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Summary: Maximum simulated likelihood estimation of mixed multinomial logit models
requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such
as Halton sequences and modified Latin hypercube sampling are workhorse methods for
integral approximation. Earlier studies explored the potential of sparse grid quadrature (SGQ),
but SGQ suffers from negative weights. As an alternative to QMC and SGQ, we looked into
the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get
the same level of accuracy as QMC and SGQ, is as easy to implement, ensures positivity of
weights, and can be created on any general polynomial space. We benchmarked DQ against
QMC in a Monte Carlo and an empirical study. DQ outperformed QMC in all considered
scenarios, is practice ready, and has potential to become the workhorse method for integral
approximation.
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1. INTRODUCTION

Discrete choice models are widely applied across several disciplines such as marketing, eco-
nomics, and travel behaviour. The mixed multinomial logit (MMNL) model currently dominates
empirical choice modelling research as it can capture unobserved preference heterogeneity of
decision-makers. The multinomial probit (MNP) model is also an attractive alternative to specify
flexible substitution patterns across alternatives as well as to jointly model mixed types of de-
pendent variables (Bhat, 2015). In the maximum likelihood estimator of both MMNL and MNP
models, choice probabilities involve computation of a multidimensional integral (Train, 2009).
Moreover, estimating design criteria in Bayesian D-efficient designs of choice experiments also
requires computation of multidimensional integrals (Yu et al., 2010).

Among a handful of analytic solutions to the multidimensional integral problem, a simulation-
free maximum approximate composite marginal likelihood (MACML) estimation approach is
available for MNP models (Bhat, 2011), but the Geweke–Hajivassiliou–Keane (GHK) simulator
(Geweke et al., 1994) is still more commonly used in practice. In the absence of a tractable ana-
lytical solution, these integrals are generally approximated through simulation in the estimation
of logit models and in creating Bayesian D-efficient designs. In general, the abovementioned
estimation problems include evaluation of integrals of the following type:∫

�

f (x)ω(x)dx ≈
n∑

q=1

f (xq)wq,

where � is a set in the d-dimensional Euclidean space Rd , ω is a probability density function
(or positive weight function), and f (.) is generally a conditional likelihood function. Instead of
solving the actual integral, simulation-based inference considers a discrete approximation. The
objective of computationally efficient simulation is to determine nodes xq and weights wq so that
integration can be approximated with the minimum number of function evaluations (n).

Simulation-based inference in discrete choice models started with pseudo-Monte Carlo (PMC)
methods. As an alternative to PMC, quasi-Monte Carlo (QMC) methods are now typically used
to approximate multidimensional integrals (Bhat, 2001; Train, 2009). More specifically, low-
discrepancy sequences,1 such as randomised and scrambled Halton sequences (Bhat, 2003),
and modified Latin hypercube sampling (MLHS) (Hess et al., 2006) dominate the empirical
literature. QMC methods are preferred over PMC because QMC requires fewer draws (i.e.,
fewer loglikelihood function counts) to approximate the integrals due to their excellent coverage
properties (Bhat, 2001).

To further reduce the approximation error with fewer integrand/function evaluations, multi-
level high-order2 (MLHO) QMC approaches have emerged in the last decade (Dick et al., 2017).
Most theoretical advancements in this literature are inspired by solving inverse problems in par-
tial differential equations that require approximating high-dimensional conditional expectations
(Gantner et al., 2018). In MLHO approximations, multiple levels ranging from the fewest nodes
at the coarsest level to the highest nodes at the finest level are defined, and the integral at each
level is approximated using a higher-order QMC method such as interlaced polynomial lattice
rules (Gantner, 2016; Goda and Dick, 2015). With an optimal number of nodes at each level,

1 Dick and Pillichshammer (2014) illustrates that the lower the discrepancy of a sequence, the smaller the error in the
Monte Carlo integration will be.

2 As the approximation error rate is proportional to F−σ , where F is the number of function evaluations and σ is the
order of convergence, the objective in higher-order QMC methods is to achieve the highest possible value of σ .
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Designed quadrature 303

aggregating level-specific approximated integrals with varying precision results in overall small
approximation errors. Given that sample and solution spaces are different at each level, these
methods require multiple user inputs such as: (a) mapping of sample spaces at different levels for
consistent sampling, (b) mapping of solution spaces to combine level-specific solutions, and (c)
the number of levels. The optimal number of nodes at each level is another user input that depends
on the integrand’s properties and the error convergence rate of the level-specific approximation
method.

Gantner (2016) has developed a user-friendly interface to implement MLHO QMC methods,
but these methods did not receive much attention in applied microeconometrics. Developers of
MLHO QMC methods may find them generic and simple to implement, but applied microecono-
metricians would not think the same way as they benchmark the simplicity of a new method
against traditional Halton sequences. For instance, Sándor and Train (2004) and Munger et al.
(2012) showed the superiority of single-level higher-order digital nets over Halton sequences,
but implementation simplicity and generalisability of the latter makes it a workhorse method in
applied microeconometrics.

In this study, we illustrate that recent advancements in deterministic quadrature methods could
be of interest in microeconometrics because they (a) are as generic and easy to implement as
low-discrepancy sequences, (b) have a provably higher order of convergence than existing higher-
order random QMC methods, and (c) are superior in approximating moderate dimension integrals
that are often encountered in microeconometrics (Ryu and Boyd, 2015; Keshavarzzadeh et al.,
2020).3

1.1. Quadrature methods and research gap

As an alternative to QMC, quadrature methods have been explored in the discrete choice literature
(Heiss and Winschel, 2008; Heiss, 2010; Abay, 2015; Patil et al., 2017; Goos and Mylona, 2018).
Quadrature methods mainly differ from QMC in two ways, as quadrature (a) generally assumes
that the integrand can be approximated on a polynomial space and (b) uses deterministic draws
(or nodes) that carry unequal weights.

The Gaussian quadrature method approximates one-dimensional integrals with just a few
nodes.4 Quadrature can be simply extended to multiple dimensions using the tensor product. How-
ever, this multidimensional extension of quadrature suffers from the curse of dimensionality—the
number of nodes (i.e., function evaluations) increases exponentially with the number of dimen-
sions, making it impractical beyond 4–5 dimensions. Smolyak (1963) proposed a way to extend
the univariate quadrature rule to multiple dimensions in a method that is often called sparse
grid quadrature (SGQ) in the literature. For example, whereas Gaussian quadrature can exactly
compute an integral with a univariate polynomial of order 5 with three nodes, the same function
in 20 dimensions requires 320 = 3, 486, 784, 401 nodes in product rule quadrature and 841 nodes
in SGQ, respectively (Heiss and Winschel, 2008).

Heiss and Winschel (2008) have demonstrated that SGQ performs much better than QMC
in the estimation of the MMNL model, even with up to 20 random parameters. Further, Heiss

3 The advancements in deterministic quadrature methods revolve around numerical optimisation on higher-order and
high-dimensional polynomials. We acknowledge the fact that such numerical optimisation can be inefficient (or might
be impossible) in extremely high orders and dimensions (e.g., above 200), but dimension-independent random sampling
methods can be effective in such high dimensions. However, this is not a concern in our work because the dimension of
integrals in microeconometric estimations is generally below twenty.

4 A K-times differentiable integrand can be approximated by a polynomial of degree K, and thus the resulting integral
with surrogate integrand can be approximated using just K+1

2 nodes (Golub and Welsch, 1969).
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(2010) combined SGQ with the efficient importance sampler (EIS) (Richard and Zhang, 2007)
to estimate MNP and panel binary probit models, and demonstrated superiority of this hybrid
SGQ-EIS approach over traditional QMC methods.

Even if nodes and weights in SGQ can be pre-computed and stored for reuse as easily as
in traditional QMC methods, SQG methods have not been adopted in practice due to three
possible reasons. First, weights computed in SGQ can be negative. Whereas Heiss and Winschel
(2008) discussed this concern as an eventual possibility, they claimed not to encounter any
such issue—perhaps due to a very simplistic simulation design with a (low-variance) diagonal
variance–covariance matrix. In contrast, in our experience we always encountered the issue
of negative choice probability estimates for a few individuals coming from negative weights,
which numerically led to imaginary (complex) loglikelihood values. Patil et al. (2017) also
encountered convergence issues due to negative weights while applying the SGQ-EIS method
in the estimation of multinomial probit. Second, the required number of nodes to accurately
approximate the integral using SGQ depends on the functional properties of the integrand, but the
researcher is generally not aware of these properties. Third, whereas SGQ reduces the number of
nodes significantly as compared to the product rule, the cardinality remains very high relative to
that of QMC for high-dimensional integrals. Concerns two and three can be illustrated with the
following example. If the integrand in a ten-dimensional integral can be well approximated using a
third-order polynomial, Gaussian SGQ just needs 21 nodes, but the number of required nodes and
thus the number of function evaluations increases to 8,761 for a ninth-order polynomial (Heiss and
Winschel, 2008). The combined consequences of concerns two and three is confirmed by Abay
(2015) in the estimation of a panel binary probit—SGQ outperforms QMC for dimensions below
or equal to four, but QMC starts dominating SGQ for higher dimensions, and the difference is
apparent as panel covariance increases. This is because a higher panel covariance in binary probit
makes the integrand (i.e., loglikelihood) less smooth and, therefore, a higher-order polynomial
(i.e., higher number of nodes or function evaluations) is required to approximate the integral at
the same level of accuracy.

1.2. Moment-base quadrature and contributions

More recent developments in quadrature methods could address the main concerns of SGQ.
Whereas Ryu and Boyd (2015) showed that numerical quadrature can be obtained by solving
an infinite-dimensional linear program (LP), Jakeman and Narayan (2018) used the same flex-
ible moment-based optimisation framework to obtain a numerical quadrature rule. Recently,
Keshavarzzadeh et al. (2018, 2021) simplified this moment-based strategy by solving a relaxed
version of the original optimisation problem and came up with a new numerical quadrature rule
known as designed quadrature (DQ).

DQ has many key features. This flexible framework allows the researcher to add a constraint
to ensure the positivity of weights. Moreover, DQ rules can be constructed over nonstandard
geometries of the support of the nonnegative weight function and on more general polynomial
spaces (e.g., hyperbolic cross-polynomial space) instead of restricting to just total order polyno-
mial spaces. For instance, Keshavarzzadeh et al. (2018) considered the support of weight function
to be ‘U-shaped’ while generating DQ. In fact, DQ requires relatively fewer nodes than SGQ.
For example, to approximate a 10-dimensional integral with a polynomial of total order 5 as
integrand, DQ requires 148 nodes while nested SGQ needs 201 nodes.5

5 In the absence of information about functional properties of the integrand, a priori assumption on the order of the
polynomial (to approximate the integrand) persists in DQ. This theoretical issue does not adversely affect the empirical
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To the best of our knowledge, the potential of moment-based numerical quadrature rules
has not been explored in the econometrics literature. Thus, the contribution of the study is
two-fold: (a) we address the bottlenecks of the traditional SGQ method by applying the recently
developed DQ method (Keshavarzzadeh et al., 2018) in maximum simulated likelihood estimation
of discrete choice models; (b) using a Monte Carlo study and an empirical application, we
show the superiority of DQ over workhorse QMC methods in the estimation of MMNL with a
varying number of random parameters (3, 5, and 10) and correlation structures (diagonal and full
covariance).

The rest of the paper is organised as follows: Section 2 briefly describes the MMNL model
and its estimation, Section 3 discusses univariate quadrature, multivariate quadrature, and DQ
methods, Section 4 explains the Monte Carlo simulation design and summarises corresponding
results, Section 5 compares QMC methods with DQ on an empirical study, and conclusions and
future work are detailed in Section 6.

2. MIXED MULTINOMIAL LOGIT MODEL

Consider that the conditional indirect utility derived by decision-maker i from making choice j

in choice situation t is:

Uitj = xT
itjα + zT

itjβi + εitj,

where i ∈ {1, . . . , N}, j ∈ {1, . . . , J }, and t ∈ {1, . . . , T }. The covariate vector xitj has a fixed
preference parameter vector α and zitj has a random, agent-specific parameter vector βi . The
preference shock εitj is independent across individuals, choices, and time, and is an identically
distributed Type-I extreme value. Thus, the probability of choosing alternative j by individual i

in choice situation t , conditional on βi , has a logit link:

Pitj(α,βi) = exp
(
xT
itjα + zT

itjβi

)
∑J

k=1 exp
(
xT

itkα + zT
itkβi

) .

For an individual i who chooses alternative j in choice situation t , we define the indicator
ditj = I(j chosen|i, t). For the sequence of choices made by individual i, the conditional likelihood
Li(α,βi) is:

Li(α,βi) =
T∏

t=1

J∏
j=1

[Pitj(α,βi)]
ditj .

Consider that the random parameter βi is multivariate normally distributed with mean γ

and variance–covariance matrix �. Thus, the loglikelihood �(ψ) of the sample in terms of the

advantages of DQ because one can generate DQ rules for the highest possible polynomial order for a given number of
nodes, which can be restored and reused in future (see Section 6 for a detailed discussion). Adaptive SGQ methods are
capable of handling this challenge (Ma and Zabaras, 2009; Brumm and Scheidegger, 2017; Cagnone and Bartolucci, 2017;
Bhaduri and Graham-Brady, 2018; Scheidegger and Treccani, 2018). Instead of restricting to polynomial basis functions,
adaptive methods generally use hierarchical basis functions to capture the integrand’s local behaviour. However, adaptive
SGQ methods require specification of a grid refinement strategy, a criterion to include or exclude a grid point based on its
relative contribution to the approximation. Such grid refinement strategies need to be fine-tuned based on the integrand’s
properties that make adaptive SGQs less general and difficult to implement than DQ.
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unconditional likelihood Pi(ψ) of individual i is:

�(ψ) =
N∑

i=1

ln
(
Pi(ψ)

)
=

N∑
i=1

ln

(∫
β

Li(α,β)f (β|γ ,�)dβ

)
,

where ψ = {α, γ ,�}.
(2.1)

As the sample loglikelihood �(·) in (2.1) is analytically intractable, the parameter vector ψ can
be estimated by maximising the sample’s simulated loglikelihood �̃(·):

�̃(ψ) =
N∑

i=1

ln

( R∑
r=1

Li(α,βir )wi(βir |γ ,�)

)
.

Note that βir and wi(βir |γ ,�) are viewed as nodes and weights in the quadrature method,
respectively. In the QMC simulation literature, nodes are generally denoted by draws and the
weight wi(βir |γ ,�) attains the value of 1

R
for all draws. Note that even though βir is a realisation

of N (γ ,�), the model is reparametrised in terms of the Cholesky decomposition of � to ensure
positive definiteness. Thus, when approximating the loglikelihood with quadrature or QMC
methods, we always work with standard normal distributions.

3. QUADRATURE METHODS

3.1. Notation

We adopt the notation of Keshavarzzadeh et al. (2018) to illustrate the intuition and key results
of different quadrature methods. We reconsider the integral approximation problem:∫

�

f (x)ω(x)dx ≈
n∑

q=1

f (xq)wq, (3.1)

where ω(x) is a given weight function (or a probability density function) whose support is � ⊂ Rd .
A point x ∈ Rd has components x = (

x(1), x(2), . . . , x(d)
)
.

We define α ∈ Nd
0 as a multi-index, and � as a downward closed set6 of multi-indices:

α = (α1, . . . , αd ), xα =
d∏

j=1

(
x(j ))αj

, |α| =
d∑

j=1

αj .

Our ultimate goal is to construct a set of n points
{
xq

}n

q=1 ⊂ � and positive weights wq > 0 in
(3.1), but we attempt to achieve this by enforcing equality in (3.1) for a subspace 	 of polynomials
such that: ∫

�

f (x)ω(x)dx =
n∑

q=1

f (xq)wq, f ∈ 	

	 = span
{
xα

∣∣ α ∈ �
}
.

(3.2)

Thus, solving for
{
xq

}n

q=1 and wq > 0 using (3.2) should provide a good approximation of the
integral in (3.1).

6 If α, β ∈ N
d
0 , then α ≤ β if and only if all component-wise inequalities are true. Using this definition, a multi-index

set � is called downward closed if α ∈ � =⇒ β ∈ � ∀ β ≤ α.

C© The Author(s) 2022.
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Whereas Keshavarzzadeh et al. (2018) proposed a numerical method to solve (3.2) for a
general polynomial subspaces, we restrict discussion to total order (represented by subscript T(.))
polynomial spaces with the total order being r:

	Tr
= span

{
xα

∣∣ α ∈ �Tr

}
, where �Tr

= {
α ∈ Nd

0

∣∣ |α| ≤ r
}
.

3.2. Univariate quadrature

We need to define first the basis for the polynomial space 	Tk
. Note that a basis of orthonormal

polynomials exists with elements pm(·) such that deg pm = m. The family of these polynomials
satisfies the following recursive relation (Askey, 1975):

xpm(x) =
√

bmpm−1(x) + ampm(x) +
√

bm+1pm+1(x),

am = (xpm, pm) bm = (pm, pm)

(pm−1, pm−1)
.

After characterising the one-dimension polynomial space, we present a theorem which is the
foundation of the quadrature literature:

THEOREM 3.1. Let x1, . . . , xn be the roots of the nth orthogonal polynomial pn(x) and let
w1, . . . , wn be the solution of the system of equations

n∑
q=1

pj (xq)wq =
{√

b0, if j = 0
0, for j = 1, . . . , n − 1.

(3.3)

Then xq ∈ � and wq > 0 for q = 1, 2, . . . , n, and∫
�

p(x)ω(x)dx =
n∑

q=1

p(xq)wq (3.4)

holds for all polynomials p ∈ 	T2n−1 .

According to Theorem 3.1, nodes and weights in (3.4)—which is a one-dimensional version of
(3.2)—can be exactly obtained by solving the system of equations (moment-matching conditions)
summarised in (3.3). A more intuitive implication of Theorem 3.1 is that if the integrand can be
exactly specified on a polynomial space of order 2n − 1, only n nodes are required to compute the
corresponding univariate integral precisely. Golub and Welsch (1969) and Davis and Rabinowitz
(2007) provide a detailed procedure to compute this univariate quadrature rule.

3.3. Multivariate quadrature

In product rules, univariate quadrature can be simply extended to multivariate quadrature using
a tensor product. More specifically, the weight function ω(x) and its support � can be written as
follows:

� = ×d
j=1�j , ω(x) =

d∏
j=1

ωj

(
x(j )

)
,

where �j ⊂ R is a univariate domain and ωj (·) is a univariate weight. If p
(j )
n (·) is the univariate

orthonormal polynomial family corresponding to ωj over �j , then the family of multivariate

C© The Author(s) 2022.
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polynomials orthonormal under ω can be written as:

πα(x) =
d∏

j=1

p(j )
αj

(
x(j )

)
, α ∈ Nd

0 .

The corresponding polynomial space is: 	Tr
= span

{
πα

∣∣ α ∈ �Tr

}
. After characterising the

polynomial subspace, the moment-matching conditions of Theorem 3.1 can be extended to the
multivariate case as follows:

PROPOSITION 3.1. Let � be a multi-index set with 0 ∈ �. Suppose that x1, . . . , xn and
w1, . . . , wn are the solution of the system of equations

n∑
q=1

πα(xq)wq =
{

1/π0, if α = 0
0, if α ∈ �\{0} (3.5)

then ∫
�

ω(x)π (x)dx =
n∑

q=1

π (xq)wq,

holds for all polynomials π ∈ 	�.

Note that unlike Theorem 3.1, Proposition 3.1 neither guarantees the positivity of weights nor
ensures that nodes belong to the support �. Although sparse grid quadrature (SGQ) provides
an efficient way to combine multiple dimensions so as to reduce the function evaluations, it
does not provide remedy for these issues. We did not consider SGQ in this study, because (a) in
our initial test runs, negative weights in SGQ led to complex (imaginary) loglikelihood values
in the estimation of MMNL with full variance–covariance matrix; and (b) based on extensive
simulations studies, Keshavarzzadeh et al. (2018) confirmed that DQ requires many fewer nodes
than SGQ. Heiss and Winschel (2008) can be referred for intuitive and theoretical discussion on
SGQ rules.

3.4. Designed quadrature (DQ)

DQ solves a relaxed version of the moment-matching conditions given in (3.5), which enforces
positivity of weights and also ensure nodes to fall in the support of the probability density function.
Keshavarzzadeh et al. (2018) reformulates the moment-matching conditions as follows:

For a given index set � with size M = |�|, consider the matrix X ∈ Rd×n with columns xj , and
let w ∈ Rn be a vector containing the n weights. Let V (X) ∈ RM×n denote the Vandermonde-like
matrix with entries

(V )k,j = πα(k)
(
xj

)
, k = 1, . . . ,M j = 1, . . . , n,

where elements of � are considered with ordering α(1), . . . α(M) and α(1) = 0. The system (3.5)
can then be written as:

V (X) w = e1/π0, (3.6)

where e1 = (1, 0, 0, . . . , 0)T ∈ RM . Instead of solving the moment-matching conditions exactly
in (3.6), Keshavarzzadeh et al. (2018) proposed to obtain the approximate solution (X,w) that

C© The Author(s) 2022.
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satisfies:

‖V (X) w − e1/π0‖2 = ε ≥ 0. (3.7)

In fact, Keshavarzzadeh et al. (2018) provide bounds on the integral error∣∣∣∫ f (x)ω(x)dx − ∑n
q=1 f (xq)wq

∣∣∣ in terms of tolerance ε, which is computable for a given

quadrature rule.
Thus, for a given polynomial subspace, DQ aims to compute nodes X = {x1, . . . , xn} ∈ �n

and positive weights w ∈ (0,∞)n that solves the following constrained optimisation problem:

min
X,w

||V (X)w − e1/π0||2
subject to xj ∈ �, j = 1, . . . , n

wj > 0, j = 1, . . . , n.

(3.8)

Readers can refer to Keshavarzzadeh et al. (2018) for more insights about strategies (e.g.,
constrained optimisation problem) to solve the above optimisation problem.

3.5. Discussion

In the context of this study, we explore possibilities of approximating the unconditional
choice probability integral, as in (3.1), in MMNL using DQ. We assume that the condi-
tional choice probability—integrand in (3.1)—can be approximated on total order polyno-
mial space. Given that properties of the integrand vary with the data generating process
and are thus not known beforehand, the performance of the approximation will depend on
the assumed order of the polynomial space. Moreover, whereas SGQ predetermines the ex-
act number of nodes based on the order (r) of the polynomial space and dimension of the
integral, DQ rules can be obtained (i.e., the optimisation problem in (3.8) can be solved)
for a various possible number of nodes (n). Thus, for a given integral dimension, one can
generate DQ rules for different total order (r) polynomial spaces and a different number of
nodes (n).

In both parametric and nonparametric MMNL models, the choice probability integral can
generally be reparameterised such that the weight function ω(.) in DQ turns out to be a probability
density function of a standard normal (e.g., normal or lognormal mixing distributions) or a
standard uniform distribution (e.g., semiparametric logit-mixed logit model).7 Just as in QMC
methods, we can generate, store, and reuse DQ rules for both standardised distributions. Thus, DQ
offers the same flexibility. The researcher can solve the optimisation problem in (3.8) beforehand
for different combinations of dimensions, order of polynomial, and number of nodes, and then
reuse the stored nodes and weights.

In sum, DQ may appear more cumbersome than QMC methods at first, but reusability of
the nodes and weights not only makes DQ equally easy to implement in practice and, in fact,
even fewer function evaluations are needed (i.e., lower computation time is achieved). Nev-
ertheless, for a given dimension of integral, whereas QMC needs tuning of the number of
draws to get stable parameter estimates, DQ requires to tune the total order of polynomial
spaces and the corresponding number of draws. In the next section we conduct a detailed sim-
ulation study to make recommendations about selection of these parameters in the context of
MMNL.

7 The support � of standard normal and standard distributions are whole real line and [0,1], respectively.
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4. MONTE CARLO STUDY

4.1. Simulation design

The objective of the simulation study is to evaluate the performance of DQ relative to QMC
methods in MMNL estimation. We considered modified Latin hypercube sampling (MLHS) (Hess
et al., 2006) and randomised and scrambled Halton sequences (Bhat, 2003) as representative QMC
methods. In the data generating process (DGP), we considered a sample of 1,000 decision-makers
who are assumed to choose a utility maximising alternative from a set of five alternatives across
five choice situations. As the number of random parameters governs the dimension of the choice
probability integral in MMNL, we compared performance of DQ and QMC methods in MMNL
with three, five, and ten normally distributed random parameters. For each random parameter
scenario, we considered two covariance structures: zero (diagonal) and full covariance across
random parameters. The considered covariance matrix �5

f ull cov. for five random parameters is
illustrated below; similar structures were considered for dimensions three and ten. This sensitivity
analysis is crucial because the performance of DQ depends on the smoothness of the integrand
(i.e., conditional likelihood), which in turn depends on the structure of the covariance matrix.

�5
f ull cov. =

⎡
⎢⎢⎢⎢⎣

1.5 0.5 0.5 0.5 0.5
0.5 1 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5
0.5 0.5 0.5 1 0.5
0.5 0.5 0.5 0.5 1.5

⎤
⎥⎥⎥⎥⎦.

We generated 150 data sets in total for each covariance structure: 50 data sets for each random
parameter scenario. For each of 300 data sets, we performed maximum simulated likelihood
estimation (with analytical gradient) using a different number of QMC draws and different total
order polynomial subspaces and nodes of DQ. We summarise results by computing the following
five metrics across resamples: (a) average loglikelihood at convergence, (b) absolute percentage
bias (APB), (c) average estimation time, (d) average number of loglikelihood evaluations in the
estimation process, and (e) the t-distributed test statistic under the null hypothesis that the point
estimate is equal to the true population parameter. As the test statistic gets smaller, we become
more confident that the estimated parameter is close to the population parameter.

We compute the APB and the t-distributed test statistic of a parameter for a sample as follows:

APB =
∣∣∣∣Parameter Estimate – True Parameter Value

True Parameter Value

∣∣∣∣ × 100,

Test statistic = Mean of the Point Estimate across Resamples – True Parameter Value

Finite sample standard error (FSSE)
.

The mean values of APB and the test statistic across all parameters and resamples are reported
for succinctness. To avoid empirical identification issues, we computed FSSE, APB, and t-
value for parameter ratios. We wrote MATLAB code to generate DQ rules and perform MMNL
estimation with analytical gradients. DQ rules were generated beforehand, stored, and reused
for estimation. While generating DQ rules, we considered tolerance ε in (3.7) to be 10−8. We
performed sensitivity analysis with tighter tolerances, but those did not improve accuracy. The
simulation study was conducted using MATLAB (R2020b) on a Dell computer with an Intel
Core i-7 (8th generation, 1.99 GHz) processor, 16 GB RAM, and 64-bit operating system. We
did not use any parallel computation explicitly, but some built-in MATLAB functions inherently
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use multiple cores. MATLAB codes to replicate the Monte Carlo study and generate DQ rules
can be found at our GitHub repository: https://github.com/p-bansal19/Designed-Quadrature.

4.2. Results and discussion

The results of the Monte Carlo study for random parameters (integral dimensions) three, five,
and ten are summarised in Tables 1, 2, and 3, respectively.

As the dimension of the integral increases, the minimum number of nodes required to generate
the appropriate DQ rule at a given polynomial order (r; also known as accuracy level) increases.
For example, we could generate the DQ rule for higher-order r = 6 with just 30 nodes for three
dimensions (see Table 1), but to solve the DQ optimisation problem (up to a prespecified tolerance
ε) for the same order in five dimensions needed at least 100 nodes (see Table 2). Also, for a given
dimension of the integral, more nodes are required to generate DQ in higher-order polynomial
spaces. For example, we could generate the DQ rule for ten dimensions with 100 nodes for a
polynomial of order r = 4, but needed a minimum of 200 nodes for r = 5 (see Table 3).

We now compare the model fit (loglikelihood) of DQ and QMC methods. In the diagonal
variance–covariance case, DQ outperformed both QMC methods by a significant margin, even
when the DQ rule was generated on polynomial spaces with relatively low order. For the five-
dimensional case, DQ achieved a similar model fit (loglikelihood: −5354.6) with just 100 nodes
at r = 6 as of the fit obtained using 1,000 Halton and MLHS draws (loglikelihood: −5353.8 and
−5353.9). In fact, DQ with 100 nodes at r = 4 (loglikelihood: −5017.7) outperformed Halton
and MLHS with 300 draws (loglikelihood: −5021.6 and −5020.9) in approximating the higher
(i.e., ten) dimensional integral. The model fit values of Halton and MLHS are indistinguishable.

DQ also outperformed QMC methods in the full variance–covariance scenario, but a higher
order of polynomial subspaces are desirable in this nonindependent case. These observations
are aligned with intuition: introducing covariance makes the integrand more complex (Abay,
2015), which can be better approximated on higher-order polynomial subspaces. For example,
in the case of five random parameters with a full covariance DGP, whereas DQ could achieve a
model fit of −5759.5 with 200 nodes at r = 7, MLHS and Halton required 300 draws to achieve
virtually the same model fit; however, 300 nodes of DQ at r = 5 (loglikelihood: −5061.0) were
slightly outperformed by 300 Halton and MLHS draws (loglikelihood: −5758.4 and −5758.6).
As expected, we generally observed that increasing the order of polynomial subspaces results in
a better model fit. As a general trend, across all dimensions and covariance structures, the highest
order in DQ (r = 7, 7, and 5 for dimensions 3, 5, and 10) resulted in better model fit than those
of QMC methods at a given number of draws.

Across DQ and QMC methods, parameter recovery metrics—APB—decreases with an increase
in the number of draws (or nodes). Consistent with the model fit, DQ surpassed MLHS by a
significant margin in recovering true parameters if the variance–covariance matrix is diagonal.
For instance, DQ could achieve similar APB value with 200 nodes (on polynomial space of order
r = 6) compared to what we obtained using QMC with 1,000 draws in the DGP with five random
parameters (see Table 2). In fact, DQ also recovered parameters better than QMC methods across
correlated covariance structures, but at higher-order polynomial subspaces. For example, in DGP
with five highly correlated random parameters, APB using 200 QMC draws is 15.8%, but for the
same number of DQ nodes whereas APB is relatively higher at r = 5 (16.8%), it is relatively
lower at r = 7 (13.9%) (see Table 2). In Figure 1, we also plot APB versus computation time for
all considered methods across all simulation settings to illustrate the APB reduction in DQ relative
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Figure 1. Bias and computation time trade-off (MLHS: modified Latin hypercube sampling; DQ: designed
quadrature with the highest possible order).
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to QMC methods at a given computational budget. We derived similar insights by comparing
t-distributed test statistic of DQ and QMC methods across the considered DGP scenario.

One may speculate that DQ might take more evaluations of the loglikelihood than those
required in QMC to achieve convergence, leading to higher estimation time than QMC for the
same number of draws/nodes. To test this hypothesis, we present the average estimation time,
and loglikelihood function evaluation across all resamples. The results indicate that DQ requires
the same or fewer loglikelihood evaluations than those needed in QMC methods. Given that each
loglikelihood evaluation takes the same time in both DQ and QMC for a given number of draws,
the estimation time of DQ is similar or lower than that of QMC methods. Thus, the superiority
of DQ in terms of model fit and parameter recovery directly translates into computational time
savings.

In sum, for a given number of draws/nodes, better model fit, and more precise parameter
recovery in DQ across all dimensions and covariance structures make it a computationally-
efficient substitute to QMC methods in practice.

5. EMPIRICAL STUDY

We now compare the performance of DQ and QMC while studying the preference of travellers
in New York City (NYC) for mobility-on-demand (MoD) services (e.g., Uber and UberPool).

5.1. Experiment design

We conducted a stated preference survey in NYC. The survey included a discrete choice exper-
iment (DCE) in which each respondent was asked to choose the best and the worst travel mode
from a set of three choices: Uber (without ridesharing), UberPool (with ridesharing), and their
current travel mode (the one used most often on their most frequent trips). We first conducted a
pilot study (N = 298) using the D-efficient design with zero priors in February 2017. We then
used prior parameter estimates from the pilot study to create a pivot-efficient design8 with six
blocks (seven choice situations per block). Table 4 shows the attribute levels of the DCE design
and an instance of choice situation. More details about the experiment design can be found in
Liu et al. (2019). We conducted the main study during October–November 2017. Preferences of
1,000 respondents were used in estimation.

5.2. Estimation and results

We considered marginal utilities of all five alternative-specific variables to be normally distributed.
This specification led to a five dimensional integral in MMNL estimation. Similar to the simulation
study, we compared DQ against randomised and scrambled Halton draws and MLHS in this
empirical study. The number of draws/nodes was varied from 100 to 1,000. We considered
50 different starting values, and for each starting value 13 models were estimated considering
different QMC draws and DQ nodes.

Table 5 summarises the average of model fit, estimation time, and loglikelihood function
evaluations across different starting values. Across all considered scenarios, MLHS resulted in a
similar model fit as the one obtained using Halton draws. The performance of DQ is consistent

8 In pivot-efficient designs, attribute levels shown to the respondents are pivoted from reference alternatives for each
respondent. In this study, the travel mode used on the most frequent trips was considered as the reference alternative.
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Table 4. Experiment design for mode choice study.

Attribute levels in the experiment design
Uber (without
ridesharing)

UberPool (with
ridesharing) Current mode

Walking and waiting time 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% asked (100%)
In-vehicle travel time 80%, 95%, 110%,

125%
90%, 105%, 120%,135% asked (100%)

Trip cost per mile ($)
(excluding parking cost)

0.55, 0.70, 0.85, 1.0, 1.2 0.45, 0.60, 0.70, 0.80 asked or computed

Parking cost 0 0 asked
Powertrain Gas, electric Gas, electric Gas
Automation Yes, no Yes, no No
Instance of a choice situation

Uber (without
ridesharing)

UberPool (with
ridesharing)

Current mode:
car

Walking and waiting time 6 minutes 9 minutes 12 minutes
In-vehicle travel time 38 minutes 50 minutes 48 minutes
Trip cost (excluding
parking cost)

$11 $8 $6

Parking cost – – $6
Powertrain Electric Gas Gas
Automation Service with driver Automated (no driver) –

Note: All % are relative to the reference alternative.

Table 5. Comparison of model fit and computational efficiency in the case study.
(−)Loglikelihood Estimation time (seconds) Loglikelihood function counts

Draws Halton MLHS DQ Halton MLHS DQ Halton MLHS DQ

r = 5 r = 6 r = 5 r = 6 r = 5 r = 6

100 5470.3 5470.6 5445.5 46 47 48 87 94 96
200 5459.9 5462.6 5491.5 5445.2 90 86 87 85 84 86 84 84
300 5455.7 5457.8 5457.3 5437.2 138 134 142 136 89 89 93 89
1,000 5453.0 5453.3 449 449 85 86

with the Monte Carlo study—whereas QMC methods dominated DQ when rules were generated
at the lower order r = 5, DQ generated at the higher-order r = 6 always outperformed QMC
methods across all considered draws. In fact, 200 nodes in DQ at order r = 6 could achieve better
model fit (loglikelihood: −5445.2) than those of 1,000 Halton (loglikelihood: −5453.0) or MLHS
(loglikelihood: −5453.3) draws. These gains directly translate into computational efficiency as
DQ and QMC methods take a similar number of loglikelihood function evaluations to achieve
convergence.

Table 6 shows the average parameter estimates and z-scores for selected QMC draws and DQ
nodes. The mean estimates of all three methods are similar and in fact, z-score values are also in
a similar range. The Cholesky components (e.g., L22 and L33) which are statistically significant
in QMC remains significant in DQ and as expected, corresponding point estimates are also more
stable across the considered draws.
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6. CONCLUSIONS

In this study, we have proposed the use of designed quadrature (DQ) to approximate multidimen-
sional integrals in maximum simulated likelihood estimation of discrete choice models. We have
compared performance of DQ with workhorse QMC methods in a Monte Carlo and an empirical
case study.

Whereas traditional sparse grid quadrature methods suffer from the problem of complex-valued
loglikelihood due to negative weights, DQ could estimate MMNL smoothly for DGPs with varying
covariance structures, owing to positivity of weights. The simulation study confirmed that DQ
requires far fewer function evaluations than QMC if the variance–covariance matrix is diagonal.
Even in DGPs with nondiagonal matrices and full covariance structures, DQ always outperforms
MLHS in terms of model fit and parameter recovery when the quadrature rule is generated on
higher order polynomial subspaces.

In sum, features such as positivity of weights, computational efficiency due to fewer function
evaluations, and easy implementation due to reusability of quadrature rules make DQ an attractive
alternative to QMC methods. In future work, we plan to test the performance of DQ in other
discrete choice models (e.g., multinomial probit, and semiparametric logit models). Furthermore,
to ensure better performance of DQ over QMC, the key question is: for a given dimension and
number of draws, on what maximum order of polynomial subspaces, DQ rule can be generated?
Taking advantage of the reusability feature of DQ, we plan to create software that can store the
DQ rules on the highest possible order for commonly encountered dimensions, weight functions,
and the number of nodes. With said software, DQ is as easy to use as any other QMC method,
but with better performance. In other words, similar to QMC methods, the user would just need
to choose the number of draws for the given dimension and software can provide the best DQ
rule.
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