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Abstract 
Random parameter logit models address unobserved preference heterogeneity in discrete choice analysis. The latent class 
logit model assumes a discrete heterogeneity distribution, by combining a conditional logit model of economic choices with a 
multinomial logit (MNL) for stochastic assignment to classes. Whereas point estimation of latent class logit models is widely 
applied in practice, stochastic assignment of individuals to classes needs further analysis. In this paper we analyze the statisti-
cal behavior of six competing class assignment strategies, namely: maximum prior MNL probabilities, class drawn from prior 
MNL probabilities, maximum posterior assignment, drawn posterior assignment, conditional individual-specific estimates, and 
conditional individual estimates combined with the Krinsky–Robb method to account for uncertainty. Using both a Monte 
Carlo study and two empirical case studies, we show that assigning individuals to classes based on maximum MNL probabil-
ities behaves better than randomly drawn classes in market share predictions. However, randomly drawn classes have higher 
accuracy in predicted class shares. Finally, class assignment based on individual-level conditional estimates that account for 
the sampling distribution of the assignment parameters shows superior behavior for a larger number of choice occasions per 
individual. 
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Random parameter logit models are the main empirical 
strategy for addressing unobserved preference heteroge-
neity in discrete choice analysis (1, 2). Heterogeneity (or 
mixing) distributions are usually taken from parametric 
families, either continuous or discrete. In the latent class 
conditional logit (LCL) model, preference parameters are 
assumed to have a heterogeneity distribution that is discrete 
(3–6). In fact, LCL choices are governed by a conditional 
logit model, whereas assignment to classes is determined by 
a multinomial logit (MNL) specification (2). 

Mixed logit models with parametric and continuous 
heterogeneity distributions—such as normally distributed 
parameters—provide preference estimates that can be 
hard to interpret or have inference problems (7–11). 
However, the discrete nature of the estimates of latent 
class logit models makes inference easier in relation to 
both interpretability and derivation of welfare measures 
such as willingness-to-pay (WTP) metrics. As a result, 
use of LCL models has proven a popular choice in 
empirical work. After seminal work that spread the use 

of LCL models in choice modeling, recent examples 
include a vast variety of applications, from preference 
location by crime offenders to valuation of endangered 
marine species, and recreational demand in the Alps, just 
to give three examples of the range of problems for which 
latent class logit models have been applied beyond more 
traditional applications (such as travel mode choice, 
vehicle ownership, and residential choice) (5, 6, 12–21). 

Despite the growing popularity of LCL models, there 
is a need for better understanding of statistical inference 
with the model. Whereas Romero-Espinosa et al. studied 
statistical and asymptotic behavior of interval estimates 
of conditional LCL preference parameters at the individ-
ual level, further analysis is needed to characterize the 
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behavior of empirical strategies for assigning individuals 
to a specific class (22). The latent class assignment prob-
lems can relate to random draw sampling methods and 
Bayesian procedures of preference parameter estimation. 
Using different class assignment strategies may affect the 
accuracy of predicting latent class shares and chosen 
alternative shares. In addition to the popular class assign-

b = the preference parameters of latent class q. 
ment method using prior probabilities and a maximum- q 

On the other hand, and since the underlying class of
value-draw strategy, there also exist other methods which 

_ 

an individual is not observed, class assignment assumes 

s, Q, g1 = 

need to be studied (23–25). In this paper we focus on 
these issues and analyze the statistical behavior of six 
competing class assignment strategies that are econome-
trically valid but have not been fully examined in the lit-

the following MNL probabilities: 

exp h0 igqPQ 0, ð2Þ1,;wiq = q = 
1 exp h0 igerature, namely: maximum prior MNL probabilities, qq = 

class drawn from prior MNL probabilities, maximum 
posterior assignment, drawn posterior assignment, condi-
tional individual-specific estimates, and conditional indi-
vidual estimates combined with the Krinsky–Robb (KR) 
method (26). Our contribution lies in the methodical 
comparison of these class assignment strategies for latent 
class logit models. 

This paper is organized as follows. The next section 
reviews the latent class logit model and describes the six 
empirical strategies for assignment to classes mentioned 
above. The section after that uses a Monte Carlo study 
to compare the empirical performance across all strate-
gies in different regimes. Our comparison is then supple-
mented in the penultimate section with two case studies, 
one focused on response to automated electric vehicles 

0exp (x ijtb )q
Pijtjq = P , ð1Þ 

exp (x0 ijtb )q 
j 

where 
xijt = the attributes of alternative j for consumer i in 
choice occasion t, and 

where 
hi = socio-demographic characteristics of consumer i, 
and 
g = the parameter vector which summarizes how these q 
characteristics are linked to a higher or lower likelihood 
of the consumer belonging to latent class q. 

Empirical Strategies for Assignment to Classes 
Using Bayes’ theorem, posterior MNL probability for 
assignment to classes can be derived as (see Train) (27): " #yijt

T JQ Q
= 1 = 1 

exp (x0 PJ 
ijt b̂q) wb iq

b̂exp (x0 q )ijtjt j = 1" #and the other on consumer valuation of emission savings p(b b jyi, Xi)== ,yijtq 
Q T J 

wb iq 
= 1 t = 1 = 1 

P Q Q exp (x0PJ 
ijt b̂qwhen purchasing a new vehicle. The final section ) 

b̂concludes. exp (x0 q)ijtjq j = 1 

ð3Þ 
The Latent Class Logit Model 

where 
Following a general choice setting, we assume that con- b̂ = q the point estimate vector of preferences for latent 

^ 

^ 
sumer i makes discrete choices among a set of J alterna- class q, and 

wiq = the fitted MNL probability of consumer i belong-tives and T choice occasions with utility maximization as 

^ 

the decision rule. The truncated indirect utility functions ing to that class. 
wiq is a prior probability of class assignment 

g 

Note that of the alternatives are characterized by individual prefer-
ences. Whereas the simplest choice models impose prefer- that is based on the estimated parameter vectors 

homogeneity, more flexible specifications address ence q = 1, ..., Q. 
Given the prior and posterior MNL class assignment unobserved preference heterogeneity through the consid-

eration of preference parameters that are random. In 
latent class logit models, consumers’ preferences are 
assumed to be heterogeneous with discrete heterogeneity 
distributions. In fact, in LCL models consumers are 
assumed to belong to clusters that are modeled as latent 
classes. Within each class, the same preference para-
meters are shared as in a standard conditional logit 
model. 

On the one hand, conditional on class q, LCL choices 
assume the following conditional logit choice probability: 

probabilities shown above, four strategies for class 
assignment can be derived. The first two strategies are 
based on prior class assignment probabilities alone, 
which only depend on consumer information. In contrast 
to prior strategies, posterior assignment strategies use the 
posterior MNL probabilities wherein consumers’ choices 
are embedded. For each of the two types of assignment 
probabilities, we introduce two strategies for individual-
level latent class assignment: 1) assign a certain consumer 
a class according to maximum probability (as in Scarpa 
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and Thiene) (23); and 2) randomly draw a class for a In addition to the point estimates introduced above, it 
consumer from the estimated latent class probabilities. is also worth noting that inference on the expected pre-

ference parameters can be taken into account in the 
u (22, 26).Since u is^uncertainty in the determination of Strategy 1: maximum MNL assignment probability. 

This strategy uses prior MNL probabilities across multivariate normally distributed with mean u and cov-
latent classes stated in Equation 2. Given estimated ariance Su, the corresponding formal expression of the 
parameters and a consumer’s socio-demographic conditional expectation of the individual parameters is 
information, we then compute the prior MNL prob- the following: 

wiq ^ 

ijyi, Xi, 

abilities for them and assign them the class of ð 
which the probability value is the maximum among 
all q = 1, . . . , Q. 
Strategy 2: drawn MNL assignment. The second strat-
egy uses prior MNL probabilities through Equation 2 
as well. However, this strategy makes an independent 
random draw for latent class assignment from the 

wiq ^obtained prior probabilities for each particular 

E½bijyi, ui, Su = E½bijyi, u �N (ujui, Su)du: ð5Þ 
u 

To circumvent the heavy computations associated 
with evaluation of the multi-dimensional integral, a sam-
pling method can be set to calculate the conditional esti-
mates that accounts for the sampling distribution of the 

consumer i, instead of taking the maximum value. 
Thus, consumers’ assigned classes come directly from 
those random draws. 
Strategy 3: maximum posterior assignment probability. 
Individuals are assigned to the class with the maxi-
mum posterior probability (Equation 3), evaluated at ^ 

meta-parameter u. This approximation is close to the 
KR method, which was introduced by Greene et al. for a 
random parameter logit model with continuous hetero-
geneity distributions (26, 28). In practice, the computa-
tion steps of the empirical counterpart of the expectationPR

E½bijy, ui, Su 1in Equation 5 optimize toward = 
R r = 1 

r
E½bijyi, X iu 
where 

point estimates. 
Strategy 4: drawn posterior assignment. Similar to the 
second strategy, the forth strategy makes an indepen-
dent random draw for the class assignment according 

posterior probabilities obtained through Equation to
3 for each particular Then, individuals iconsumer . 

assigned the randomly picked classes. toare

In addition these four strategies based actual to on 

assigned class by consideration of their conditional to a 

^ 

class assignment probabilities, consumers can also be 

point estimate 
b ^. 

R = the number of simulation repetitions, where u is 
sampled R times and the average of those conditional 
estimates at the individual level is taken. 

In sum, the possibility of working with conditional 
estimates at the individual level provides another empiri-
cal strategy of assignment to classes, where a given indi-
vidual is assigned to the class with population point 
estimates that are closest to the conditional point esti-
mates. Thus, it is possible to implement the following: 

^ 

Strategy 5: conditional individual-specific estimates. 

u), which 

ijyi, xi, u 
Individual i is assigned to the class with population 
parameters that are closest to E(bijyi, Xi,Conditional Estimates at the Individual Level 
uses Equation 4. 

^ 

From the posterior MNL probabilities shown in the pre-
vious section, it is possible to derive conditional estimates 

^ 

of preference parameters at the individual level (26, 27). 
Equation 4 for the conditional preferences is essentially 
an expected preference parameter vector over the poster-
ior class assignment probabilities from Equation 3: 

b u)== ^ " #u 

Strategy 6: conditional individual-specific estimates 
with KR implementation. Individual i is assigned to 
the class with population parameters that are closest 

rto 1 PR 
E½bijyi, X iu , which further assumes uncer-

R r = 1 
tainty in meta-parameters u and takes simulated inte-
gral in Equation 5 by sampling meta-parameter 
values. 

^ 

E(bijyi, Xi, 

b 

yijt
JQ
= 1 

T ^ 
ijtbq)exp (x0 PJwb iq Monte Carlo Study QX ^ 

^ 

b 

ijtbq 

exp (x0 )ijt 1 j

Q
t = qj = 1" #yijt , ð4Þ Simulation Plan q 

Q T J 0P Q Q exp (x 
wb iq PJ 

q = 1 t = 1 j = 1 

)q = 1 
To compare the performance of the several competing exp (x0 )^ 

^ 

b 

where ous section, we conducted a Monte Carlo study. Similar 
u = the point estimate of a meta-parameter vector u that 

ijt qj = 1 
latent class assignment strategies described in the previ-

to the simulation done by Sarrias and Daziano, we also 
includes parameters g. assumed multiple sets of scenarios with three alternatives 
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^ (J = 3) for hypothetical individuals without individual-
level socio-demographic data (22). Whereas Sarrias and 
Daziano focused their study on interval estimation, we 
change the focus to choice predictions based on class 
assignment (22). 

Formally, the true latent utility of alternative j for 
individual i in choice occasion t is implemented as: 

Uijt = b1ix1ijt + b2ix2ijt + eijt, ð6Þ 

where 
1ijt = a Type-1 extreme value distributed preference 
shock, 
x1 = an independent and standard normally distributed 
attribute, and 1 

= individual-level parameters obtained through thebis 
different latent class assignment strategies under analysis. 

Besides this series of statistics, we also considered the 
empirical coverage probability (COV). COVs tell the pro-
portion of simulated samples for which the estimated 
95% interval includes the true individual-level parameter. 
A correct interval inference should produce a 95% cover-
age, with lower or higher figures indicating respective 
narrow or wide estimated intervals on average. 

On the other hand, to evaluate different strategies’ 
behavior on market shares and latent class shares, the 
following additional statistics were calculated: vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u 

SX N TX X1u1 2^tRMSE= (1 Pijt(bisjyit, X it))
S N T 

= 1 i = 1 = 1 
x2 = an attribute which is assumed to be a dummy vari-

ts 
able created from an indicator function 1(u\0:5) of  a  
uniformly distributed random variable 0\u\1. S N TX X X1 1 1 ^ For the preference parameters, we assumed the following 
discrete unobserved heterogeneity distributions (Q = 3): 8 < 2 with probability 0:25 

b1i = 0: 
2 

with probability 0:5 
with probability 0:25 

ð7Þ 

8 < 0:5 with probability 0:25 
b2i = 1 : 

1:5 
with probability 0:5 
with probability 0:25 

ð8Þ 

Simulated databases were constructed for a baseline 
size N = 1,000. For each individual, five scenarios with 
differing numbers of choice occasions were created, 
namely T 2 f1, 5, 10, 20, 50g. For each scenario, 300 
independently sampled databases were implemented. 

Given this simulation plan, we were able to compare 
statistical results across different latent class assignment 

^ 

MAE= (1 Pijt(bisjyit, X it))
S N T 

s = 1 i = 1 t = 1 

where 
yit = the true choice made by individual i in choice occa-
sion t. 

In addition, consideration is given to average percent 
correctly predicted (PCP). In fact, just as with assignment 
probabilities, we present PCP results obtained through 
two approaches, namely: (1) choosing an alternative with 
a maximum choice probability, and (2) randomly picking 
an alternative according to the estimated choice prob-
abilities. In the tables, these two statistics are denoted by 
PCP(max) and PCP(drawn), respectively. 

Finally, Brier scores were calculated to evaluate pre-
diction performance (29, 30): 

N T JXXX1 
pi, t, j)

2 
strategies mainly from the perspective of preference space BrierScore = (1fyi, t = jg�

N 3 T 3 J 
i = 1 t = 1 j = 1estimates, assigned latent class shares, and predicted 

choice shares. Specifically, we focused on the following ð9Þ 
statistics: 

where 

^ 

1fyi, t = jg = the true choices made by individual i on 
occasion t, and 
pi, t, j 

S NX X11 ^^ = bS = 
S N 

bisMean 
= the estimated choice probability, correspondingly. s = 1 i = 1 

Lower Brier scores are an indication of better predictive S NX X1 1 ^ (Absolute)Bias = jbis bij accuracy. 
S N 

s = 1 i = 1 

S NX 1 X j ̂ bis bij1 Results Absolute percentage bias = 
biS N 

Tables 1 and 2 summarize parameter recovery results 

^ 

s = 1 i = 1 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
bS 

obtained through the six competing class assignment u 
S NXu X1 1t 2 strategies. Table 1 displays aggregate Monte Carlo ^ SE= (

S N 1 
s = 1 i = 1 

bis ) , 
results for the estimation of the preference parameter b1. 
To understand this aggregate analysis, consider that 

where point estimates of b1 have been contrasted with the true 
bi = the true parameters for each individual i, and expected value of the parameter which is equal to 0. 
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Table 1. Latent Class Conditional Logit (LCL) Model—Three Classes: Aggregate Parameter Recovery ( b1) 

Mean Bias CP 

Mean SE Mean SE Mean SE 

T = 1 
Maximum MNL assignment probability 
Drawn MNL assignment 
Maximum posterior assignment probability 
Drawn posterior assignment 
Conditional individual-specific estimates 
Conditional individual-specific estimates + KR 
T = 5 
Maximum MNL assignment probability 
Drawn MNL assignment 
Maximum posterior assignment probability 
Drawn posterior assignment 
Conditional individual-specific estimates 
Conditional individual-specific estimates + KR 
T = 10 
Maximum MNL assignment probability 
Drawn MNL assignment 
Maximum posterior assignment probability 
Drawn posterior assignment 
Conditional individual-specific estimates 
Conditional individual-specific estimates + KR 
T = 20 
Maximum MNL assignment probability 
Drawn MNL assignment 
Maximum posterior assignment probability 
Drawn posterior assignment 
Conditional individual-specific estimates 
Conditional individual-specific estimates + KR 
T = 50 
Maximum MNL assignment probability 
Drawn MNL assignment 
Maximum posterior assignment probability 
Drawn posterior assignment 
Conditional individual-specific estimates 
Conditional individual-specific estimates + KR 

0.0678 
20.2142 
20.1092 
20.1716 
20.1966 
20.0626 

0.0034 
0.0042 
0.0078 
0.0026 
0.0038 
0.0031 

20.0016 
0.0018 
0.0035 
0.0009 

20.0003 
20.0005 

0.0269 
20.0161 
20.0131 
20.0139 
20.0142 
20.0018 

0.0079 
20.0035 
20.0039 
20.0039 
20.0039 
20.0046 

0.5246 
5.9109 
2.6107 
5.9121 
3.4742 
3.1302 

0.0379 
1.4143 
1.4326 
1.4159 
1.2664 
1.2696 

0.0178 
1.4203 
1.4258 
1.4186 
1.3697 
1.3665 

0.0503 
1.4014 
1.4000 
1.3990 
1.3920 
1.4076 

0.0192 
1.4055 
1.4058 
1.4058 
1.4058 
1.3665 

1.2627 
3.3305 
1.5107 
2.9994 
2.5171 
2.4203 

1.0190 
1.5209 
0.3522 
0.4695 
0.4201 
0.4162 

1.0089 
1.5129 
0.1288 
0.1735 
0.1592 
0.1607 

1.0182 
1.4977 
0.0769 
0.0833 
0.0811 
0.0504 

1.0083 
1.5019 
0.0303 
0.0303 
0.0303 
0.0145 

0.9344 
5.9542 
2.1677 
5.7863 
3.4366 
3.1569 

0.9821 
1.2956 
0.6665 
0.7720 
0.4901 
0.4900 

0.9917 
1.3116 
0.4094 
0.4954 
0.3365 
0.3369 

0.9533 
0.9508 
0.2119 
0.2449 
0.1932 
0.1484 

0.9938 
1.3123 
0.0449 
0.0449 
0.0443 
0.0142 

0.9533 
0.9509 
0.9505 
0.9507 
0.9500 
1.0000 

0.9533 
0.9509 
0.9500 
0.9512 
0.9500 
1.0000 

0.9533 
0.9505 
0.9504 
0.9508 
0.9500 
1.0000 

0.9867 
0.9506 
0.9508 
0.9506 
0.9500 
0.9999 

0.9533 
0.9507 
0.9500 
0.9500 
0.9500 
1.0000 

0.0890 
0.1563 
0.1552 
0.1566 
0.1217 
0.0000 

0.0890 
0.1350 
0.1364 
0.1344 
0.1746 
0.0000 

0.0890 
0.1329 
0.1332 
0.1324 
0.1533 
0.0000 

0.0890 
0.1312 
0.1306 
0.1315 
0.1376 
0.0002 

0.0890 
0.1327 
0.1339 
0.1339 
0.1340 
0.0000 

Note: SE = standard error; CP = empirical coverage; KR = Krinsky–Robb method; MNL = multinomial logit. 

Recall that the law of large numbers ensures that an 
unbiased estimator has its estimates converge to the true 
value as sample size goes infinitely large. Thus, we should 
observe that bias values shrink as the choice situation 
number T goes large. 

In the case of analyzing choice predictions, each indi-
vidual has been assigned to a class; the point estimates of 
the respective class can be used to evaluate the condi-
tional logit choice probabilities of Equation 1 which can 
be then plugged into the expressions of root mean square 
error (RMSE) and maximum absolute error (MAE) as 
well as exploited for making an actual predicted alterna-
tive either using the maximum probability rule or the 
drawn alternative method. As shown in Table 1, and as 
expected, we can observe that assignment strategies 
related to posterior probabilities and conditional 

estimates generate lower bias when T goes up. 
Nevertheless, the first two assignment strategies, which 
are associated with prior assignment probabilities, do 
not show lower bias values when T is large. This obser-
vation results from the setting of our Monte Carlo study 
plan. In our simulated databases, we only randomly 
simulated alternative attribute levels but not the 
individual-level socio-demographic data. This kind of 
setting causes prior probabilities to be unable to effec-
tively identify each individual’s latent class. 

Comparing bias values across class assignment strate-
gies, strategy 3 displays the lowest bias when T = 5, 10. 
This result implies that posterior choice probabilities 
behave better in the cases of limited individual-level 
choice information (i.e., T is at a moderate value). As 
choice situations T becomes larger (T = 20, 50), the 
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conditional individual-specific estimates with the KR 
method estimates produce the lowest bias values on the 
aggregate estimations of parameter b1. 

Given a certain kind of latent class assignment prob-
abilities, say, for example, prior probabilities, the maxi-
mum probability rule methods (strategies 1 and 3) bring 
lower bias values compared with those of the random 
draw method (strategies 2 and 4). This phenomenon can 
be explained through a linear programming problem in a 
1 norm space. Given a set of class probabilities piq of 
an individual i of class q, a predictor’s job is to solve the 
following linear programming problem: PQ
maxjjajj1 ł 1 : q = 1 aqpiqBiasq, 

where 
a =(a1, . . . , aQ) = the probabilities of latent classes 

by a predictor. 
The feasible area of a, jjajj1 ł 1 shows that these pre-

diction probabilities are required to follow a one-sum 
rule. To this extent, an optimal solution to this linear pro-
gramming formulation implies that the maximum prob-
ability assignment strategy suggests the best classification 
for individuals when a predictor uses an unbiased 
Maximum Likelihood Estimation (MLE) estimator. 

In Table 2, we illustrate detailed parameter recovery 
based on the databases with T = 50. In this case, com-
parisons are made with respect to each of the three possi-
ble values of the parameter. Similar to the situation in 
Table 1, strategies with prior probabilities exhibit worse 
performance than that of other strategies, with all other 
strategies having corresponding MEV metrics close to 
the true values. 

In Table 3, where we analyze correct disaggregate 
choice predictions by class assignment strategy, we 
observe that summary statistics including RMSE, MAE, 
and PCP do not become better when T goes up. All pos-
terior assignment strategies (strategies 3 and 4) perform 
equivalently well in choice prediction. However, for 
T = 1, exploiting conditional estimates at the individual 
level makes superior choice inference, especially when 
using the maximum probability rule in the calculation of 
PCP. Combined with the KR method for accounting for 
the sampling distribution of the class assignment para-
meters, for T = 1, PCP(max) achieves a value over 81%. 
In fact, PCP(max) values are larger than PCP(drawn) 
across all assignment strategies. This phenomenon can 
be explained by the same linear programming in the 1-
norm space argument used before. 

In addition, Table 4 reports that the aggregate class 
shares of all strategies closely approximate the true class 
shares even when T = 5. The exception is maximum prior 
assignment probability, which is expected, as Class 2 hav-
ing the greatest share, the result is an almost deterministic 
assignment to Class 2. Another reason behind this is also 
similar to the case in Table 1 where the maximum MNL 

assignment probability assignment strategy predicts bi 
worse. The lack of individual background information 
causes inefficiency in class assignment through maximum 
prior probabilities. 

As a whole, we can see that, even though a larger T 
results in more accurate estimated parameters, good 
aggregate class shares can be achieved even with a small 
T . Table 4 also shows that the maximum MNL (prior) 
assignment probability (strategy 1) predicts aggregate 
class shares significantly worse than other strategies. 

Looking at disaggregate correct class assignment, 
Table 5 reports the proportions of correct class assign-
ments for all assignment strategies. Again, using prior 
probabilities (strategies 1 and 2) performs significantly 
worse than other strategies because of the lack of individ-
ual socio-demographic information in the Monte Carlo 
study setting. These observations match the analysis from 
Tables 1 and 2, as elaborated previously. For instance, 
while increasing T in general improves correct posterior 
assignment, even with a relatively low number of choice 
occasions (T = 5) correct assignment to classes is over 
85% and can achieve 95% for T = 10 (which is a com-
mon number found in practice for choice experiments). 

Finally, Table 6 reports Brier scores of individual-level 
choice predictions made by the different class assignment 
strategies. These score values reflect the accuracy of 
choice predictions, and a lower value implies more accu-
rate predictions. These figures again confirm that strate-
gies embedded with posterior probabilities have rather 
accurate choice predictions. However, the posterior prob-
ability strategies do not necessarily generate lower Brier 
scores when T goes large. 

Empirical Case Studies 
Data 
To supplement the Monte Carlo study, the six class 
assignment strategies were applied to two empirical data-
sets using actual choice experiments. Both case studies 
relate to purchase preferences toward low-emission vehi-
cles. Whereas the first case study, in addition to electrifi-
cation, focuses on automated features, the second case 
study uses data that were collected to analyze economic 
valuation of carbon abatement. There are two main dif-
ferences with the simulation setting. First, true para-
meters and true classes are, of course, unknown. Second, 
class assignment is informed by socio-demographic char-
acteristics of the consumers. 

Case Study 1: Automated Electric Vehicles 
We first use microdata from a choice experiment that 
was designed to analyze early-market response to vehicle 
automation (31, 32). The choice experiment was designed 
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Table 2. Latent Class Conditional Logit (LCL) Model—Three Classes: Detailed Parameter Recovery (T = 50, N = 1,000) 

True MEV MAB APB FSSE 

Maximum MNL assignment probability 
Class 1: b1 22.0 0.0063 2.0063 1.0031 2.0063 
Class 2: b1 0.0 0.0064 0.0063 Inf 0.0063 
Class 3: b1 2.0 0.0064 1.9936 0.9968 1.9936 
Class 1: b2 20.5 1.0182 1.5182 1.0031 1.5182 
Class 2: b2 1.0 1.0182 0.0182 0.0182 0.0182 
Class 3: b2 1.5 1.0182 0.4817 0.3211 0.4817 
Drawn MNL assignment 
Class 1: b1 22.0 20.0990 1.9009 0.9504 2.3668 
Class 2: b1 0.0 0.1665 0.9713 Inf 1.3889 
Class 3: b1 2.0 0.0679 1.9429 0.9714 2.3986 
Class 1: b2 20.5 0.7009 1.2009 2.4019 1.4305 
Class 2: b2 1.0 0.8468 0.4621 0.4621 0.7312 
Class 3: b2 1.5 0.7834 0.7263 0.4842 1.0406 
Maximum posterior assignment probability 
Class 1: b1 22.0 21.9534 0.0465 0.0233 0.0465 
Class 2: b1 0.0 0.0063 0.0063 Inf 0.0063 
Class 3: b1 2.0 2.0203 0.0203 0.0101 0.0203 
Class 1: b2 20.5 20.4933 0.0066 0.0133 0.0066 
Class 2: b2 1.0 1.0182 0.0182 0.0182 0.0182 
Class 3: b2 1.5 1.5182 0.0182 0.0121 0.0182 
Drawn posterior assignment 
Class 1: b1 22.0 21.9534 0.0465 0.0232 0.0465 
Class 2: b1 0.0 0.0064 0.0064 Inf 0.0064 
Class 3: b1 2.0 2.0203 0.0203 0.0101 0.0203 
Class 1: b2 20.5 20.4933 0.0066 0.0132 0.0066 
Class 2: b2 1.0 1.0182 0.01826 0.0182 0.0182 
Class 3: b2 1.5 1.5182 0.01822 0.0121 0.0182 
Conditional individual-specific estimates 
Class 1: b1 22.0 21.9534 0.0465 0.0232 0.0465 
Class 2: b1 0.0 0.0064 0.0063 Inf 0.0064 
Class 3: b1 2.0 2.0203 0.0203 0.0102 0.0203 
Class 1: b2 20.5 20.4933 0.0066 0.0133 0.0066 
Class 2: b2 1.0 1.0182 0.01826 0.0182 0.0182 
Class 3: b2 1.5 1.5182 0.01822 0.0121 0.0182 
Conditional individual-specific estimates—KR 
Class 1: b1 22.0 21.9915 0.0084 0.0042 0.0084 
Class 2: b1 0.0 20.0013 0.0016 Inf 0.0029 
Class 3: b1 2.0 2.0358 0.0358 0.0179 0.0358 
Class 1: b2 20.5 20.4551 0.0448 0.0896 0.0448 
Class 2: b2 1.0 0.9950 0.0049 0.0049 0.0049 
Class 3: b2 1.5 1.4785 0.0214 0.0143 0.0214 

Note: APB = absolute percentage bias; FSSE = finite sample standard error; Inf = Infinity; KR = Krinsky–Robb method; MAB = mean absolute bias; 
MEV = mean estimated value; MNL = multinomial logit. 

around three levels of automation of private light duty 
vehicles, namely: no automation, partial automation, 
and full automation. Automation was allowed for low-
emission powertrains (hybrid electric, plug-in hybrid, 
and full battery electric). Details about both the design 
of the experiment and the data are provided by Daziano 
et al. (31). The conditional indirect utility for individual i 
choosing alternative j was specified in WTP space as: 

0Uij = x ijvi aipriceij giPVFCij + Eij 

xij = vehicle design attributes, 
PVFC = expected present value of fuel costs, and 
Eij = i.i.d. distributed Type 1 extreme value as an error 
term. 
The parameters \vi, ai, gi. are assumed to be random 
with a discrete heterogeneity distribution. 

In this dataset, there are 1,260 individuals (N = 1,260) 
that responded to a choice experiment with four alterna-
tives, namely: a hybrid electric vehicle (HEV), a plug-in 
hybrid electric vehicle (PHEV), a battery electric vehicle 
(BEV), and a gasoline vehicle (GAS). In the statistical 

where 
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Table 3. Latent Class Conditional Logit (LCL) Model—Three Classes: Prediction Metrics 

RMSE MAE 

Class assignment strategy Mean SE Mean SE PCP (max) PCP (drawn) 

T = 1 
Maximum MNL assignment probability 0.6636 0.0197 0.6343 0.0331 0.4095 0.3675 
Drawn MNL assignment 0.6894 0.0094 0.6320 0.05820 0.3998 0.3569 
Maximum posterior assignment probability 0.4811 0.0586 0.4254 0.0893 0.7255 0.5134 
Drawn posterior assignment 0.5318 0.0237 0.4608 0.0782 0.62746 0.5173 
Conditional individual-specific estimates 0.4325 0.0401 0.3678 0.0908 0.7906 0.5173 
Conditional individual-specific estimates + KR 0.4058 0.0636 0.3334 0.1214 0.8142 0.5254 
T = 5 
Maximum MNL assignment probability 0.6482 0.0019 0.6344 0.0142 0.4204 0.3675 
Drawn MNL assignment 0.6874 0.0048 0.6353 0.0522 0.3992 0.3569 
Maximum posterior assignment probability 0.5331 0.0038 0.4682 0.0651 0.6215 0.5134 
Drawn posterior assignment 0.5434 0.0040 0.4792 0.0644 0.6070 0.5173 
Conditional individual-specific estimates 0.5228 0.0036 0.4642 0.0589 0.6492 0.5173 
Conditional individual-specific estimates + KR 0.5233 0.0036 0.4652 0.0583 0.64938 0.5254 
T = 10 
Maximum MNL assignment probability 0.6479 0.0013 0.6342 0.0139 0.4219 0.3675 
Drawn MNL assignment 0.6869 0.0046 0.6353 0.0518 0.3997 0.3569 
Maximum posterior assignment probability 0.5415 0.0024 0.4772 0.0644 0.6081 0.5134 
Drawn posterior assignment 0.5436 0.0025 0.4795 0.0641 0.6052 0.5172 
Conditional individual-specific estimates 0.5372 0.0024 0.4749 0.0624 0.6231 0.5173 
Conditional individual-specific estimates + KR 0.5377 0.0022 0.4757 0.0621 0.6231 0.5254 
T = 20 
Maximum MNL assignment probability 0.6482 0.0017 0.6342 0.0141 0.4212 0.3676 
Drawn MNL assignment 0.6866 0.0047 0.6356 0.0512 0.3997 0.3569 
Maximum posterior assignment probability 0.5450 0.0065 0.4818 0.0640 0.6035 0.5134 
Drawn posterior assignment 0.5451 0.0065 0.4820 0.0639 0.6033 0.51728 
Conditional individual-specific estimates 0.5443 0.0065 0.4814 0.0637 0.6066 0.5173 
Conditional individual-specific estimates + KR 0.5436 0.0046 0.4803 0.0637 0.6073 0.5254 
T = 50 
Maximum MNL assignment probability 0.6480 0.0011 0.6343 0.0138 0.4217 0.3675 
Drawn MNL assignment 0.6867 0.0040 0.6352 0.0516 0.4001 0.3569 
Maximum posterior assignment probability 0.5445 0.0043 0.4809 0.0638 0.6036 0.5134 
Drawn posterior assignment 0.5445 0.0043 0.4809 0.0638 0.6036 0.5172 
Conditional individual-specific estimates 0.5445 0.0043 0.4809 0.0638 0.6036 0.5173 
Conditional individual-specific estimates + KR 0.5440 0.0011 0.4802 0.0638 0.6041 0.5254 

Note: KR = Krinsky–Robb method; MAE = mean absolute error; max = maximum; MNL = multinomial logit; PCP = percent correctly predicted; RMSE = 
root mean square error; SE = standard error. 

analysis, we assume three latent classes (Q = 3) following 
the model selection strategy conducted in the article by 
Daziano et al., which was based on both Bayesian infor-
mation criterion (BIC) and Akaike information criterion 
(AIC) (31). 

Case Study 2: Emission Valuation in Vehicle Purchases 
The second choice experiment was designed to analyze 
the impact of environmental information framings on the 
maximum WTP for CO 2 abatement (see Daziano et al.) 
(33). This experiment considered a binary choice between 
two unlabeled vehicles. The experimental attributes were: 
purchase cost, fuel costs per year, and CO 2 emissions (in 

pounds). The following indirect utility in preference space 
was adopted: 

Uij = bi1priceij + bi2PVFCij + bi3PVFEij + Eij 

where 
PVFE = present value of the expected future emissions, 
and 
PVFC = present value of expected future fuel costs. 
The parameter vector bi is random with a discrete het-
erogeneity distribution. 

In this dataset, there are 1,580 individuals with two 
alternative vehicles. We assume two latent classes accord-
ing to the original probabilistic model selection study 
conducted in the paper by Daziano et al. (33). 
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Table 4. Latent Class Conditional Logit (LCL) Model—Three Classes: Class Shares 

Aggregate class shares 

Class assignment strategy Class 1 Class 2 Class 3 x2 p-value 

True class shares 0.25 0.50 0.25 na 
T = 1 
Maximum MNL assignment probability 0.1267 0.6533 0.2200 0.0000 
Drawn MNL assignment 0.2597 0.4416 0.2985 0.0002 
Maximum posterior assignment probability 0.2391 0.4770 0.2837 0.0206 
Drawn posterior assignment 0.2591 0.4414 0.2993 0.0003 
Conditional individual-specific estimates 0.2392 0.4891 0.2716 0.0206 
Conditional individual-specific estimates + KR 0.2028 0.5228 0.2743 0.0015 
T = 5 
Maximum MNL assignment probability 0.0000 1.0000 0.0000 0.0000 
Drawn MNL assignment 0.2518 0.4981 0.2500 0.9830 
Maximum posterior assignment probability 0.2573 0.4853 0.2572 0.7550 
Drawn posterior assignment 0.2528 0.4971 0.2500 1.0000 
Conditional individual-specific estimates 0.2547 0.4904 0.2547 0.7550 
Conditional individual-specific estimates + KR 0.2543 0.4888 0.2568 0.7727 
T = 10 
Maximum MNL assignment probability 0.0000 1.0000 0.0000 0.0000 
Drawn MNL assignment 0.2504 0.4984 0.2510 0.9928 
Maximum posterior assignment probability 0.2519 0.4946 0.2534 0.9482 
Drawn posterior assignment 0.2500 0.4997 0.2502 1.0000 
Conditional individual-specific estimates 0.2516 0.4950 0.2533 0.9482 
Conditional individual-specific estimates + KR 0.2526 0.4946 0.25287 0.9482 
T = 20 
Maximum MNL assignment probability 0.0033 0.9533 0.0433 0.0000 
Drawn MNL assignment 0.2513 0.5051 0.2435 0.7507 
Maximum posterior assignment probability 0.2509 0.5051 0.2439 0.7820 
Drawn posterior assignment 0.2506 0.5055 0.2437 0.7494 
Conditional individual-specific estimates 0.2503 0.4949 0.2546 0.7820 
Conditional individual-specific estimates + KR 0.2532 0.4884 0.2583 0.7402 
T = 50 
Maximum MNL assignment probability 0.0067 0.9900 0.0033 0.0000 
Drawn MNL assignment 0.2526 0.5029 0.2445 0.8831 
Maximum posterior assignment probability 0.2524 0.5033 0.2441 0.9423 
Drawn posterior assignment 0.2524 0.5033 0.2441 0.9423 
Conditional individual-specific estimates 0.2499 0.5016 0.2484 0.9423 
Conditional individual-specific estimates + KR 0.2525 0.4974 0.2500 0.9830 

Note: KR = Krinsky–Robb method; MNL = multinomial logit; na = not applicable. 

Table 5. Latent Class Conditional Logit (LCL) Model—Three Classes: Individual-Level Class Assignments 

T Max prior Drawn prior Max posterior Drawn posterior Conditional est. Conditional est. + KR 

PCP of class assignments 
1 0.4175 0.3616 0.5091 0.4687 0.5091 0.4683 
5 0.5000 0.3717 0.8617 0.8018 0.8617 0.8618 
10 0.5000 0.3720 0.9553 0.9331 0.9553 0.9554 
20 0.4850 0.3766 0.9242 0.9210 0.9242 0.9721 
50 0.4975 0.3777 0.9875 0.9875 0.9875 0.9725 

Note: est. = estimate; KR = Krinsky–Robb method; max = maximum; PCP = percent correctly predicted. 

Empirical Analysis a meta-parameter Q = 3 (i.e., three latent classes). The 
For both case studies, before applying each class assign- numerical results in Table 7 (choice predictions, case 
ment strategy, we trained a latent class logit model with study 1) and Table 9 (choice predictions, case study 2) 
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Table 6. Latent Class Conditional Logit Model (LCL)—Three Classes: Brier Scores 

T Max prior Drawn prior Max posterior Drawn posterior Conditional est. Conditional est. + KR 

Brier scores 
1 0.2367 
5 0.2178 
10 0.2176 
20 0.2180 
50 0.2178 

0.2573 
0.2464 
0.2465 
0.2455 
0.2460 

0.1949 
0.1989 
0.2009 
0.2017 
0.2016 

0.2067 
0.2015 
0.2014 
0.2017 
0.2016 

0.1851 
0.1962 
0.1998 
0.2015 
0.2016 

0.1827 
0.1962 
0.1997 
0.2013 
0.2014 

Note: est. = estimate; KR = Krinsky–Robb method; Max = maximum. 

Table 7. Case Study 1: Prediction Metrics—Vehicle Automation Discrete Choice Experiment 

Class assignment strategy PCP (drawn) RMSE MAE PCP (max) 

Fitted values (full sample) 
Maximum MNL assignment probability 0.3743 0.7083 0.6345 0.3756 
Drawn MNL assignment 0.3297 0.7362 0.6632 0.3404 
Maximum posterior assignment probability 0.5586 0.5351 0.4446 0.6476 
Drawn posterior assignment 0.5910 0.5373 0.4468 0.6432 
Conditional individual-specific estimates 0.3392 0.6847 0.6694 0.4448 
Conditional individual-specific estimates + KR 0.3128 0.7515 0.6881 0.3160 
20% testing (80% training) 
Maximum MNL assignment probability 0.3648 0.7207 0.6507 0.3683 
Drawn MNL assignment 0.3389 0.7358 0.6683 0.3465 
Maximum posterior assignment probability 0.5503 0.5321 0.4478 0.6524 
Drawn posterior assignment 0.5548 0.5354 0.4503 0.6478 
Conditional individual-specific estimates 0.3191 0.6875 0.6742 0.4375 
Conditional individual-specific estimates + KR 0.3063 0.7523 0.6895 0.3102 
LOOCV 
Maximum MNL assignment probability 0.3652 0.7089 0.6346 0.3762 
Drawn MNL assignment 0.3309 0.7401 0.6691 0.3318 
Maximum posterior assignment probability 0.5555 0.5350 0.4443 0.6479 
Drawn posterior assignment 0.5535 0.5368 0.4457 0.6454 
Conditional individual-specific estimates 0.3311 0.6845 0.6689 0.4483 
Conditional individual-specific estimates + KR 0.3046 0.7556 0.6919 0.3036 
k-fold cross validation (k = 5)  
Maximum MNL assignment probability 0.3509 0.7240 0.6530 0.3526 
Drawn MNL assignment 0.3110 0.7514 0.6833 0.3122 
Maximum posterior assignment probability 0.5504 0.5370 0.4466 0.6428 
Drawn posterior assignment 0.5890 0.5387 0.4473 0.6397 
Conditional individual-specific estimates 0.3172 0.6927 0.6768 0.4237 
Conditional individual-specific estimates + KR 0.3048 0.7540 0.6912 0.3179 
Repeated k-fold cross validation (k = 5)  
Maximum MNL assignment probability 0.3450 0.7259 0.6556 0.3512 
Drawn MNL assignment 0.3244 0.7449 0.6759 0.3238 
Maximum posterior assignment probability 0.5527 0.5367 0.4460 0.6451 
Drawn posterior assignment 0.5541 0.5386 0.4476 0.6424 
Conditional individual-specific estimates 0.3255 0.6912 0.6754 0.4275 
Conditional individual-specific estimates + KR 0.3065 0.7554 0.6928 0.3118 

Note: KR = Krinsky–Robb method; LOOCV = leave-one-out cross-validation; MAE = mean absolute error; max = maximum; MNL = multinomial logit; 
PCP = percent correctly predicted; RMSE = root mean square error. 

summarize critical statistics for the evaluation of the class validation scenarios were considered, namely: fitted val-
assignment strategies in relation to their ability to repro- ues for the whole sample (a predicted choice is built for 
duce actual choices. Because correct out-of-sample pre- each pseudoindividual in the sample); 80% of the sample 
dictions cannot be known in empirical data, five used for estimation and the remaining 20% was used for 
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Table 8. Case Study 1: Market Shares—Vehicle Automation Discrete Choice Experiment. The Four Alternatives are: Hybrid Electric 
Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Battery Electric Vehicle (BEV), and Gasoline Vehicle (GAS) 

Aggregate shares 

Class assignment strategy GAS HEV PHEV BEV p-value 

Actual shares (full sample) 0.3692 0.1228 0.3100 0.1977 na 
LCL fitted shares (full sample) 
Maximum MNL assignment probability 0.3463 0.1317 0.3103 0.2115 1.5448e-06 
Drawn MNL assignment 0.3904 0.1203 0.2978 0.1913 2.5648e-04 
Maximum posterior assignment probability 0.3676 0.1238 0.3093 0.1991 0.9673 
Drawn posterior assignment 0.3703 0.1220 0.3109 0.1967 0.9819 
Conditional individual-specific estimates 0.3831 0.1232 0.2973 0.1962 0.0156 
Conditional individual-specific estimates + KR 0.3699 0.1207 0.3131 0.1962 0.0156 
LCL fitted shares 20% testing 
Actual shares (testing sample) 0.3490 0.1229 0.3384 0.1895 na 
Maximum MNL assignment probability 0.3539 0.1246 0.3154 0.2059 0.1103 
Drawn MNL assignment 0.3558 0.1281 0.3090 0.2069 0.0317 
Maximum posterior assignment probability 0.3490 0.1283 0.3150 0.2074 0.0720 
Drawn posterior assignment 0.3510 0.1247 0.3205 0.2037 0.2601 
Conditional individual-specific estimates 0.3780 0.1289 0.2898 0.2032 0.0001 
Conditional individual-specific estimates + KR 0.3710 0.1211 0.3122 0.1956 0.0156 

Note: KR = Krinsky–Robb method; LCL = latent class conditional logit model; MNL = multinomial logit; na = not applicable. 

out-of-sample; leave-one-out cross-validation (LOOCV) 
testing, where one pseudoindividual is repeatedly left out 
for estimation and is reserved for testing; k-fold cross 
validation with k = 5, where five groups are created and 
reserved as hold-out observations for testing; and 
repeated 5-fold cross validation, where the previous cross 
validation method is repeated. These cross validation 
methods are common practice in the machine learning 
community, but are not traditionally used in choice mod-
eling. In general, and confirming the observations of the 
Monte Carlo study, posterior probability strategies per-
form better than those based on prior probabilities, espe-
cially for the first case study (which involves three 
alternatives as opposed to the binary nature of the sec-
ond case study). Beyond PCP, posterior probabilities 
also bring more stable predictions, as is revealed in both 
RMSE and MAE. On the other hand, working with 
maximum probability assignment (strategies 1 and 3) has 
slightly higher correct prediction rates compared against 
drawn classes. Holding other environmental information, 
it is natural to see that a choice set with larger cardinality 
leads to a lower likelihood of a certain alternative being 
chosen. There are no remarkable difference across cross 
validation methodologies, with all class assignment stra-
tegies having similar metric values in testing and training. 
This latter observation implies that predictions made 
through all assignment strategies are generally consistent 
without over-fitting. 

When comparing aggregate shares in Tables 8 and 10, 
there is no evident conclusion about which strategy has 
generally better market share predictions. Whereas 

predictions from Drawn MNL assignment have a higher 
p-value for a x2 test of fit in the second case study com-
pared with that of Maximum MNL probability assign-
ment, the first case study shows inverse results. 
Nonetheless, and matching results from the Monte Carlo 
study, the use of conditional estimates at the individual 
level implemented together with the KR method is char-
acterized by a more consistent performance in the two 
case studies. 

Conclusions 
In this paper, we have discussed and applied six different 
class assignment strategies for latent class logit models. 
Whereas maximum prior and posterior class assignment 
have been applied in some previous studies, we argue 
that individuals can also be assigned to a class by ran-
domly drawing a class from a multinomial distribution 
with probabilities given by MNL probabilities, either 
prior or posterior. We have also argued and implemen-
ted class assignment exploiting individual-level para-
meter estimates that come from the expected posterior 
means that are conditional to the sequence of choices 
made by the individual. Appendix A presents pseudo-
code of the implementation of the six class assignment 
strategies under study. By conducting a Monte Carlo 
study, we have analyzed the behavior of the identified 
class assignment strategies focusing on preference para-
meter recovery, choice predictions, and class share infer-
ence. In addition, we used two empirical case studies to 
supplement the results of the simulation study. 
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Table 9. Case Study 2: Prediction Metrics—Emission Valuation Discrete Choice Experiment 

Class assignment strategy PCP (drawn) RMSE MAE PCP (max) 

Fitted values (full sample) 
Maximum MNL assignment probability 0.6338 0.4578 0.3654021 0.6872 
Drawn MNL assignment 0.6076 0.5020 0.3918 0.6342 
Maximum posterior assignment probability 0.6313 0.4658 0.3674 0.6805 
Drawn posterior assignment 0.6313 0.4658 0.3675 0.6804 
Conditional individual-specific estimates 0.6035 0.4429 0.3903 0.7026 
Conditional individual-specific estimates + KR 0.6102 0.4969 0.3895 0.6421 
20% testing (80% training) 
Maximum MNL assignment probability 0.6413 0.4667 0.3633 0.6943 
Drawn MNL assignment 0.5994 0.5076 0.3992 0.6284 
Maximum posterior assignment probability 0.6094 0.4830 0.3902 0.6537 
Drawn posterior assignment 0.6247 0.4824 0.3880 0.6534 
Conditional individual-specific estimates 0.6091 0.4502 0.3966 0.6898 
Conditional individual-specific estimates + KR 0.6159 0.4935 0.3866 0.6491 
LOOCV 
Maximum MNL assignment probability 0.6349 0.4579 0.3652 0.6887 
Drawn MNL assignment 0.6095 0.5011 0.3903 0.6362 
Maximum posterior assignment probability 0.6235 0.4751 0.3763 0.6639 
Drawn posterior assignment 0.6226 0.4766 0.3773 0.6617 
Conditional individual-specific estimates 0.6095 0.4429 0.3903 0.7026 
Conditional individual-specific estimates + KR 0.6104 0.4950 0.3881 0.6442 
k-fold cross validation (k = 5)  
Maximum MNL assignment probability 0.6455 0.4591 0.3602 0.6918 
Drawn MNL assignment 0.6036 0.5016 0.3922 0.6309 
Maximum posterior assignment probability 0.6113 0.4859 0.3889 0.6384 
Drawn posterior assignment 0.6045 0.4885 0.3914 0.6332 
Conditional individual-specific estimates 0.6139 0.4436 0.3910 0.7017 
Conditional individual-specific estimates + KR 0.6065 0.5044 0.3953 0.6309 
Repeated k-fold cross validation (k = 5)  
Maximum MNL assignment probability 0.6385 0.4585 0.3607 0.6939 
Drawn MNL assignment 0.6063 0.5036 0.3935 0.6305 
Maximum posterior assignment probability 0.6168 0.4806 0.3842 0.6512 
Drawn posterior assignment 0.6167 0.4812 0.3846 0.6502 
Conditional individual-specific estimates 0.6097 0.4437 0.3908 0.7018 
Conditional individual-specific estimates + KR 0.6101 0.4966 0.3897 0.6400 

Note: KR = Krinsky–Robb method; LOOCV = leave-one-out cross-validation; MAE = mean absolute error; max = maximum; MNL = multinomial logit; 
PCP = percent correctly predicted; RMSE = root mean square error. 

The results of the Monte Carlo study have the follow-
ing implications. Given a moderate number of choice 
occasions by a consumer (i.e., T = 5, 10), the maximum 
posterior strategy (i.e., strategy 3, assigning a consumer 
to the class having the highest posterior probability) per-
forms best at parameter recovery. On the one hand, class 
assignment according to maximum probabilities (strate-
gies 1 and 3) can be seen as optimal strategies in expecta-
tion. On the other hand, posterior class assignment 
probabilities take advantage of the information con-
tained in the sequence of choices made by the individual 
so that the posterior evaluation is more accurate in 
reproducing the correct class. However, in the case of a 
larger number of choice occasions (i.e., T = 20, 50), class 
assignment based on individual-level conditional esti-
mates that account for the sampling distribution of the 
assignment parameters (through a KR method type of 

procedure) shows superior behavior, with a very good 
percentage of correct predictions of the actual classes. 
This can be explained by the maximum posterior strat-
egy having over-fitting effects because posterior prob-
abilities optimize toward choice likelihood. In contrast, 
the KR procedure can reproduce extreme cases where an 
individual makes low-likelihood choices according to 
their true latent class. In addition, the capacity to collect 
socio-demographic information will help all strategies do 
better jobs, especially for strategies 1 and 2 using prior 
probabilities. 

The results of the two empirical case studies, when 
actual classes are not known, suggest that drawn poster-
ior assignment (strategy 4) performs best from the per-
spective of aggregate shares. However, maximum 
probability assignment performs better at predicting 
individual choices. 
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Table 10. Case Study 2: Market Shares—Emission Valuation Discrete Choice Experiment 

Aggregate shares 

Class assignment strategy Alt1 Alt2 p-value 

Actual shares (full sample) 0.4676 0.5324 na 
LCL fitted shares (full sample) 
Maximum MNL assignment probability 0.5342 0.4657 0.0000 
Drawn MNL assignment 0.4664 0.5335 0.7351 
Maximum posterior assignment probability 0.5522 0.4477 0.0000 
Drawn posterior assignment 0.5515 0.4484 0.0000 
Conditional individual-specific estimates 0.4657 0.5342 0.5878 
Conditional individual-specific estimates + KR 0.4664 0.5336 0.8081 
LCL Fitted shares 20% testing 
Actual shares (testing sample) 0.4628 0.5371 na 
Maximum MNL assignment probability 0.5057 0.4942 0.0000 
Drawn MNL assignment 0.4627 0.5372 0.9902 
Maximum posterior assignment probability 0.5508 0.4491 0.0000 
Drawn posterior assignment 0.5421 0.4578 0.0000 
Conditional individual-specific estimates 0.4586 0.5413 0.6076 
Conditional individual-specific estimates + KR 0.4687 0.5313 0.2484 

Note: KR = Krinsky–Robb method; LCL = latent class conditional logit model; MNL = multinomial logit; na = not applicable. 

In sum, just plugging in point estimates in the MNL 
probabilities of class assignment—which is equivalent to 
prior class assignment and is commonly used in 
practice—should be avoided. For analyzing expected 
class shares, individual-level conditional estimates imple-
mented with the KR method should be preferred, 
although posterior assignment performs almost as well. 

Finally, as future avenue of research we would like to 
explore how the different class assignment strategies 
behave in the context of the novel latent class logit speci-
fication with consumer-surplus feedback from the class-
specific conditional logit models to the class assignment 
MNL model (34–36). 
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