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Abstract

Random parameter logit models address unobserved preference heterogeneity in discrete choice analysis. The latent class
logit model assumes a discrete heterogeneity distribution, by combining a conditional logit model of economic choices with a
multinomial logit (MNL) for stochastic assignment to classes. Whereas point estimation of latent class logit models is widely
applied in practice, stochastic assignment of individuals to classes needs further analysis. In this paper we analyze the statisti-
cal behavior of six competing class assignment strategies, namely: maximum prior MNL probabilities, class drawn from prior
MNL probabilities, maximum posterior assignment, drawn posterior assignment, conditional individual-specific estimates, and
conditional individual estimates combined with the Krinsky—Robb method to account for uncertainty. Using both a Monte
Carlo study and two empirical case studies, we show that assigning individuals to classes based on maximum MNL probabil-
ities behaves better than randomly drawn classes in market share predictions. However, randomly drawn classes have higher
accuracy in predicted class shares. Finally, class assignment based on individual-level conditional estimates that account for
the sampling distribution of the assignment parameters shows superior behavior for a larger number of choice occasions per

individual.
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Random parameter logit models are the main empirical
strategy for addressing unobserved preference heteroge-
neity in discrete choice analysis (/, 2). Heterogeneity (or
mixing) distributions are usually taken from parametric
families, either continuous or discrete. In the latent class
conditional logit (LCL) model, preference parameters are
assumed to have a heterogeneity distribution that is discrete
(3-6). In fact, LCL choices are governed by a conditional
logit model, whereas assignment to classes is determined by
a multinomial logit (MNL) specification (2).

Mixed logit models with parametric and continuous
heterogeneity distributions—such as normally distributed
parameters—provide preference estimates that can be
hard to interpret or have inference problems (7-11).
However, the discrete nature of the estimates of latent
class logit models makes inference easier in relation to
both interpretability and derivation of welfare measures
such as willingness-to-pay (WTP) metrics. As a result,
use of LCL models has proven a popular choice in
empirical work. After seminal work that spread the use

of LCL models in choice modeling, recent examples
include a vast variety of applications, from preference
location by crime offenders to valuation of endangered
marine species, and recreational demand in the Alps, just
to give three examples of the range of problems for which
latent class logit models have been applied beyond more
traditional applications (such as travel mode choice,
vehicle ownership, and residential choice) (3, 6, 12-21).
Despite the growing popularity of LCL models, there
is a need for better understanding of statistical inference
with the model. Whereas Romero-Espinosa et al. studied
statistical and asymptotic behavior of interval estimates
of conditional LCL preference parameters at the individ-
ual level, further analysis is needed to characterize the
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behavior of empirical strategies for assigning individuals
to a specific class (22). The latent class assignment prob-
lems can relate to random draw sampling methods and
Bayesian procedures of preference parameter estimation.
Using different class assignment strategies may affect the
accuracy of predicting latent class shares and chosen
alternative shares. In addition to the popular class assign-
ment method using prior probabilities and a maximum-
value-draw strategy, there also exist other methods which
need to be studied (23-25). In this paper we focus on
these issues and analyze the statistical behavior of six
competing class assignment strategies that are econome-
trically valid but have not been fully examined in the lit-
erature, namely: maximum prior MNL probabilities,
class drawn from prior MNL probabilities, maximum
posterior assignment, drawn posterior assignment, condi-
tional individual-specific estimates, and conditional indi-
vidual estimates combined with the Krinsky—Robb (KR)
method (26). Our contribution lies in the methodical
comparison of these class assignment strategies for latent
class logit models.

This paper is organized as follows. The next section
reviews the latent class logit model and describes the six
empirical strategies for assignment to classes mentioned
above. The section after that uses a Monte Carlo study
to compare the empirical performance across all strate-
gies in different regimes. Our comparison is then supple-
mented in the penultimate section with two case studies,
one focused on response to automated electric vehicles
and the other on consumer valuation of emission savings
when purchasing a new vehicle. The final section
concludes.

The Latent Class Logit Model

Following a general choice setting, we assume that con-
sumer i makes discrete choices among a set of J alterna-
tives and T choice occasions with utility maximization as
the decision rule. The truncated indirect utility functions
of the alternatives are characterized by individual prefer-
ences. Whereas the simplest choice models impose prefer-
ence homogeneity, more flexible specifications address
unobserved preference heterogeneity through the consid-
eration of preference parameters that are random. In
latent class logit models, consumers’ preferences are
assumed to be heterogeneous with discrete heterogeneity
distributions. In fact, in LCL models consumers are
assumed to belong to clusters that are modeled as latent
classes. Within each class, the same preference para-
meters are shared as in a standard conditional logit
model.

On the one hand, conditional on class g, LCL choices
assume the following conditional logit choice probability:

exp (X'iiB,)

Pij,= =—————,
ijtlq Z exp (X/ijl‘Bq)
J

()

where
x;; = the attributes of alternative j for consumer i in
choice occasion ¢, and
B, = the preference parameters of latent class g.

On the other hand, and since the underlying class of
an individual is not observed, class assignment assumes
the following MNL probabilities:

exp Wiy :
Wiq = [9] q/ y 4= 19S>Q7 Y1 = 07 (2)
Zq =1 exp h i'Yq
where
h; = socio-demographic characteristics of consumer i,
and

Y, = the parameter vector which summarizes how these
characteristics are linked to a higher or lower likelihood
of the consumer belonging to latent class g.

Empirical Strategies for Assignment to Classes

Using Bayes’ theorem, posterior MNL probability for
assignment to classes can be derived as (see Train) (27):

Yijt
T J /A
=~ exp (X5 By)
wig [T 11 [ T ——

1= o exp(Xy
PB = Bylyi X) = ———— Z”expi(x/“:z) s
(3)
where

ﬁq = the point estimate vector of preferences for latent
class ¢, and

Wi, = the fitted MNL probability of consumer i belong-
ing to that class.

Note that w;, is a prior probability of class assignment
that is based on the estimated parameter vectors
'glq =1,..,0"

Given the prior and posterior MNL class assignment
probabilities shown above, four strategies for class
assignment can be derived. The first two strategies are
based on prior class assignment probabilities alone,
which only depend on consumer information. In contrast
to prior strategies, posterior assignment strategies use the
posterior MNL probabilities wherein consumers’ choices
are embedded. For each of the two types of assignment
probabilities, we introduce two strategies for individual-
level latent class assignment: /) assign a certain consumer
a class according to maximum probability (as in Scarpa
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and Thiene) (23); and 2) randomly draw a class for a
consumer from the estimated latent class probabilities.

Strategy 1: maximum MNL assignment probability.
This strategy uses prior MNL probabilities across
latent classes stated in Equation 2. Given estimated
parameters and a consumer’s socio-demographic
information, we then compute the prior MNL prob-
abilities Ww;, for them and assign them the class of
which the probability value is the maximum among
allg =1, ...,0.

Strategy 2: drawn MNL assignment. The second strat-
egy uses prior MNL probabilities through Equation 2
as well. However, this strategy makes an independent
random draw for latent class assignment from the
obtained prior probabilities Ww;, for each particular
consumer i, instead of taking the maximum value.
Thus, consumers’ assigned classes come directly from
those random draws.

Strategy 3: maximum posterior assignment probability.
Individuals are assigned to the class with the maxi-
mum posterior probability (Equation 3), evaluated at
point estimates.

Strategy 4: drawn posterior assignment. Similar to the
second strategy, the forth strategy makes an indepen-
dent random draw for the class assignment according
to posterior probabilities obtained through Equation
3 for each particular consumer i. Then, individuals
are assigned to the randomly picked classes.

In addition to these four strategies based on actual
class assignment probabilities, consumers can also be
assigned to a class by consideration of their conditional
point estimate

Bi\y,,x,,ﬂ

Conditional Estimates at the Individual Level

From the posterior MNL probabilities shown in the pre-
vious section, it is possible to derive conditional estimates
of preference parameters at the individual level (26, 27).
Equation 4 for the conditional preferences is essentially
an expected preference parameter vector over the poster-
ior class assignment probabilities from Equation 3:

ﬁi‘)’px,‘,é - E(Bi|yia Xia é) =

L wby |
~ exp (X ;ieBy
w;, -7
“ 1;[11‘131 [Z,J | exp("’ffrﬂq)]
] @

exp (X' B,)

1 [Z/] . exp (X/jB,)

where
0 = the point estimate of a meta-parameter vector 0 that
includes parameters vy.

In addition to the point estimates introduced above, it
is also worth noting that inference on the expected pre-
ference parameters can be taken into account in the
uncertainty in the determination of 0 (22, 26).Since 0 is
multivariate normally distributed with mean 6 and cov-
ariance g, the corresponding formal expression of the
conditional expectation of the individual parameters is
the following:

E[B;]y;, 0,2 = L]E[B[Iyi,ﬂ]/\/'(0|0,~,29)d0. (5)

To circumvent the heavy computations associated
with evaluation of the multi-dimensional integral, a sam-
pling method can be set to calculate the conditional esti-
mates that accounts for the sampling distribution of the
meta-parameter 0. This approximation is close to the
KR method, which was introduced by Greene et al. for a
random parameter logit model with continuous hetero-
geneity distributions (26, 28). In practice, the computa-
tion steps of the empirical counterpart of the expectation
in Equation 5 optimize toward E[B,[y,0,,3¢ = };Ef: .
E[Bily, X:0"
where

R = the number of simulation repetitions, where 0 is
sampled R times and the average of those conditional
estimates at the individual level is taken.

In sum, the possibility of working with conditional
estimates at the individual level provides another empiri-
cal strategy of assignment to classes, where a given indi-
vidual is assigned to the class with population point
estimates that are closest to the conditional point esti-
mates. Thus, it is possible to implement the following:

Strategy 5: conditional individual-specific estimates.
Individual i is assigned to the class with population
parameters that are closest to IE(BAy,-,X,—,@), which
uses Equation 4.

Strategy 6: conditional individual-specific estimates
with KR implementation. Individual i is assigned to
the class with population parameters that are closest
to %Zf:  E[B;|y;,X,0" , which further assumes uncer-
tainty in meta-parameters 0 and takes simulated inte-
gral in Equation 5 by sampling meta-parameter
values.

Monte Carlo Study

Simulation Plan

To compare the performance of the several competing
latent class assignment strategies described in the previ-
ous section, we conducted a Monte Carlo study. Similar
to the simulation done by Sarrias and Daziano, we also
assumed multiple sets of scenarios with three alternatives
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(J = 3) for hypothetical individuals without individual-
level socio-demographic data (22). Whereas Sarrias and
Daziano focused their study on interval estimation, we
change the focus to choice predictions based on class
assignment (22).

Formally, the true latent utility of alternative j for
individual { in choice occasion ¢ is implemented as:

Ujr = Bixue + Boxoie + €4t (6)

where

15 = a Type-1 extreme value distributed preference
shock,

x; = an independent and standard normally distributed
attribute, and

X, = an attribute which is assumed to be a dummy vari-
able created from an indicator function 1(#<0.5) of a
uniformly distributed random variable 0 <u < 1.

For the preference parameters, we assumed the following
discrete unobserved heterogeneity distributions (Q = 3):

2 with probability 0.25
B,; =< 0  with probability 0.5 (7)
2 with probability 0.25

0.5 with probability 0.25
By =<1 with probability 0.5 (8)
L5 with probability 0.25

Simulated databases were constructed for a baseline
size¢ N = 1,000. For each individual, five scenarios with
differing numbers of choice occasions were created,
namely T € {1,5,10,20,50}. For each scenario, 300
independently sampled databases were implemented.

Given this simulation plan, we were able to compare
statistical results across different latent class assignment
strategies mainly from the perspective of preference space
estimates, assigned latent class shares, and predicted
choice shares. Specifically, we focused on the following
statistics:

Mean=[§S=
s=1 i=1
1S 1. -
Absolute)Bias = — il
(Absolute)Bias SS:ZI N;“;m B/
SN B B
Absolute percentage bias = —Z Z mB i
= l:1 i

SE = © Z 2 B B

l*l

where
B, = the true parameters for each individual 7, and

B, = individual-level parameters obtained through the
different latent class assignment strategies under analysis.

Besides this series of statistics, we also considered the
empirical coverage probability (COV). COVs tell the pro-
portion of simulated samples for which the estimated
95% interval includes the true individual-level parameter.
A correct interval inference should produce a 95% cover-
age, with lower or higher figures indicating respective
narrow or wide estimated intervals on average.

On the other hand, to evaluate different strategies’
behavior on market shares and latent class shares, the
following additional statistics were calculated:

- 2
Pijt(Bis ‘yitaXit))

Pyji(Bysvies Xin))

where
y;; = the true choice made by individual i in choice occa-
sion .

In addition, consideration is given to average percent
correctly predicted (PCP). In fact, just as with assignment
probabilities, we present PCP results obtained through
two approaches, namely: (1) choosing an alternative with
a maximum choice probability, and (2) randomly picking
an alternative according to the estimated choice prob-
abilities. In the tables, these two statistics are denoted by
PCP(max) and PCP(drawn), respectively.

Finally, Brier scores were calculated to evaluate pre-
diction performance (29, 30):

N T J
BrierScore = NXT lez: Z/Zl Ay =j}— f?i,z,j)z
9)

where

1{y;; =j} = the true choices made by individual i on
occasion ¢, and

Di,r; = the estimated choice probability, correspondingly.
Lower Brier scores are an indication of better predictive
accuracy.

Results

Tables 1 and 2 summarize parameter recovery results
obtained through the six competing class assignment
strategies. Table 1 displays aggregate Monte Carlo
results for the estimation of the preference parameter 3.
To understand this aggregate analysis, consider that
point estimates of B, have been contrasted with the true
expected value of the parameter which is equal to 0.
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Table I. Latent Class Conditional Logit (LCL) Model—Three Classes: Aggregate Parameter Recovery ( 3,)

Mean Bias CP
Mean SE Mean SE Mean SE

T=1

Maximum MNL assignment probability 0.0678 0.5246 1.2627 0.9344 0.9533 0.0890
Drawn MNL assignment —0.2142 5.9109 3.3305 5.9542 0.9509 0.1563
Maximum posterior assignment probability —0.1092 2.6107 1.5107 2.1677 0.9505 0.1552
Drawn posterior assignment —0.1716 59121 2.9994 5.7863 0.9507 0.1566
Conditional individual-specific estimates —0.1966 3.4742 25171 3.4366 0.9500 0.1217
Conditional individual-specific estimates + KR —0.0626 3.1302 2.4203 3.1569 1.0000 0.0000
T=5

Maximum MNL assignment probability 0.0034 0.0379 1.0190 0.9821 0.9533 0.0890
Drawn MNL assignment 0.0042 1.4143 1.5209 1.2956 0.9509 0.1350
Maximum posterior assignment probability 0.0078 1.4326 0.3522 0.6665 0.9500 0.1364
Drawn posterior assignment 0.0026 1.4159 0.4695 0.7720 0.9512 0.1344
Conditional individual-specific estimates 0.0038 1.2664 0.4201 0.4901 0.9500 0.1746
Conditional individual-specific estimates + KR 0.0031 1.2696 04162 0.4900 1.0000 0.0000
T=10

Maximum MNL assignment probability —0.0016 0.0178 1.0089 0.9917 0.9533 0.0890
Drawn MNL assignment 0.0018 1.4203 1.5129 1.3116 0.9505 0.1329
Maximum posterior assignment probability 0.0035 1.4258 0.1288 0.4094 0.9504 0.1332
Drawn posterior assignment 0.0009 1.4186 0.1735 0.4954 0.9508 0.1324
Conditional individual-specific estimates —0.0003 1.3697 0.1592 0.3365 0.9500 0.1533
Conditional individual-specific estimates + KR —0.0005 1.3665 0.1607 0.3369 1.0000 0.0000
T=20

Maximum MNL assignment probability 0.0269 0.0503 1.0182 0.9533 0.9867 0.0890
Drawn MNL assignment —0.0161 1.4014 1.4977 0.9508 0.9506 0.1312
Maximum posterior assignment probability —0.0131 1.4000 0.0769 02119 0.9508 0.1306
Drawn posterior assignment —0.0139 1.3990 0.0833 0.2449 0.9506 0.1315
Conditional individual-specific estimates —0.0142 1.3920 0.0811 0.1932 0.9500 0.1376
Conditional individual-specific estimates + KR —0.0018 1.4076 0.0504 0.1484 0.9999 0.0002
T=50

Maximum MNL assignment probability 0.0079 0.0192 1.0083 0.9938 0.9533 0.0890
Drawn MNL assignment —0.0035 1.4055 1.5019 1.3123 0.9507 0.1327
Maximum posterior assignment probability —0.0039 1.4058 0.0303 0.0449 0.9500 0.1339
Drawn posterior assignment —0.0039 1.4058 0.0303 0.0449 0.9500 0.1339
Conditional individual-specific estimates —0.0039 1.4058 0.0303 0.0443 0.9500 0.1340
Conditional individual-specific estimates + KR —0.0046 1.3665 0.0145 0.0142 1.0000 0.0000

Note: SE = standard error; CP = empirical coverage; KR = Krinsky—Robb method; MNL = multinomial logit.

Recall that the law of large numbers ensures that an
unbiased estimator has its estimates converge to the true
value as sample size goes infinitely large. Thus, we should
observe that bias values shrink as the choice situation
number 7T goes large.

In the case of analyzing choice predictions, each indi-
vidual has been assigned to a class; the point estimates of
the respective class can be used to evaluate the condi-
tional logit choice probabilities of Equation 1 which can
be then plugged into the expressions of root mean square
error (RMSE) and maximum absolute error (MAE) as
well as exploited for making an actual predicted alterna-
tive either using the maximum probability rule or the
drawn alternative method. As shown in Table 1, and as
expected, we can observe that assignment strategies
related to posterior probabilities and conditional

estimates generate lower bias when 7 goes up.
Nevertheless, the first two assignment strategies, which
are associated with prior assignment probabilities, do
not show lower bias values when 7 is large. This obser-
vation results from the setting of our Monte Carlo study
plan. In our simulated databases, we only randomly
simulated alternative attribute levels but not the
individual-level socio-demographic data. This kind of
setting causes prior probabilities to be unable to effec-
tively identify each individual’s latent class.

Comparing bias values across class assignment strate-
gies, strategy 3 displays the lowest bias when T = 5, 10.
This result implies that posterior choice probabilities
behave better in the cases of limited individual-level
choice information (i.e., T is at a moderate value). As
choice situations 7 becomes larger (7 = 20,50), the
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conditional individual-specific estimates with the KR
method estimates produce the lowest bias values on the
aggregate estimations of parameter 8.

Given a certain kind of latent class assignment prob-
abilities, say, for example, prior probabilities, the maxi-
mum probability rule methods (strategies 1 and 3) bring
lower bias values compared with those of the random
draw method (strategies 2 and 4). This phenomenon can
be explained through a linear programming problem in a
1 norm space. Given a set of class probabilities p;, of
an individual i of class ¢, a predictor’s job is to solve the

following linear programming problem:
maxj|q||, <1 * fo: | dgpigBlasg,

where

a=(ai, ...,ap) = the probabilities of latent classes

by a predictor.

The feasible area of a, ||a||, <1 shows that these pre-
diction probabilities are required to follow a one-sum
rule. To this extent, an optimal solution to this linear pro-
gramming formulation implies that the maximum prob-
ability assignment strategy suggests the best classification
for individuals when a predictor uses an unbiased
Maximum Likelihood Estimation (MLE) estimator.

In Table 2, we illustrate detailed parameter recovery
based on the databases with 7 = 50. In this case, com-
parisons are made with respect to each of the three possi-
ble values of the parameter. Similar to the situation in
Table 1, strategies with prior probabilities exhibit worse
performance than that of other strategies, with all other
strategies having corresponding MEV metrics close to
the true values.

In Table 3, where we analyze correct disaggregate
choice predictions by class assignment strategy, we
observe that summary statistics including RMSE, MAE,
and PCP do not become better when T goes up. All pos-
terior assignment strategies (strategies 3 and 4) perform
equivalently well in choice prediction. However, for
T =1, exploiting conditional estimates at the individual
level makes superior choice inference, especially when
using the maximum probability rule in the calculation of
PCP. Combined with the KR method for accounting for
the sampling distribution of the class assignment para-
meters, for 7 = 1, PCP(max) achieves a value over 81%.
In fact, PCP(max) values are larger than PCP(drawn)
across all assignment strategies. This phenomenon can
be explained by the same linear programming in the 1-
norm space argument used before.

In addition, Table 4 reports that the aggregate class
shares of all strategies closely approximate the true class
shares even when 7 = 5. The exception is maximum prior
assignment probability, which is expected, as Class 2 hav-
ing the greatest share, the result is an almost deterministic
assignment to Class 2. Another reason behind this is also
similar to the case in Table 1 where the maximum MNL

assignment probability assignment strategy predicts ;
worse. The lack of individual background information
causes inefficiency in class assignment through maximum
prior probabilities.

As a whole, we can see that, even though a larger T
results in more accurate estimated parameters, good
aggregate class shares can be achieved even with a small
T. Table 4 also shows that the maximum MNL (prior)
assignment probability (strategy 1) predicts aggregate
class shares significantly worse than other strategies.

Looking at disaggregate correct class assignment,
Table 5 reports the proportions of correct class assign-
ments for all assignment strategies. Again, using prior
probabilities (strategies 1 and 2) performs significantly
worse than other strategies because of the lack of individ-
ual socio-demographic information in the Monte Carlo
study setting. These observations match the analysis from
Tables 1 and 2, as elaborated previously. For instance,
while increasing 7' in general improves correct posterior
assignment, even with a relatively low number of choice
occasions (7 = 5) correct assignment to classes is over
85% and can achieve 95% for T'= 10 (which is a com-
mon number found in practice for choice experiments).

Finally, Table 6 reports Brier scores of individual-level
choice predictions made by the different class assignment
strategies. These score values reflect the accuracy of
choice predictions, and a lower value implies more accu-
rate predictions. These figures again confirm that strate-
gies embedded with posterior probabilities have rather
accurate choice predictions. However, the posterior prob-
ability strategies do not necessarily generate lower Brier
scores when T goes large.

Empirical Case Studies

Data

To supplement the Monte Carlo study, the six class
assignment strategies were applied to two empirical data-
sets using actual choice experiments. Both case studies
relate to purchase preferences toward low-emission vehi-
cles. Whereas the first case study, in addition to electrifi-
cation, focuses on automated features, the second case
study uses data that were collected to analyze economic
valuation of carbon abatement. There are two main dif-
ferences with the simulation setting. First, true para-
meters and true classes are, of course, unknown. Second,
class assignment is informed by socio-demographic char-
acteristics of the consumers.

Case Study |: Automated Electric Vehicles

We first use microdata from a choice experiment that
was designed to analyze early-market response to vehicle
automation (37, 32). The choice experiment was designed
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Table 2. Latent Class Conditional Logit (LCL) Model—Three Classes: Detailed Parameter Recovery (T = 50, N = 1,000)

True MEV MAB APB FSSE
Maximum MNL assignment probability
Class I: B, —20 0.0063 2.0063 1.0031 2.0063
Class 2: 3, 0.0 0.0064 0.0063 Inf 0.0063
Class 3: 3, 20 0.0064 1.9936 0.9968 1.9936
Class I: B, -0.5 1.0182 1.5182 1.0031 1.5182
Class 2: 3, 1.0 1.0182 0.0182 0.0182 0.0182
Class 3: B, 1.5 1.0182 0.4817 0.3211 0.4817
Drawn MNL assignment
Class I: 3, —20 —0.0990 1.9009 0.9504 2.3668
Class 2: 3, 0.0 0.1665 09713 Inf 1.3889
Class 3: B, 2.0 0.0679 1.9429 09714 2.3986
Class I: B, —0.5 0.7009 1.2009 24019 1.4305
Class 2: B3, 1.0 0.8468 0.4621 0.4621 0.7312
Class 3: B, 1.5 0.7834 0.7263 0.4842 1.0406
Maximum posterior assignment probability
Class I: B, -20 —1.9534 0.0465 0.0233 0.0465
Class 2: B, 0.0 0.0063 0.0063 Inf 0.0063
Class 3: 3, 20 2.0203 0.0203 0.0101 0.0203
Class I: 3, —0.5 —0.4933 0.0066 0.0133 0.0066
Class 2: B, 1.0 1.0182 0.0182 0.0182 0.0182
Class 3: 3, 1.5 1.5182 0.0182 0.0121 0.0182
Drawn posterior assignhment
Class I: B, —20 —1.9534 0.0465 0.0232 0.0465
Class 2: 3, 0.0 0.0064 0.0064 Inf 0.0064
Class 3: 3, 2.0 2.0203 0.0203 0.0101 0.0203
Class I: B, —0.5 —0.4933 0.0066 0.0132 0.0066
Class 2: B, 1.0 1.0182 0.01826 0.0182 0.0182
Class 3: B, 1.5 1.5182 0.01822 0.0121 0.0182
Conditional individual-specific estimates
Class I: 3, -2.0 —1.9534 0.0465 0.0232 0.0465
Class 2: B, 0.0 0.0064 0.0063 Inf 0.0064
Class 3: B, 2.0 2.0203 0.0203 0.0102 0.0203
Class I: 3, —0.5 —0.4933 0.0066 0.0133 0.0066
Class 2: B, 1.0 1.0182 0.01826 0.0182 0.0182
Class 3: B, 1.5 1.5182 0.01822 0.0121 0.0182
Conditional individual-specific estimates—KR
Class I: 3, —20 —1.9915 0.0084 0.0042 0.0084
Class 2: B, 0.0 —0.0013 0.0016 Inf 0.0029
Class 3: 3, 20 2.0358 0.0358 0.0179 0.0358
Class I: 3, —0.5 —0.4551 0.0448 0.0896 0.0448
Class 2: B, 1.0 0.9950 0.0049 0.0049 0.0049
Class 3: 3, 1.5 1.4785 0.0214 0.0143 0.0214

Note: APB =absolute percentage bias; FSSE = finite sample standard error; Inf = Infinity; KR = Krinsky—Robb method; MAB =mean absolute bias;

MEV = mean estimated value; MNL = multinomial logit.

around three levels of automation of private light duty
vehicles, namely: no automation, partial automation,
and full automation. Automation was allowed for low-
emission powertrains (hybrid electric, plug-in hybrid,
and full battery electric). Details about both the design
of the experiment and the data are provided by Daziano
et al. (37). The conditional indirect utility for individual i
choosing alternative j was specified in WTP space as:

Uy = ¥ jo;

a;price;  v,PVFCj; + ¢;

where

x; = vehicle design attributes,

PVFC = expected present value of fuel costs, and

€; = 1.id. distributed Type 1 extreme value as an error
term.

The parameters <w;, a;,7y;> are assumed to be random
with a discrete heterogeneity distribution.

In this dataset, there are 1,260 individuals (N = 1,260)
that responded to a choice experiment with four alterna-
tives, namely: a hybrid electric vehicle (HEV), a plug-in
hybrid electric vehicle (PHEV), a battery electric vehicle
(BEV), and a gasoline vehicle (GAS). In the statistical
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Table 3. Latent Class Conditional Logit (LCL) Model—Three Classes: Prediction Metrics

RMSE MAE
Class assignment strategy Mean Mean SE PCP (max) PCP (drawn)
T=1
Maximum MNL assignment probability 0.6636 0.0197 0.6343 0.0331 0.4095 0.3675
Drawn MNL assignment 0.6894 0.0094 0.6320 0.05820 0.3998 0.3569
Maximum posterior assignment probability 0.4811 0.0586 0.4254 0.0893 0.7255 0.5134
Drawn posterior assignment 0.5318 0.0237 0.4608 0.0782 0.62746 0.5173
Conditional individual-specific estimates 0.4325 0.0401 0.3678 0.0908 0.7906 05173
Conditional individual-specific estimates + KR 0.4058 0.0636 0.3334 0.1214 0.8142 0.5254
T=5
Maximum MNL assignment probability 0.6482 0.0019 0.6344 0.0142 0.4204 0.3675
Drawn MNL assignment 0.6874 0.0048 0.6353 0.0522 0.3992 0.3569
Maximum posterior assignment probability 0.5331 0.0038 0.4682 0.0651 0.6215 0.5134
Drawn posterior assignment 0.5434 0.0040 0.4792 0.0644 0.6070 05173
Conditional individual-specific estimates 0.5228 0.0036 0.4642 0.0589 0.6492 05173
Conditional individual-specific estimates + KR 0.5233 0.0036 0.4652 0.0583 0.64938 0.5254
T=10
Maximum MNL assignment probability 0.6479 0.0013 0.6342 0.0139 0.4219 0.3675
Drawn MNL assignment 0.6869 0.0046 0.6353 0.0518 0.3997 0.3569
Maximum posterior assignment probability 0.5415 0.0024 0.4772 0.0644 0.6081 0.5134
Drawn posterior assignment 0.5436 0.0025 0.4795 0.0641 0.6052 05172
Conditional individual-specific estimates 0.5372 0.0024 0.4749 0.0624 0.6231 0.5173
Conditional individual-specific estimates + KR 0.5377 0.0022 0.4757 0.0621 0.6231 0.5254
T=20
Maximum MNL assignment probability 0.6482 0.0017 0.6342 0.0141 0.4212 0.3676
Drawn MNL assignment 0.6866 0.0047 0.6356 0.0512 0.3997 0.3569
Maximum posterior assignment probability 0.5450 0.0065 0.4818 0.0640 0.6035 0.5134
Drawn posterior assignment 0.5451 0.0065 0.4820 0.0639 0.6033 0.51728
Conditional individual-specific estimates 0.5443 0.0065 0.4814 0.0637 0.6066 0.5173
Conditional individual-specific estimates + KR 0.5436 0.0046 0.4803 0.0637 0.6073 0.5254
T =150
Maximum MNL assignment probability 0.6480 0.0011 0.6343 0.0138 0.4217 0.3675
Drawn MNL assignment 0.6867 0.0040 0.6352 0.0516 0.4001 0.3569
Maximum posterior assignment probability 0.5445 0.0043 0.4809 0.0638 0.6036 0.5134
Drawn posterior assignment 0.5445 0.0043 0.4809 0.0638 0.6036 05172
Conditional individual-specific estimates 0.5445 0.0043 0.4809 0.0638 0.6036 05173
Conditional individual-specific estimates + KR 0.5440 0.0011 0.4802 0.0638 0.6041 0.5254

Note: KR = Krinsky—Robb method; MAE = mean absolute error; max = maximum; MNL = multinomial logit; PCP = percent correctly predicted; RMSE =

root mean square error; SE = standard error.

analysis, we assume three latent classes (Q = 3) following
the model selection strategy conducted in the article by
Daziano et al., which was based on both Bayesian infor-
mation criterion (BIC) and Akaike information criterion
(AIC) (31).

Case Study 2: Emission Valuation in Vehicle Purchases

The second choice experiment was designed to analyze
the impact of environmental information framings on the
maximum WTP for CO , abatement (see Daziano et al.)
(33). This experiment considered a binary choice between
two unlabeled vehicles. The experimental attributes were:
purchase cost, fuel costs per year, and CO , emissions (in

pounds). The following indirect utility in preference space
was adopted:

Uy = Biprice; + B,PVFC; + BsPVFE; + ¢;

where
PVFE
and
PVFC = present value of expected future fuel costs.

The parameter vector 3; is random with a discrete het-
erogeneity distribution.

In this dataset, there are 1,580 individuals with two
alternative vehicles. We assume two latent classes accord-
ing to the original probabilistic model selection study
conducted in the paper by Daziano et al. (33).

present value of the expected future emissions,
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Table 4. Latent Class Conditional Logit (LCL) Model—Three Classes: Class Shares

Aggregate class shares
Class assignment strategy Class | Class 2 Class 3 X? p-value
True class shares 0.25 0.50 0.25 na
T=1
Maximum MNL assignment probability 0.1267 0.6533 0.2200 0.0000
Drawn MNL assignment 0.2597 0.4416 0.2985 0.0002
Maximum posterior assignment probability 0.2391 0.4770 0.2837 0.0206
Drawn posterior assignment 0.2591 0.4414 0.2993 0.0003
Conditional individual-specific estimates 0.2392 0.4891 0.2716 0.0206
Conditional individual-specific estimates + KR 0.2028 0.5228 0.2743 0.0015
T=5
Maximum MNL assignment probability 0.0000 1.0000 0.0000 0.0000
Drawn MNL assignment 02518 0.4981 0.2500 0.9830
Maximum posterior assignment probability 0.2573 0.4853 0.2572 0.7550
Drawn posterior assignment 0.2528 0.4971 0.2500 1.0000
Conditional individual-specific estimates 0.2547 0.4904 0.2547 0.7550
Conditional individual-specific estimates + KR 0.2543 0.4888 0.2568 0.7727
T=10
Maximum MNL assignment probability 0.0000 1.0000 0.0000 0.0000
Drawn MNL assignment 0.2504 0.4984 0.2510 0.9928
Maximum posterior assignment probability 0.2519 0.4946 0.2534 0.9482
Drawn posterior assignment 0.2500 0.4997 0.2502 1.0000
Conditional individual-specific estimates 0.2516 0.4950 0.2533 0.9482
Conditional individual-specific estimates + KR 0.2526 0.4946 0.25287 0.9482
T=20
Maximum MNL assignment probability 0.0033 0.9533 0.0433 0.0000
Drawn MNL assignment 0.2513 0.5051 0.2435 0.7507
Maximum posterior assignment probability 0.2509 0.5051 0.2439 0.7820
Drawn posterior assignment 0.2506 0.5055 0.2437 0.7494
Conditional individual-specific estimates 0.2503 0.4949 0.2546 0.7820
Conditional individual-specific estimates + KR 0.2532 0.4884 0.2583 0.7402
T=50
Maximum MNL assignment probability 0.0067 0.9900 0.0033 0.0000
Drawn MNL assignment 0.2526 0.5029 0.2445 0.8831
Maximum posterior assignment probability 0.2524 0.5033 0.2441 0.9423
Drawn posterior assignment 0.2524 0.5033 0.2441 0.9423
Conditional individual-specific estimates 0.2499 0.5016 0.2484 0.9423
Conditional individual-specific estimates + KR 0.2525 0.4974 0.2500 0.9830

Note: KR = Krinsky—Robb method; MNL = multinomial logit; na = not applicable.

Table 5. Latent Class Conditional Logit (LCL) Model—Three Classes: Individual-Level Class Assignments

T Max prior Drawn prior

Max posterior

Drawn posterior

Conditional est.

Conditional est. + KR

PCP of class assignments

| 04175 03616
5 0.5000 03717
10 0.5000 0.3720
20 0.4850 0.3766
50 0.4975 0.3777

0.5091
0.8617
0.9553
0.9242
0.9875

0.4687
0.8018
0.9331
0.9210
0.9875

0.5091
0.8617
0.9553
0.9242
0.9875

0.4683
0.8618
0.9554
0.9721
0.9725

Note: est. = estimate; KR = Krinsky—Robb method; max = maximum; PCP = percent correctly predicted.

Empirical Analysis

For both case studies, before applying each class assign-
ment strategy, we trained a latent class logit model with

a meta-parameter O = 3 (i.e., three latent classes). The
numerical results in Table 7 (choice predictions, case
study 1) and Table 9 (choice predictions, case study 2)
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Table 6. Latent Class Conditional Logit Model (LCL)—Three Classes: Brier Scores

T Max prior Drawn prior Max posterior Drawn posterior Conditional est. Conditional est. + KR
Brier scores

I 0.2367 0.2573 0.1949 0.2067 0.1851 0.1827

5 0.2178 0.2464 0.1989 0.2015 0.1962 0.1962

10 0.2176 0.2465 0.2009 0.2014 0.1998 0.1997

20 0.2180 0.2455 0.2017 0.2017 0.2015 0.2013

50 0.2178 0.2460 0.2016 0.2016 0.2016 0.2014

Note: est. = estimate; KR = Krinsky—Robb method; Max = maximum.

Table 7. Case Study |: Prediction Metrics—Vehicle Automation Discrete Choice Experiment

Class assignment strategy PCP (drawn) RMSE MAE PCP (max)
Fitted values (full sample)

Maximum MNL assignment probability 0.3743 0.7083 0.6345 0.3756
Drawn MNL assignment 0.3297 0.7362 0.6632 0.3404
Maximum posterior assignment probability 0.5586 0.5351 0.4446 0.6476
Drawn posterior assignment 0.5910 0.5373 0.4468 0.6432
Conditional individual-specific estimates 0.3392 0.6847 0.6694 0.4448
Conditional individual-specific estimates + KR 0.3128 0.7515 0.6881 0.3160
20% testing (80% training)

Maximum MNL assignment probability 0.3648 0.7207 0.6507 0.3683
Drawn MNL assignment 0.3389 0.7358 0.6683 0.3465
Maximum posterior assignment probability 0.5503 0.5321 0.4478 0.6524
Drawn posterior assignment 0.5548 0.5354 0.4503 0.6478
Conditional individual-specific estimates 0.3191 0.6875 0.6742 0.4375
Conditional individual-specific estimates + KR 0.3063 0.7523 0.6895 0.3102
LOOCV

Maximum MNL assignment probability 0.3652 0.7089 0.6346 0.3762
Drawn MNL assignment 0.3309 0.7401 0.6691 03318
Maximum posterior assignment probability 0.5555 0.5350 0.4443 0.6479
Drawn posterior assignment 0.5535 0.5368 0.4457 0.6454
Conditional individual-specific estimates 0.3311 0.6845 0.6689 0.4483
Conditional individual-specific estimates + KR 0.3046 0.7556 0.6919 0.3036
k-fold cross validation (k =5)

Maximum MNL assignment probability 0.3509 0.7240 0.6530 0.3526
Drawn MNL assignment 03110 0.7514 0.6833 0.3122
Maximum posterior assignment probability 0.5504 0.5370 0.4466 0.6428
Drawn posterior assignment 0.5890 0.5387 0.4473 0.6397
Conditional individual-specific estimates 0.3172 0.6927 0.6768 0.4237
Conditional individual-specific estimates + KR 0.3048 0.7540 0.6912 03179
Repeated k-fold cross validation (k =5)

Maximum MNL assignment probability 0.3450 0.7259 0.6556 0.3512
Drawn MNL assignment 0.3244 0.7449 0.6759 0.3238
Maximum posterior assignment probability 0.5527 0.5367 0.4460 0.6451
Drawn posterior assignment 0.5541 0.5386 0.4476 0.6424
Conditional individual-specific estimates 0.3255 0.6912 0.6754 0.4275
Conditional individual-specific estimates + KR 0.3065 0.7554 0.6928 03118

Note: KR = Krinsky—Robb method; LOOCYV = |eave-one-out cross-validation; MAE = mean absolute error; max = maximum; MNL = multinomial logit;

PCP = percent correctly predicted; RMSE = root mean square error.

summarize critical statistics for the evaluation of the class
assignment strategies in relation to their ability to repro-
duce actual choices. Because correct out-of-sample pre-
dictions cannot be known in empirical data, five

validation scenarios were considered, namely: fitted val-
ues for the whole sample (a predicted choice is built for
each pseudoindividual in the sample); 80% of the sample
used for estimation and the remaining 20% was used for
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Table 8. Case Study |: Market Shares—Vehicle Automation Discrete Choice Experiment. The Four Alternatives are: Hybrid Electric
Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Battery Electric Vehicle (BEV), and Gasoline Vehicle (GAS)

Aggregate shares

Class assignment strategy GAS HEV PHEV BEV p-value
Actual shares (full sample) 0.3692 0.1228 0.3100 0.1977 na

LCL fitted shares (full sample)

Maximum MNL assignment probability 0.3463 0.1317 0.3103 0.2115 1.5448e-06
Drawn MNL assignment 0.3904 0.1203 0.2978 0.1913 2.5648e-04
Maximum posterior assignment probability 0.3676 0.1238 0.3093 0.1991 0.9673
Drawn posterior assignment 0.3703 0.1220 0.3109 0.1967 0.9819
Conditional individual-specific estimates 0.3831 0.1232 0.2973 0.1962 0.0156
Conditional individual-specific estimates + KR 0.3699 0.1207 03131 0.1962 0.0156
LCL fitted shares 20% testing

Actual shares (testing sample) 0.3490 0.1229 0.3384 0.1895 na
Maximum MNL assignment probability 0.3539 0.1246 0.3154 0.2059 0.1103
Drawn MNL assignment 0.3558 0.1281 0.3090 0.2069 0.0317
Maximum posterior assignment probability 0.3490 0.1283 0.3150 0.2074 0.0720
Drawn posterior assignment 0.3510 0.1247 0.3205 0.2037 0.2601
Conditional individual-specific estimates 0.3780 0.1289 0.2898 0.2032 0.0001
Conditional individual-specific estimates + KR 0.3710 0.1211 0.3122 0.1956 0.0156

Note: KR = Krinsky—Robb method; LCL = latent class conditional logit model; MNL = multinomial logit; na = not applicable.

out-of-sample; leave-one-out cross-validation (LOOCYV)
testing, where one pseudoindividual is repeatedly left out
for estimation and is reserved for testing; k-fold cross
validation with £ = 5, where five groups are created and
reserved as hold-out observations for testing; and
repeated 5-fold cross validation, where the previous cross
validation method is repeated. These cross validation
methods are common practice in the machine learning
community, but are not traditionally used in choice mod-
eling. In general, and confirming the observations of the
Monte Carlo study, posterior probability strategies per-
form better than those based on prior probabilities, espe-
cially for the first case study (which involves three
alternatives as opposed to the binary nature of the sec-
ond case study). Beyond PCP, posterior probabilities
also bring more stable predictions, as is revealed in both
RMSE and MAE. On the other hand, working with
maximum probability assignment (strategies 1 and 3) has
slightly higher correct prediction rates compared against
drawn classes. Holding other environmental information,
it is natural to see that a choice set with larger cardinality
leads to a lower likelihood of a certain alternative being
chosen. There are no remarkable difference across cross
validation methodologies, with all class assignment stra-
tegies having similar metric values in testing and training.
This latter observation implies that predictions made
through all assignment strategies are generally consistent
without over-fitting.

When comparing aggregate shares in Tables 8 and 10,
there is no evident conclusion about which strategy has
generally better market share predictions. Whereas

predictions from Drawn MNL assignment have a higher
p-value for a x? test of fit in the second case study com-
pared with that of Maximum MNL probability assign-
ment, the first case study shows inverse results.
Nonetheless, and matching results from the Monte Carlo
study, the use of conditional estimates at the individual
level implemented together with the KR method is char-
acterized by a more consistent performance in the two
case studies.

Conclusions

In this paper, we have discussed and applied six different
class assignment strategies for latent class logit models.
Whereas maximum prior and posterior class assignment
have been applied in some previous studies, we argue
that individuals can also be assigned to a class by ran-
domly drawing a class from a multinomial distribution
with probabilities given by MNL probabilities, either
prior or posterior. We have also argued and implemen-
ted class assignment exploiting individual-level para-
meter estimates that come from the expected posterior
means that are conditional to the sequence of choices
made by the individual. Appendix A presents pseudo-
code of the implementation of the six class assignment
strategies under study. By conducting a Monte Carlo
study, we have analyzed the behavior of the identified
class assignment strategies focusing on preference para-
meter recovery, choice predictions, and class share infer-
ence. In addition, we used two empirical case studies to
supplement the results of the simulation study.
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Table 9. Case Study 2: Prediction Metrics—Emission Valuation Discrete Choice Experiment

Class assignment strategy PCP (drawn) RMSE MAE PCP (max)
Fitted values (full sample)

Maximum MNL assignment probability 0.6338 0.4578 0.3654021 0.6872
Drawn MNL assignment 0.6076 0.5020 0.3918 0.6342
Maximum posterior assignment probability 0.6313 0.4658 0.3674 0.6805
Drawn posterior assignment 0.6313 0.4658 0.3675 0.6804
Conditional individual-specific estimates 0.6035 0.4429 0.3903 0.7026
Conditional individual-specific estimates + KR 0.6102 0.4969 0.3895 0.6421
20% testing (80% training)

Maximum MNL assignment probability 0.6413 0.4667 0.3633 0.6943
Drawn MNL assignment 0.5994 0.5076 0.3992 0.6284
Maximum posterior assignment probability 0.6094 0.4830 0.3902 0.6537
Drawn posterior assignment 0.6247 0.4824 0.3880 0.6534
Conditional individual-specific estimates 0.6091 0.4502 0.3966 0.6898
Conditional individual-specific estimates + KR 0.6159 0.4935 0.3866 0.6491
LOOCV

Maximum MNL assignment probability 0.6349 0.4579 0.3652 0.6887
Drawn MNL assignment 0.6095 0.5011 0.3903 0.6362
Maximum posterior assignment probability 0.6235 0.4751 0.3763 0.6639
Drawn posterior assignment 0.6226 0.4766 0.3773 0.6617
Conditional individual-specific estimates 0.6095 0.4429 0.3903 0.7026
Conditional individual-specific estimates + KR 0.6104 0.4950 0.3881 0.6442
k-fold cross validation (k =5)

Maximum MNL assignment probability 0.6455 0.4591 0.3602 0.6918
Drawn MNL assignment 0.6036 0.5016 0.3922 0.6309
Maximum posterior assignment probability 06113 0.4859 0.3889 0.6384
Drawn posterior assignment 0.6045 0.4885 0.3914 0.6332
Conditional individual-specific estimates 0.6139 0.4436 0.3910 0.7017
Conditional individual-specific estimates + KR 0.6065 0.5044 0.3953 0.6309
Repeated k-fold cross validation (k=5)

Maximum MNL assignment probability 0.6385 0.4585 0.3607 0.6939
Drawn MNL assignment 0.6063 0.5036 0.3935 0.6305
Maximum posterior assignment probability 0.6168 0.4806 0.3842 0.6512
Drawn posterior assignment 0.6167 0.4812 0.3846 0.6502
Conditional individual-specific estimates 0.6097 0.4437 0.3908 0.7018
Conditional individual-specific estimates + KR 06101 0.4966 0.3897 0.6400

Note: KR = Krinsky—-Robb method; LOOCYV = |eave-one-out cross-validation; MAE = mean absolute error; max = maximum; MNL = multinomial logit;

PCP = percent correctly predicted; RMSE = root mean square error.

The results of the Monte Carlo study have the follow-
ing implications. Given a moderate number of choice
occasions by a consumer (i.e., 7 = 5, 10), the maximum
posterior strategy (i.e., strategy 3, assigning a consumer
to the class having the highest posterior probability) per-
forms best at parameter recovery. On the one hand, class
assignment according to maximum probabilities (strate-
gies 1 and 3) can be seen as optimal strategies in expecta-
tion. On the other hand, posterior class assignment
probabilities take advantage of the information con-
tained in the sequence of choices made by the individual
so that the posterior evaluation is more accurate in
reproducing the correct class. However, in the case of a
larger number of choice occasions (i.e., T = 20, 50), class
assignment based on individual-level conditional esti-
mates that account for the sampling distribution of the
assignment parameters (through a KR method type of

procedure) shows superior behavior, with a very good
percentage of correct predictions of the actual classes.
This can be explained by the maximum posterior strat-
egy having over-fitting effects because posterior prob-
abilities optimize toward choice likelihood. In contrast,
the KR procedure can reproduce extreme cases where an
individual makes low-likelihood choices according to
their true latent class. In addition, the capacity to collect
socio-demographic information will help all strategies do
better jobs, especially for strategies 1 and 2 using prior
probabilities.

The results of the two empirical case studies, when
actual classes are not known, suggest that drawn poster-
ior assignment (strategy 4) performs best from the per-
spective of aggregate shares. However, maximum
probability assignment performs better at predicting
individual choices.
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Table 10. Case Study 2: Market Shares—Emission Valuation Discrete Choice Experiment

Aggregate shares

Class assignment strategy Altl Alt2 p-value
Actual shares (full sample) 0.4676 0.5324 na

LCL fitted shares (full sample)

Maximum MNL assignment probability 0.5342 0.4657 0.0000
Drawn MNL assignment 0.4664 0.5335 0.7351
Maximum posterior assignment probability 0.5522 0.4477 0.0000
Drawn posterior assignment 0.5515 0.4484 0.0000
Conditional individual-specific estimates 0.4657 0.5342 0.5878
Conditional individual-specific estimates + KR 0.4664 0.5336 0.8081
LCL Fitted shares 20% testing

Actual shares (testing sample) 0.4628 0.5371 na
Maximum MNL assignment probability 0.5057 0.4942 0.0000
Drawn MNL assignment 0.4627 0.5372 0.9902
Maximum posterior assignment probability 0.5508 0.4491 0.0000
Drawn posterior assignment 0.5421 0.4578 0.0000
Conditional individual-specific estimates 0.4586 0.5413 0.6076
Conditional individual-specific estimates + KR 0.4687 0.5313 0.2484

Note: KR = Krinsky—Robb method; LCL = latent class conditional logit model; MNL = multinomial logit; na = not applicable.

In sum, just plugging in point estimates in the MNL
probabilities of class assignment—which is equivalent to
prior class assignment and is commonly used in
practice—should be avoided. For analyzing expected
class shares, individual-level conditional estimates imple-
mented with the KR method should be preferred,
although posterior assignment performs almost as well.

Finally, as future avenue of research we would like to
explore how the different class assignment strategies
behave in the context of the novel latent class logit speci-
fication with consumer-surplus feedback from the class-
specific conditional logit models to the class assignment
MNL model (34-36).
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