have dim(V;) = 2!, and V, = (@P[’], so the system is trivially
nondegenerate. Note that we have been using the letter » to denote the number
of V; inthe flag ¥, throughout the paper. It just so happens that, in this example,
this is the same r as in the definition of k = 2",

One major task is to show that optimal measures and optimal parameters,
as described in Sect. 7, may be defined on the binary flags. Since we will be
seeing them so often, let us write down the p-equations (7.5) for the binary
flags explicitly:

frj+l(p) — frj(p)/’jezj, j=12,.... 9.1
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Proposition 9.2 Let V' be the binary flag of order r. Then

(a) the p-equations (9.1) have a solution with 0 < p; < 1 fori > 1, and
consequently we may define the optimal measures p* on {0, 1}* as in
Definition 7.4,

(b) the optimal parameters c* (in the sense of Definition 7.5) exist.

We call the binary flag " (of order r) together with the additional data of the
optimal measures i = p* and optimal parameters ¢ = ¢*, the binary system
(of order r). We caution that for fixed i (such as i = 2) the parameters ¢; do
depend on r, although not very much.

The second major task is to show that the binary systems satisfy the entropy
condition (3.4), or more accurately that arbitrarily small perturbations of them
satisfy the strict entropy condition (3.5). In the last section we provided a
tool for doing this in somewhat general conditions, namely Proposition 8.2.
That proposition has four conditions, (a), (b), (c)(i) and (c)(ii) which must be
satisfied. Of these, (b) (the existence of the optimal parameters ¢*) has already
been established, assuming the validity of Proposition 9.2. We state the other
three conditions separately as lemmas.

Lemma 9.3 Suppose that Vi_1 < W < V; and that W is invariant under
Aut(?). Then W is either Vi _1 or V;. Thus, the binary flags satisfy Proposition
8.2 (a).

Lemma 9.4 We have HM;H (Vin) > 2" for 0 < m < r — 1. Thus, the binary
flags satisfy Proposition 8.2 (c)(i).

Lemma 9.5 We have H,L;*(qu) — HM?(Vm) <2l for1 <m<i<r.
Thus, the binary flags satisfy Proposition 8.2 (c)(ii).

The proofs of these various facts are given in Sect. 10.

9.2 Proof of Theorems 2 (a) and 7

We are now in a position to complete the proof of Theorem 2 (a), modulo the
results stated above. First, we define the constants 0,.

Definition 9.6 Let p1, po, ... be the solution to the p-equations (9.1) for the
binary flag. Then we define

r—1 2['
6, := (log3 — 1)/(1og3+§plmpi).
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Proof of Theorem 2 (a) By Proposition 7.7, 6, is equal to ¢, where ¢* are

the optimal parameters on the binary flag ¥ of order r, the existence of which
is Proposition 9.2 (b) above.

Fix § € (0, 6,/2]. By Proposition 8.2 (the hypotheses of which are satisfied
by Lemma 9.3, Proposition 9.2 (b) and Lemmas 9.4 and 9.5), there exists a
perturbation ¢ of ¢* such that

l=¢>0>>6y12¢,,—8=0,-8>0

and (7, ¢, u*) satisfies the strict entropy condition (3.5). By Lemma 5.2, there
exists some ¢ > 0 such that the “entropy gap” condition (5.1) holds. Finally,
by Remark 7.1 (b), we have that Supp(ujf) = I'; for all j. Hence, Proposition
5.5 implies that 8- > ¢,41 = 6, — 8. Since § is arbitrary, this proves Theorem
2 (a). O

Proof of Theorem 7 The upper bound S < yx is established in Sect. 4. The
lower bound B > yx follows by Lemma 5.3, Proposition 5.5 and the fact that
there exists at least one system satisfying the strict entropy condition (3.5), as
per the proof of Theorem 2 (a) above. O

9.3 Remarks on Theorem 2 (b)

Theorem 2 (b) is a problem of a combinatorial and analytic nature which can
be considered more-or-less completely independently of the first three parts
of the paper.

To get a feel for it, and a sense of why it is difficult, let us write down the
first two p-equations (9.1) for the binary flags. The equation with j = 11is

20) = M (p)e. 9.2)

This has the numerical solution p; ~ 0.306481.

To write down the p-equation for j = 2, one must compute f3(p), and
without any additional theory the only means we have to do this is to draw the
full tree structure for the binary flag ¥ of order 3 (on QP). This is a tractable
exercise and one may confirm that

T3 () = (3P +4-2°1 4 4)P2 4 8(2- 2P + 4)P
+16-4°2 4+ 8. (2°1 42)P2 432.2P2 4 16.

The p-equation with j = 2 is then
o) = (o),
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where (recall from Fig. 1) f12(p) = 31 + 4. 2°1 4 4. This may be solved
numerically, with the value p» & 0.2796104 . . ., using Mathematica.

Such a numerical procedure, however, is already quite an unappetising
prospect if one wishes to compute p3.

Consequently, we must develop more theory to understand the p; and to
prove Theorem 2 (b). This is the task of the last two sections of the paper.

10 Binary systems: proofs of the basic properties

In this section, we prove the various statements in Sect. 9.1.

We begin, in Sect. 10.2, by proving Lemma 9.3. This is a relatively simple
and self-contained piece of combinatorics.

In Sect. 10.3 we introduce the concept of genotype, which allows us to
describe the tree structure induced on {0, 1}* by the binary flag # . In Sect. 10.4
we show how to compute the quantities £ (p) in terms of the genotype.

We are then, in Sect. 10.5, in a position to prove Proposition 9.2 (a), guar-
anteeing that the p; exist and allowing us to define the optimal measures pu*.

In Sect. 10.6 we establish the two entropy inequalities, Lemmas 9.4 and 9.5.

Finally, in Sect. 10.7 we prove Proposition 9.2 (b), which confirms the
existence of the optimal parameters ¢*.

10.1 Basic terminology

Throughout the section, ¥ will denote the binary flag or order r, as defined in
Definition 9.1. That is, we take k = 2", identify Qk with QP11 and take V; to
be the subspace of all (xg)scp[r for which xg = xgnp;; forall § C [r].

In addition, we will write 0;, 1; for the vectors in {0, I}P[j ] consisting of
all Os (respectively all 1s). We call these (or any multiples of them) constant
vectors.

Finally, we introduce the notion of a block of a vector

x = (xg)sc € Q7ML

For each A C [i] we consider the 2"~ -tuple

X(A, 1) = (XauA) A'cli+1,....r)-
We call these the i-blocks of x.

Remark 10.1 (a) One should note carefully that the i-blocks are strings of
length 2" %, In this language, V; is the space of vectors x, all of whose i-
blocks are constant.

(b) If we put together the coordinates of the i-blocks x(A,i) and
x(AA{i}, i), then we obtain the (i — 1)-block x(ANT[i —1],i — 1).
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In order to visualize the structure of the flag " and of the partition of
{0, 1}PU] by the cosets of V;, it will be often useful to write elements of
{0, 1}PU] as strings of Os and 1s of length 2". When we do this we use
the reverse binary order, which is the one induced from N via the map

f(S) =2 552

Example 10.2 For concreteness, let us consider the case r = 3. In this case,
the ordering of the coordinates of x is

(Xg, X3}, X(2}, X{2,3}> X{1}, X{1,3}, X{1,2}, X[3])- (10.1)

If x = 01001110 then its 2-blocks are 01, 00, 11, 10, and its 1-blocks are
0100, 1110.

10.2 Automorphisms of the binary system

Proof of Lemma 9.3 We begin by defining some permutations of P[r] for
which, we claim, the corresponding coordinate permutations give elements
of Aut(?). Suppose that 1 < j < r and that A C [j — 1]. Then we may
consider the permutation 7 (A, j) defined by

. SA{j} ifSN[j—1]=A,
7(A, sy =17V / .
S otherwise.

To visualize the action of this permutation on the coordinates of a vector x, it
is useful to order its coordinates as we explained above. The action of (A, j)
is then to permute the two adjacent j-blocks x(A, j) and x(AU{j}, j), which
together form the (j — 1)-block x(A, j — 1), as per Remark 10.1(b). More
concretely, below are some examples of the action of the permutations 7w (A, j)
in the setting of Example 10.2:

w({2},3)

XX Xy Xgs o Xpr o )

7(0,2)

/\

Xy 3B Fe X{2.3}] X{1} X{1,3} X{1,2} X[3]

w({1},2)
/_\
Xg X{3) X{2} X{2,3}) Xy X{1,3}] [*{1.2} X13]]
(@, 1)
Xy X{3) X2} X{2.3})] X X{1,3} X{(1,2} X[3]]
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If the readers wish, they may translate the arguments below in the above
more visual language.
Claim. w(A, j) preserves V; for all i, and therefore 7 (A, j) € Aut(¥).

Proof Suppose that x = (xs)sc[;; € Vi and let us write for simplicity 7
instead of 7 (A, j).
Suppose first that j > i. Then 7 (S) N [i] = S N [i] for all S, and so

Xr(S) = Xz(SN[i] = XSN[i] = XS-

where the first and last steps used the fact that x € V;. Thus the claim follows
in this case.

Suppose that j < i. Lett > i. Then the conditions (SA{t}) N[j —1]=A
and S N[j — 1] = A are equivalent. Hence, if SN [j — 1] = A, then we find
that

Xa(Saft)) = XSAA{j} = XSA(j} = Xn (),

where we used that x € V; and that t > i at the second step. Similarly, if
SN[j—1] # A, then

Xr(SA{t)) = XSA{r} = XS = Xz (S)-

In all cases, we have found that x;(sa(;)) = Xz(s). Since this is true for all
t > i, m(x) indeed lies in V;. This completes the proof of the claim. O

Suppose now that W is an invariant subspace of ¥ satisfying the inclusions
Vi1 < W < V;. We want to conclude that W = V;. To accomplish this, we
introduce some auxiliary notation.

For each A C [i — 1], we consider the vector yA = (y?)gc[r] € V; that is
uniquely determined by the relations yj“ =1, yg‘u M= —1and y‘S“ = 0 for all

other S C [i]. There are 2/ ~! such vectors y#. They are mutually orthogonal,

hence linearly independent. In addition, together with V;_1, they generate all

of V;. Since V;_1 < W < V;, there must exist A C [i — 1] such that yA eW.
Now, it is easy to check that for any j < i and any A C [i — 1], we have

m(AN[j =11, jyt = y*oUh,
From the above relation and the invariance of W under Aut(%), it is clear that
if W contains at least one vector yA with A C [i — 1], then it contains all such

vectors. Since we also know that V;_; < W < V;, we must have that W = V;,
which completes the proof of Lemma 9.3. O
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Remark A minor elaboration of the above argument in fact allows one to show
that the subspaces of QF!"1 invariant under Aut(?%) are the V;, the orthogonal
complements of V;_1 in V;, and all direct sums of these spaces. However, we
will not need the classification in this explicit form.

10.3 Cell structure and genotype

The cosets of V; partition {0, 1}7U"] into sets which we call the cells at level i.
Our first task is to describe these explicitly.

Consider w, o’ € {0, 1}7"] Tt is easy to see that w — ' € V; (and so w, o’
lie in the same cell at level i) if and only if for every A C [i] one of the
following is true:

(a) Both w(A, i) and w'(A, i) are constant blocks (that is, they both lie in
{Or—i N P })

(b) w(A,i) = &' (A, i), and neither of these blocks is constant (that is, neither
is0,_; nor1,_;).

Thus a cell at level i is completely specified by the positions A of its constant
i-blocks, and the values w(A, i) (for an arbitrary w € C) of its non-constant
i-blocks.

Example With r = 3 and w = 01001110, the level 2 cell that contains w is
the set

{w,01111110, 01000010, 01000010}.

Its constant 2-blocks are at A = {2} and A = {1}. Its non-constant 2-blocks
are at A = ( (taking the value w(A,2) = 01) and at A = {1, 2} (taking the
value w(A, 2) = 10). The level 1 cell containing w is just {w}.

The positions of the constant i-blocks play an important role, and we intro-
duce the name genotype to describe these.®

Definition 10.1 (Genotype) If C is a cell at level i, its genotype g(C) C Pli]
is defined to be the collection of A C [i] for whichw(A, i) € {0,_;, 1,_;} for
all w € C. We refer to any subset of P[i] as an i-genotype. If g, g’ are two
i-genotypes, then we write g < g’ to mean the same as g C g’. We write |g|
for the cardinality of g.

Example If C is the cell at level 2 containing @ = 01001110, the genotype
g(C) is equal to {{2}, {1}}. (We have listed these sets in the reverse binary
ordering once again.)

8 The term genotype is appropriate, as each component in g acts like recessive gene with respect
to child cells.
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Definition 10.2 (Consolidations) If g is an i-genotype, then its consolidation
isthe (i —1)-genotype g* definedby g* := {A’ C [i—1]: A" € g, A'U{i} € g}
(cf. Remark 10.1 (b)).

Let us pause to note the easy inequality
1 * i—1
Slgl =171 =gl =27, (10.2)

valid for all i-genotypes.
The genotype is intimately connected to the cell structure on {0, 1}¥ induced
by 7, as the following lemma shows.

Lemma 10.3 We have the following statements.

(a) If C is a cell, we have |C| = 2/18(O)1,

(b) Suppose that g is an i-genotype. There are (2% — 2)% ~18l cells (at level
i)withg(C) = g.

(c) If g(C) = g, and if C' is a child of C, then g(C") < g*. In particular,
18(C| < 31g(O)l.

(d) Suppose that g(C) = g. Suppose that g’ is an (i — 1)-genotype and that
¢’ < g*. Then number of children C' of C with g(C') = g’ is 2181=18"1=18'I,

(e) Suppose that C is a cell at level i with g(C) = g. Then the number of
children of C (at level i — 1) is 2181=21g"I318™,

Proof (a) This is almost immediate: for each of the A C g(C) of constant
blocks, the are two choices (0,_; or 1,_;) for w(A, i).

(b) To determine C completely (given g), one must specify the value of
each of 2/ — |g| non-constant i-blocks. For each such block, there are 227 2
possible non-constant values.

(c) Aset A C [i — 1] can only possibly be the position of a constant block
in some child cell of C if both A" and A’ U {i} are the positions of constant
blocks in C, or in other words A’, A’ U {i} € g, which is precisely what it
means for A’ to lie in g*.

Note that the child cell C’ containing w only does have a constant (i — 1)-
block at position A" if w(A’,i) = w(A" U {i}, i), which may or may not
happen.

The second statement is an immediate consequence of the first and (10.2).

(d) Let A € g. We say that A is productive if A’ :== AN[i — 1] € g*, or
equivalently if A" and A" U {i} both lie in g (or, more succinctly, AA{i} € g).
These are the positions which can give rise to constant (i — 1)-blocks in children
of C. There are 2|g*| such positions, coming in |g*| pairs. To create a child C’
with genotype g’, we have a binary choice at |g*| — |g’| of these pairs: at each
of them either w(A’,i) = 0,_; and w(A" U {i}, i) = 1,_;, or the other way
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around. There are |g| — 2|g™| non-productive positions A € g, and for each of
these there is also a binary choice, either w(A,i) = 0,_; or w(A,i) = 1,_;.
The total number of choices is therefore 2/8*1-18l x 2181-218"1 which is exactly
as claimed.

(e) This is immediate from part (d), upon summing over g’ C g*. O

10.4 The f€(p) and genotype

We begin by recalling from (7.4) the definition of the functions f€(p). Here
p = (p1, ..., pr—1) is a sequence of parameters, and we define pg = 0. If
C has level 0, we set f€(p) = 1, whilst for C at level i > 1 we apply the
recursion

=3 <@

CcC—>C’

Proposition 10.4 The quantities € depend only on the genotype of C, and
thus for any i-genotype g we may define F(g) := f€(p), where C is any cell
with g(C) = g. We have the recursion

F(g) = Z 2|g|—|g*|—|g’|F(g/)pi71. (10.3)
g/gg*

Remark The F(g) depend on p, as well as on i (where g is an i-genotype)
but we suppress explicit mention of this. For example, it should be clear from
context that g on the left is an i-genotype, but the sum on the right is over
(i — 1)-genotypes, since g* is an (i — 1)-genotype by definition.

Proof This is a simple induction on the level i using the definition of the
f C(p), and parts (c) and (d) of Lemma 10.3. O

Let us pause to record two corollaries which we will need later.

Corollary 10.5 Suppose that g1, g2 are two i-genotypes with g1 < g». Then
F(g1) < F(g2).

Proof. Note that g} < g7, and also that |g1]| — [g]| < |g2] — |g5], since

gl —lg"| = Ig" | +#{A CPli —1]: #({A, AU {i}}Ng) =1}.
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Hence, by two applications of Proposition 10.4,

F(gy) = 2/s11-lgil Z 27181 F (g'yPin1
g'<s}
< 2le2l=lssl Z 2_|g/|F(g/)Pi71 = F(22).
§'<eiy O
Recall that I'; is the cell at level i containing 0. Note that g(I";) = P[i].
Corollary 10.6 If C # T; is a cell of level i, then f€(p) < fli(p).

Proof This is simply the special case go = P[i] of the preceding corollary.
The inequality is strict because if g < P[i], then g* < P[i — 1]. O

10.5 Existence of the p;

In this section we prove Proposition 9.2 (a), which asserts that for the binary
flags there is a unique solution p = (p1, P2, ...) to the p-equations (9.1).
In fact, we will prove the following more general fact which treats the jth
p-equation in isolation, irrespective of whether the earlier ones have already
been solved.

Proposition 10.7 Let j € N and let p1,...,pj—1 € (0,1). Then there
is a unique p; € (0, 1) such that the jth p-equation for the binary flag,

fLliti(p) = e fLi(p)Pi, is satisfied.

Remark We will prove in the next section (Lemma 11.2) that for the solution
P1, P2, ... to the full set of p-equations we have p; < p; = 0.30648 ... for
all j. For a table of numerical values of the p;, see Table I in Sect. 12.

Before beginning the proof of Proposition 10.7, we isolate a lemma.
Lemma 10.8 Fixa (j — 1)-genotype g'. Then
Z 218" = =212 el
g:g* =g
where the sum is over all j-genotypes g.

Proof In order to determine g, we must determine for each A C [j — 1]
whether A and/or A U {j} lie in g. Since we are only summing over g whose
consolidation g* contains g’, we must have that A and A U {;j} belong to g for
all A € g/, so the membership of A and AU {j} to g is fully determined for all
A e g/.Forany A C [j — 1] with A ¢ g/, we have four choices, according to
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whether A € g and whether A U {j}. If both of these conditions hold, then we
further have A € g*; in the other three cases, we have A ¢ g*. We conclude
that

Yool = T2 [Ta-27' +3.270 =27¥ 2 e

g:g*2g' Aeg’  Agg
This completes the proof. O

Proof of Proposition 10.7 For j = 1, the equation to be satisfied is 3°! + 4 -
2P1 4+ 4 = ¢%3P1 It may easily be checked numerically that this has a unique
solution p; = 0.306481 ... in (0, 1). One may also proceed analytically as
follows. Define

G(x)=G(x) =e"3" — (3" +4-2" +4)
=3%(e? — (1 +4-Q2/3)" +4/3Y),

In particular, the roots of G are in correspondence with the roots of
H(x)=e*—(1+4- (2/3)* +4/3%). This is clearly a continuous and strictly
increasing function. In addition, H (0) = e2—9<0and H(1) =e2—5> 0.
Thus, H has a unique root p; € (0, 1), and so does G.

Now assume j > 2. It turns out that much the same argument works,
although the details are more elaborate. Assume that) < p; < 1forl <i < j.
Define

G() = Gj) = e (FT1(p)* — [T (o1 ..., pj-1.%).
Proposition 10.4 implies that
G = ¥ (FPL* =Y 22 sl F (g
= F(PLjD* - H(x), g (10.4)
where

Hx) = e — 22y 27l (F(g)/ F(PLjD)"
8

and the sums over g run over all genotypes g C P[] at level j. Since (by an
easy induction) F(P[j]) > O, it follows that G and H have the same roots.
The latter is a continuous and strictly increasing function because Corollary
10.6 implies that F(g)/F(P[j]) < 1, with equality only when g = P[]j].
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Moreover, H(0) = ¢? — 32 2 0. Therefore to complete the proof it suffices
to show that H(1) > 0.
To show this, we use (10.4). First note that

FPLD = V2?3 278l (g)vin, (10.5)
g/

where the sum is over all genotypes g’ of level (j — 1).
Next, by Proposition 10.4 and Lemma 10.8 we have

Z 2_|g|F(g) — Zz—lg*l Z 2—|gl\F(g/)Pj71

gCPIlj] 8 g'<g*
_ Z 2*|8/|F(g/)/0j—1 Z 7—lg*l
g'CPlji—1] g:g*2g
= 1/2% Y 147 (ghri, (10.6)
"

Putting (10.4), (10.5) and (10.6) together we obtain

H() - F(PL)) = (ev2)? Y 2711 F(g/yrin
g/

~ (W18 Y 147 R (ghyei
g/

Since ¢ > 7, we have v/14 < e~/2, and thus H(1) > 0. This completes the
proof. O

10.6 Entropy inequalities for the binary systems

We begin with a lemma which will be used a few times in what follows.

Lemma 10.9 Ler C’ be one of the children of Ty, thus C’ is a cell at level
(i —1). Then

_Ai—1
wiC) < @iz =€,
and equality occurs only when C' = T';_.

Proof We showed in Corollary 10.6 that f C/(p) < fli-1(p), for any choice
of p = (p1, ..., pr—1), and for any child C" of T'; with C’ # I';_;. Now that
we know that the p-equations have a solution, it follows immediately from
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the definition of the optimal measures * in (7.6), applied with C = I';, that
wi(C" < w;(T;_1), again for any child C” of T'; with C’ # TI';_. Finally,

observe that u; (I';_1) = e 2! by (7.7). O

Proof of Lemma 9.4 This follows almost immediately from Lemma 10.9 with
i = m + 1. Indeed since p;,;4+1(C) < e~2" for all cells C at level m, with
equality only for C = I';,,, we have

Hyty 1 (Vin) = Z pm41(C)log ———— > 2" 3" 11,1 1(C) =27,
C

Mm+1(C)
This concludes the proof. O

Proof of Lemma 9.5 Let u = p; withm < i < r. We must show that
H, (Vi—1) — H, (Vi) < 2771 (10.7)
Let C denote a cell at level m and C’ a child of C at level (m — 1). In
addition, let the notations g(C) and g(C)* refer to the genotype of C and its

consolidation, as defined in Definitions 10.1 and 10.2. By the definition of
entropy, Lemma 10.3 (e), and the concavity of L(x) = —x logx we find that

(P!
Hyu(Vin—1) = Hy (V) = )~ 1(C) L(—)
: : ; ; n(C)
< D m(C)log(#C")
C

= u(C)log [2'8(C>‘(3/4)'g<c>*']. (10.8)
C

Now by (10.2) we have |g(C)*| > |g(C)| — 2m=1 whence

2|g(C)I(3/4)|g(C)*| < 2|g(C)I(:),/4)\<§(C)|—2m_1 — (3/2)|g(c)|(4/3)2"’_1‘
(10.9)

Since we also have that |g(C)| < 2", we infer that
2180 (3 /4yl8 (€)1 < 32" (10.10)

This and (10.8) already imply the bound
Hy (Vin-1) = By (Vi) < 2" log3,
which is only very slightly weaker than Lemma 9.5.
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To make the crucial extra saving, write S for the union of all cells C at level
m with [g(C)| > 32™. We claim that

n(s) < % (10.11)

We postpone the proof of this inequality momentarily and show how to use it
to complete the proof of Lemma 9.5.

Observe that if C is not one of the cells making up S, that is to say if
1g(C)| < 327, then

tog [214€) 37451 ] < tog [ 32/ a3 ]

3
< (5 log(3/2) + 10g(4/3)> -l
<0.9.2"1

where we used (10.9) to obtain the first inequality. Assuming the claim (10.11),
it follows from this, (10.8) and (10.10) that

Hy (Vin—1) = Hy (Vin) < 277 (log 3)2(S) 4 0.9 - 2"~ (1 — u(S))

< Zm—l’

which is the statement of Lemma 9.5.

It remains to prove (10.11). Recall that 1 <m < i < r.

When 1 < m < 2, the only integer in (%2’”, 2™11s 2™. Hence, if a cell C
at level m satisfies the inequality |g(C)| > %2’", we must have |g(C)| = 2™.
The only cell with this property is I',. Since we have u(I'y,) = €2 2 < e™!
by (7.7), our claim (10.11) follows in this case. ~

Assume now that m > 3. Let S be the union of all children C of I'; (thus
these are cells at level i — 1 > m) which contain a cell C in S. By repeated
applications of Lemma 10.3 (c) we have |g(C)| > 2/~17"(32™) = 32!~ for
any such C. Lemma 10.3 (d), applied with C = I';, implies that the number
of such cells C is at most

i—1 . . ; .
> 272 h gl 2t s
h>(3/4)2i—1 L b ‘
> =

By Lemma 10.9 and our assumption thati — 1 > m > 3, it follows that
w(S) < ud < @47e* " <0.3s.

This completes the proof of the claim (10.11) and hence of Lemma 9.5. O
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10.7 Existence of the optimal parameters c*

Proof of Proposition 9.2 (b) We have Supp(uj) = I'j by Remark 7.1 (b), and

hence | Supp(u7)| — 2% by Lemma 5.1. By Lemma B.2, when j > m + 2
we deduce the inequality

Hx (Vi) < log | Supp(u})] < 2/ 1og2 <2/ — 2™, (10.12)

Now recall (Definition 7.5) that the optimal parameters should satisfy the
conditions (7.12) (which are the fully written out version of (7.11)). We wish
to show that there is a solution with 1 = ¢f > ¢ > -+ > ¢ > 0.
Rearranging (7.12) and recalling dim(V;) = 2/, we find that

(Cong1 — Cms2) (Huj,+1(vm) - 2m)
r

= > (@-2"- Hyer (Vi) (€] = €j41) + 27 = 2"y
j=m—+2

for 0 < m < r — 1. By Lemma 9.4 and (10.12), we may apply a down-

wards induction on m = r — 1,r — 2, ... to solve these equations with

0 < ¢y <¢f < -+ < c]. Rescaling, we may additionally ensure that

¢t =1. O
1

11 The limit of the p;

In the last section we showed that there is a unique solution p = (p1, 2, ...)
to the p-equations (9.1) for the binary system with 0 < p; < 1 for all j. In
this section, we show that the limit lim_, o p; exists.

Proposition 11.1 p = lim;_, p; exists.

11.1 pq is the largest p;

The estimates required in the proof of Proposition 11.1 are rather delicate, and
to make them usable for our purposes we need the following a priori bound
on the p;.

Lemma 11.2 Forall j > 1, we have p; < p1 = 0.30648 . ..

The reader should recall the notion of genotype g (Definition 10.1) and of
the function F(g) (Proposition 10.4).

The next lemma is a stronger version of Corollary 10.5, whose proof uses
that result as an ingredient.
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Lemma 11.3 Forany j > 1 and g1 < g3 at level j, we have
F(gl) lg2l=lg1l /4 l&31-lgfl
F(g) (_> (§> '

F(g) = 7lg21—lg3] Z 78l Z Zflg/‘F(g U g)Pi-1
g<g;} g'<g\g}

Proof We have

(by Proposition 10.4)
> 7lg2l—lg3] Z 7—lel Z 2_‘8/|F(g)/0j71
g<g} g'<g\gt
(by Corollary 10.5)
— 2ole2l-l1g3l Z 2_|g|F(g)pf*1 (3/2)|g§|—|g’f|
g<g}
(by the binomial theorem)
— F(g1)2|82|—|81|(3/4)|g§|—|gi‘|
(by Proposition 10.4).

This concludes the proof. |

Proof of Lemma 11.2 We begin by observing that

Z Cllglc‘zg | l_[ ( Z a+b ab) — (1 +201 +C%62)2j71

g<Pljl AC[j—1] a,bel0,1}
(11.1)

The p-equations (9.1), translated into the language of genotypes, are

FPLj + 1) = esz(P[j])”f. Therefore, by Proposition 10.4 (with
g = P[j + 1]) followed by Lemma 11.3 (with go = P[j]), we have

' FPLY = FPL+1) =27 Y 27 ¥IF(g)"

8<Plj]
<2 Y 2 HEPe [/ e ]
g<Plj]
22j(1/3)2j_1/’jp(7>[j])m Z 2(Pj—1)|8|(3/4)/0j|g*|'
g<PLj]
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Dividing through by F(P[j])?, and applying (11.1) with ¢; = 2#~! and
¢y = (3/4)P/, we find that

e < @3 (1 4200 4 2202340 )Y
= (4/3% +4@2/3) +1)2
Therefore
3Pie® < 4+44.2P0 43P0,
However, the first p-equation (9.2) is precisely that

3P1e? =4 44 .20 4 31,

The result follows immediately (using the monotonicity of the function
1 +4(2/3)" +4(1/3)" - see the proof of Proposition 10.7). O

11.2 Preamble to the proof

In this section, we set up some notation and structure necessary for the proof
of Proposition 11.1. Since we wish to let r — o0, it is convenient to embed
all binary r-step systems into a universal infinite binary system. To this end,
and with a slight abuse of notation, we let

V; = {(XA)Acp(N) txa € Qand xy = xan(j] forall A C P(N)}
for j =0,1,....Clearly, V; ~ sz for all j, and the flag
YV Vi<,

is isomorphic to the flag of the r-step binary system.
In this notation, we have

MN={weQ:w=0(mod V;)} forj=0,1,...,
where
Q= {w=(wa)acpm : wa € {0,1} forall A C P(N)}
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is the discrete unit cube. We further set
o0
F'o = JT;.
Jj=0

Lastly, foreach j > 0, we say that C isacell atlevel j if C C "' and there
exists some x = (x4) acp) suchthatxy € Qforall Aand C = QN(x+V;).
We may easily check that the collection of cells lying in I', forms the tree
corresponding to the r-step binary system.

We may now define the functions € for our infinite binary flag. It is conve-
nient to reverse the indices in f€. Specifically, let x = (x1, x2, ...) € [0, 1]V.
If C isacell atlevel j > 0, then we define

YC(x) :=1log fC(xj—1, ..., x1).

In particular, 1€ (x) = 0 when j = 0, and ¥ € (x) = log |C\{0}| when j = 1.
In the special case C = I'; we define also

¢j(x) =27y (x) =27 log f1I (xjmr, s x0)

Thus ¢ (x) = 5 log3 and ¢>(x) = 1 log(3* +4 2% + 4),
Note that ¥€, ¢ j are increasing in each variable. Moreover we have the
following simple bounds.

Lemma 11.4 (Simple bounds) We have %log 3<¢(x) <log2.

Proof For the upper bound, note that £ (x) < fi(1). By the definition of
f C (see (7.4)), we have that f Ti) is equal to the number of children of T,

at level 0, which, in turn, is equal to 22’ — 1. This proves the claimed upper
bound on ¢;(x).

For the lower bound, observe that f Fix) > f i (0). Using again the defi-
nition of £€, we find that £/ (0) equals the number of children of T j atlevel

j—1.Thus f1i(0) = 32/ by Lemma 10.3. This proves the claimed lower
bound of ¢;(x), thus completing the proof of the lemma. O

The p-equations (9.1) may be expressed in terms of the ¢; in the following
simple form:

1
Gj+1(0)s Pj—15---) = E(pjfbj(pj—l, pj—2,...)+1). (11.2)
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11.3 Product structure of cells and self-similarity of the functions ¢ ;

There is a natural bijection 7 : QP™ x QP®™ — QP®™ defined by
7 ((x,x")) =y, where ys = x4—1 and y(jjua = x/y_,forall A C {2,3,...}.
Here, we write A — 1 for the set {a — 1 : a € A}. There is a finite ver-
sion of this map that can be visualized as a concatenation map. For each
r, let m, @ QP x QPIr=1 — QP defined by 7((x,x")) = v,
where y4 = x4-1 and yjyua = x);_,, forall A C {2,3,...,r}. If we
place the coordinates of x and x" in reverse binary order, as per the map
2,....r} DA — ZaeAZF*“ e {0, 1,...,2r 1 — 1}, then 7, is the con-
catenation map that generates y by placing first all coordinates of x, followed
by all coordinates of x’.

Now one may easily check that 7 (V; 1 x V;_1) = V; forall j =1,2, ...
Therefore if C, C, are two cells at level (j — 1) in the infinite binary system,
then 7(C1 x C7) is a cell at level j, and conversely every cell of level j is of
this form. The children C’ of C are precisely 7(C] x C}) where C; — Cj,
C2 —> Cé.

The product structure established above manifests itself in a self-similarity
property ¢; ~ ¢;_1. In this section, we will establish the following precise
version of this.

Proposition 11.5 Let @ € (0, 1] and consider a vector x = (x1,x2,...) €
[0, «1N. In addition, let C = 7 (C; x C») be a cell of level j > 2. Then we
have

YOX +¥2® < YCE < YOI+ ¥ + ol og2. (11.3)
In particular, taking C =T j = n('j_1 x I'j_1), we have

log?2

$j-1(x) < ¢; (%) < dj—1(%) + (/2) (11.4)

o
Proof We proceed by induction on j. When j = 2, we proceed by hand.
Notice that at level 1, there are three different types of cells, having 4, 2 and
1 elements, respectively. There is only one cell with 4 elements, the cell I'y;
it splits into three cells at level 0: one with two elements, and two unicells
(singletons). All other cells at level 1 split into unicells at level 0. Hence, at
level 2, there are six different types of cells C = 7 (Cy x C3) corresponding
to the six possibilities for the unordered pair {|C1|, |C2|}. Their subcells are
in 1-1 correspondence with the cells 7(C| x C}), where C} is a subcell of C;
(at level 0) and Cé is a subcell of C» (also at level 0).

The three cases with max(|Cq|, |C2|} < 2 are trivial, because we then
have that all the cells at level 1 are unicells, and thus we readily find that

f€=rCf=\c-|Cal.
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The two other cases with |C| < 2 and |C2| = 4 (so that C; = I'1) are only
slightly harder: if |C1| = 2, then fC(x) = 2.2" +4, f€1 =2, f©2 =3
and so the desired inequalities are log 6 < log(2-2*! +4) < log6 + x1 log 2,
which are immediately seen to be true for all x; > 0. Similarly, if |C;| = 1,
then fC(x) =21 42, f€1 =1, f© = 3, and so the desired inequalities are
log3 < log(2*! + 2) < log3 + x1 log 2, which are again true for all x; > 0.

A little trickier is the case |C1| = |C2| = 3, corresponding to C = I, =
(1 x T'1). In this case fC(x) = 3" +4.2% 44, f€1 = €2 =3 50 the
desired inequalities are 2log3 < log(3* + 4 -2* +4) < 2log3 + x log2.
The lower bound is evident. For the upper bound, we must equivalently show
that g(x) := 5-2* —3* —4 > 0 for x € [0, 1]. Since g(0) = 0 and
g (x) =5log2-2% —log3-3* > 0 forx < I, the desired inequality follows.

Now suppose that j > 3, and assume the result is true for cells at level
(j — 1). By the recursive definition of €, if C is a cell at level j, we have the
recurrence

VW = 3 vy, (11.5)
CcC—C’

where T'x denotes the shift operator
Tx = (x2,x3,...).
For the upper bound, note that

B P e L L L)

C—C’ C|—>Ci
C2—>Cé

Recalling that x1 < «, we conclude that

ewc(x)gz"‘jq( Z exllllci(TX)>< Z exn/fcé(TX))

C1—>Ci Cz—)Cé
— 0o/ ) 2 (®)

The lower bound is proven similarly. The result thus follows. O

11.4 Derivatives and the limit of the p;

Because of the implicit definition of the parameters p;, the self-similarity
property (11.4) is not enough for us by itself. We will also require the following
(rather ad hoc) derivative bounds.
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Here, and in what follows, d,, F (y1, ...) := %(yl, ...), that is to say the
derivative of the function F' with respect to its mth variable. Thus, for instance,

ad
v C(Tx) = . [v€(Tx)]. (11.6)
Xm+1
Proposition 11.6 Ser  A,, = sup;>, Supyc(0,031N |0mPj (X)].  Then

Ay <0.17, Ay < 0.05, Y23 A < 0.01 and A,, < 0.155™.

The proof of this proposition is given in Sect. 11.5. Let us now show how
this proposition, together with (11.4), implies Proposition 11.1.

Proof of Proposition 11.1 Write ¢; (= piy1 — pi, i = 1,2,3,... The p-
equation at level (j 4+ 1) is

1
bj2(pjt1, Pjs...) = E(pj+l¢j+1(:0j, pj-1,..)+1)

by (11.2). Recall that that p; < p; < 0.31 for all j, by Lemma 11.2. Hence,
two applications of (11.4) (with @ = 0.31) yield the asymptotic formula

1 .
Pj+1(Pj+1, pjs ) = E(Pj+1¢j(/0j, pj-1s---) + 1) + 0(0.1557).

Subtracting (11.2), the p-equation at level j, from this gives

Gjr1(Pjr1, Pjs ) = Pjr1(pjs P15 - )
_ P+t
2
Ej .
+7’¢j(pj,pj,1,...)+0(0.1551). (11.7)

(@i (pj, pj—1s--) — Dj(pj=1, pj—2,...))

Now by the mean value theorem,

Pj+1(0j+1, Pjs ) — @j+1(0)s pj—1, - I < Atlej| + -+ Ajleq]
(11.8)

and

@0 pj—1s--) —@j(pj—1, pj—2, .. I < Atlej1| +---+ Aj_qle].
(11.9)

Therefore, from (11.7), the triangle inequality and the fact that
Pirl < PL <0155,
2 2
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we have

1
|8j|(§¢j(,0j, Pj—1s-..) — A1)
< (A2 +0.155A ) |ej-1] + (A3 + 0.155A2) e 2|
+ -+ 0(0.1557). (11.10)

Now by Lemma 11.4 and Proposition 11.6,

%¢j(pj, Pj—1,.-.)— A1 > %logS —0.17 > 0.104.
Also, by Proposition 11.6 we have
(A2 +0.155A1) + (A3 +0.155A2) + - - - < 0.096.
Assuming that j > jp with jo large enough, (11.10) implies a bound
lejl < etlej_1l +ealejal + -+ cjmtler] +277, (11.11)

: . 0.096
where ¢y, ¢z, . .. are fixed nonnegative constants with Zi Ci < 570d < 0.93

and, by Proposition 11.6, ¢; < 2~ forall i > ip for some ig. It is convenient
to assume that ig, jo = 10, which we clearly may.

We claim that (11.11) implies exponential decay of the ¢ ;, which of course
immediately implies Theorem 11.1. To see this, take § € (0, }1) so small that
0.94(1 — 8)~ < 0.99, and then take A > 100 large enough that |¢;] <
A(1 —§)/ forall j < jo. We claim that the same bound holds for all j, which
follows immediately by induction using (11.11) provided one can show that

Zci(l—a)—w%(ﬁ)j <1 (11.12)

i>1
for j > jo. Since § < % and A > 100, it is enough to show that

Zc,-(l — 8" <0.99.

i1

The contribution to this sum from i < i¢ is at most 0.93(1 — §) ™%, whereas
the contribution from i > iy is (by summing the geometric series) at most

Y271 =9)T <2271 =870 < 0.01(1 - 8.

i>i
Therefore the desired bound follows from our choice of §. O
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11.5 Self-similarity for derivatives

Our remaining task is to prove Proposition 11.6. Once again we use self-
similarity of the ¢;, but now for their derivatives, the key point being that
Om®j ~ 0P j—1. Here is a precise statement.

Proposition 11.7 Suppose that C = n(Cy x C3) is cell at level j > 1. Let
o €[0,1) and m > 1, and suppose that x € [0, o|N. Then we have

0 < 9 Cx) <2559 (3, (%) + 9y 2 (%) + /2 log 2).

In particular, taking C =T'j = n(I'j_1 x I'j_1), we have
S i a\J log2
0 < ;00 <25 (g0 + (5) =) (1113)
Proof The lower bound follows by noticing that ¥ is increasing in each
variable. For the upper bound, we may assume that m < j — 1, for when

m = j, 0u¢;(x) is identically zero. We proceed by induction on m, first
establishing the case m = 1. Differentiating (11.5) gives

e‘ﬂco‘)alwc(x) = Z wc,(Tx)ex”/’C (Tx)
CcC—C’
By two applications of the upper bound in Proposition 11.5 (applied to

C' = 7 (C;] x C})), we obtain

e/ Moy <22 Y (YOUTR) + Y (Tx) + ol 2 log2)
C1—>Ci
C2~>Cé

s 1 TR+ 2(Tx) (11.14)

On the other hand, for i = 1, 2 we get by differentiating the recurrence

ALY AL (11.15)
C,‘—)Cl{
with respect to x| that
. / c!
Myl = Y Y CiTxen? T, (11.16)
C,-»le
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Substituting (11.15) and (11.16) into (11.14) gives
elﬂc(x)alwc(x) < 2051*1 (81wC1 (x) + 81wC2 (x) + al 2 log z)ellfcl (X)-H//CZ(X)‘

Finally, Proposition 11.5 implies that PR ARl < V™, Dividing both
sides by eV gives the result when m = 1.

Now suppose that m > 2. Differentiating (11.5) with respect to x,, and
applying (11.6) gives

e My = Y we Mo,y (T (1117
Cc—C’

By the inductive hypothesis, if C' = 7 (C| x C}) we have
1€ (T%) <252 (8,19 U TX) + B W TR0 + 0T og2)).
(11.18)
Also, by the upper bound in Proposition 11.5, we have
vC (Tx) < YOUTx) + ¥CTx) + o/ 2 1og 2. (11.19)

Substituting (11.18) and (11.19) into (11.17) and using the assumption that
0 < x; < o gives

eV M,y C 0 < 22

x D, xl[am_lwciax) + 01 2(TX) + o/ log 2]
C]—)Ci
C2~>Cé

o« NI+ 2(TX)) (11.20)

Now, differentiating the recurrence (11.15) with respect to x,, (using (11.6))
gives, fori =1, 2,

. cl ’
Wyl = Y weV Ty, 1y STy, (11.21)
Ci—C;

Substituting (11.15) and (11.21) into (11.20), and using once again that x| < o,
gives

eV ®3,pC (x)e? @ L 2D o (amwcl (X) + 0¥ (%) + &/ log 2)

eV T @+Y2(x)
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Again, Proposition 11.5 implies that VT OH2®) < eV , and so by divid-
ing both sides by ewc("), we obtain the stated result. O

Before proving Proposition 11.6, we isolate a lemma.
Lemma 11.8 For 0 < x1 < 0.31 we have 0 < 491¢,(x) < 0.481.
Proof We have e**® = 3%1 + 4.2% 4 4 and thus

log3 - 3" 4 log2-4.2"
3% 44.2% 44

401¢r(x) =

The lemma is therefore equivalent to
1
Z(log3 —0.481)3"" + (log2 — 0.481)2*" < 0.48]1.

The left-hand side here is increasing in x; and, when x; = 0.31, it is equal to
0.480052... .. O

Proof of Proposition 11.6 Henceforth, set « := 0.31 and fix two integers
m > 1 and j > 2. Our goal is to bound 9,,¢ (x) uniformly for x € [0, oz]N.
We may assume that j > m + 1, as 9,,¢;(x) = 0 when j < m.

Now, let us define

g1 Itatta™ =l
Ay =21 ot and B, =2 T—a

Then, if we apply (11.13) £ times, we obtain

m —m—(—1)
< O (x) < AL "t Impj—e(X)

10g2 Jj—m j—m—k (O j—k
AO! +-to (_)
Z 3

i—m—(t—1) lo 2 i—m—k (OQ\J—K
< By 00 + = 25 gy (3)

2
k=0
j—m—t+1 10g2 o J—i+1 1
< B,‘Z ( m¢] E(X) + (5) 1 — Ol/2>

(11.22)
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Here, we observed that all the Bf,‘lt terms in (11.22) have r > s + 1 — m;

bounding them all above by B,‘j‘ﬁlfm then allowed us to sum a geometric
series.

Let us fix some s € {1,2,...,m + 1} independent of j. Then the number
j —sliesin {0, 1,..., j — 1}. Hence, applying (11.22) with £ = j — s, and
then taking the supremum over all j > m + 1 and all x € [0, oz]N, we find that

Ay < By

m

s+|7m< s ()] + log 2 <a>s+1 1
su X — | =
P omPs 2 \2) 1—ap

xe[0,aN

). (11.23)

When m = 1, we take s = 2. Then Lemma 11.8 and relation (11.23) give

4 81 —-a/2)

as required. When m > 2, we take s = m. Then 90,,¢p; = 0 and so (11.23)
degenerates to

Ayp < B

log2 so\m+l1 1
“— (= . 11.24
" o2 (2) 1 —a/2 ( )

This gives Ay < 0.05, and also confirms that A,, <« 0.155™. To bound
we use (11.24) and the uniform boun < ~®)” obtainin
> >3 Am (11.24) and the uniform bound B,, < 2!/’ obtaining

2
3 An < _7og2 a2 _ .
16(1 — a/2)2
m=3

This completes the proof of Proposition 11.6. O

12 Calculating the p; and p

In this section we conclude our analysis of the parameters p1, p3, ... for the
binary flags. The situation so far is that we have shown that these parameters
exist, are unique and lie in (0, 0.31). Moreover, their limit p = lim;_, o0 p;
exists (Proposition 11.1).

None of this helps with actually computing the limit numerically or giving
any kind of closed form for it, and the objective of this section is to provide
tools for doing that. We prove two main results, Propositions 12.1 and 12.2
below. Recall the convention that pg = O.
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Table 1 Table of p;

J pj J Pj
1 0.3064810093305 7 0.2812113502101
2 0.2796104150767 8 0.2812113496729
3 0.2813005404710 9 0.2812113496974
4 0.2812067224539 10 0.2812113496963
5 0.2812115789381 11 0.2812113496964
6 0.2812113387071 12 0.2812113496964
Proposition 12.1 Recall the convention that pg = 0. Define a sequence
(@i, j)i>1,1<j<i+1 by the relations a; )| =2, a;» =2+ 2P-! and

2 i 2p0i— . .

aj=al;  +a_ —ali_, B<j<i+. (21)
Then
, i1
i1 =aler fori=2,3,... (12.2)

In practice, these relations are enough to calculate the p; to high precision.
Indeed, a short computer program produced the data in Table 1. (We suppress
any discussion of the numerical precision of our routines.)

Using Proposition 12.1 we may obtain the following reasonably satisfactory
description of p, which is equivalent to the statement of Theorem 2 (c).

Proposition 12.2 For eacht € (0, 1), define a sequence a(t) by

ar()=2,a0(t)=2+ 2t,
aj(t)=aj1()* +a;j—1(t) —a;j—2()* ( =3).
(12.3)

Then the limit p = lim;_, o p; is a solution (in the variable t) to the equation
1 loga;(t

- i 12.4
1—1/2 jooo 202 (124)

Furthermore, p is the unique solution to (12.4) in the interval 0 < t < 1/3.

Remark. This is easily seen to be equivalent to Theorem 2 (c), but we
have introduced ¢ as a dummy variable since p now has the specific meaning
p = lim;_, » pj, and this will avoid confusion in the proof.

Before starting the proofs of Propositions 12.1 and 12.2, let us pause to
observe a simple link between the sequences a; ; and a;(¢) defined in (12.1)
and (12.3) respectively.
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Lemma 12.3 For each fixed j > 1, the limit lim; ., a; j exists and equals
aj(p).

Proof The existence of the limit follows by induction on j, using Proposition
11.1, noting that the result is trivial for j = 1 and immediate from Proposition
11.1 when j = 2. The fact that the limitequals a (o) then follows immediately
by letting i — oo in (12.1) and comparing with (12.3). O

12.1 Product formula for f€(p) and a double recursion for the p;

Proposition 12.1 is a short deduction from a product formula for F(g), or
equivalently for f€ (p), given in Proposition 12.5 below. Whilst is would be
a stretch to say that this formula is of independent interest, it is certainly a
natural result to prove in the context of our work.

Before we state the formula, the reader should recall the notion of genotype
g (Definition 10.1) and of the function F(g) (Proposition 10.4). We require
the following further small definition.

Definition 12.4 (Defects) Let i, m € Z>( and let g be an i-genotype.
(a) If m < i, then we define the mth consolidation

g™ =(A cli—-m]:AUXegforalX C{i—m+1,...,i}}.

Otherwise, if m > i + 1, then by convention we define g to be empty.
(b) Form > 1, we set

A™(g) = g™ D] = 21g™).

Remark Note that g©@ = g, g = ¢* and g™ = (g™~ D)* It is easy to
see that A (g) is always a nonnegative integer. Observe that Ait1(g) = 0
unless g = P[i], in which case Ai+1(g) = 1, and that A" (g) = 0 whenever
m>i—+1.

Proposition 12.5 Let i € N and suppose that g is an i-genotype. Then

i+1
Am
F(g) =[] a0,
m=1

with the a; », defined as in Proposition 12.1 above.

Proof of Proposition 12.1, given Proposition 12.5 Note that we have
A™(Pli]) = lp=it1 for 1 < m < i + 1. Together with Proposition 12.5,
this implies that F'(P[i]) = a; i+1. Thus fri(p) = F(Pli]) = aii+1. The
Eq. (12.2) is then an immediate consequence of the p-equations (9.1). O
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Before turning to the proof of Proposition 12.5, we isolate a couple of
lemmas from the proof.

Lemma 12.6 Let o € Randi € N. Let g be an i-genotype, and suppose that
kisan (i — 1)-genotype with k < g*. Then

Z @¥1 = (1 4 )2 @ (1 4 20) 871Kl g 211,

g'<g
(g"*=k

Proof Wehave g = {A C[i—1]: AeglU{AC[i—1]: AU{i} € g}.
Hence, if we let

X={AcCli—-11:Aeg, AU{i} ¢ g}
and
Y={ACI[i—1]1:A¢g AU{i}egl},

then we have |g| = 2|g*| + | X| + |Y|, and thus Al(g) = |X| + |Y].

Now, in order to choose g’ < g with (g’)* = k, we must decide indepen-
dently foreach A C [i — 1] whether A € g’ and/or AU{i} € g’. The condition
that g’ < g means that if A ¢ g (resp. if A U {i} ¢ g), then we are forced to
have A ¢ g’ (resp. AU {i} ¢ g’). Let us now examine all admissible options
for the conditions “A € g’” and “A U {i} € ¢’

e A € k:since (g')* =k, we are forced to have A, AU {i} € g’.

e A € g*\k: weknow in this case that A, AU{i} € g, sothe condition g’ < g
imposes no further restrictions on the membership of A and of A U {i} in
g’. On the other hand, we know that A ¢ k = (g’)*, and thus at most one
out of A and of A U {i} may belong to g’.

e A € X: the condition g’ < g implies the restriction that A U {i} ¢ g’, and
we may then choose freely among the two options of having A € g’ or
Ag¢g.

e A € Y: the condition g’ < g implies the restriction that A ¢ g’, and we
may then choose freely among the two options of having A U {i} € g’ or
AU} ¢ g

By the above discussion, we have

Yo alfl = TT dt+a+e) [0+ [[0+a.

glgg AEg*\k AeX AeY
(8 *=k
Since | X| + Y| = A! (g), the proof is complete. O
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For a = (ay, a3, .. .), and for some (i-)genotype g, write
i+1
Am
Pa(g) =[] am ©. (12.5)

m=1

(Note that the a,, here are just parameters, not related to the recursion (12.3),
which does not feature in this subsection.) If 6 € R, define

Dga(g) =y 0878 1P (8. (12.6)
g'<g

Lemma 12.7 We have the functional equation

1
Dpalg) = O +anN™ O Py q9.7a(g).
As before, Ta denotes the shift operator Ta = (az, a3, . . .).

1/,
Proof Using the relation P,(g') = alA (& )PTa((g’)*), we have

@00 =04 3 () (L) pracer
1

— g
8'<sg
1\ Ikl gl
k<gr g'<g o
(gh*=k

The result now follows from Lemma 12.6 and a routine short calculation. O
We are now in a position to prove Proposition 12.5.

Proof of Proposition 12.5 Let a; ,, be as in the statement of Proposition 12.5,
and write a; = (a;,1, a;.2, . . .). In the notation introduced above (cf. (12.5))
the claim of Proposition 12.5 is then that

F(g) = Py (g). (12.7)

We proceed by induction on i. Let us first consider the base case wheni = 1.

o If ¢ = P[1], we have F(g) = frl (p) = 3. On the other hand,
Py, (P[1]) = a1 2 = 3 in this case by the convention that o9 = 0.

o If g C P[1], then g* = ¥ and thus A'(g) = |g| and A%(g) = 0. So we
conclude that Py, (g) = 2121, On the other hand, for all such genotypes, the
corresponding cell contains 2/¢! elements that all split into unicells at level
0. Consequently, F(g) = 28l = Py, (g) in this case too.
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Next, suppose that we have the result for (i — 1)-genotypes for some i > 2,
and let g be an i-genotype. We know from (10.3) that

F(g) = Z 2|g|—|g*|—|g/|F(g/)Pi—1

g/gg*

By the induction hypothesis, we have F(g')?~! = P ri-1(g) forall g’ < g*
i—1

where ap 11 is shorthand for (a . l,aipfllz, ...). Hence, it follows immedi-

ately that
F(g) =22 @0, s i(g"). (12.8)
*Fi—1
with @ defined in (12.6). The fact that the right-hand side of (12.8) is a product
P, (g) is now clear by an iterated application of Lemma 12.7. To get a handle

on exactly which product, suppose that the result of applying Lemma 12.7
j — 1 times is that

Fg) = ( H bion )y, 710021, 8D (129)

Thus b; 1 = ;1 = 2, and we have the relations
bi j+1 =10 +“z 11 (12.10)
and
0 j+1 = 07 j+2al" WL, (12.11)
for j € {I,...,i}. We claim that b; ; = a; ; for all j < i + 1. This will

complete the proof of Proposition 12.5, because we may then apply (12.9)
with j =i + 1 to show that

i+1 i+1
A" (g) i+1 A" (g)
F@ = (TTamn )@, ., poeen @) = H a"®
m=1

because g1 = @ for all i-genotypes g.

Let us now prove our claim that b; ; = a; ; for all j <i + 1. We shall use
induction on j. We have b; 1 = 2 = g; 1. In addition, b; » =2 + 2°-! =q; >
by (12.10) with j = 1 and by the fact that 6; ;| = 2. Now, assume that we have
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proven that b; ; = a; j forsome j € {2, ...,i}. Relation (12.11) applied with
Jj — 1in place of j implies that

2pi-1 o Pi—1 2
0ij +a; T = = (6,1 +ai—1,j—1) :

The right-hand side equals b.2 j= a.2 j by applying (12.10) followed by the

induction hypothesis. Thus, 6; ; = a2 a2p ‘1 .- Inserting this relation into

(12.10) and using the recursive formula (12 1) shows that b; j+1 = a; jy1.
This completes the inductive step and thus the proof of Proposition 12.5. O

12.2 A single recurrence for p

In this section we deduce Proposition 12.2 from Proposition 12.1 by a limiting
argument.

To carry this out, we will need the following fairly crude estimates for the
a;,j and the a;(t), defined in (12.1) and (12.3) respectively.

Lemma 12.8 We have
ajj+1 < forl Jj < (12.12)
and
< <ah <47 fora<j<itl, (12.13)
Proof Since p;_1 < lforalli > 1 (cf. Lemma 11.2), wehavea; » <4 = a%].
Hence, the inequality (12.12) follows from a simple induction using (12.1).
Using another simple induction, we readily confirm the inequality
a;,j < a; 2_ in (12.13).

For the lower bound in (12.13), we know from (12.10) and (12.11) and from
the fact that b; ; = a; ;j forall j < i + 1 that

aj j+1 =0 ; —i—al 11 (12.14)

and that
01 = 07 +2a" ;6; (12.15)
for j € {1,...,i}. By a simple induction, these formulas imply that a; ; > 1

and 0; ; >Of0ra11] <i+1,andthus 6; j41 +1 > (911+1)2f0r] =

1,2,...,i. By yet another induction, we find 6; ; > > 327 Finally, the
lower bound on the a; j in (12.13) follows from this and (12.14). O
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Lemma 12.9 Lert € (0, 1). We have
aj1(t) <aj(t)® forj>1 (12.16)
and
37 <a;(t) <an®)? T <4 forj =2 (12.17)

Proof The inequality (12.16) follows from a simple induction using (12.3),
and the upper bound in (12.17) follows with a further induction.

For the lower bound, we first set up relations analogous to (12.14) and
(12.15), defining 6 () for j > 1 via the relation

aj+1(t) =0;(t)+aj@). (12.18)
We then note that we also have
Ojr1(t) = Oj(t)2 +2a;()'0;(1). (12.19)
Indeed, on the one hand, we have
0j41(1) = aj12() —aj1 () = aj 1) — a; (1)
by (12.3). On the other hand,
0,07 +2a;(0'0; (1) = (0;() +a; ()" = a;(0* = 4z (®? — ;O™
by (12.18).
Having proven (12.19), we now proceed analogously to the proof of Lemma

12.8. We have a () > 1 and 0;(¢r) > O for all j > 1, by a simple induction
using (12.18) and (12.19). Therefore, from (12.19), we have that

Oj1 (1) + 1= 0;(0) + 1),

By induction, this implies that 6;(¢) > 327 Finally, the lower bound on
the a;(¢) in (12.17) follows from this and (12.18). O
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We are now in a position to prove that the relation

1 . logaj(t)
= lim ———
1—1/2 jooo 2i72

(12.20)

holds with t+ = p, which is one of the main statements of Proposition 12.2.
Iterating (12.2) gives

i—1 Pi-1 i1 i—2\ Pi—2pi-1
aji+1 = exp(2' )a,'l_l?i =exp(2' + pj—12 )ail_z’il_l =

i—2
= exp (21—1 + Z(pifj . piil)zl—J—l)a,lo,lz--.pi—l.
j=1

By Proposition 11.1 , we have p; — p. In addition, by Lemma 11.2, we have
0 < pi < p1 < 0.31 forall i. Thus, taking limits as i — oo gives

. loga it o (P\? 1
lim —8dbitl P (—) = . 12.21
TS 2t —pn 1

We now derive another expression for the left-hand side of (12.21). A tele-
scoping argument gives

logai it N ai,j+1
—Srr = logd + ,2_; 55 log 2 ) (12.22)

The terms on the right-hand side of (12.22) are rapidly decreasing. Indeed, by
(12.12) we have 1 > ai,j+1/ai%j for all j > 1. On the other hand, by (12.1)
(with j replaced by j + 1 there) and by (12.13), we have

2p1 . i—1
a; i a.’”y o 2Pi-1\ 27
%‘HQI_%=1+O<< ) )
i i 3

forall j € {2,...,i}. Since pj—1 < p1 < 0.31, we have 2°i-1/3 < 1/2. In
conclusion,

log (a"’f]) — o™ (12.23)
ai’j
for all j € {1,...,i}. By a simple limiting argument using relation (12.22)

and Lemma 12.3, we thus find that

l0g d; i +1 =1 aj+1(p) loga;(p)
1 .7A+ j+ . j
lim % =log4 + Z 2j—_110g (J—) = lim —L2

i—oo 2 iz aj (,0)2 j—o0 2J—2
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Here, we used (12.23) to bound the terms with j large. Comparing this with
(12.21) confirms that indeed (12.20) is satisfied with t = p.

We turn now to the final statement in Proposition 12.2, the statement that
(12.20) has a unique solution in ¢ € [0, %] (which must, by the above discus-
sion, be p). This is a purely analytic problem. Write

1 loga;(t)

W) = lim W;().
j—00

We must show that there is only one solution to W (r) = 0. We already know
W (p) = 0, so it would suffice to show that W is strictly increasing in [0, 1/3].
This would certainly follow if we could show that

1
W) = W) > 2" = 1)

forall j > 2and all 0 < ¢ < ¢/ < 1/3. Since the derivative of ﬁ is
bounded below by % on [0, %], it is enough to establish the derivative bound

d [loga;(t) 1
— =L)<=
dr 272 3

forall j > 2 and all r € (0, 3) The remainder of the section is devoted to
proving this bound, which it is convenient to write in the form

L < 52072 (12.24)

where £ (1) 1= d’, (t)/aj ).
We begin by observmg that, since ¢ € (0, 3) we have a»(1) < 2+2'/3 and
so we may upgrade the upper bound in (12.17) to

2J-2

aj(t) < (2+2'73) (12.25)
for j > 2. Note also that, by induction using (12.18) and (12.19), both a; ()
and 0;(¢) are increasing functions of 7. In particular, a;(¢) is an increasing
function of ¢ so the derivative a’;(¢) is positive.

Differentiating (12.3) gives

/
a‘_
a;’-i-l =2aja}+(a;logaj Zaj loga;_ l)+tafa 2ta]2't—la{ 1,
J j—1
(12.26)

where here and in the next few lines we have omitted the argument (¢) from the
functions for brevity. The term in parentheses is non-positive by (12.16), and
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!’
the final term —2ta12.i | ﬁ is negative since the derivative a;.fl is positive. It

follows from (12.26) that

A little computation using (12.3) shows that this may equivalently be written
as

€t <2£-< : + m; ) (12.27)
’ / l—i—a;_2 —ajz.’_laj_2 2aj41)°
where we used our notation £; = a;. /aj.
Denote
£ = sup ( ! fa; (1)’ ) (12.28)
ref0, 1] l+a;j@®)2—aj_1()%aj(t)™2  2a;41(1)

Then (12.27) implies that £ ;1 (1) < 2€;(¢)&; forallz € [0, 1/3]andall j > 2.
Telescoping this inequality gives

(1) < (La(DEE3 - £j1) - 2772
We have

2"log?2 o log?2

1 ST < 0.268

bo(r) =

for all r € [0, 1/3]. Hence, in order to obtain the desired bound (12.24), it is
enough to show

Er63--- &1 < 1.2. (12.29)
The &; tend to 1 exceptionally rapidly, and crude bounds (together with a little
computation) turn out to suffice, as follows.

First, by (12.17) and the fact that a>(1)>~" = (2 +2)%>~! < 9forr € [0, 1]
(a calculus exercise), we have

a2 @)Y 297 forj 2. (12.30)
Second, by the lower bound in (12.17) and by (12.25) we have

aj 1(0¥a;) 2 < (@+ 2 T)YPE T2 <677 forj =3
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We may also check by hand that a1 ()% /a>(t)? = ('~ + 1) < 1/6 for all
t € [0, 1/3]. Hence,

aj1(0)%a;(t) 2 <6727 forj>2. (12.31)

Third, again by the lower bound in (12.17) and by (12.25), we have

12
< (6) for j > 2. (12.32)

aj(t)’ _ ((24_21/3)2}'*2)1/3

N i
ajt1(t) 32!

Substituting (12.30), (12.31) and (12.32) into the definition (12.28) gives

1 1427172
SSTrar et (8) forj =2

Using this bound, one may check the bound ]_[3022 &; < 10/9, whichis stronger

than the desired bound (12.29), on a pocket calculator or even by hand. For

example, we have £&&; < igzgéﬁg and can use a very crude bounds for the

higher terms. Since ﬁ + %< e?* for0 < x < 0.1, taking x = 62" gives

§j <exp (2 : 6_2j_2)

for j > 4. Therefore

1
HSJ < eXp( Zg) — /) < 1.002.

This concludes the proof of the final statement in Proposition 12.2.

12.3 Proof of parts (b) and (c) of Theorem 2

To conclude this paper, we complete the proof of parts (b) and (c) of Theorem
2, as defined in the end of Sect. 1.3. In fact, all of the ingredients have already
been assembled and we must simply remark on how they fit together.

First, recall from Definition 9.6 that

r—1
2[
9,:(10g3—1)/(10g3+2 )
i p-p
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Now, it is an easy exercise to see that if xy, x2, ... is a sequence of positive
real numbers for which x = lim;_, , x; exists and is positive, then

r 1
lim (le---xi) " = max(x, 1).

r—0o0
i=1
Applying this with x; = 2/p; gives, by Proposition 11.1, that

lim 6/ = £

r— 00 2"
This, together with Proposition 12.2, completes the proof of Theorem 2.
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Appendices
Appendix A. Some probabilistic lemmas

Throughout this section, A C N will be a random set, with P(i € A) = 1/i
and these choices being independent for different values of i.

Lemma A.1 For any finite subset B C Z>4 and any k € Zx, we have

(1 2P g 1/ m = 1)

- )MglP’(#(AﬂB):k)gM,
min B
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where

e T

meB

Proof Theresult follows by a standard inclusion-exclusion argument. We have

PHANB) =k = ) al-%-a [1 (1_%>

al,..., akEB k meB
al<--<ay méfay,...,ax}

1 ) 1
(-4 ¥ <
B m o akEB (a] - 1) P (ak - 1)

a)<---<ag

1 1\ 1
H(Zm—l)_ 2 (a—1)-(ax — 1)

meB aip,...,ak€B
ay<---<dag
1 Z 1
Tk D (g — 1
B (ar—1)--(a—1)

Ji<j with a;=aq;

1 (k 1 1\
<E<z)(;(a_1)2)(;(a_1)> '

Since ZueB 1/(a — D? < 1/(min B — 2)2 < 4/(min B)?, the proof is com-
plete. |

Lemma A.2 Uniformlyfor B C Nwithi :=)
we have

mep 1/m = 1and0 < e < 1,

P(\#(A NB)—A| > g,\) < exp(—2i/3).
Proof This follows by the upper bound in Lemma A.1 with standard bounds

on the tails of the Poisson distribution, e.g. Norton’s bounds [15, Theorem 09].
O

Lemma A.3 For any x > 0 and finite set B C N,

|
Ex*ANB)  exp ((x -ny —,).

jeB
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Proof The random variable #(A N B) is the sum of independent Bernouilli
random variables and thus

Ex*A08) = T <1 +2= 1).

jeB J

Note that all factors are positive because x > 0. The lemma now follows from
the inequality 1 4+ y < ¢”, valid for all real y. O

Lemma A4 Letk € N, and let B and G be finite sets suchthat B C G C Z>4
and

Bl =k < /min(G) Z l
2 meGm
Then
P(ANG = B|#ANG)=k)
2 m -2
_ K Ot St (1_1)
Qe 1/(m — 1) b m

beB meG

Proof Since |B| = k, we have

P(ANG = B)
P(A0G=B|#(A“G):k):P(#(AﬂG)=k)'

The denominator is estimated using Lemma A.1, whereas for the numerator
we simply note that

1 1 1 1
PANG=B)=]]- (1--): - <1——>.

This completes the proof of the lemma. O

LemmaA.5 Given 0 < ¢ < 1 and D > ¢'%¢ the probability that
A C (D€, D] satisfies

#(AN (D%, DF)) = (6 —w)log D| < (g D) (c<a<p<D)
(A.1)

is > 1 — O(e=(1/HUog D)2y
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Proof 1t suffices to bound the probability that
#A N (D%, DP1— (B —a)log D| > (log D)*/* =2 (A.2)

whenever « log D, 8 log D € N. The random variable N = N («, ) := #(AN
(D*, DPY) is the sum of Bernoulli random variables and has expectation EN =
M + O(1), where

= (B —a)logD.
By Lemma A.3, EAN < e DEN Thus, for y = (log D)>* and
rj=1+ (—l)fﬁ we have
PN > M +y) <EAY M7 M elambV o= (1/300e DT
P(N<M—y)<E )\N M+y <A —M+y ,Ga-DM < e—(1/3)(10gD)1/2'
Summing over all possible «, 8 completes the proof. O

Lemma A.6 Uniformly for X > 2 and K > 2 we have

Y a<KkXx

acAN(2,X]
with probability > 1 — =K,

Proof We use Chernoff’s inequality, often called Rankin’s trick in this context:

IP( 3 a>1<x)< K3 P(AN[2,X] = A)eX Laew @

acAN[2,X] A'C[2,X]
—K ea/X
21 )5
CI2,X]2<a<X acA’

ag¢A’

- IL0=2)(+5)

= (55

e Ka+2/x)X <K

because ¢’ < 1+ 2t forall ¢ € [0, 1]. This concludes the proof. O
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Lemma A.7 Let n € [0,1] and let Ji,...,Jg C N be mutually disjoint
intervals. Supposethat X C Jix---xJgisasetofsizen [ ], max J;. If min; | J;|
is sufficiently large in terms of n and d, then with probability > (n/4)%, there
are distinct elements a; € A with (a1, ...,aq) € X.

Proof Let M; = max J; for each i. We will prove the lemma by induction on
d.

The case d = 1 follows by direct calculation: Suppose that X C Ji has size
> nMj. Then

PANX =¢) = 1_[(1 —1/n) < (1 —1/M)™1 <™ <1 — /2.
neX

Let us now assume we have proven the lemma for d — 1 intervals, and let us
prove it for d intervals Jy, ..., Jg. For each j; € Ji, we set

Xj ={(2s - ja) € o x - x Jg: (J1, J2, ---» Ja) € X}

LetY = {j1 € J1 : |X;,| = (n/2)My}. Then |Y| = (n/2)M;, because
otherwise we would have |X| < n[]; M;, a contradiction to our hypotheses.
By the case d = 1 (just described), ANY is nonempty with probability > r/4.
Fix some a; € AN Y. Then, by the inductive hypothesis and the fact that the
J; are disjoint, with probability > (n /4)d_1, independent of the choice of a,

there are elements a; € AN J;, 1 = 2,...,d with (a2, ...,aq4) € X4, and
therefore (ai,...,aq) € X. The disjointness of the J; of course guarantees
that the a; are all distinct. This completes the proof. O

Lemma A8 If X;,Y; live on the same discrete probability space for
1 < j < k, and furthermore X1, ..., Xy are independent, and Y1, ..., Y
are also independent, then

drv((X1, ..., Xi), (Y1, ..., Yi)) < ZdTv(Xj, Yj),
j=1
Proof We begin with the following identity

m
av...am—bi...bw=> (aj—bp[Ja]]b:
j=1

i<j i>j
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Denoting 2 the domain of (X1, ..., X;y), and writing ¢; = P(X; = w;),
b; = P(Y; = w;), we then have

dTV((Xla . --sXm)» (Y17 B Ym))

:% Y PXj =0 1<j<m P =0, 1< j <m)|

j=1 o; o () i<j i>)

1 m
=322 laj = bjl

j=l @]
m
= drv(X;,Y)).
j=1
Appendix B. Basic properties of entropy

The notion of entropy plays a key role in our paper. In this appendix we record
the key facts about it that we need. Proofs may be found in many places. One
convenient resource is [1].

If X is a random variable taking values in a finite set then we define

H(X) := - Y P(X = x) log(P(X =x)),

where the log is to base e and the summation runs over the range of X.
If p= (p1,..., pn) is a vector of probabilities (that is, if p1,..., p, = 0
and p; +--- 4+ p, = 1), then we write

H(p) :=— Y pilog pi.
i=1

There should be no danger of confusing the two slightly different usages.
Our first lemma gives a simple upper bound for multinomial coefficients in
terms of entropies.

Lemma B.1 Letn,ny, ..., ng be non-negative integers with Y  n; = n. Then

n!
< eH(P)”’

ni!...ng!

where p = (p1, ..., px) with p; := n;/n.
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Proof. The right-hand sideis (n/n1)"" ... (n/n;)*. Now simply observe that

n! " )
TG G )
|
< ﬁ(m/”)kl (/) = 1L
ki+-+km=n

| |
Our next lemma is a simple and well-known upper bound for the entropy.

Lemma B.2 Let X be a random variable taking values in a set of size N. Then
H(X) < log N.

Proof This follows immediately from the convexity of the function
L(x) = —xlogx and Jensen’s inequality. See [1, Lemma 14.6.1 (i)]. O

The next lemma is simple and has no doubt appeared elsewhere, but we
do not know an explicit reference. In its statement, we use the notation

(a,p) = Z?:] a p;.

LemmaB.3 Let p = (p1,..., pn) be a vector of probabilities, and let
a=(ay,...,ay) beavector of real numbers. Then

H(p) + (a. p) < log (Ze)
j=1

and equality occurs if and only if pj = €%/ > 7_, €% for all j.
Proof Let us begin by recalling that if ¢, ..., #, > 0 are such that
nh+-+tm=1,

then the concavity of the logarithm implies that

tilogxy + - -+ tylogx, <log(tix; + -+ thxy) (B.1)
for all xq,...,x, > 0. In addition, equality occurs in (B.1) if and only if
X1 = --- = X,. One may also prove this fact by induction on n, and by

noticing that the case n = 2 is equivalent to having u’ < tu + 1 — ¢ for all
u > 0andall t € (0, 1), with equality occurring if and only if u = 1.

Letus now proved the lemma. If p; = 1 forsome j, then H(p)+(a, p) = a;.
If n = 1, then this is equal to log(Z?=1 e%), whereas if n > 2, then we have
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aj <log(3_7_, e%), so that the lemma holds in both cases. Assume now that
pj € (0, 1) for all j. We then have

H(p) + (a, p) = Y _ p; log(e" /p)).
j:l

We may then use (B.1) with#; = p; and x; = ¢%//p; to complete the proof
of the lemma. g

The next lemma, known as the chain rule for entropy, is nothing more than
a short computation.

Lemma B4 Ler X, Y be random variables taking values in finite sets. Then

H(X,Y) =H(Y)+ > PY = y)HX|Y = y).
y

Remark The sum over y is usually written H(X |Y) and called the conditional
entropy.

We will apply the preceding result together with the following observation.

Lemma B.5 Suppose that X, Y are random variables with finite ranges and
that Y is a deterministic function of X. Then H(X, Y) = H(X).

Proof This follows from Lemma B.4 with the role of X and Y reversed, since
all the entropies HI(Y |X = x) are zero. O

The next result, known as the submodularity property of entropy, is a crucial
ingredient in our paper.

Lemma B.6 . Let X, Y, Z be any random variables taking values in finite sets.
Then

H(X, Y) +H(X, Z) > H(X, Y, Z) + H(X).

Proof This is [1, Lemma 14.6.1 (iv)]. O

Appendix C. Maier-Tenenbaum flags

The purpose of this appendix is to say a little more about the bound (3.12),
which corresponds in the language of this paper to [22, Theorem 1.4]. Numer-
ically, this bound is yor >> (0.12885796477 . ..)", which is a little weaker than
the bound leading to Theorem 2, whichis y»r > (0.140605674848 . ..)". What
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is interesting, however, is that the flags #” which lead to (3.12) are completely
different to the binary flags which have been the main focus of our paper. The
fact that these very different flags — the “Maier—Tenenbaum flags” — lead to a
result which appears to be within 10 % of optimal suggests that they will have
a key role to play in any future upper bound arguments for these questions.

Definition C.1 (Maier—Tenenbaum flag of order r) Let k = 2" be a power of
two. Identify Q* with QU] and defineaflag?, (1) = Vo < Vi <--- <V, <
QP as follows: V; = Span(1, w!, ..., ®'), where w§ = lies for S C [r].

Remark We have dim(V;) = i + 1 and in particular V, is much smaller than
QF, in contrast to the situation for binary systems. We leave it to the reader to
check that ¥ is nondegenerate.

Recall that ¥ gives rise to a tree structure, with the cells at level i being
the intersections of cosets x + V; with the cube {0, 1}¥ (cf. Sect. 7.2). It is
easy to check that this tree structure has a very simple form, with the cell
I, = Vin{0,1}* being {0, 1, 0", 1 — ', ..., o', 1 — &'}, this dividing into
three children at level i — 1; the cell I';_; together with two singletons, {»'}
and {1 — w'}.

The recursive definition of the quantities f C(p) (see (7.4)) therefore
becomes fI1(p) = 3,

) = ) +2. (C.1)
In addition, the p-equations (7.5) become

fr (o) = e(f17 (). (C2)
On the one hand, iterating (C.2) yields that

j—2

log £ (p) = p1 ...pj—1log3 +ij,1 P
i=0

for all j > 1. On the other hand, combining (C.1) and (C.2), we find that
p;log fUi(p) =log2 —log(e — 1),

and thus

=2

pr...pjlog3 + ij,oj_l ...pj—i =log2 —log(e — 1)
i=0
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for all j > 1. Hence, we obtain the formulas

log2 —log(e — 1) log2 —log(e — 1)
g s — — i . = =K
o P2 =p3 log2+ 1 —log(e — 1)

log 3

Let us also note that the above discussion implies that

log £7i (p) = log2 — log(e — 1) _ log3 if j =1,
pj log2 —log(e —1)+1 if j > 2.
(C.3)

Now, assuming that the conditions of Proposition 7.7 hold, we therefore
have

1 1
(V) = (log3 — 1 log3+ —(14+—+---
A0 = og3 =1 [ (tog3 (14 <+t

= (1 — 1 )Kr_l
log3 '

Now it can be shown by explicit calculation that the conditions of Proposition
7.7 do hold. The optimal measures ;" are all induced from the measure 11* in
which

Tel=r ifj=1,
e

. , 1
* Jy — *1_ Jy — *F'-—z
w (@) =p 1 —-w)=puT) o) {_el

In addition, we have

pw*(To)
=

1—r

n*(0) = pu 1) =

1
—e
6

We may then prove by a slightly lengthy computation whose details we leave
to the reader that the optimal parameters ¢* are given by

1 re—« 1 . 1
* * _ j * _ . r—1
a=1 = Kz(e— 1)(1 log3)K C Ol T (1 10g3)K '

It can also be shown that y;**(7) = yx(?), by showing that the full entropy
condition (3.6) follows from the restricted conditions (7.11). This is a little
involved, but a fairly direct inductive argument can be made to work and this
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is certainly less subtle than the arguments of Sect. 8. In this way one may
establish the bound

1 log2 —loge — 1)\
yor > (1- 0g2 —logle — 1) > (0.131810543 .Y
log3/\log2+ 1 —log(e — 1)

(C4)

Finally, a relatively routine perturbative argument yields the same bound
for yor.

It will be noted that (C.4) is strictly stronger than (3.12), the bound obtained
in [22]. This is because, in essence, Maier and Tenenbaum chose slightly
suboptimal measures and parameters on the system ¥, roughly corresponding

to p(w’) ~ 3/=7=1 which then leads to cj~ (—11:11//1?5237)1'
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